
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Localized States in Dissipative Systems with Spatially Periodic Modulation

Permalink
https://escholarship.org/uc/item/39c3628t

Author
Ponedel, Benjamin Charles

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39c3628t
https://escholarship.org
http://www.cdlib.org/


Localized States in Dissipative Systems with Spatially Periodic Modulation

by

Benjamin Charles Ponedel

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edgar Knobloch, Chair
Professor James Sethian

Professor Jonathan Wurtele

Spring 2018



Localized States in Dissipative Systems with Spatially Periodic Modulation

Copyright 2018
by

Benjamin Charles Ponedel



1

Abstract

Localized States in Dissipative Systems with Spatially Periodic Modulation

by

Benjamin Charles Ponedel

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Edgar Knobloch, Chair

The Ginzburg-Landau equation with spatially periodic parametric forcing is used to
study localized states near a weakly subcritical steady-state bifurcation. First the speed and
stability of fronts near such a bifurcation are studied without spatial forcing, focusing on the
transition between pushed and pulled fronts. Exact nonlinear front solutions are constructed
and their stability properties investigated. In some cases, the exact solutions are stable but
are not selected from arbitrary small amplitude initial conditions. In other cases, the exact
solutions are unstable to modulational instabilities which select a distinct front. Chaotic
front dynamics may result and is studied using numerical techniques.

When periodic spatial forcing is added the Ginzburg-Landau equation exhibits bistabil-
ity between the trivial state and a nontrivial periodic state. It is shown that a family of
stationary localized states accumulate near the Maxwell point of the homogeneous problem.
Numerical continuation is used to show that under appropriate conditions these localized
states are organized within a snakes-and-ladders structure. This phenomenon is named
forced snaking. The stability properties of these states are determined and it is shown that
longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly
localized, weakly interacting pulses exhibiting foliated snaking.

The phenomenon of forced snaking is not only relevant in dissipative systems and is
introduced in the study of gap solitons. These solitons are described by the cubic-quintic
Gross-Pitaevskii equation with a spatially periodic potential. The stability of the forced
snaking solutions in the gap soliton context is determined. It is shown that multi-pulse solu-
tions of all parities are stabilized when the spatial scale of the periodic forcing is sufficiently
large, effectively quenching the self interactions between the pulses. Finally it is shown that
the solitons unbind from the potential when subjected to sufficiently large perturbations and
a strongly nonlinear theory is derived to capture the dynamics during this transition.
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7.2 Bifurcation diagram showing periodic and localized states when m1 = 0.1, ` = 10
on a periodic domain. The two snaking branches shown are characterized by the
number N of bumps: even (blue) and odd (red). Connecting each pair of folds
is a branch of asymmetric rung states (green) only one of which is shown. The
snaking branches bifurcate together from (and reconnect together to) a domain-
filling periodic state. Plots on the right show solutions u(x) at points marked
with (•), shown over the full domain 0 ≤ x ≤ 100. Solutions labeled with
(�,�) have m0 = − 3
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and are relevant to the stability calculations (Fig. 7.6)
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7.6 The three largest linear stability eigenvalues σ2 for the solutions in Fig. 7.4 com-
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7.7 The five largest linear stability eigenvalues σ2 for the solutions in Fig. 7.5 com-
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perturbed by the unstable antisymmetric eigenfunction. The initial condition is
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Chapter 1

Introduction

Spontaneous symmetry breaking in physical systems has long been a focal point of modern
physics research. In the context of spatially extended systems spontaneous symmetry break-
ing can manifest when an otherwise isotropic and homogeneous system develops a spatial
pattern with a distinctive wave number. Examples of such systems span many fields in
physics and include biology [110], fluid dynamics [11], chemical reactions [119], and nonlin-
ear optics [4] to name a few. A mathematical understanding of such phenomena has been
one of the primary goals of the pattern formation community for many decades and this
dissertation fits into this effort.

Spatial patterns in physical systems frequently develop throughout the spatial domain
but may also be confined to compact regions. In the physical context this behavior hearkens
to the dynamics of a phase transition in which a local part of the system may initially
transition to the new phase after which the transitioned region grows in extent. In the
study of pattern formation such localized patterns are known as localized states and are of
particular interest. In dissipative systems a key element supporting the existence of stable
stationary localized states is the simultaneous existence of at least two distinct domain filling

Figure 1.1: (left) Shadowgraph of hexagonal cells formed in Rayleigh-Bénard convection.
(right) Transformation of hexagons into a roll pattern. This figure is taken from [129].
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Figure 1.2: (a) A sample of ferrofluid under a strong vertical applied magnetic field. Localized
pulses can be seen across the fluid surface. these are generated by finite amplitude localized
perturbations at different locations. (b) A bifurcation diagram showing the energy of the
surface in response to the applied magnetic field strength. The inset shows the number of
peaks that can be observed as a function of the field strength. This figure is taken from
[130].

states that are each stable. This permits the pattern in a localized region (state 1) and the
base state surrounding it (state 2) both to be stable. This scenario is referred to as bistability
and arises in systems in which the bifurcation to patterned states is subcritical.

Ferrofluid is a particularly remarkable subcritical dissipative system and offers a strik-
ing example of localized states. Ferrofluid is a magnetofluidic colloid made up of particles
with definite magnetic dipole moments suspended in a viscous solution. The fluid responds
strongly to magnetic fields and when a sufficiently strong uniform field is applied perpen-
dicular to the fluid surface the system enters a subcritical regime. This is pictured in Fig.
1.2. Under the influence of the magnetic field the fluid surface remains stable up to a critical
field strength. However, using an external magnet a peak of fluid can be pulled out of the
fluid surface which remains as a localized lump in the surface when the external magnet
is removed. This type of lump creation can be repeated at different locations resulting in
beautiful patterns such as the one shown in Fig. 1.2(a). Mathematically the response of the
system can be measured by the energy of the surface of the fluid which distinguishes the flat
lump-less solution from those with localized lumps. This response is plotted in Fig. 1.2(b)
as a function of the magnetic field strength. The localized solutions of this type do not exist
everywhere in the subcritical region but it can be shown that they persist in a finite interval
[106]. Further details can be found in [130].

As is evident in the case of the ferrofluid the multiplicity and structure of localized states
in arbitrary subcritical systems can be very complicated. However, in certain systems the
localized states are organized into a systematic bifurcation structure. One example of such
a system is doubly-diffusive convection in which a horizontal fluid layer with a dissolved
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Figure 1.3: Localized states in doubly diffusive convection: a fluid layer with a dissolved
solute (like salt) is subject to a a vertical temperature gradient. Convection solutions are
computed directly from the Navier-Stokes equations in 2D at Prantl number, Pr = 1. (left)
Bifurcation diagram for the branches of localized roll solutions as a function of the Rayleigh
number, Ra. (center) The dissolved solute concentration integrated vertically over the fluid
domain. (right) The stream function associated to the convection solutions. The solution
plots correspond to the numbered folds on the bifurcation diagram. This figure is taken from
[9].

solute (like salt) is subject to a vertical temperature gradient. This system is subcritical and
the trivial conducting state is bistable with a branch of patterned solutions. This pattern
takes the form of a series of convection rolls that fill the domain and is pictured (solution
number 19) in Fig. 1.3. Because the system is subcritical this pattern is also accompanied
by a series of localized states that exist in a subregion of the bistable region. Each of
these solutions consists of an integer number of convection rolls surrounded by the trivial
conducting solution, also plotted in Fig. 1.3. As a function of the Rayleigh number, Ra,
these states are connected to each other as shown in the bifurcation diagram in the left plot.
In this structure a solution with n rolls is connected to the solution with n + 2 rolls as the
solution branch is continued. The oscillatory nature of the bifurcation branches in such a
scenario is known as snaking and is present in many subcritical physical systems in which
one of the bistable states has a definite wave number, which in the present case is related to
the roll width.

In order to study the behavior of a subcritical system in which the base state is bistable
with a patterned state of definite wave number we consider the limit in which the degree of
subcriticality is weak so that a modulation equation can be derived for the amplitude of the
patterned state. This model takes the form of the Ginzburg-Landau equation (GLE)

At = µA+ Axx + ia1|A|2Ax + ia2A
2Āx + |A|2A− |A|4A (1.1)
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and is derived in chapter 2. When the underlying system is reflection symmetric and transla-
tion invariant Eq. (1.1) is the most general normal form for a weakly subcritical bifurcation.
Here A represents the pattern amplitude and all the coefficients (µ, a1, a2) are real. Because
the amplitude A corresponds to the amplitude of the pattern, patterned states are identified
with homogeneous solutions with |A| 6= 0. This equation supports solutions that connect
the base state (represented by A = 0) to the pattern (represented by constant |A|) via a
continuous solution profile A(x). These composite solutions are known as fronts and can be
thought of as the building blocks for localized states. Generically these front solutions travel
at constant speed, locally transforming one asymptotic state into the other as in a contin-
uous phase transition. The motion ceases only at a particular µ parameter value known as
the Maxwell point where the energy difference between the background and patterned state
vanishes. It is here that one might expect to find stable stationary localized states in an
interval of parameter values. Unfortunately this is not the case.

The mismatch between Eq. (1.1) and systems such as doubly-diffusive convection stems
from the truncation of terms in the normal form calculation. Specifically, in the derivation of
Eq. (1.1) terms that couple the pattern envelope, A, to the underlying pattern are pushed to
higher order and truncated [40]. The result is that solutions to Eq. (1.1) can be translated
freely with respect to the pattern which is not physical. There is a number of possible
solutions to this problem. The first is to abandon the amplitude equation derivation and
instead study phenomenological models that are not derivable but have coupling between the
envelope and pattern by design. The most famous of these is known as the Swift-Hohenberg
equation (SHE) and is introduced in chapter 2. This is not the tack adopted here. Instead we
promote the principal bifurcation coefficient µ to be a prescribed periodic function of space,
µ(x). This is a natural choice since in the derivation of Eq. (1.1) the coupling between
the amplitude and underlying pattern is parametric and the underlying pattern is periodic.
In this dissertation we show that this change is sufficient for Eq. (1.1) to support robust
localized states that exhibit snaking behavior.

The modification of Eq. (1.1) that we consider here is not only relevant in the context
of amplitude equations but is also the model of choice for nonlinear systems that are forced
externally by a periodic spatial potential. One such system is the liquid crystal light valve
(LCLV) experiment considered in [75, 76] and illustrated in Fig. 1.4. In this experiment a
thin film nematic liquid crystal is put into an optical feedback loop in which reflected light
from the liquid crystal is fed to a photoconductor behind it. This sets up an electric field
in the liquid crystal establishing a feedback mechanism. Periodic light modulation is sent in
externally using the light source; this constitutes a spatially periodic potential for the liquid
crystal director field. In this context snaking phenomena are observed experimentally and
Eq. (1.1) where µ is spatially periodic is the natural model description.

Outline

This dissertation begins with a review of the theoretical framework for the study of pattern
formation in chapter 2 and the numerical techniques used here to solve differential equations
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(A)

(B)
(C)

Figure 1.4: (a) The liquid crystal light valve (LCLV) experimental setup. (b) Localized
solutions representing two different orientations of the liquid crystal directors are pictured,
plotted in terms of their light intensity. (c) A bifurcation diagram for the solutions in (b)
is shown in terms of the average externally applied voltage V0. Solutions lie on parallel
bifurcation curves resembling the snaking behavior of stable states. This figure is adapted
from [75, 76].

in chapter 3.
Our study of Eq. (1.1) with µ = µ(x) in this dissertation is divided into four main

components. The first of these involves the homogeneous form of Eq. (1.1) in which µ
is constant. As mentioned previously front solutions in this model represent connections
between u ≡ 0 and the patterned state. These fronts can be glued together like building
blocks to form localized states when µ is non-constant. Thus fronts of the homogeneous
equation are the key solutions involved in localization in the more general model. In chapter
4 we construct an exact front solution to Eq. (1.1) with full parameter dependence. This
front turns out to be uniquely important for localized states in the presence of the potential
but also for the dynamics in the homogeneous model. In the remainder of the chapter we
study the speed and stability of this front and focus on the transition between the pushed
and pulled regimes. In some cases these exact fronts are stable but are not selected from
arbitrary small amplitude initial conditions. In other cases, the exact front is unstable to
modulational instabilities which select a distinct front. Chaotic front dynamics may also
result and are studied using numerical techniques.
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The second component of our exposition is the numerical calculation of the bifurcation
structure of stationary localized solutions when µ is periodic. This is carried out in chapter
5. We begin by considering the real GLE and set a1 = a2 = 0. We show that when spatial
forcing is included its wavelength is imprinted on the homogeneous states of the unforced
equation creating conditions favorable to front pinning and hence spatial localization. We
use numerical continuation to show that under appropriate conditions such forcing generates
a sequence of localized states organized within a snakes-and-ladders structure centered on the
Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability
properties of these states and show that longer lengthscale forcing leads to stationary trains
consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated
snaking.

Chapter 6 connects stationary forced snaking solutions to the dynamics of the full equa-
tion. Here we consider the effects of small and large perturbations to the snaking solutions
and their resulting dynamics. We specifically focus on a process known as depinning where
snaking solutions are perturbed in such a way that the fronts bounding the localized pulses
begin to propagate. We perform analysis of this procedure by numerical simulation and
semi-analytical asymptotic analysis. We close the chapter with an asymptotic calculation to
approximate the depinning dynamics using the exact front solution derived in chapter 4.

In the last component of this work, chapter 7, we consider the implications of forced
snaking more broadly and study the dynamical behavior of forced snaking solutions in energy
conserving systems. The physical systems under consideration are optical and the relevant
solutions are known as gap solitons. The governing equations for systems of this type are
the Gross-Pitaevskii equations (GPEs) and the forced snaking solutions of chapter 5 for
a1 = a2 = 0 represent gap solitons when the GPE nonlinearity is cubic-quintic. We study
the stability of the solutions and specifically show that multi-pulse solutions of all parities
are stabilized when the spatial scale of the periodic forcing is sufficiently large (the foliated
regime), effectively quenching the self interactions between the pulses. Finally we show that
the solitons unbind from the potential when subjected to sufficiently large perturbations and
provide a strongly nonlinear theory to capture the dynamics during this transition.

We complete the dissertation with a discussion of the broader context of this work and
possible extensions in chapter 8.
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Chapter 2

The Mathematical Theory of Pattern
Formation

This thesis is concerned with the study of a particular class of partial differential equations
(PDEs) used to describe the evolution of spatial patterns in a single spatial dimension. Some
of these models can be derived rigorously while others are created heuristically, but all are
subject to validation by real world experiments. This chapter is devoted to the exposition
of the mathematical background material that governs the aforementioned models.

In the course of this chapter we build up the theory of pattern formation beginning with
simple models and ending with the PDEs which we seek to study. The simplest models
begin as dynamical systems governing the time evolution of the quantity of interest without
any description of spatial dependence. The mathematical theory governing these systems is
broadly contained within bifurcation theory for solutions of ordinary differential equations
(ODEs) which we present first. Next, spatial dependence is added resulting in a PDE. We
discuss the derivation of such PDE models and then proceed to the theory for analysis of
their solutions. This analysis is split into: the study of stationary solutions (those with no
time dependence) and secondarily their dynamics. The mathematical underpinnings of the
former topic are governed by bifurcation theory in terms of so-called “spatial dynamics” while
those of the latter are confined to linear eigenvalue problems. Analysis of PDE dynamics
beyond linear stability considerations is carried out numerically, the methods for which are
discussed in chapter 3.

Finally, since this thesis is concerned primarily with spatially periodically forced systems
we close the chapter with a brief review of how spatial periodicity fits into the previous
theory. We first introduce periodically forced non-atonomous ODEs and Floquet theory.
Next we discuss some of the effects of adding spatially periodic forcing to PDEs.

Some of the topics covered in this chapter date back a century but remain in widespread
use in modern research. More comprehensive references on these topics can be found in [74,
77, 79, 90, 98, 100, 152].
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2.1 Bifurcation theory

For the purposes of this work we define a dynamical system to be a set of ODEs of the form

u̇ ≡ du

dt
= f(µ,u), (2.1)

where u ∈ Rn represents the dynamical quantity of interest and characterizes the state of
the system, µ ∈ Rp represents p distinct scalar control parameters which remain fixed and
f : Rp × Rn → Rn represents the structure of the system encompassing all of the physical
information and dictating how the components of u interact. A trajectory of Eq. (2.1)
u(t;u0) is a solution to the equation that passes through u0 at t = 0. We typically drop
the initial point and write u(t) when the particular starting point is not relevant. We term
the set of trajectories generated by the vector field f the flow of the dynamical system and
denote it by φ(u, t).

Fixed points

We call a point, u0, in the phase space of Eq. (2.1) a fixed point if it satisfies 0 = f(µ,u0).
Trajectories beginning at fixed points remain there for all time. This property is non-generic
and it is natural to ask about the behavior of trajectories passing through points nearby u0.
This can be studied mathematically by writing u(t) = u0 + εv(t) where ε� 1. Making use
of Eq. (2.1) v satisfies

v̇ = Df(u0)v (2.2)

to lowest order in ε, i.e. near the fixed point. Here Df(u0) denotes the Jacobian matrix of
the vector field f evaluated at the fixed point u0,

[Df(u0)]ij =
∂fi(u)

∂uj

∣∣∣∣
u=u0

.

In the following we shall implicitly assume the dependence of the Jacobian on the fixed point
and write Df for short. Assuming that Df has no repeated eigenvalues the solution of Eq.
(2.2) can be written,

v(t) =
n∑
i=1

aiηie
λit (2.3)

where (λi,ηi) are eigenvalues and normalized eigenvectors of the matrix Df and ai ∈ R are
constants that depend only on the initial value of v. In general the eigenvalues of Df may
be complex but since f is real-valued they must appear in conjugate pairs. When Df has
null eigenvalues the solution Eq. (2.3) may not reflect the dynamics near the fixed point and
the situation is more complicated. It is precisely for this case that bifurcation theory was
developed.

Fixed points are typically classified by the types of eigenvalues of Df . Specifically, the
eigenvalues of Df can be partitioned into three distinct types: those with positive real part,



CHAPTER 2. THE MATHEMATICAL THEORY OF PATTERN FORMATION 9

negative real part and zero real part. The eigenspaces spanned by eigenvectors associated
to eigenvalues in these three categories are referred to as,

Es : the stable subspace

Eu : the unstable subspace

Ec : the center subspace.

These eigenspaces are invariant under the flow of Eq. (2.2). An immediate consequence of
this decomposition is that initial conditions beginning in Es tend towards the fixed point as
t → ∞ and those in Eu tend towards the fixed point as t → −∞. By construction these
subspaces partition the ambient space, Rn. In particular, if dim(Ej) ≡ nj then ns+nu+nc =
n.

When Ec is empty the fixed point is referred to as hyperbolic. Such fixed points are
further grouped into the following categories:

unstable nu > 0

stable nu = 0

node = (λi) = 0 for all i, and either nu = n or ns = n

saddle = (λi) = 0 for all i, and both nu > 0 and ns > 0

focus at least one pair of eigenvalues has nonzero imaginary parts.

When the center subspace is non-empty classification of the fixed point is more complicated
because its stability depends on the nonlinear terms in the equation. Despite this, the special
case of a fixed point with a single pair of purely imaginary eigenvalues is referred to simply
as a center in the context of the linear equation. The inclusion of nonlinear terms could
destroy the center.

If f ∈ Cr, the space of functions with continuous derivatives of order r ∈ Z then the
three subspaces Es, Eu and Ec may be extended locally into Cr manifolds [152]. Specifically,
there exist three manifolds that we denote W s,W u and W c that pass through the fixed point
and are tangent to the respective eigensubspace at the fixed point. These three manifolds
are correspondingly called the stable, unstable and center manifolds. The manifolds W s and
W u share the same asymptotic properties as Es and Eu respectively and all three manifolds
are invariant in the sense that any initial condition beginning on one must remain there
for all time. While the stable and unstable manifolds are unique the center manifold is
not. However, it can be shown that the center manifold is unique to all orders of its Taylor
expansion [141].

Trajectories connecting fixed points

If a dynamical system has at least one hyperbolic fixed point u0 then it may also possess a
trajectory that approaches that fixed point in both limits t→ ±∞. This type of trajectory
is called a homoclinic orbit. This requires that the unstable and stable eigenspaces of u0
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both be non-empty. Similarly, a heteroclinic orbit is a trajectory that connects two distinct
fixed points in the limits t→ ±∞. Concretely, if such an orbit connects to u0 when t→ −∞
and u1 when t→∞ then u0 must have a non-empty unstable eigenspace and u1 must have
a non-empty stable one. We refer to a chain of heteroclinic orbits that connect a sequence
of fixed points as a heteroclinic cycle.

Bifurcations of vector fields

Informally speaking, a dynamical system is said to undergo a bifurcation if the flow, φ,
“qualitatively changes” as the system parameters, µ, are varied. Qualitative changes to
the system flow may include the creation of new solutions or changes to solution stability.
We term the parameter values for which such changes occur bifurcation points. A rigorous
mathematical definition of a bifurcation is possible for one-dimensional vector fields but
become significantly more complex in higher dimensions. The genericity of a bifurcation is
broadly categorized by the number of scalar parameters that must be independently varied
in order that the bifurcation occur. We call this number the codimension of the bifurcation.
Bifurcations that occur in the vicinity of a single fixed point are termed local bifurcations,
while those that are associated with nonlocal changes to the flow field, such as annihilation
of a homoclinic orbit, are termed global bifurcations. While global bifurcations are generally
difficult to study local bifurcations benefit from a rich mathematical machinery built to
understand the behavior of nearby solutions.

Center manifold reduction

Center manifold reduction is a technique used to understand the flow nearby fixed points
that are not hyperbolic. If a fixed point is hyperbolic then the Hartman-Grobman theorem
guarantees that the flow field near the fixed point is topologically equivalent to the flow
determined by Eq. (2.2) [152]. Moreover hyperbolic fixed points are structurally stable,
meaning that they remain hyperbolic for small changes in parameters. Thus local bifurca-
tions only occur at non-hyperbolic fixed points, i.e. those with nontrivial center manifolds,
W c.

The flow of initial conditions nearby a non-hyperbolic fixed point occurs on two distinct
scales. Initial conditions in W s or W u evolve exponentially quickly (see Eq. (2.3)) whereas
those in W c evolve slowly. The fact that initial conditions in W c have any dynamics at all
is due to nonlinear terms whereas in a linear problem initial conditions in Ec will not evolve
if all the associated eigenvalues are identically 0. For simplicity suppose that dim(W u) = 0
then as t → ∞ trajectories near the fixed point flow quickly to the center manifold which
determines the dynamics on longer timescales. Said another way, after a rapid transient the
solution evolves on a slow scale near the center manifold. Although solutions beginning in
W s must remain there for all time, they evolve rapidly to a neighborhood of W c and adopt
dynamics governed by the timescales set on W c. More precisely, any trajectory of the full
system passing through through an initial condition that is sufficiently close to the fixed
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point asymptotically approaches a trajectory in the center manifold [36]. Center manifold
reduction exploits this property by reducing the dynamics of the entire space, Rn, to the
dynamics near W c. In the case that W u is nontrivial a similar understanding of the dynamics
results in the opposite asymptotic limit, t → −∞, for trajectories beginning in W u. Since
W s and W u are invariant it suffices to study the case when dim(W u) = 0.

Center manifold reduction proceeds as follows. Assume that the origin is a fixed point
of Eq. (2.1) and that dim(W u) = 0. Then after a linear transformation applied to u the
dynamical system can be written

U̇ = AU + f1(U ,V )

V̇ = BV + f2(U ,V ) (2.4)

where U ∈ Rc, V ∈ Rs, the eigenvalues of the matrix A all lie on the imaginary axis, the
eigenvalues of the matrix B all have a negative real part and fk are nonlinear functions of
(U ,V ). The Center Manifold Theorem [36] guarantees that near the origin the manifold
W c can be represented as

W c = {(U ,V ) |V = h(U), h(0) = 0, Dh(0) = 0} .

Furthermore the function h is determined by requiring consistency of Eqs. (2.4) after setting
V = h(U). This results in the identity

Dh(U) · [AU + f1(U , h(U))] = Bh(U ) + f2(U , h(U))

which must be satisfied near the origin. This is typically done by allowing U to take the
form of a Taylor series. The ultimate dynamics on the center manifold are then governed by

U̇ = AU + f1(U , h(U)). (2.5)

As mentioned previously, the Taylor series of the center manifold is unique although the
center manifold is not [141, 152]. The solutions of this equation occur in Rc and are thus
lower-dimensional than the full dynamical system. Typically the dimension reduction is very
significant reducing a high-dimensional system to only a handful of modes.

Normal forms

As a result of center manifold reduction all of the fast “linear” dynamics of the system
near the fixed point, which manifest through rapid initial transients, have been projected
out leaving nonlinear terms that are critical to the character of the flow. Although the
dimension of the system cannot be reduced further it is natural to ask whether there exists
a transformation of the coordinates to simplify the remaining nonlinear terms in Eq. (2.5).
Performing such transformations is what we refer to as putting the equation into normal
form. To be precise, we pick nonlinear near identity transformations of the form U =
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Ũ + g(Ũ ) that are valid in the vicinity of the origin. Broadly speaking, this procedure is
carried out order by order by inserting the Ansatz into Eq. (2.5), Taylor expanding and
choosing g to eliminate as many nonlinear terms as possible. Typically this procedure is
carried out order by order for polynomial terms of increasing degree: the function g is taken

to be a linear combination of all polynomials in the components of U of degree k
{∏k

j=1 Ui(j)

}
,

after making the substitution and Taylor expanding all terms of degree k are collected and
the coefficients of the terms in g are chosen to eliminate as many as possible. Then the
procedure is repeated for terms of order k + 1. The elimination step involves inverting a
linear operator that acts on the space of homogeneous polynomials of degree k and when it
is not of full rank some terms cannot be eliminated. Those remaining are termed resonant.
This linear operator is determined entirely by the polynomial degree k and the matrix, A,
in Eq. (2.5), i.e. the linear part of the dynamics. Because resonant terms may appear in a
variety of combinations the normal form of an equation is generally speaking not unique.

Unfolding a bifurcation

The techniques discussed previously can be used to maximally simplify the equations of a
dynamical system near a nonhyperbolic fixed point but do not deal with the dependence of
the fixed point and its eigenvalues on parameters. Including parameters in this simplified
description is known as unfolding the bifurcation. This is performed by extending the dy-
namical system to include phantom evolution of the parameters by setting µ̇ = 0 for µ in
a neighborhood of the bifurcation point. The number of parameters that must be added
equals the codimension of the bifurcation. Performing the same center manifold reduction
and normal form calculations on the extended system then automatically includes both the
required dynamics and free parameters in a higher-dimensional center manifold.

Infinite-dimensional dynamical systems

Although the techniques mentioned above are quite powerful in the study of finite-dimensional
dynamical systems care must be taken when applying similar insights in infinite dimensions.
This consideration may seem arcane but is relevant because many PDEs may be thought
of as infinite-dimensional dynamical systems by projecting the dynamics onto a countably
infinite complete set of basis functions for the spatial domain. It is then tempting to assume
that in many cases we might use center manifold reduction to reduce the dynamics of a PDE
to finite dimensions! Alas this is typically not possible.

The reason for the complication is the potential accumulation of negative real part eigen-
values on the imaginary axis. Consider an infinite-dimensional dynamical system with a
finite number of eigenvalues on the imaginary axis. Applying center manifold reduction
naively we would split the system into a fast and slow part. In the finite-dimensional case
the separation in timescales allows one to project the fast modes onto the slow ones. This
timescale separation is defined by the real part of the eigenvalue closest to the origin that lies
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to the left of the imaginary axis. In the infinite-dimensional case there is no guarantee that
this “closest” eigenvalue is a finite distance from the imaginary axis. In particular, there
is frequently a series of eigenvalues that accumulate on it. This destroys the separation of
timescales and center manifold reduction breaks down. The theory can be applied in cases
where there is a finite barrier (referred to as the spectral gap) between the imaginary axis
and the negative real part eigenvalues, but they are few and far between.

In the case when reduction is possible there exists a potentially infinite-dimensional center
manifold [71]. The setting for such a problem is the system

ut = Lu+R(u)

in which u lies in a Banach space, L is a differential linear operator and R is a (possibly
differential) nonlinear operator such that R(0) = ∂uR(0) = 0. If the eigenvalues of L satisfy
the spectral gap condition then the infinite-dimensional Center Manifold Theorem guarantees
that in the neighborhood of u = 0 there exists a center manifold that is locally invariant
and contains the set of bounded solutions to the full dynamics for all time [71]. Here the
generalization of the projection operator to the center eigenmodes is a Dunford integral
rather than a matrix. In infinite dimensions a number of additional technical conditions are
required that are not relevant to the finite-dimensional case, see [71]. The theorem was first
proved in 1964.

When there is no spectral gap and eigenvalues accumulate on the imaginary axis such a
reduction is not possible. Nonetheless one can use the method of multiple scales to derive
a reduced description of the system using amplitude equations. These equations may be
derived in regimes in which there is clear spatial scale separation and in many cases provide
an effective description of the full system behavior.

Common bifurcations

To close this section we present a summary of several common bifurcations that appear in
this thesis. These are all either co-dimension one or two and are all steady state bifurcations,
i.e. they have eigenvalues with zero imaginary part at onset.

The Saddle Node Bifurcation

The saddle-node bifurcation is the simplest bifurcation of codimension one. The bifurcation
has a normal form

u̇ = µ± u2. (2.6)

In the “−” case the system has a pair of fixed points ±√µ when µ > 0 and none when µ < 0.
The bifurcation occurs at µ = 0 where the two fixed points are created. A bifurcation diagram
showing this is pictured in Fig. 2.1(a). The stable fixed point is indicated with a solid line,
the unstable one with a dashed line and the flow of Eq. (2.6) for initial conditions away from
the fixed points is indicated by grey arrows. These arrows are omitted from the diagrams
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Figure 2.1: Bifurcation diagram for the saddle-node bifurcation: (a) “−” case, (b) “+” case.
Solid (dashed) lines indicate stable (unstable) fixed points, the arrows indicate the flow of
initial conditions and the bifurcation point is marked with a dot.

in the remainder of this section and solid lines are understood to be attracting while dashed
lines are repelling. We refer to the curve u(µ) of fixed points as a branch. Beginning on the
upper stable branch as µ is decreased the curve folds over and connects to the lower unstable
branch at µ = 0. The bifurcation points on branches exhibiting this behavior (which need
not be saddle-nodes) are referred to as folds. The “+” case is shown in Fig. 2.1(b). In this
case the unstable branch is at higher amplitude and no branches exist for µ > 0.

The Pitchfork Bifurcation

The pitchfork bifurcation has the normal form

u̇ = µu± u3

and is generic in systems with u → −u symmetry. The bifurcation can also occur in non-
symmetric systems but is of higher codimension. The bifurcation diagram for the pitchfork
is shown in Fig. 2.2. In this case the two possible signs in the normal form are referred to as
subcritical (“+”) and supercritical (“−”). In the supercritical case, Fig. 2.2(a), u = 0 is the
only fixed point for µ < 0 and there are three for µ > 0: u = 0,±√µ. The two additional
branches are related by the u → −u symmetry and emerge from the bifurcation point as µ
is increased through 0. In the supercritical case these new branches are both stable while
u = 0 changes stability at the bifurcation point. In contrast for the subcritical case (Fig.
2.2(b)) the extra branches are unstable and exist to the left of the bifurcation point. They
annihilate when µ passes through 0 from below.
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Figure 2.2: Bifurcation diagram for the saddle-node bifurcation: (a) “−” or supercritical
case, (b) “+” or subcritical case. Solid (dashed) lines indicate stable (unstable) fixed points
and the bifurcation point is marked with a dot.

The Hysteresis (cusp) Bifurcation

The hysteresis bifurcation has a normal form

u̇ = µ+ αu− u3

and is codimension two. Specifically two scalar parameters must be tuned in order for the
bifurcation to occur. Here the bifurcation point occurs when µ = α = 0. For α < 0 there
is a single fixed point for each µ ∈ R but when α > 0 there is an interval of µ values for
which there exist three fixed points. In this region the branch resembles an “S” shape and
the boundaries of the interval correspond to saddle-nodes in the bifurcation branch. This is
shown in Fig. 2.3. In part (a) of the figure we plot the locations of these two saddle-nodes
in the (µ, α) plane. The bifurcation point is denoted with a red dot and the dotted lines
correspond to slices at fixed α. Each of these slices corresponds to the bifurcation diagram
in the (µ, u) plane shown to the right (b). Most of the branch of fixed points is stable except
in the α > 0 regime where the two saddle nodes bound a branch of unstable fixed points. As
can be seen in (b) the two saddle nodes annihilate at the bifurcation point. This occurs in
the (µ, α) plane at a cusp point which is the source of the alternative name, cusp bifurcation,
given to this scenario.

The Necking Bifurcation

The necking bifurcation has the normal form

u̇ = µ2 − α− u2
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Figure 2.3: Bifurcation diagrams for the hysteresis bifurcation. Plot (a) shows the location
of the saddle-nodes in the (µ, α) parameter plane. The bifurcation point is marked with a red
dot and the dotted lines denote slices at fixed values of α that correspond to the diagrams
in (b) which are plotted offset in the (µ, u) plane. The saddle-nodes are marked with black
dots.

and is also of codimension two [128]. The bifurcation point occurs at µ = α = 0. For both
α > 0 and α < 0 there are two separate branches of fixed points. At the bifurcation point
these branches coincide. This process can be seen in Fig. 2.4. When α < 0 one of the
branches is stable while the other unstable and in the α > 0 case both branches have a
saddle node separating stable and unstable segments. As α passes through 0 from below the
two curves of fixed points meet and “pinch” off leaving two saddle-nodes. The locations of
these saddle nodes are plotted in the (µ, α) plane in Fig. 2.4(a) and bifurcation curves for
fixed values of α in the (µ, u) plane are shown in (b).

The SNIPER Bifurcation

We close this section with a global bifurcation in which a pair of fixed points annihilate to
form a periodic orbit. This Saddle-Node Infinite-PERiod bifurcation or SNIPER bifurcation
[69] is typically written in polar coordinates (r, θ)

ṙ = r(1− r2) (2.7)

θ̇ = µ− r cos(θ). (2.8)
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Figure 2.4: Bifurcation diagrams for the necking bifurcation. Plot (a) shows the location of
the saddle-nodes in the (µ, α) parameter plane. The bifurcation point is marked with a red
dot and the dotted lines denote slices at fixed values of α that correspond to the diagrams
in (b) which are plotted offset in the (µ, u) plane. The saddle-nodes are marked with black
dots.

Here the radial variable, r, has trivial dynamics. An unstable fixed point at r = 0 and
stable fixed point at r = 1 cause initial conditions to collapse to the unit circle in the radial
direction. As a result, the bifurcation can be understood in terms of Eq. (2.8) alone by
setting r = 1. For |µ| < 1 this equation has a pair of fixed points which are stable and
unstable, respectively. In two dimensions one of these points is a saddle and the other is a
node. When µ = ±1 the bifurcation occurs as the two fixed points annihilate along the unit
circle in a saddle-node bifurcation. Without any fixed points, for |µ| > 1 the unit circle is a
periodic orbit. The θ-direction of the orbit is positive for bifurcations at µ = 1 and negative
if the bifurcation occurs at µ = −1. This process is illustrated in Fig. 2.5.

The SNIPER bifurcation is a global bifurcation. Although it locally involves a saddle-
node bifurcation the SNIPER bifurcation creates a finite size periodic orbit. This trajectory
leaves the vicinity of the bifurcation point and local analysis of the saddle node cannot detect
its presence. The period of the periodic orbit can be computed by integrating Eq. (2.8)

T =
1

2π

∫ 2π

0

1

µ− r cos(θ)
dθ =

1√
µ2 − 1

.

As |µ| → 1 the T diverges as (|µ| − 1)−
1
2 which is characteristic of the dynamics near a

saddle-node.
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(a) (b) (c)

Figure 2.5: Phase space plot for Eqs. (2.7) and (2.8) for increasing values of the parameter:
(a) µ = 0.5, (b) µ = 1 and (c) µ = 1.5. The unit circle is shown with a thick black line, fixed
points with black dots and the flow with grey arrows. The bifurcation occurs at µ = 1 (b)
where the two fixed points collide and annihilate.

2.2 Model equations

This thesis is concerned with the study of spatially extended systems that also exhibit
dynamics and thus appropriate models necessarily take the form of PDEs. When we seek to
write down a PDE model to describe a physical system we have a specific physical behavior
that we wish to capture in mind. In particular we do not attempt to create a “model of
everything” but rather try to derive a model that is asymptotically consistent in a particular
parameter regime. When such a rigorous derivation is impossible we appeal to principles
such as Occam’s razor in order to temper the model creation process. Here we have in mind
phenomenological examples such as Landau-Ginzburg phase transition models in which few
assumptions are made beyond the symmetries that the system possesses and all symmetry
allowed terms are included. In this section we explain how these procedures are used to
derive the central governing model for the phenomena studied in this thesis and a related
model that is not derived but rather proposed by physical reasoning.

Amplitude equations

Consider a spatially extended physical system undergoing a linear instability. Specifically
suppose that a system in a single spatial dimension has a linear dispersion relation σ(k, µ) for
waves εeσt+ikx (ε� 1) such that <(σ) > 0 for some set of wave numbers {ki} (which may be
countable or not). Dynamically, initial conditions with small amplitude and a nonzero pro-
jection onto the set of unstable modes will grow in amplitude. As this occurs the nonlinear
terms in the system will stabilize some Fourier modes and dampen others. Amplitude equa-
tions describe the evolution of these Fourier modes. The microscopic equations describing
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the system need not be known in order to derive an amplitude equation provided that the
nature of the linear instability is understood. In this case some parameters of the equation
may not be explicitly determined.

Amplitude equations are typically derived using one of two different mathematical theo-
ries. These are: the theory of multiple scales and normal form theory. In the multiple scales
method applied to a steady state bifurcation one supposes that the solution takes the form

u(x, t) =

∫
Rn
Ak(X,T )eikx dk + c.c. (2.9)

where A is the “amplitude” for which we want an equation and X,T are “long”/“slow”
space/time scales (we use the term “slow” in the following to refer to both X and T ).
Because the bifurcation is steady state there is no fast time scale; at a Hopf bifurcation
oscillations would also occur on a fast time. These slow scales are obtained by the mul-
tiple scales assumption. Typically we let X = εax and T = εbt where a, b > 0 and then
suppose that in the limit ε ↓ 0 the solution varies independently on the two scales X and
x. Concretely we allow the solution to have the dependence u = u(X, x, T ) and perform
asymptotic expansions in the limit ε ↓ 0. The amplitude equations result from imposing
solvability conditions order by order on the fast scale. In order to use this method one must
know the explicit model from which the amplitude equation is to be derived. In this case
the resulting asymptotic calculations are straightforward. For example, consider the case of
Rayleigh-Bénard convection. Here we seek a description of the behavior near instability of
the conducting state and the governing equations are known to be Navier-Stokes coupled to
the diffusion equation for the temperature field.

If the specific governing model for the problem is not known then normal form theory can
be used to derive an amplitude equation nonetheless. Such cases are much more common in
the field of pattern formation where soft matter systems undergo identifiable instabilities but
do not have known governing equations. Applying normal form theory proceeds initially in
a similar manner with the assumption of Eq. (2.9). In particular we make the same multiple
scales assumptions but do not explicitly carry out the asymptotic calculation order by order
and instead impose symmetry constraints on the possible forms for the nonlinear terms. We
include all symmetry allowed terms, i.e. we drop any term that could be eliminated by
a transformation of the field as in ODE normal form theory. The multiple scales Ansatz
applied to the linear dispersion relation immediately allows us to write down the linear
part of the amplitude equation. Since the amplitude equation is derived near the onset
of the instability the amplitude of the field is assumed to be small, A ∼ εcÃ. Once the
lowest order symmetry allowed nonlinear terms are determined then c is selected to enforce
consistency. Higher order terms are typically dropped formally resulting in a truncated
normal form equation. Generically the coefficients of the nonlinear terms are chosen to be
O(1) but specific bifurcations can be studied by allowing particular terms to scale with ε.
This approach is appealing but can fail when the amplitude equation is nonlocal, see [97].
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Derivation of the subcritical Ginzburg-Landau Equation

In this section we derive the main model studied in this thesis: the subcritical cubic-quintic
Ginzburg-Landau Equation. In the pattern formation context this equation is derived in
the transition regime between sub and supercriticality of the pattern branch. In this case
the cubic coefficient is small and fifth order terms are required in order to saturate the
nonlinearity.

We seek an amplitude equation to describe the evolution of a one-dimensional system
that is unstable to the formation of a patterned state with a particular wave number kc at
the bifurcation point µ = 0 where µ is the control parameter. The dispersion relation for
such a system reads

σ = µ− (k2 − k2
c )

2 +O[(k2 − k2
c )

3] (2.10)

The instability occurs for µ > 0 where a set of wave numbers around kc destabilize. Near
the bifurcation consistent scalings are σ = ε4σ̃, µ = ε4µ̃ and k = kc+ ε2k̃ (we drop the tilde).
After the multiple scales assumption (Eq. (2.9)) the allowed nonlinear terms are imposed by
enforcing the following symmetries: spatial translation, spatial reflection and time transla-
tion. To be specific the equation must be equivariant under the following transformations:

x→ x+ δ : Ak(X,T )eikx →
[
Ak(X,T )eikδ

]
eikx

X → X + δ : Ak(X,T )eikx → Ak(X + δ, T )eikx

x→ −x : Ak(X,T )eikx → Ak(X,T )e−ikx =
(
Āk(X,T )eikx

)
X → −X : Ak(X,T )eikx → Ak(−X,T )eikx

T → T + δ : Ak(X,T )eikx → Ak(X,T + δ)eikx.

As A is complex the nonlinear terms at a particular order can be parametrized by polynomial
combinations of A, Ā and their spatial derivatives. Supposing A = εÃ the lowest order term
consistent with the required symmetries is C3(X)|A|2A. In fact C3 must be constant due
to long scale translation symmetry, real due to spatial reflection symmetry and must be
positive in the subcritical regime. Because we seek an equation that describes the transition
from sub to supercriticality we then let C3 = ε2C̃3. This is the origin of the term “weakly
subcritical” describing this scenario. This choice allows for the inclusion the fifth order
terms C5|A|4A, ia1|A|2AX and ia2A

2ĀX in which a1, a2 and C5 are forced to be constant
and real. In order that the nonlinear terms saturate C5 must be negative. This produces a
codimension two description of the bifurcation where µ and C3 are the unfolding parameters.
After appropriate rescaling of X,T,A and ε the resulting amplitude equation (Eq. (1.1))
may be written,

At = µA+ Axx + ia1|A|2Ax + ia2A
2Āx + |A|2A− |A|4A.

where X and T are dropped in favor of their lowercase counterparts.
Past studies of Eq. (1.1) focused mostly on the existence and stability of periodic solutions

and coherent structures but a few also examine the well-posedness of the Cauchy problem.
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The existence and local stability of rotating wave solutions is treated in [61, 84, 86, 139]
while nonlinear stability criteria are provided in [87]. The existence of pulses and fronts was
examined in [61], and the persistence of front solutions when the coefficients acquire a small
imaginary part was studied in [88]. In the case a2 = 0 a free energy can be defined as follows

F
(
A, Ā

)
=

∫
R
|Ax|2 − µ|A|2 −

1

2
|A|4 +

1

3
|A|6 + i

a1

4
|A|2

(
AĀx − ĀAx

)
dx

so the equation satisfied has gradient structure At = − δF(A,Ā)

δĀ
. In this case it is known that

the energy is bounded from below provided |a1| < 4√
3

[86]. This is a necessary condition

for well-posedness of solutions of Eq. (1.1) when a2 = 0. In the general case (a2 6= 0) the
condition |a1−a2| < 2 is known to be sufficient for global existence of solutions of the Cauchy
problem [62]. The same condition is required for the global existence of periodic solutions
of Eq. (1.1) and it was suggested though not proved that in this case the bound is sharp
[60]. However, the necessary and sufficient condition on the coefficients a1, a2 for the global
existence of general solutions of Eq. (1.1) remains an open problem.

The Swift-Hohenberg Equation

In this section we discuss a model equation that cannot be derived rigorously but nonethe-
less has been proposed to describe numerous physical systems with remarkable qualitative
agreement. This model is known as the Swift-Hohenberg equation and was first proposed
in order to study Rayleigh-Bénard convection [143]. The model takes the form of a partial
differential equation for the real-valued order parameter u(x, t)

ut = ru−
(
∇2 − k2

c

)2
u− u3 (2.11)

where x ∈ R2 and the field u can be thought of as the temperature deviation from the
conducting state or the vertical fluid velocity at the mid-plane. This equation has the same
linear dispersion relation as Eq. (2.10) and therefore describes systems in which solutions
with the wave number kc have the largest growth rate when r > 0. In particular it is
tempting to think of Eq. (2.11) as being derived by simply taking the truncation of Eq.
(2.10) and attaching an appropriate nonlinearity. However this is not a rigorous procedure
and any appropriate spatial scaling in order to justify the dispersion truncation will not
yield a differential operator that contains both second and fourth order terms at the same
order. On the other hand, despite being phenomenological Eq. (2.11) does respect the
desired symmetries of the system, does have a dispersion relation that qualitatively agrees
with the physical behavior and does contain fourth order derivatives which are responsible
for a plethora of important mathematical properties that we discuss below.

In the context of this thesis we consider a generalized version of the SHE in one dimension
that applies to subcritical systems. After appropriate scaling the cubic-quintic SHE can be
written

ut = ru− (∂xx + 1)2u+ bu3 − u5 (2.12)
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where u(x, t) is real-valued, (r, b) act like unfolding parameters and x ∈ R. The parameter b
measures the degree of subcriticality and the critical wave number has been scaled to k = 1
(which cannot be done on finite domains). This equation has the Lyapunov functional or
“free energy”

S(u) =
1

2

∫
R

((∂xx + 1)u)2 − ru2 − bu
4

2
+
u6

3
dx

so that Eq. (2.12) may be written, ut = − δS
δu

. By differentiating S this structure yields the
simple result that dS

dt
= −(ut)

2 ≤ 0 and thus dynamics of the equation evolve in such a way
as to minimize the free energy. On a finite size domain this further implies that all initial
conditions approach stationary minima of S. These stationary solutions to Eq. (2.12) solve
a fourth order ODE in the spatial variable which turns out to be a Hamiltonian dynamical
system [70]. Specifically, it can be shown that for any solution to the stationary equation
the quantity

H(u) =
1− r

2
u2 + (ux)

2 − 1

2
(uxx)

2 + uxuxxx − b
u4

2
+
u6

3

is independent of x. In appropriate variables H serves as the Hamiltonian for the associated
dynamical system [70].

In the remainder of this introduction we proceed with the two equations (1.1) and (2.12)
hand in hand comparing and contrasting their properties.

2.3 Localization and steady states

A central component of this thesis and the study of pattern formation is the existence of
“localized” solutions. Physically speaking these are solutions that exhibit two qualitatively
different behaviors in and outside of a compact domain. Stationary localized structures are
common in the study of driven dissipative systems and are characterized by a balance of
the energy input and dissipation within the structure. Such solutions are thus frequently
attractors of the system dynamics and integral to a complete understanding of the possible
physical behavior. In this section we discuss the mathematical prerequisites necessary to
observe localized stationary solutions and their specific manifestations in equations (1.1)
and (2.12).

Spatial dynamics and conditions for localization

The PDE models considered in this thesis are posed in one space dimension and one time
dimension and take the form ut = f(u, ∂x, x) where ∂x refers to derivatives of u. As a result
the stationary solutions solve a set of ODEs in the time-like variable x and all of the previous
ODE theory can be applied. This is referred to as spatial dynamics. In this paradigm fixed
points correspond to spatially constant solutions, homoclinic orbits correspond to pulses
and heteroclinic orbits are referred to as fronts. In the context of this thesis we define
localized states to be the homoclinic and heteroclinic orbits obtained in this spatial dynamics
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formulation that connect to the fixed point u ≡ 0. Although heteroclinic orbits do not decay
to the same state biasymptotically, in spatially reflection symmetric problems they can be
combined into (potentially non-stationary) heteroclinic cycles that do.

In deriving the necessary criteria for localization to occur there is a natural division
between those systems that have autonomous spatial dynamical systems and those that do
not. Although any nonautonomous dynamical system can be reduced to an autonomous
one by introducing a trivial variable such that X = x and Ẋ = 1, the system no longer
has any fixed points. The dichotomy between these two cases is central to the work in
this thesis. In particular, this work focuses on localization in the presence of a specific
type of non-autonomy when the dependence of f on x is periodic. In order to clearly
separate this nonautonomous case from localization in autonomous systems we confine the
discussion of periodic nonautonomous problems to section 2.5 and continue here with the
added assumption that f has no explicit x dependence.

Consider a one-dimensional system that is spatially reflection-symmetric with steady
states described by the autonomous spatial dynamical problem

0 = f(u, ux, uxx, . . .) (2.13)

posed on the real line, x ∈ R. Furthermore we assume that (u, ux, uxx, . . .) = (0, 0, 0, . . .) ≡ 0
is a solution to Eq. (2.13), i.e. u(x) ≡ 0 is a fixed point. In the following we derive
appropriate conditions under which Eq. (2.13) possesses robust localized states [39]. A
dynamical system dv

dx
= h(v) with x ∈ Rn is said to be reversible if there exists an involution

R : Rn → Rn such that dR(v)
dx

= h(R(v)) [152]. In other words the spatial dynamics on the
phase space R(Rn) is given by the space reversed vector field. In the problem at hand spatial
reflection symmetry implies that Eq. (2.13) is a reversible dynamical system and therefore
must be of even dimension. In order for there to exist a solution that is biasymptotic to 0
it must be a hyperbolic fixed point. In particular, linearizing Eq. (2.13) about 0 yields an
equation of the form

fu(0)v + fux(0)vx + fuxx(0)vxx + . . . = 0

where v is small. The eigenvalues associated to the linearization can be determined by
setting v = eλx resulting in a characteristic equation that is a polynomial in λ, P(λ) = 0.
This polynomial is real-valued and thus roots must appear in conjugate pairs. Furthermore,
due to reversibility if P(λ) = 0 then −λ is also a root [152]. Therefore P is a function
of λ2. In order for the fixed point 0 to be hyperbolic one of the roots of P must be real,
the simplest possible case of which is P(λ) = λ2 − a. Although such systems may possess
homoclinic orbits such solutions are not structurally stable and susceptible to destruction
by global bifurcations. As a result such systems do not possess robust localized states and
provide a poor model for localization in physical systems. Fortuitously the next simplest
case, P(λ) = λ4 − bλ2 + a, does support robust localization.

The location of the roots of λ4 − bλ2 + a in the complex plane is pictured in Fig. 2.6
as a function of a and b. Cases in which the roots lie off the imaginary axis potentially
enable localization. Of particular note is the curve C2 which corresponds to a bifurcation in
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Figure 2.6: The eigenvalues of a fourth order reversible dynamical system with characteristic
polynomial λ4 − bλ2 + a are pictured in the (b, a) plane. Four distinct regions of behavior
are labeled. The curve C2 corresponds to the celebrated Hamiltonian-Hopf bifurcation. This
figure is adapted from [39, 98].

which the eigenvalues collide on the imaginary axis and then leave it. This is referred to as
a Hamiltonian-Hopf bifurcation [65, 82, 154] and is central in systems supporting localized
patterned states. It is immediately obvious from its dispersion relation that this bifurcation
occurs in the SHE (Eq. (2.12)) as the control parameter r is increased through r = 0.

Beyond the hyperbolicity of the fixed point the existence of localized solutions requires
the intersection of the unstable and stable manifolds of the fixed point, 0. When n = 4 and
the dynamical system is reversible, as assumed here, the codimension of such an intersection
is in many cases reduced. For example when 0 has two-dimensional stable and unstable
manifolds their intersection is generically codimension one but in reversible systems it is
zero. In such a scenario no parameters are required to be set in order to observe such an
intersection and thus localized states are robust.

Exact localized solutions of the Ginzburg-Landau Equation

The central tenant of this thesis is the development of stationary localized states in Eq. (1.1).
As the equation is second order in space robust solutions of this type do not exist without
some modifications which in this work will take the form of a periodic potential. Despite this
the basic localized solutions that exist in Eq. (1.1) turn out to be important precursors to
the robust solutions described in chapter 5. In fact these solutions can be computed exactly
yielding full parameter dependence. Exact solutions to the full version of Eq. (1.1) can be
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and u = 0 (blue) and homoclinic to u = 0 (green) are plotted on the potential plot

and also to the right as a function of x.

quite complicated and we devote the entirety of chapter 4 to one important case. In this
section we illustrate the basic stationary localized solutions by use of the somewhat simpler
Ginzburg-Landau equation

0 = uxx + µu+ u3 − u5 (2.14)

where µ ∈ R and u is real-valued. Solutions of Eq. (2.14) share many qualitative character-
istics with those of Eq. (1.1) and are therefore useful in order to understand solutions of the
more general equation.

Equation (2.14) is common in physics and is referred to as a “particle in a potential”
type problem. Integrating the equation once yields

E =
u2
x

2
+ µ

u2

2
+
u4

4
− u6

6

=
u2
x

2
+ V(µ, u), (2.15)

where E is the first constant of integration and acts as the “total energy” for a particle in
the potential V . The solutions of Eq. (2.15) can be understood by way of the potential,
which is plotted for three values of µ in Fig. 2.7. For each of the three cases we exhibit one
of the canonical solutions to Eq. (2.15). We call these solutions “canonical” because they
represent the three generic connections between hyperbolic fixed points in Eq. (2.14).

The equation can be integrated once again in order to recover the spatial dependence of
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the three types of solutions pictured in Fig. 2.7. Re-arranging Eq. (2.15) produces

x− x0 =

∫ u du√
2E − 2V(µ, u)

,

where E is selected appropriately based on the desired solution and x0 is the second constant
of integration. The constant x0 corresponds to the translation symmetry in the problem and
is dropped in what follows. Of the three solutions portrayed in Fig. 2.7 only the pulse and
front connect to the hyperbolic fixed point u = 0. The front only exists at a particular
parameter value while the pulse exists over a parameter range. The integration constant E
and explicit solutions for these two cases are as follows

Front: E = 0 µ = − 3

16
; u =

√
3√

e−
√
3
2
x + 4

Pulse: E = 0 − 3

16
< µ < 0 ; u =

√
−3µ√(

µ+ 3
16

)
ϕ2 + 3

4
(ϕ−2 + 1)

,

where ϕ = e
√
−µx.

These basic solutions are in fact members of a much more general family of traveling
solutions to Ginzburg-Landau equations. In systems with translation symmetry, solutions
like those derived above frequently belong to a set of solutions of the form u(x, t) = f(x−c t)
where c = 0. In particular by a change of frame to one moving at speed c the governing
equation acquires an advective term and then all stationary solutions in the moving frame
form a family of traveling solutions in the lab frame parametrized by the frame speed.
Because these solutions are non-stationary in the lab frame we delay a discussion of their
dynamics to section 2.4 in which dynamical behavior is discussed.

A significant effort has been devoted to solving nonlinear equations for traveling structures
exactly and a variety of methods exist for Ginzburg-Landau equations in particular [46,
108, 136]. Chapter 4 is devoted to the application of one such method to Eq. (1.1) in
order to derive an exact traveling front solution. This solution turns out to be central
to understanding the dynamics of Eq. (1.1) and localization when inhomogeneities are
introduced in chapter 5.

Localized snaking solutions of the Swift-Hohenberg Equation

When the SHE has nonlinearities that compete, such as in Eq. (2.12), a branch of periodic
solutions (denoted P ) may bifurcate from u = 0 subcritically creating a region in which
both u = 0 and a stationary spatially periodic solution are hyperbolic. In Eq. (2.12) the
bifurcation occurs at r = 0. This structure is shown in Fig. 2.8. In addition to the branch
P four branches of localized states, L0,π

2
,π, 3π

2
, bifurcate out from u = 0 at r = 0 [32]. These

localized states take the form of heteroclinic cycles: 0→ P → 0. Physically this is facilitated
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by the locking of the fronts bounding the structure to the state P . The solutions on branch
L0 have a maximum at their center and are spatially symmetric whereas those on Lπ

2
have

a node and are antisymmetric. The branch L0 (Lπ
2
) is related to Lπ (L 3π

2
) by reflection

u → −u which is a symmetry of the system. Because of this curves L0, Lπ (and Lπ
2
, L 3π

2
)

are indistinguishable in Fig. 2.8. The branches of localized states lie on a set of bifurcation
curves that oscillate back and forth in a subregion of the subcritical region known as the
pinning region. This intertwining of the bifurcation curves is the genesis of the name snaking
for this bifurcation structure.

The localized solutions change significantly as the parameter r is decreased away from
the bifurcation point. Near the bifurcation point the branches of localized states that emerge
from u = 0 have a small amplitude and large spatial extent. As r is reduced they begin to
localize and grow in amplitude. Once the central part of the structure nears the amplitude of
P the solutions enter the snaking regime. As one follows the bifurcation curves of localized
states upwards one passes through folds at either extreme of the pinning region and the
solutions grow in spatial extent. This can be seen by tracking the base state at successive
folds as the snaking branch is traversed, Fig. 2.8. As the branch is continued from small to
large ‖u‖L2 the fronts bounding the localized state advance outwards and in so doing add
additional half periods of the state P at the edges of the structure. One complete cycle back
and forth across the pinning region extends the localized state by a single wavelength, a half
on either side. When the problem is posed on R this snaking process continues ad infinitum.

One important set of additional localized solutions that are present in the pinning region
are the so-called “rung states.” These solutions are spatially asymmetric and lie on branches
that connect to the symmetric (L0) and antisymmetric (Lπ

2
) branches near their folds. These

are pictured in Fig. 2.8. These solutions parametrize the transformation of a symmetric
solution into an antisymmetric one (and vice versa) by adding a half wavelength of P as r is
swept across the pinning region. The presence of these additional rung branches is the cause
of name “snakes and ladders” applied to this whole bifurcation structure.

This snaking phenomenon is related to the existence of a special parameter value r for
which the free energies of P and u = 0 match. This special point is known as the Maxwell
point by analogy to the Maxwell construction of equilibrium statistical mechanics. In the
famous case of a van der Waals gas undergoing a first order phase transition the Maxwell
construction is defined by the condition that the Gibbs free energies of the gas and liquid
are equal. A similar phenomenon is at work here although the system is not in equilibrium.
The free energy of P , S(P ) where the integral is taken over a single period, decreases
monotonically through zero as r is increased above the value at the fold along the upper
part of the branch (solid line in Fig. 2.8). In particular there exists a value of r such that its
energy vanishes matching the free energy of the trivial solution u = 0. This Maxwell point
value is determined by the joint conditions S(P ) = 0 and H(P ) = 0 [30, 32]. It is around
this point that a finite energy gap (the pinning region) opens in which stationary localized
solutions that connect P to u = 0 are found. A physical understanding of this phenomenon
is that the fronts bounding the structure require a finite energy in order to exceed the local
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Figure 2.8: Bifurcation diagram showing snaking solutions of Eq. (2.12) for b = 2 along
with plots of solution profiles below. The solution measure in this bifurcation diagram is the
L2 norm of the solutions. The periodic branch P (red) is pictured bifurcating from u = 0
(black) along with the branches L0,π

2
,π, 3π

2
(blue). Here the L2 norm of P is taken over only

one period not R. The continuation of the snaking branches is stopped early once inside the
pinning region. The pinning region is shaded in grey and the Maxwell point denoted with
a vertical magenta line. Bifurcation curves represented with solid (dotted) lines represent
solutions that are stable (unstable) in time. This temporal stability analysis is described in
section 2.4. This figure is adapted from [30].
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pinning potential caused by their interaction with the periodic state [125]. As a result the
fronts remain pinned in a finite interval around the Maxwell point.

The size of the pinning region around the Maxwell point depends crucially on the sub-
criticality parameter b. The snakes and ladders structure in Eq. (2.12) is enabled when
b > 0 and the primary bifurcation is subcritical. In particular, the structure emerges from
the codimension two point b = 0, r = 0 through a set of hysteresis bifurcations [32]. The
width of the pinning region is exponentially thin if |b| � 1 as a function of b and the snakes
and ladders picture is not fully developed until a critical value of b is reached [30, 51].

The snaking structure persists on a finite interval but with some important differences.
Firstly with Neumann or Dirichlet boundary conditions the branches of localized states no
longer bifurcate from the state u = 0 but rather occur a secondary bifurcation on P near
r = 0. Secondly, as the snaking branches are continued and the localized states grow in
extent the domain eventually fills with the periodic state P . This causes the bifurcation
curves of localized states to exit the pinning region and either connect to the branch P near
but below its fold or other periodic branches. This is not true for Robin boundary conditions
for which the the localized branches bifurcate from u = 0 at r = 0 and there is no periodic
branch [113].

2.4 Temporal stability and dynamics

The study of the dynamics of PDEs such as those investigated in this thesis is typically
accomplished in two stages. The first stage is to analyze the linear stability properties of
the stationary solutions of the PDE, i.e. the evolution of asymptotically small perturbations
to stationary solutions. The second stage is to consider perturbations of order one and the
asymptotic attractors of the system. Both of these steps are carried out with a combination
of analytical and numerical techniques depending on the situation. In this section we discuss
the analytical understanding of each of these stages and delay the details of numerics to
chapter 3.

The prototypical PDE model considered in this thesis takes the general form ut =
f(u, ∂x, x). The dynamics of such a PDE are determined by an initial value problem posed
on a domain Ω = R or [a, b] with initial data u(x, 0) = u0(x) and appropriate spatial bound-
ary conditions. The mathematical formulation of such a problem also involves specifying a
function space (a generalization of the dynamical system phase space) in which solutions to
the PDE are sought. Such a space is equipped with an inner product and norm, ‖.‖, which
defines a distance in the function space. Our results do not depend critically on the exact
choice of this space but a good example to keep in mind for the work here is L2, the space of
square integrable functions. Although the dimension of the PDE phase space is nominally
infinite, many of the concepts from dynamical systems theory transfer. In particular sta-
tionary solutions generalize the notion of fixed points, and behavior of the PDE with initial
data near a given stationary solution is governed by a linearized problem as in the case of
finite-dimensional systems.



CHAPTER 2. THE MATHEMATICAL THEORY OF PATTERN FORMATION 30

Linear stability

Similar to the stability for a fixed point of a dynamical system, the linear stability of a station-
ary solution u0(x) to a PDE is assessed by letting u0(x)+u1(x, t) where 0 < ‖u1(x, 0)‖ � ε.
Then to lowest order u1 solves the linear PDE

u1t =

(
δf

δu

∣∣∣∣
u=u0

)
u1 ≡ L(u1), (2.16)

where δ
δu

is a Fréchet derivative, at least as long as ‖u1‖ remains small. Letting u1(x, t) =
eσtũ1(x) produces a linear eigenvalue problem σũ1 = L(ũ1) for the eigenvalue σ and eigen-
function ũ1. We refer to the set of eigenvalues {σ} as the spectrum of the linear operator
L. Provided that ‖u1‖ is small the dynamics of u1 are then completely determined by the
spectrum of L. When the spectrum is contained in the left complex half-plane or the imagi-
nary axis, i.e. <[σ] ≤ 0 we call the stationary solution stable and otherwise unstable. When
such a problem is posed on R the spectrum is generally the union of two pieces referred to
as the essential spectrum and the point spectrum. The point spectrum of the operator L is
a countable set of isolated eigenvalues while the essential spectrum is characterized by an
uncountable set of eigenvalues typically lying on a set of curves in the space (<[σ],=[σ]).

In the simplest case the spectrum of the linear operator only contains an essential part.
This case occurs in the analysis of domain-filling solutions such as those of constant ampli-
tude. Then the linear operator does not typically have spatial dependence and is analogous
to the problem of free particles in quantum mechanics. Here the spectrum is typically given
by the dispersion relation for Fourier modes and depends continuously on the Fourier wave
number k. This picture is significantly more complicated for localized solutions for which
the linear operator L does have spatial dependence and the quantum mechanical analog is
the problem of a particle in a potential.

In order to define the essential spectrum σess(L) and point spectrum σpt(L) rigorously
some definitions are required. An operator L is said to be Fredholm if its kernel is finite-
dimensional and its range is closed with finite codimension. Motivated by this we define the
Fredholm index of an operator by the difference

ind(L) = dim[ker(L)]− codim[R(L)].

Let X be a Banach space and let L : D(L) ⊆ X → X be a closed linear operator with a
domain D(L) that is dense in X. Then for σ ∈ C and I the identity operator if σI−L is not
Fredholm, or σI−L is Fredholm but ind(σI−L) 6= 0 then σ ∈ σess(L). The point spectrum
is then defined as the set of eigenvalues not in the essential spectrum, σpt(L) = σ(L)\σess(L).

An intuitive understanding of the types of spectrum when u0 is a localized solution
is as follows. The essential spectrum in this case contains eigenfunctions associated to
the stability of the solution in the spatially asymptotic extremes, |x| → ∞. For localized
solutions u → 0 in this limit and the linear operators L±∞ = limx→±∞ L typically become
constant coefficient operators. Physically speaking, because the system is homogeneous in
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these limits its spectrum is given by the dispersion relation for Fourier modes. As a result
the associated eigenfunctions, ake

ikx + c.c., are understood to be valid only in this limit,
not localized in space and may individually violate the boundary conditions of the linear
problem; this is similar to the free particle problem in quantum mechanics. The essential
spectrum is then given by the union of the spectra of L±∞. Point spectra on the other hand
correspond to isolated eigenvalues and thus to particular solutions of the linear eigenvalue
problem that satisfy the boundary conditions in both asymptotic limits simultaneously, i.e.
they are genuine solutions to the spatial ODE. These eigenfunctions are typically spatially
localized nearby the base state and frequently reflect symmetries in the system. When an
eigenvalue problem is solved numerically all eigenvalues are point eigenvalues but a subset
of them converge to the essential spectrum as the number of discretization points increases.
This makes identifying point eigenvalues numerically quite subtle.

One of the most important components of an operator’s spectrum and eigenspace are
eigenfunctions with eigenvalue zero, or null eigenfunctions. These eigenfunctions are fre-
quently localized in space. They typically arise in systems that possess continuous symme-
tries as a consequence of Noether’s Theorem. The most celebrated example is known as the
Goldstone mode and is the null eigenfunction associated to translation symmetry. Although
these zero eigenvalue modes formally do not give rise to dynamics of u1 since σ = 0, they
are in fact relevant to the dynamics of solutions nearby but not at the stationary base state.
They dominate the long time behavior of the evolution while modes with larger eigenvalues
damp out quickly.

Linear instabilities manifest in a variety of ways depending on how the spectrum of the
linear operator enters the right complex half-plane as system parameters are varied. The
setting for understanding the onset of linear instability is one in which the PDE has a
stable stationary solution that destabilizes as a system parameter is changed. Instabilities
corresponding solely to point spectra crossing the imaginary axis are complicated and differ
on a case by case basis but those caused by the essential spectrum are better understood.
In the following section we consider the case in which the spectrum is parametrized by the
dispersion relation for Fourier modes, σ(k).

Instability spreading speeds

In many cases when an unstable system is perturbed locally in space the initial perturbation
expands throughout the system at finite speed. This speed can be determined directly from
the dispersion relation.

Consider a compactly supported initial perturbation of an unstable system with dis-
persion relation σ(k). For simplicity we will also assume that the field of interest u1(x, t)
is scalar. The solution to Eq. (2.16) can be expressed in terms of the Fourier transform
u1(x, t) =

∫
R û1(k)eσ(k)t−ikxdk. Because the system is unstable the perturbation grows in

size and extent over time but we assume that because the leading edges of the perturbation
are infinitesimal they are described by the linearized problem even as t → ∞. A sketch of
this is shown in Fig. 2.9. We define the right flank of the perturbation (a rightward prop-
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Figure 2.9: A plot of the solution u(x, t) at a set of time snapshots tk. The initial perturbation
grows in time, and its right flank xC(t) moves asymptotically at speed v∗. This figure is taken
from [133].

agating front) by the level set xC(t) = argmaxx {u1(x, t) = C} where C is some fixed small
height that has an intersection with u1. Transitioning to a frame moving at the right flank
speed v∗ = dxC

dt
via z = x− v∗t we obtain u1(z, t) =

∫
R û1(k)e[σ(k)+ikv∗]t−ikzdk. In the frame

moving with speed v∗ we see the right flank neither grow nor decay as t→∞. In this limit
the dominant contribution to the integral can be determined by a saddle point approxima-
tion applied to the coefficient of t which yields d

dk
[σ(k) + ikv∗] = 0. Then the requirement

that the right flank neither grow nor decay is enforced by requiring the coefficient of t to be
imaginary, < [σ(k) + ikv∗] = 0. These requirements are summarized by the conditions [133]

<
[
dσ(k∗)

dk

]
= 0, −=

[
dσ(k∗)

dk

]
=
<[σ(k∗)]

=[k∗]
= v∗, =[k∗] > 0 (2.17)

from which one may compute the complex -valued wave number k∗ and the linear spreading
speed v∗ = <[σ(k∗)]

=[k∗]
that characterize the leading edge of the perturbation [135]. The imaginary

part of the wave number represents the spatial decay rate, =[k∗] ≡ κ∗, of the leading edge. If
there are no phase-slips at the front then the wave number that is deposited by the instability
is −=[σ(k∗)]

v∗
because the deposited pattern moves with speed v∗ in the moving frame [15].

The reader is referred to [133] for a comprehensive review of the derivation of this cri-
terion and its applications. Although this criterion relies on linearity it provides accurate
predictions for many nonlinear front propagation problems when the front propagates into
an unstable state. This is summarized by the so-called marginal stability conjecture which
posits that given a sufficiently localized initial perturbation of an unstable state the asymp-
totic speed at which the perturbation spreads is v∗. The conjecture is also known to apply to
systems that do not admit uniformly traveling profiles, such as the supercritical SHE [136],
but is also known to fail in other problems [133]. These ideas have been employed extensively
in the context of fluids [28, 80, 81], plasmas [22, 104] and biological systems [140].
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Figure 2.10: A classical dissipative particle sits in the upper well of a two well potential. The
particle is stable to small perturbations (dynamics illustrated with red arrow) but unstable
to sufficiently large perturbations that exceed the local potential barrier (blue arrow). In
this case the particle may fall into a different stable state with lower potential energy. This
figure was created by Sara Tepfer.

Nonlinear stability

While linear stability measures the effects of infinitesimal perturbations the evolution of
finite amplitude perturbations to stationary solutions is significantly more complicated. The
term nonlinear stability refers to such a scenario and has a precise mathematical definition
[90] but for the purposes of this thesis we shall think of nonlinear stability through the
analogy of a particle in a potential. Figure 2.10(a) shows a dissipative particle in a potential
well that is linearly stable but nonlinearly unstable. If given a sufficiently large perturbation
the particle may fall into the right well at a lower potential. Note that the right well is
also nonlinearly unstable for a similar reason. An important concept in this context is that
of a global attractor, which is a set in phase space that all initial conditions approach as
t → ∞. In the particle scenario here one might define the global attractor to be the union
of the bottoms of both potential wells. It is important to note that the right well is not a
global attractor by itself since there are initial conditions that do not approach it as t→∞.
Although the particle in a potential picture is mathematically non-rigorous it is qualitatively
representative of a large number of situations encountered in PDE stability.
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Front propagation and instability in the Ginzburg-Landau
equation

In the study of Eq. (1.1) as a model for the development of spatial patterns one central
dynamical question is: “at what speed does a front between the patterned state and the
trivial state propagate?” It turns out that in many cases physically relevant initial conditions
evolve into a front whose profile and “spreading” speed as t→∞ depend only on the system
parameters and not on the initial data. Indeed, in many systems these asymptotic front
speeds are unique for a large class of sufficiently localized initial conditions [5, 6].

Front propagation into a trivial state may arise in one of two qualitatively different ways.
When µ < 0 and the primary pattern-forming instability is subcritical, as assumed here,
the system exhibits bistability between a stable trivial state and a stable nontrivial state,
implying that the front between them corresponds to a front propagating into a stable state.
This type of front is known as a “pushed” front. In systems with gradient structure (here
a2 = 0) the speed of such fronts is determined by the energy difference between the two
stable states connected by the front. Propagation favors the state with lowest energy and
the front velocity vanishes when the energy difference vanishes, i.e., at the Maxwell point,
µ = µM . More generally (a2 6= 0), if a stationary front between the two hyperbolic equilibria
exists then it corresponds to a Maxwell-like point and the front speed v in the vicinity of this
point satisfies v ≈ 3(µ−µM )

2(−µM )
3
2

[4− a2(a1 + a2)]−1 [84]. In contrast to this picture, when µ > 0

the trivial state is unstable and the speed of the resulting “pulled” front is frequently (but
not always) determined by the properties of the linearization of Eq. (1.1) about A = 0 using
the methods discussed previously. That is, the front propagates with the linear spreading
speed v∗ determined by Eqs. (2.17). This change in the speed selection mechanism is a
consequence of the growth of infinitesimal perturbations of the A = 0 state ahead of the
front [52].

Problems of front propagation into unstable states have been known in the plasma physics
community since the 1950s [104] but the term “marginal stability” was not proposed until
1983 by Dee and Langer [52]. The marginal stability conjecture, which was formulated in
the context of front propagation, is based on the idea that the front propagating into an
unstable state that is selected at large times is marginally stable in the comoving frame. In
practical terms this means that in the comoving frame of the selected front instabilities of the
unstable state ahead of the front are neither advected to −∞ behind the front nor grow into
a faster front. This description is closely related to the notions of convective and absolute
instability in systems with imposed flow. A system is said to be convectively unstable
if sufficiently spatially localized perturbations grow but do not spread upstream rapidly
enough to overcome the imposed flow. It is called absolutely unstable if the perturbation
can spread upstream against the flow. In the former case the perturbation at any fixed
position ultimately decays, while in the latter case instability is ultimately observed at all
locations in the domain. The marginal stability condition corresponds to the transition
between convective and absolute instabilities in the comoving frame.
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In certain cases the selected asymptotic velocity for fronts propagating into unstable
states cannot be predicted by the marginal stability criterion and a nonlinear mechanism
produces velocities that differ from the linear prediction. This phenomenon, known as “non-
linear selection,” was first pointed out in the work of [15]. Nonlinear selection is extensively
reviewed in [134] where Eq. (1.1) is proposed as the most general model for the dynamics
near a subcritical steady-state bifurcation. In [134] nonlinear selection is defined as follows:
if there exists a front solution with velocity v† and spatial decay rate κ† that satisfy

v† > v∗, κ† > κ∗ (2.18)

then this front is established as t→∞ from localized initial conditions. That is, only under
these conditions is a “pulled front” moving at speed v∗ not selected and a “pushed front”
moving at speed v† is selected instead. This conjecture also requires that the initial conditions
have a spatial decay rate not less than max

(
κ†, κ∗

)
. These criteria for nonlinear selection

are lent mathematical credence by the work of [127]. Specific cases of nonlinear selection are
studied rigorously in [6] and lower bounds on front speeds quantifying violations of linear
speed selection are derived in [13, 14] among others. Although a general result characterizing
the speed v† is not known, the wide applicability of the linear criterion determining v∗ makes
it relatively easy to test the hypothesis in (2.18) numerically.

Front propagation, both pushed and pulled, is further complicated by the presence of
secondary instabilities in the wavetrain left by the leading edge. While a propagating front
solution to Eq. (1.1) is nonstationary and thus technically an unstable solution in the lab
frame it is frequently stable in the frame that is comoving with the leading edge. In this
frame the instabilities that remain are due either to the asymptotic states (the essential
spectrum) or due to point eigenvalues. While no general statements can be made in the
latter case, the former is known as a Benjamin-Feir (BF) instability. If the wavetrain behind
the front is BF unstable then the marginal stability conjecture can be applied (in this case
to the linear problem for disturbances to the wavetrain in the lab frame) generating an
associated velocity, vBF . This velocity is associated to the propagation of a front within the
asymptotic wavetrain as it goes unstable and is distinct from the primary front. We refer to
this as a secondary front. When vBF exceeds the velocity of the primary front the instability
manifests as an instability of the essential spectrum of the primary front in its comoving
frame. A detailed analysis of pulled and pushed fronts along with the associated secondary
instabilities in Eq. (1.1) is carried out in chapter 4.

Finally, though beyond the scope of this thesis, we remark that front instabilities are
further complicated in higher dimensions. For example, the fronts of Eq. (1.1) can be
thought of as 1D projections of a more general class of fronts with trivial transverse spatial
dependence in a more general 2D amplitude equation [78]. In two dimensions these fronts
not only carry all of the instabilities of the 1D system in the direction normal to the front but
also a new set that occur in the transverse direction. These transverse instabilities can lead
to new behavior including breaking up the front into fingers and altering the propagation
speed of the interface.
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Figure 2.11: (a) The three largest eigenvalues as a function of arclength along the L0 snaking
branch. These eigenvalues correspond to the even, odd, and Goldstone eigenfunctions ex-
amples of which are shown in (b) at a particular parameter value. This figure was adapted
from [30].

Dynamics of snaking solutions of the Swift-Hohenberg equation

Temporal stability properties of the snaking solutions to the SHE follow a systematic struc-
ture. The linear stability of the snaking solutions to Eq. (2.12) is indicated in Fig. 2.8 by
the line type used in the plot: stable (unstable) solutions are plotted using a solid (dotted)
line. The trivial solution is stable provided that r < 0 and out of the primary bifurcation
the periodic branch P along with the localized branches emerge subcritically and are there-
fore all unstable. The branch P acquires stability at its saddle node and it remains stable
into the r > 0 regime as the branch is followed. Beginning at low amplitude the localized
branches remain unstable until they enter the pinning region. Once there a regular stability
structure develops as the branches are continued, and the stability switches at every fold.
The alternating stability profile of the snaking branches in the pinning region means that
experimental observations of snaking, which only involves stable solutions, take the form of
a disconnected set of nearly parallel solution branches positioned at increasing amplitudes
withing the pinning region.

Although the PDE stability problem for snaking states is infinite-dimensional only three
eigenmodes have nonnegative eigenvalues. These eigenmodes include the Goldstone mode
with eigenvalue zero and two edge modes localized at the boundaries of the localized struc-
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Figure 2.12: (a) A space time plot showing the dynamics of a localized state on the left
side of the snaking branch outside of the pinning region. The central structure shrinks as
time advances shedding wavelengths of the state P that makes up its center. Plots of the
initial and final solution are also shown for clarity. (b) A schematic bifurcation diagram
showing the dynamics of depinning. The dynamics of (a) are represented on the left side of
the snaking branch where the solution shrinks in norm over time. This cartoon illustrates
the two timescales that are present in the dynamics, where the solution norm changes more
slowly when the solution is near a fold solution of the snaking branch. This figure was
adapted from [30].

ture, at the positions of the fronts, that are of even and odd spatial symmetries, respectively.
Examples of these modes and the base state from which they are computed are shown in Fig.
2.11(b). The three eigenvalues corresponding to these modes computed along the snaking
branch as a function of arclength, s, are plotted in Fig. 2.11(a). At the base of the branch
(small s) when the localized solutions have a large spatial extent the edge modes have sig-
nificantly different eigenvalues. This difference shrinks as the branch is continued and for
large s, high up the snaking structure, the eigenvalues are nearly indistinguishable. As such
the snaking branch stability switching is wholly due to the bifurcation of these modes. The
even parity eigenvalue crosses zero at the folds on branch of localized states while the odd
parity one crosses zero nearby on the unstable parts of the snaking branches at the secondary
symmetry breaking bifurcations generating the unstable asymmetric rung states.

When the parameter r is moved outside of the pinning region the time evolution of
snaking states can be understood through the gradient structure of the system. Outside
of the pinning region the free energies of the states u = P and u = 0 differ to a sufficient
degree that the fronts between them, in particular those bounding localized states, begin to
propagate. This phenomenon is known as depinning. The fronts propagation occurs so as to
enlarge the state with lower free energy and reduce the other. In each of the following cases
we consider an initial condition consisting of a snaking solution that was computed inside
the pinning region but time evolved in the SHE with the parameter r changed to a value
outside the pinning region. Such dynamics are illustrated in Fig. 2.12. When r is set beyond
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the right boundary of the pinning region the lower energy state is P and the initial state
begins to grow in extent as both bounding fronts advance outward. To the left of the snaking
region u ≡ 0 is the lower energy state causing the fronts to instead propagate inward. This
behavior persists at finite distance from the boundaries of the pinning region though when
r is reduced past the fold on the branch of periodic states P the solution collapses to u = 0
through amplitude decay instead of front propagation since at this r-value the only solution
is the trivial one. The projections on the bifurcation diagram of the depinning dynamics
from both sides of the pinning region are shown schematically in Fig. 2.12(b). Part (a)
of the figure shows the time evolution plot of the front behavior to the left of the pinning
region.

As the parameter r is changed from the interior of the pinning region past a saddle node
on the snaking branch, causing a snaking state to depin, a qualitative change in the dynamics
of the SHE occurs. This bifurcation can be described by the SNIPER bifurcation normal
form Eq. (2.8), where we think of the radial component as being fixed on the unit circle.
In this formulation the variable θ in the normal form represents the position of one of the
fronts bounding the snaking state. When r is inside the pinning region the front pins at a
particular position corresponding to the case |µ| < 1 when there is only a single stable fixed
point. When r is outside of the pinning region the front advances and its motion is periodic
in the frame moving with the front. This corresponds to the case when |µ| > 1 so that
θ executes a periodic orbit, i.e. the front advances by one half wave length and the state
advances from one saddle-node to the next.

Nearby the depinning bifurcation when r is outside but close to the pinning region the
dynamics can be described within a semi-analytical framework [30]. This analysis is formally
carried out near one of the snaking folds where the dynamics of the system are governed by
the null eigenmodes of the base state as shown in the calculation that follows. To be specific
we focus on the right side of the pinning region and let r = r0 +ερ, where r0 is the parameter
value corresponding the right snaking folds high up the snaking structure, and assume that

u(x, T ) = u0(x)+
√
εu1(x, T )+εu2(x, T )+O

(
ε
3
2

)
where u0 is the snaking solution at a right

fold on a snaking branch. Because the dynamics occur nearby a stationary solution they
occur on a slow time scale T =

√
ε t. At lowest order one obtains the stationary SHE which u0

solves and at order
√
ε one obtains the linear problem L(u0)u1 = 0 where L(u0) is the linear

operator formed by the linearization of SHE around the base state u0. This linear equation
has a solution of the form

∑
i αi(T )ni(x) where ni are functions that solve L(u0)ni = 0 i.e.

they are the null eigenfunctions at the saddle node on the snaking branch. As discussed
there are three such modes, although in the space of reflection symmetric perturbations
associated with the depinning dynamics only the even mode, ne, has nonzero amplitude.
From a physical point of view there is no symmetry breaking that allows the dynamics to
have a nonzero projection onto modes that are antisymmetric in space. Proceeding to order
ε one obtains the following linear problem

L(u0)u2 = ∂Tu1 − ρu0 − 3bu2
1u0 + 10u2

1u
3
0,
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which has a solution provided that the RHS is orthogonal to the nullspace of the adjoint
linear operator L†(u0). Since the linear operator is self-adjoint the null eigenfunctions ni
span the nullspace of L†(u0). Both u0 and u1 are reflection symmetric in space therefore
the RHS is symmetric overall and is automatically orthogonal to the the odd eigenfunctions.
The only remaining overlap with the even eigenfunction produces the condition,

dαe
dT

= I1ρ+ I2α
2
e, (2.19)

where I1 =
∫
R u0ne dx, I2 =

∫
R(3b−10u2

0)u0n
3
e dx and ne is assumed to be normalized to unity

under the inner product. The base state, eigenfunctions and inner products are computed
numerically. Using Eq. (2.19) the time required in order for the solution to pass between
successive saddle nodes on the snaking branch can be estimated as the time required for
αe(T ) to pass from −∞ to ∞. Although the equation was derived in the vicinity of the
saddle node this estimate turns out to be a very accurate estimate of this depinning time.
This time is π√

I1I2ρ
matching the scaling of the period of the periodic orbit in the SNIPER

bifurcation. When compared with time evolution simulations this theory shows excellent
agreement [30].

2.5 Periodically forced systems

As explained in chapter 1 this thesis is concerned with systems that are periodically forced
in space, see in particular Eq. (1.1) with a coefficient that is periodic in x. Stationary
solutions of Eq. (1.1) in this case satisfy a spatial dynamical system that is nonautonomous
and periodic in x. The periodicity present in these problems alters the theory presented in
section 2.1. Solutions to periodically forced linear problems are instead described by Floquet
theory. In this section we first present Floquet theory for periodic linear ODEs and then
briefly discuss some of the ramifications of spatial periodicity for nonlinear ODEs and PDEs.

Periodically forced linear ODEs

Mirroring section 2.1 we introduce Floquet theory in the time domain but it can be equiv-
alently interpreted in the spatial dynamics picture. The general form for a linear system of
periodically forced ODEs is

u̇ = A(t)u, (2.20)

where A ∈ Rn×n is a matrix with entries that are periodic in time with period T , A(t+T ) =
A(t). Problems of this type arise not only in forced systems but also more generally as
linearizations about periodic orbits. In direct analogy to the analysis carried out for constant
coefficient linear systems the solutions to Eq. (2.20) take the form

u =
n∑
i=1

aiηi(t)e
λit (2.21)
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where the functions ηi(t) are periodic with period T and the constants λi ∈ C are referred
to as characteristic exponents. These exponents can be determined by Floquet’s Theorem
which guarantees that any fundamental matrix solution U(t) to Eq. (2.20) can be written
U(t) = Z(t)eRt for matrices Z and R where Z(t + T ) = Z(t) and R is a constant matrix
[74]. The eigenvalues of R are the {λi} and are termed characteristic exponents. The
characteristic exponents play a similar role as eigenvalues in the autonomous problem and
the vector functions ηi are the analog of eigenvectors. When <[λi] 6= 0 the dynamics of the
associated mode in Eq. (2.21) are either exponentially growing or decaying. If Eq. (2.20)
arises from a linearization about a periodic orbit the orbit is said to be hyperbolic if this is
true for all modes i. On the other hand when <[λi] = 0 the dynamics of the associated ith

mode are either periodic or quasiperiodic.
The prototypical Floquet system and also one of the simplest cases of periodically forced

ODEs is the Mathieu equation,

0 = utt + [m0 +m1 cos (2πt)]u. (2.22)

Here m0 and m1 are parameters and we seek a solution for u : R→ R. The Mathieu equation
can be formulated as a dynamical system as in Eq. (2.20) of dimension two and therefore
has a pair of distinct characteristic exponents. Neither the exponents nor the modes ηi(t)
can be written in terms of elementary functions; however, given the ubiquity of the Mathieu
equation its fundamental solutions are named special functions. Rather than provide any
expressions for these here we instead discuss the structure of the solution space in terms of
the parameters (m0,m1) as shown in Fig. 2.13. As mentioned previously the dynamics of a
fundamental mode vary greatly depending on the real part of the characteristic exponent. It
is possible to show as a consequence of reversibility that for the Mathieu equation either the
two characteristic exponents have zero real part (grey region in Fig. 2.13) or equal magnitude
nonzero real parts with opposite signs (white region in Fig. 2.13). In the language of physics
such a structure is frequently referred to as band structure where the white regions are
band gaps. The solutions inside each of these wedges represent solutions whose period is
commensurate with the period of the forcing. The first gap represents the 1:1 resonance,
the second the 2:1 resonance...ad infinitum. Therefore outside of the band gaps solutions
oscillate and inside they either decay or grow depending on initial conditions. As m1 shrinks
to zero the band gaps become thinner forming wedges. An asymptotic analysis reveals that
only the first gap has a finite opening angle and that all higher gaps close in a cusp [12, 83].

Periodically forced nonlinear ODEs

Naturally periodic forcing can appear in nonlinear ODEs as well as linear ones. In this
setting fixed points no longer exist and are replaced instead by periodic orbits. In general
the computation of such solutions must be carried out numerically and once one is obtained
its stability is evaluated by its linearization which is a Floquet problem.

One important mechanism by which an ODE can be periodically forced is through one-
way coupling to an external oscillating field. For concreteness consider the following dynam-
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0
m1

0

m
0

semi-infinite
 gap

1st gap

2nd gap

Figure 2.13: Band-gap structure in the (m0,m1) plane for the lowest three gaps of the
linearization of Eq. (2.22). Outside of the bandgaps (grey regions) solutions oscillate and
inside (white regions) they are either damped or divergent depending on initial conditions.

ical system

du

dx
= f(u) + v g(u)

dv

dx
= w

dw

dx
= −v.

Here the field u represents the physical quantity of interest and the field v is an external
oscillator to which it is coupled. It is critical here that the coupling is only in one direction:
the evolution of the field v does not depend on u. In the present case the second two
equations can be trivially integrated yielding v(t) = a cos(x+ b) for a, b ∈ R but the system
is illustrative of a more general concept. In general any periodic forcing v is the solution
to some dynamical system which can be coupled to u. In particular one may view the
nonautonomous problem for u as a higher-dimensional autonomous one where the forcing
is represented by its governing equations. In fact, even in systems where the coupling is
bidirectional, i.e. u appears in the equations for v and w, this coupling can be weak for
certain solutions and be effectively unidirectional.

Although the external forcing may result from an arbitrary number of external fields in
general, periodic forcing generically only requires a two-dimensional external system. Thus
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the dimension of the unforced problem u̇ = f(u) is effectively raised by two when the periodic
forcing term is added. In this thesis stationary solutions to Eq. (1.1) effectively solve a four-
dimensional dynamical system when the µ is periodic rather than a two-dimensional one.
This added dimensionality allows us to observe phenomena similar to the SHE that we would
not expect in second order systems.

Spatially periodically forced PDEs

In a PDE spatial forcing is analogous to a potential. Periodic spatial forcing arises frequently
in this context, for example, the Schrödinger equation describing electrons in a semiconduc-
tor. Here the periodicity of the atomic structure imposes a periodic potential on the electron
wavefunction. The spatially extended eigenmodes of such a system solve a periodically forced
ODE and are typically described in terms of Bloch theory, a particular case of the Floquet
theory described previously. When the systems are nonlinear localized solutions may also
be found. As these solutions require hyperbolicity of the background state they are typi-
cally found within band gaps where the characteristic exponents of the linear problem have
nonzero real parts. This is the genesis of the name “gap soliton” to describe solitary waves
found in nonlinear optical systems.

A related type of localized solution that can exist in spatially forced PDEs is a front
between two periodic states. Such fronts, sometimes known as Pomeau fronts, can be un-
derstood as being locked to the underlying potential [125]. In systems where the amplitude
of the potential can be continuously increased from zero this locking is best viewed in terms
of an energy balance. In the absence of the potential front solutions propagate but as the
potential is added the fronts require more energy in order to pass the potential maxima.
At some point the energy balance changes so that the fronts become pinned and cease to
propagate. This phenomenon is the central idea explored in this thesis in which we show
that the addition of a periodic potential to Eq. (1.1) causes fronts to pin paving the way for
the existence of localized snaking states. Snaking does not occur in two-dimensional systems
in the absence of spatial forcing to increase the system dimension. The remainder of this
thesis is devoted to an understanding of the front solutions to Eq. (1.1) in the absence of
periodic forcing and the snaking solutions of the equation when periodic forcing is present.
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Chapter 3

Numerical Methods

The bulk of the results in this thesis take the form of numerical solutions to differential
equations. The two techniques central to this work are numerical continuation of solutions
to ODEs and time integration of PDEs. The former is performed using the publicly available
software AUTO [55, 56, 57, 58] which is both accessible and standard in this field of research.
Time integration methods for PDEs are more sensitive to the details of each specific problem
but for the most part standard techniques were sufficient for the work here. This chapter is
devoted to an overview of both continuation and time integration techniques.

3.1 Numerical continuation of solutions to ODEs

In this section we outline the mathematical basis for numerical continuation of solutions to
ODEs and explain some details associated with their implementation. We focus here on the
methods that are used in AUTO. The central problem is twofold: first to compute a solution
u(x, µ0) to the equation

du

dx
= f(u, µ) (3.1)

along with appropriate boundary conditions at a fixed parameter value µ0 and second to
“continue” the solution as a function of µ as the parameter is smoothly changed. This
produces a curve of solutions. By uniqueness of solutions to ODEs such a solution curve is
well defined and in the space of solutions, Rn, it is convenient to parametrize the curve by
its arc-length, s. As a result the family of solutions takes the form (u(x;µ(s)), µ(s)) ∈ Rn+m

and in this space the curve is a single valued function of the argument s.
The basic foundation for numerical continuation is guaranteed by the implicit function

theorem [74]. Consider a function F : Rn+m → Rn that is continuously differentiable and has

a root F (x0,a0) = 0 for x0 ∈ Rn and a0 ∈ Rm. If the Jacobian ∂Fi
∂aj

∣∣∣
x=x0,a=a0

is invertible

then there exists an invertible function h : Rm → Rn in an open neighborhood of (x0,a0)
such that F (h(a),a) = 0. The theorem can be applied directly in the case of a fixed point
of Eq. (3.1). In this case when the Jacobian is invertible a fixed point u0 persists in some
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neighborhood of the parameter value at which it was computed and the curve (u(µ), µ)
is unique. More generally, when we seek to continue solutions that are not fixed points
the spatial derivatives must be taken into account. This is done by laying down a mesh
and evaluating the derivatives on the mesh points effectively turning the ODE into a high
dimensional algebraic system.

Collocation

In order to approximate Eq. (3.1) as an algebraic system AUTO uses the method of or-
thogonal collocation [24]. This method lays down a mesh on the domain and represents
the solution as a sum of polynomials. Then the derivatives of the solution are evaluated by
differentiating the approximating polynomials at collocation points.

The collocation method is implemented via multiple meshes. These include a mesh
representing a basic division of the domain and a second that is a refinement designed to
improve the convergence of the approximation. The construction of these proceeds as fol-
lows. The spatial domain is scaled to the unit interval [0, 1] and a set of N meshpoints
{xi}Ni=0 is constructed where x0 = 0 and xN = 1. In what follows the subscript i will al-
ways be an integer. The positions of the points are not necessarily equispaced and the code
adapts the mesh in order to equally distribute the discretization error during continuation
[55, 131]. Next, every interval [xi, xi+1] is further sub-divided with m ≤ 7 equispaced points
xi+1− k

m
≡ xi+1 − k

m
(xi+1 − xi) for k = 0, 1, . . . ,m − 1. We call the full set of meshpoints{

xi+1− k
m

∣∣∣ i = 0, . . . , N − 1 and k = 0, . . . ,m− 1
}
∪ {xN} the extended mesh. The true cal-

culations proceed not on this mesh but on a set of collocation points zi,k that are positioned
at the zeros of the mth order Legendre polynomial Pm relative to the ith component of the

mesh xi. Specifically, the collocation points satisfy Pm

(
2
zi,k−xi
xi−xi−1

− 1
)

= 0. These points are

chosen to improve the accuracy of the approximation and can be viewed as adjustments of
the extended meshpoints.

In order to transfer the solution from the collocation points to the mesh and vice versa
Lagrange interpolating polynomials are constructed

li,k(x) =
m∏
j=0
j 6=k

x− xi− j
m

xi− j
m
− xi− k

m

.

These polynomials have the property li,k

(
xi− k

m

)
= 1 and li,k

(
xi− j

m

)
= 0 for j 6= k. That

is, for a given k and interval [xi, xi+1] the Lagrange polynomial takes the value 1 on the
meshpoint xi− k

m
and zero on the others in the interval. Thus the solution is represented on

[xi, xi+1] by

pi(x) =
m∑
k=0

ũi− k
m
li,k(x) (3.2)
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where the coefficients ũα approximate the solution amplitude at each meshpoint. The coef-
ficients are unknown a priori and are determined in solving Eq. (3.1). The total number of
undetermined coefficients is mN + 1.

Using the solution representation (3.2) Eq. (3.1) can be evaluated at the collocation
points in each interval [xi, xi+1] as follows

p′i(zi,k) = f(pi(zi,k), µ).

Here the derivative can be computed easily and analytically since pi is a polynomial. Because
ũα is an n component vector the system has nmN algebraic equations for n(mN+1)+1 scalar
coefficients plus the parameter µ. Typically the extra equations needed to determine the
coefficients are provided by boundary conditions imposed on the solution. When continuing
a branch of solutions, rather than solving for them for fixed µ, an additional equation is
inherited from the continuation procedure thus determining µ at the next step as well.

Newton’s method

Once a system of algebraic equations is obtained the solution is found by Newton’s method.
The method is designed to find roots of equations of the form F (x) = 0 where F has
continuous first derivatives. Beginning with an initial guess of the root, x0, we may expand
F in a Taylor series

F (x) = F (x0) + ∇F |x=x0
· (x− x0) +O

[
(x− x0)2] .

Then in order to determine the next guess for the root, x1, we assume that −F (x0) =
∇F |x=x0

· (x1−x0) so that F (x1) = O (‖x1 − x0‖2), i.e. that x1 is the root up to quadratic
corrections. This procedure is then iterated in order to generate a sequence xi that converges
to the true root. The geometric interpretation of this is that x1 represents a step from
x0 in the tangent hyperplane to F at x0 in the direction of steepest descent. If ∇F is
not invertible then the update equation can be solved with the added constraint that x1

have minimal norm which produces a unique solution. Generically ∇F is full rank near
simple roots though roots of higher degeneracy may require more care. In practice if the
initial guess is close enough to the root that the linear approximation of the Taylor series
expansion is valid at the root then the method converges, although precise mathematical
conditions for convergence are well established. If the function is continuously differentiable
then the iterates satisfy xi+1 − xroot = o (‖xi − xroot‖) and if F is Lipschitz this bound
is quadratic O (‖xi − xroot‖2) [53, 115]. Convergence is typically checked by evaluating
‖F (xi)‖ as i increases and the method is terminated when either the norm is sufficiently

small, the relative change in norm ‖F (xi+1)‖
‖F (xi)‖ is small or after finite number of iterations.

For the continuation problem the Jacobian of the algebraic equations can be evaluated
analytically. By the chain rule the derivative of the equations with respect to a particular
ũα is

∇ũα (p′i(zi,k)− f(pi(zi,k), µ)) = ∂ũαp
′
i(zi,k)−∇uf · ∂ũαpi(zi,k)
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Figure 3.1: Schematic drawing of pseudo-arclength continuation. The solution branch is
depicted with a thick line and the starting point is (u0, µ0). A step of size ∆s is taken along

the tangent direction to a point
(
u

(0)
1 , µ

(0)
1

)
and then Newton iterations are conducted along

the hyperplane normal to the tangent vector. These iterations finally terminate on the next
solution branch point (u1, µ1). This figure was created by Sara Tepfer.

where the derivatives of the polynomials can be evaluated analytically and so can ∇uf since
the functional form of f is known. A similar derivative by the parameter µ can also be
computed analytically. This allows us to avoid numerical approximations of the Jacobian
and greatly improves the performance of the Newton updates.

Pseudo-arclength continuation

Once an algebraic system has been obtained and a solution computed then continuation
of the solution involves changing the parameter µ and tracking the changes in the solution
branch. For concreteness consider the problem F (u, µ) = 0 where we know a particular
solution (u0, µ0). AUTO uses a method known as pseudo-arclength continuation to step
along the solution branch. While multiple methods for continuation exist pseudo-arclength
avoids issues at folds in the solution branch where naive methods typically fail. The geometric
picture of the continuation process is shown in Fig. 3.1. Here the step is taken first by moving
along the tangent vector to the solution curve and then correcting the step in an orthogonal
direction by a series of Newton iterations.

The basic concepts behind continuation are well represented by standard arclength con-
tinuation in which a step of fixed distance is taken in (u, µ) space. Concretely this means
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that the update step must satisfy

F (u(x; s), µ(s)) = 0,

∥∥∥∥duds
∥∥∥∥2

+

(
dµ

ds

)2

= ∆s2,

where ∆s is the length of the step. The Newton iterations use an initial guess along the
tangent direction and then refine the solution by varying the step direction for fixed ∆s.
Although promising in theory the imposition of the fixed ∆s constraint is nontrivial.

Pseudo-arclength continuation represents a slight modification of standard arclength con-
tinuation that employs a more numerically tractable constraint for the continuation step size.
In this method rather than fixing the Newton iterations to lie on a hypersphere they are
constrained to be in a hyperplane orthogonal to the tangent vector, see Fig. 3.1. In this way
the iterations are still able to correct the initial step and the constraint can be implemented
as an inner product. Mathematically this is formulated by the conditions

F (u1, µ1) = 0,

〈
u1 − u0,

du0

ds

〉
+ (µ1 − µ0)

dµ0

ds
= ∆s, (3.3)

where (u1, µ1) is the new guess after the step. Here since u is intended to approximate a
continuous function the inner product is taken to be 〈u, v〉 =

∫
u v dx which AUTO computes

by quadrature,

〈u,v〉 =
∑
j,k

(∫ xj+1

xj

lj,k(x) dx

)
ũj− k

m
· ṽj− k

m
.

Here the integrals over lj,k are independent of j up to a scaling and ũα, ṽα represent the
function values at the meshpoints. The initial guess along the tangent vector takes the form

u
(0)
1 = u0 + ∆s

du0

ds
, µ

(0)
1 = µ0 + ∆s

dµ0

ds
,

where the superscript (0) refers to the number of Newton iterations and the subscript to the
step number along the solution branch. The tangent vector is initially computed using the
known Jacobian but subsequently carried over from the previous step.

After the initial step along the tangent vector Newton iterations are used to refine the
guess. The Newton method involves the following update equation(

∂uF
(
u

(ν)
1 , µ

(ν)
1

)
∂µF

(
u

(ν)
1 , µ

(ν)
1

)
du0

ds
dµ0
ds

)(
∆u

(ν)
1

∆µ
(ν)
1

)

= −

 F
(
u

(ν)
1 , µ

(ν)
1

)〈
u

(ν)
1 − u0,

du0

ds

〉
+
(
µ

(ν)
1 − µ0

)
dµ0
ds
−∆s

 ,

where each row corresponds to a Taylor expansion of each condition in Eqs. (3.3). Because
solving this large linear system is expensive AUTO only updates the matrix on the LHS for



CHAPTER 3. NUMERICAL METHODS 48

a fixed number (user specified) of Newton iterations. After that chord iterations are used
instead where the matrix is frozen. The next tangent vector is defined by the conditions

∂uF (u0, µ0)
du1

ds
+ ∂µF (u0, µ0)

dµ1

ds
= 0,

du0

ds

du1

ds
+
dµ0

ds

dµ1

ds
= 1,

where the second is a normalization condition. These equations may be derived by differen-
tiation of Eq. (3.3). The orientation of the tangent vector is preserved provided that ∆s is
sufficiently small.

The above procedure is iterated in order to map out the curve of solutions to Eq. (3.1).
The step size ∆s is automatically adapted depending on how fast the Newton iterations
converge to a user specified tolerance. If convergence does not occur within a specified finite
number of iterations or the adapted step size falls below a specified minimum the procedure
terminates and reports an error.

Bifurcation detection, branch switching and multiple parameters

In addition to following solution curves one of the goals of continuation is to detect bifurca-
tions. Bifurcations occur when the conditions in the inverse function theorem fail, namely
the Jacobian is not invertible. Away from bifurcation points the solution is referred to as
regular and the Jacobian ∂uF is full rank ensuring that a unique solution branch passes
through. This also occurs at points where ∂uF is not full rank but the extended system
[∂uF |∂µF ] (an extended matrix) is. These points are called simple folds.

When the rank of the extended system is not full the point is said to be singular. At such
points there is not a unique curve of solutions and at least one other branch bifurcates out of
the point. Simple singular points are those for which the rank of the extended system is one
less than the maximum. Here one additional solution branch emerges. In order to detect
these points AUTO monitors the determinant det ([∂uF |∂µF ]) as a function of arclength.
When the determinant changes sign AUTO looks for the root with secant iteration. Simple
folds, where the determinant does not change sign but dµ

ds
does, are detected in a similar

manner. Since AUTO tracks the tangent vector anyway the same root finding procedure is
applied to locate these fold points. Bifurcations of codimension two and higher cannot be
reliably found in this manner since the determinant may pass through zero without changing
sign. Bifurcations to other branches may also occur at Hopf points where an eigenvalue of
∂uF has a real part passing through zero but a nonzero imaginary part. In this case ∂uF is
still of full rank and more care must be taken in order to detect these points and follow the
emergent branches. This will not be discussed here.

At a simple singular point the continuation can proceed along either the current branch
or switch to the new one. At such a point the nullspace of [∂uF |∂µF ] is two-dimensional.
It contains the tangent vector of the original branch,

(
du
ds
, dµ
ds

)
, and also the tangent vector

in the direction of the new branch. Though the new branch need not emerge orthogonal to
the original one AUTO uses a direction in the nullspace and also orthogonal to the original
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tangent vector as a guess. This is typically successful in practice when the step size is small
enough.

Finally a natural extension of the continuation procedure described above is to perform
continuation in multiple parameters. Such a task can easily be implemented in the exist-
ing framework because little distinction is made between the solution components and the
parameters. All that is required is an additional constraint so that the system has enough
equations in order to determine a unique solution. These constraints can take the form of
boundary conditions, integral conditions or the requirement to stay at a bifurcation point.
For example, AUTO includes a feature to continue fold points in a secondary parameter.
This is accomplished by including a constraint that ∂uF have a nullspace that is at least
one-dimensional. This is enforced by extending the system to

F (u, µ) = 0, [∂uF ]φ = 0, |φ|2 = 1.

Here φ is the nullvector of ∂uF that is characteristic of a fold. Continuation is then performed
on these equations instead.

Convergence and stability

Rigorous conditions for convergence and stability of the methods used in AUTO are well
established [55, 57, 58]. In carrying out this work the validity of solutions obtained from
AUTO are checked first by refining the mesh used by AUTO and then by consistency.
Specifically we check using an independent implementation of Newton’s method that the
obtained solutions do solve the governing equations and secondarily that stable solutions are
indeed stable when time evolved.

3.2 Solving linear eigenvalue problems

In the study of temporal stability of a stationary PDE solution a differential linear eigenvalue
problem is obtained. These take the form of a differential equation Lu = σu plus boundary
conditions where L is a differential operator and (u, σ) is an eigenfunction-eigenvalue pair.
These problems typically fail to have analytical solutions and must be treated numerically.
This is accomplished by laying down a mesh or choosing a complete set of basis functions
with which to approximate L. After this is done the problem becomes a matrix eigenvalue
problem that can be solved with standard numerical linear algebra libraries. In this section
we discuss two main techniques for the discretization of L.

The first and most obvious method is to lay down an equispaced spatial mesh and write
differential operators in terms of finite differences. Suppose that the meshpoints are separated
by a distance ∆x, then by use of Taylor series at a point xi the first and second derivatives
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may be written,

∂xu =
u(xi)− u(xi−1)

∆x
+O(∆x)

∂xxu =
u(xi+1)− 2u(xi) + u(xi−1)

(∆x)2
+O

[
(∆x)2

]
where the associated truncation error is included. This error affects the accuracy of both
the eigenvectors and eigenvalues. Given the finite accuracy of numerical approximations it
is natural to search for higher order methods. Higher order approximations to derivatives
can be derived by expanding the function in higher order Taylor series on the meshpoints.
As the method becomes higher order the stencil involves function values at an increasing
number of meshpoints.

An alternative approach to approximating derivatives is through spectral methods. These
methods are characterized by “spectral” accuracy that is far greater than finite differences
and are the primary methods used here. The basic idea behind spectral methods is to
represent the solution with a Fourier series so that instead of searching for values of the
functions at the meshpoints the eigenvalue problem is posed in terms of the amplitudes of
the Fourier modes. These methods are supported mathematically by the following theorem
[147]

Theorem. Let u ∈ L2(R) and let v be the grid function on ∆xZ defined by vj = u(xj). If
u has p− 1 continuous derivatives in L2(R) for some p ≥ 1 and a pth derivative of bounded
variation then

|v̂(k)− û(k)| = O
[
(∆x)p+1

]
as ∆x→ 0

which holds uniformly for all k ∈
[
− π

∆x
, π

∆x

]
.

Here the accuracy of the discrete Fourier transform improves with the regularity of the
function to be approximated! Using Parseval’s Theorem it is also possible to show that u
and v themselves are spectrally close [147]. In practice this fact results in a very accurate
method well beyond the capability of finite differences.

For problems in which the linear operator does not depend explicitly on x the entire
linear problem can be Fourier transformed and the eigenvalue calculation can be performed
in Fourier space where the discrete approximation to the spatial derivatives are diagonal
matrices. This is not the case when L depends explicitly on x which arises frequently
in studying the stability of spatially varying solutions. When such a scenario arises on a
periodic domain a finite difference-type differentiation matrix can be derived by re-summing
the Fourier basis functions. Specifically, suppose that the number of modes N is even and the
corresponding spatial meshpoints have separation ∆x. Then the discrete Fourier transform

of the delta function δj =

{
1 j = 0 mod N

0 j 6= 0 mod N
is δ̂k = ∆x for all Fourier modes k. Using this
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the band limited interpolant of the delta function is,

I(x) =
1

2π

N
2∑

k=−N
2

∆x eikx =
∆x

2π

sin
(
Nx
2

)
sin
(
x
2

) .
Any periodic function u on the grid can then be interpolated by

∑N
j=1 u(xj)I(x− xj). Thus

the derivative of the interpolating function on the mesh can be written in terms of the
derivatives of I(x). Evaluated on the meshpoints the first derivative becomes [147],

I ′(xj) =

{
0 j = 0 mod N
(−1)j

2
cot
(
j∆x

2

)
j 6= 0 mod N

. (3.4)

Since the grid function is interpolated with shifted copies of I(x) this gives rise to a spectral
differentiation matrix created by stacking N shifted copies of Eq. (3.4) to form a banded
matrix. When this matrix acts on the vector [u(xj)] it produces the derivative vector [u′(xj)]
on the mesh, i.e. it acts like a finite differences scheme but uses values at all N points. In
addition, because the interpolation is done by Fourier modes this differentiation inherits all
of the spectral accuracy properties of spectral methods. Higher order derivatives can easily
be derived by further differentiating I(x). These techniques are in widespread use and many
properties of these differentiation matrices have been studied [35, 147].

Finally a key component to any numerical scheme is a method to evaluate its accuracy.
In practice this is carried out by refining the mesh and tracking the convergence of the
eigenspectra. Enough meshpoints have been used when the eigenvalues stop changing. As
a rule of thumb when the spectrum is bounded, as in Sturm-Liouville problems, the error
in the eigenvalues and eigenfunctions is smaller near the bounded side of the spectrum and
gets worse for larger eigenvalues at the unbounded end [26]. Hence we typically only take at
most the lowest half of the modes from a numerical calculation.

3.3 Timestepping methods for PDEs

Solving PDEs numerically involves two distinct discretizations for space and time. If the
spatial discretization is performed first then a set of ODEs in time are obtained for the
discretized function values at spatial meshpoints. Both the spatial and temporal derivatives
may be approximated though basic finite differences but spectral methods improve accuracy
significantly and are therefore used whenever possible. In this section we describe the three
schemes that are used in this thesis. Although the governing equation changes very little
three distinct methods are needed since the physics of the equation changes significantly in
the various parameter regimes. The schemes are crafted to maximize accuracy with fidelity
to this physical behavior in mind.
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Finite difference method

For front propagation into an unstable state studied in chapter 4 a simple finite difference
method is used. In such a problem the solution u = 0 ahead of the front interface is unstable
and the goal of the simulation is to capture the speed with which it destabilizes. This speed
drives pulled front motion. The scheme solves Eq. (1.1) with µ > 0 constant and takes the
form

uj+1
i − uji

∆t
= L

(
uj+1
i−1 , u

j+1
i , uj+1

i+1

)
+N

(
uji−1, u

j
i , u

j
i+1

)
, (3.5)

where uji is the solution value at spatial point i and time step j and centered differences
are used for all of the spatial derivatives. The operators L and N indicate the linear and
nonlinear terms in the evolution equation, respectively. The linear part of the method is
first order accurate in time and second order in space but for the simulations we always
choose ∆t = (∆x)2. The method handles the linear terms implicitly and the nonlinear ones
explicitly. This is common in problems with nonlinear terms in order to avoid solving a
nonlinear equation at each timestep. As such the method need not be unconditionally stable
but numerical experiments reveal that the method is stable for even moderate ratios ∆t

∆x
.

All the work here is done at values well below the Courant–Friedrichs–Lewy bound for the
linear problem [102].

Finally, we mention that front propagation in Eq. (1.1) is naturally diffusive and does not
have a sharp front interface unlike front propagation in a Hamilton-Jacobi equation. This
physical difference permits a simple scheme like Eq. (3.5) to reliably capture the correct
behavior. In fact significant work has been done to understand the accuracy of schemes like
this for front propagation in dissipative diffusive systems [63]. Moreover spectral methods do
not work here. Specifically, since each Fourier mode affects every spatial point in the system
small errors in a Fourier mode destabilize the state ahead of the front. In chapter 4 we
detail some techniques to mitigate this but for simulations where µ is large finite differences
perform much better.

Spectral method

For time evolution of Eq. (1.1) when µ < 0 and when µ = µ0 + µ1(x) with µ1 periodic we
use a method that is spectral in space. This method is carried out in Fourier space, i.e. the
method evolves the Fourier transform of the solution [147]. The scheme takes the form

ûj+1
i − ûji

∆t
=
(
µ0 − k2

i

)
ûj+1
i + F

[
N
(
x,F−1

[
ûji
])]

(3.6)

where û and F [u] both denote the Fourier transform of u, ki is the Fourier wavenumber of the
ith mode, µ0 < 0 is the homogeneous part of the forcing and the periodic part µ1(x) is lumped
with the nonlinear terms N . At each timestep the solution is inverse Fourier transformed
to real space so that the nonlinear terms can be evaluated and then Fourier transformed
back. In real space the equation is solved with periodic boundary conditions on a grid of
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N equispaced points through a domain [−L,L] while in Fourier space this corresponds to a
grid of wavenumbers kj = jπ

2L
for −N

2
≤ j ≤ N

2
.

This method is spectrally accurate in space and first order in time. This was sufficient for
all of the applications here. Like the previous method, here the linear terms are treated im-
plicitly and the nonlinear ones explicitly. However, because the spatial resolution is spectral
we observed stability even for generous timesteps.

In using Fourier methods with nonlinear equations one issue that may arise is aliasing
of modes due to the nonlinear terms. Specifically a term of the form up can project a mode
eikx of wavenumber k onto modes with wavenumbers as large as pk. When the spatial
resolution does not distinguish these high spatial frequency terms from the low frequency
ones aliasing occurs. The high frequency mode is incorrectly attributed to the amplitude of
a low frequency one. Another view of this is that Fourier modes are defined modulo Nπ

4L
in

k-space so modes that are beyond |k| = Nπ
4L

are aliased. One can prevent this by proactively

zeroing the amplitudes of the highest p−1
p+1

N modes at each timestep. This need only be done

for the nonlinearity with the largest p in the governing equation [26].

Split step method

In chapter 7 we consider an application to nonlinear optics and consequently solutions to a
Gross-Pitaevskii equation that has the same stationary solutions as Eq. (1.1) but different
dynamics. This equation takes the form −iAt = Axx + µ(x)A + |A|2A − |A|4A and is
not dissipative but rather energy conserving. Although the equation can be solved with
a numerical scheme similar to Eq. (3.6) the scheme fails to reliably conserve the physical
quantities of interest. This new physics calls for a different scheme.

We employ one of the standard schemes that is in use in nonlinear optics research. The
scheme is referred to as a split-step method and is described in [160]. The method involves
splitting the differential equation into two:

Ut = iUxx

Vt = i
(
µ(x) + |V |2 − |V |4

)
V

and solving each exactly,

U(x, t) = F−1
[
e−ik

2tF [U(x, 0)]
]

V (x, t) = V (x, 0)ei(µ(x)+|V (x,0)|2−|V (x,0)|4)t. (3.7)

The time-stepping proceeds by alternate steps in time using either solution and carefully
selected weighting factors. These are chosen so that the resulting method is spectrally
accurate in space and fourth order accurate in time. Details can be found in [160]. Because
(3.7) corresponds to rotations in either real or Fourier space it preserves the L2 norm and
energy of the solution up to numerical errors. We observe good energy preservation for long
simulation times.
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Convergence and accuracy

We validate the numerical methods used here through a number of techniques. In every case
we verify that the qualitative and quantitative dynamics are invariant upon refinement of the
spatial mesh and timestep once they are sufficiently small. Another step that we have taken
is to compare the methods detailed here to methods with higher order time integration. If the
methods agree then the lower order method is sufficiently accurate to capture the dynamics.
In the case of conservative schemes like (3.7) we monitor the conservation of energy during the
time evolution and its improvement as the spatial and dynamical meshes are refined. Finally,
in certain specific cases (see chapter 4) we are able to compare the numerical methods to an
exact PDE solution. This is rarely possible in the study of nonlinear PDEs but provides a
good validation of the numerical scheme when available.
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Chapter 4

Fronts in Subcritical Systems

4.1 Introduction

In this chapter we are interested in the speed with which a nontrivial pattern invades either
a stable homogeneous state or an unstable one. These types of problems arise frequently
in applications [3, 50, 72, 133, 146] but the speed selection process remains imperfectly
understood despite much effort. This is because in the former case the speed is inevitably
selected by nonlinear processes (the pushed front case) while in the latter case selection
may be via linear processes (the pulled front case) although nonlinear selection may survive
well into the supercritical regime. Moreover, the selected speed depends in general on the
initial condition, and in particular on the steepness of the front connecting the pattern to
the homogeneous state at the initial instant.

In order to present a unified discussion of both processes we focus here on the bistable
Ginzburg-Landau equation Eq. (1.1) [59, 61, 64, 84, 86, 87, 88, 139]. Equation (1.1) has the
symmetries

A(x, t)→ Ā(−x, t), A(x, t)→ A(x, t) eiφ,

inherited from the assumed invariance of the original system for u(x, t) under spatial re-
flections and translations with respect to the fast spatial scale. In the absence of spatial
forcing on scales of order O(ε−2) the equation is also invariant under spatial translations
with respect to the slow spatial scale x. Furthermore, the equation possesses a Maxwell-like
point µ = µM at which a multitude of stationary spatially localized structures of varying
widths is present [86]. This point exists even when a2 6= 0, i.e., when the equation lacks
gradient structure. In the latter case µM corresponds to the presence of a heteroclinic cycle
connecting the trivial state A = 0 to a stationary nontrivial state RMe

iqMx given by

RM =
12

16− (3a1 − 5a2)(a1 + a2)
,

qM =
3(a1 + a2)

(3a1 − 5a2)(a1 + a2)− 16
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and back again.
In the present work we are interested in the properties of traveling fronts that are present

when µ 6= µM . Since the system is bistable two types of fronts are possible: pushed fronts
describing the elimination of the nontrivial state by an invading trivial state (µ < µM) or
vice versa (µM < µ < 0), and pulled fronts describing the invasion of a linearly unstable
trivial state by a stable nontrivial state (µ > 0). In fact, as first pointed out by van Saarloos
[134] the transition between these two types of fronts does not take place exactly at µ = 0,
even when a1 = a2 = 0, and this transition is of particular interest in the present work as
well.

The chapter is organized as follows. In Sec. 4.2 we obtain a three-parameter family of
exact traveling front solutions of Eq. (1.1) and study the stability of these solutions in the
relevant parameter region. This solution set is a special case of that derived in [145]. The
dynamic nature of these fronts is closely related to the stability of the asymptotic states at
either end. In Sec. 4.3 we briefly review our methodology for carrying out an analysis of front
propagation from localized initial conditions. Sections 4.4 and 4.5 describe case studies of
these two front propagation regimes, focusing in Sec. 4.4 on the case in which A = 0 is stable
and in Sec. 4.5 on the case in which it is unstable. In the latter case the “marginal stability
criterion” of Dee and Langer [52] can be applied to characterize the motion of the front,
subject to certain restrictions on the initial conditions [135]. Section 4.5 also investigates
the stability of the state deposited by the moving front with respect to spatial modulation.
Brief conclusions follow in Sec. 4.6 and numerical methods are described in section 4.7.

4.2 Nonlinear Front

A procedure for finding exact coherent traveling structures of the Ginzburg-Landau equation
has been outlined by van Saarloos and Hohenberg [132, 136]. Such traveling solutions inform
bifurcation structure as well as dynamics and are thus of significant value. One of the most
famous such examples is the one-parameter family of Nozaki-Bekki hole solutions for the
complex Ginzburg-Landau equation which have been shown to play an important role in its
dynamics [116]. In this section we derive an exact traveling front solution to Eq. (1.1) with
fully general parameter dependence and study the region of existence and stability of the
solution. These put restrictions on the parameter values for which the exact front is valid
and dynamically relevant.

Spatial dynamics

If we restrict attention to traveling solutions, Eq. (1.1) can be rewritten in the form of three
real first order ODEs [132] in a traveling frame with coordinate ξ ≡ x − vt. To do this we
write

A(x, t) = W (ξ)e−iωt,
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where ω is a constant, and W (ξ) ≡ a(ξ)eiφ(ξ). In addition, we introduce the quantities q ≡ φ′

and κ ≡ a′

a
, where the prime denotes differentiation with respect to ξ. This procedure yields

the real-valued equations

a′ = aκ, (4.1)

q′ = − (a1 + a2) a2κ− q(v + 2κ)− ω, (4.2)

κ′ = a2 [(a1 − a2) q − 1] + a4 − µ+ q2 − vκ− κ2. (4.3)

The traveling front solutions that we seek correspond to heteroclinic orbits between fixed
points (a, q, κ) = (aN , qN , 0) (the nontrivial state) and (0, qL, κL) (the trivial state). Given
arbitrary values of the parameters µ, a1, a2, these heteroclinics may exist only for certain
values of v, ω. If a heteroclinic orbit exists only for discrete values of v and ω (for each set of
µ, a1, a2) it will be known as a “discrete front;” otherwise it is a “k-parameter front” where
k indicates the number of free parameters.

We suppose, without loss of generality, that the front solution approaches (aN , qN , 0)
as ξ → −∞ (the source or upstream state) and (0, qL, κL) as ξ → ∞ (the sink or down-
stream state). It follows that the former must be unstable in the space variable ξ while
the latter must have at least one stable eigendirection. An upper bound on the number of
free parameters within a family of such heteroclinic solutions is therefore determined by the
dimensions of the unstable manifold of the source fixed point and the stable manifold of the
sink [136]. If the source has n unstable eigendirections then the solution curve must lie in
the corresponding n-dimensional unstable manifold. This condition restricts the number of
degrees of freedom of the solution curve by 1 leaving n− 1 degrees of freedom. Adding the
two free parameters v, ω the total number of degrees of freedom becomes n+ 1. A necessary
condition for the existence of a heteroclinic between the source and sink is that the solution
curve also lies in the stable manifold of the sink. If the sink has l unstable eigendirections
this requirement generically requires that l variables are fixed thereby leaving k ≡ n− l + 1
variables free. If k > 0 the solution curve corresponds to a k-parameter front, if k = 0 it is
a discrete front, and if k < 0 no heteroclinic orbit exists between the two fixed points. A
complete analysis of the fixed points of Eqs. (4.1)–(4.3) and the dimensions of the associated
stable and unstable manifolds is carried out in [61].

We follow [132] in using the Ansatz

q = qN + e0

(
a2 − a2

N

)
, κ = e1

(
a2 − a2

N

)
, (4.4)

and suppose that the resulting front travels with speed v = vN . This front is a discrete front,
i.e., k = 0, and both ω and v are determined by the system parameters. Differentiating
the Ansatz and using Eq. (4.1) we find that q′ = 2e0a

2κ and κ′ = 2e1a
2κ. Next, we

eliminate q and κ from Eqs. (4.2) and (4.3), obtaining a pair of polynomial identities in a.
In order for these to be satisfied identically each coefficient of the polynomials must vanish.
These conditions produce a set of algebraic equations sufficient to determine the constants
aN , qN , e0, e1, vN , ωN . There are generically two sets of values of the constants that solve
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Figure 4.1: The nonlinear front with parameters (a1, a2) = (2, 3) and µ = 0 shown at a fixed
time. (a) The real (green) and imaginary (red) parts of the solution A(ξ, ·) along with its
amplitude |A| in blue. (b) A 3D representation of the solution in (a).

these equations due to a fold bifurcation in the µ < 0 region. The explicit form of the front
can be found by recalling the definition of κ and solving the second relation in Eq. (4.4) as
a first order differential equation for a:

W (ξ) ≡ aNe
iqN ξ

(
1 + e2a2Ne1ξ

)− 1
2
−i e0

2e1 . (4.5)

Here e1 > 0 since we choose fronts that decay to zero as ξ →∞. Figure 4.1 shows a sample
plot of the solution (4.5) with (a1, a2) = (2, 3) and µ = 0. The front solution connects the
rotating wave state A = aNe

i(qN ξ−ωN t) as ξ → −∞ to the trivial state A = 0 as ξ →∞.
We now exhibit the explicit Ansatz parameters for (a1, a2) 6= (0, 0). For simplicity of
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presentation we first introduce the auxiliary parameters

Γ = 16− (3a1 − 5a2) (a1 + a2) ,

∆ = 16− (a1 + a2)
[
4a1 − 3a3

2 − a1a
2
2 + 2

(
a2

1 − 10
)
a2

]
,

Υ = 8− (3a1 − 7a2)(a1 + a2),

Λ = 2 + a2(a1 + a2),

yielding e0 = −1
4
(a1 + a2), e1 = 1

4

√
Γ
3
, ωN = −qNvN , together with

a2
N± =

2(5Λ− 6)± 2Υ
√

(2Λ + µ∆)/Γ

∆
,

qN± =
a1 + a2

∆

[
−2Λ± (6− Λ)

√
(2Λ + µ∆)/Γ

]
, (4.6)

vN± =

√
Γ

3

Λ− 6±
√

(2Λ + µ∆)Γ

∆
.

One of these solutions (±) is stationary at the Maxwell-like point µ = µM(a1, a2) ≡ − 3
Γ

[86].
Depending on the sign of the quantity Λ−6 the stationary front may be located on either the
aN+ or the aN− branch. These branches meet at a fold at 2Λ + µ∆ = 0. In addition, since
ωN + qNvN = 0, the source state is always stationary in the original frame. The coefficients
for the Ansatz shown here may be obtained from the more general solution derived in [145]
that uses this Ansatz in a quintic Ginzburg-Landau equation with complex coefficients.

The Ansatz yields well-defined solutions even when ∆ = 0, despite the vanishing denom-
inators in Eqs. (4.6), although there is now only one solution rather than two (up to an
overall sign):

a2
N =

µΥ2 − 9(a1 + a2)2

(6− 5Λ)Γ
,

qN =
a1 + a2

4ΛΓ

[
µ(6− Λ)2 − 6Λ

]
,

vN =

√
Γ

3

(µΓ + 3)

2(6− Λ)
.

Here e0 and e1 are as above but all the auxiliary variables are understood to be restricted
to the curve ∆ = 0. There is now only one branch of fronts with positive aN and no fold in
the branch. The Maxwell point is still given by − 3

Γ
. This case is not discussed in [145].

In the special case a1 = a2 = 0 we recover the result of [49, 134]. The front solution (4.5)
then takes the form

W (ξ) ≡ aN√
1 + e2a2N ξ/

√
3

with

a4
N − a2

N − µ = 0, vN =
4a2

N − 3√
3

, (4.7)
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Figure 4.2: The length scale λ ≡ (e1a
2
N)
−1

at the Maxwell point µ = µM(a1, a2) for fronts
on (a) the aN+ branch and (b) the aN− branch. Regions colored dark red represent values
≥ 8. The solution that lies below the fold on the branch of front solutions has a smaller
amplitude and decay rate as compared to that above the fold.

provided µ > −1
4
. The polynomial equation for a2

N in Eq. (4.7) has two real roots. A front

with a2
N = 1+

√
1+4µ
2

connects a stable constant amplitude state to the stable trivial state

and travels with speed vN = 2
√

1+4µ−1√
3

. Such a front moves in the positive ξ direction when

µ > − 3
16

and in the negative ξ direction when −1
4
< µ < − 3

16
. The Maxwell point is at

µM = − 3
16

. The other solution, which only exists when −1
4
< µ < 0, always travels in the

negative ξ direction as it connects an unstable constant amplitude state to the stable trivial
state.

In fact, the general case (4.6) reduces to Eq. (4.7) along the whole line a1 = −a2, along
which all of the constants Γ, ∆, Υ, Λ become independent of both a1 and a2. This reduction
results because, in this case, the quantity ia1(ĀAx − AĀx) is real. As a result the ansatz
(4.4) becomes independent of a1.

For strongly nonlinear front propagation problems it is useful to develop a characteri-
zation of the intrinsic length scale in the model. In view of the exact front solution (4.5),
it is natural to define this length scale, hereafter λ, as the inverse spatial decay rate of the
front envelope, i.e., λ ≡ 1

e1a2N
. We show this length scale, evaluated at the Maxwell point

µ = µM(a1, a2), in Fig. 4.2. The figure shows that in the case of aN+, increasing |a1| leads to
front steepening while increasing |a2| leads to broadening. Unsurprisingly, the aN− solution
has both a smaller amplitude and a smaller spatial decay rate than its sibling above the
fold. Specifically, when a2 > 0 the aN− front steepens for decreasing a1 and broadens for
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Figure 4.3: The existence regions for aN± when (a) µ = −0.1, (b) µ = 0, (c) µ = 0.1. The
dark grey indicates existence of both solutions, light grey indicates existence of only aN+,
black indicates existence of only aN−, while white implies nonexistence of both solutions.
The lines Γ = 0 (red), Λ = 6 (blue), 5Λ = 6 (magenta), Υ = 0 (green) and ∆ = 0 (orange)
are shown restricted to the region Γ > 0, required for the validity of the Ansatz (4.4). The

dots indicate the locations (a1, a2) = (±3,±1),
(
±
√

5,∓ 1√
5

)
on the curve Γ = 0.

increasing a2 throughout the bulk of the parameter regime.

Existence conditions for the nonlinear front

The Ansatz (4.4) does not always generate a front solution. For this to be the case the
coefficients in Eqs. (4.6) must be real and the amplitude of the nontrivial asymptotic state
must be positive, i.e.,

Γ > 0, a2
N > 0, 2Λ + µ∆ > 0. (4.8)

These conditions place restrictions on the allowed values of a1, a2 and µ. We remark that
Γ > 0 implies Λ > 0, a result that follows from the identity Γ = 8Λ− 3(a1 + a2)2. Verifying
these conditions requires an understanding of the allowed values of µ which we examine next.

The front solutions typically bifurcate from the trivial state in a subcritical pitchfork
bifurcation, leading to the coexistence of the trivial state with the two front solutions, a =

aN±. This bifurcation is located at µ = µP ≡ 9(a1+a2)2

Υ2 ≥ 0 and the initial front amplitude

scales as aN ∝ |µ − µP |
1
2 unless 5Λ = 6 in which case aN ∝ |µ − µP |

1
4 and the pitchfork

is degenerate. As a consequence, when ∆(5Λ − 6) > 0 a fold bifurcation is present at
µ = µF ≡ −2Λ

∆
. This fold lies to the left (right) of the pitchfork bifurcation when the

pitchfork is subcritical (supercritical) and no fronts of the assumed form is present µ < µF
(µ > µF ), with only one front present for µ > µP (µ < µP ). Note that µP = 0 along the line
a1 = −a2.
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The imposition of the requirements (4.8) leaves distinct generic parameter regimes within
which the nonlinear front (4.5) exists. These depend on the values of ∆, Υ, and Λ. The first
of these that we shall consider depends on the signs of ∆ and 5Λ−6. Most of the parameter
space is covered by ∆ > 0 but there is a sliver near the boundary of the existence region where
∆ < 0 (Fig. 4.3). While the former case displays expected behavior, the latter complicates
the validity of the Ansatz and in many cases only one of the solutions in Eqs. (4.6) remains
valid. In the following analysis we shall consider the effects of passing through the sign
change in the auxiliary variables by increasing a1. Since 5Λ > 6 whenever ∆ > 0 there are
three possible regimes encountered as a1 increases from 0: (1) ∆ > 0 and 5Λ > 6, (2) ∆ < 0
and 5Λ > 6, and (3) ∆ < 0 and 5Λ < 6. As a1 increases from 0, ∆ decreases towards zero
and µF → −∞. When ∆ = 0 there is no fold bifurcation on the front branch: the branch
of exact fronts bifurcates from the trivial state at µ = µP and extends to µ = −∞. This
behavior persists into the region ∆ < 0 and 5Λ > 6 in which only the aN+ solution is valid.
Finally, if |a2| > 1√

5
then a third regime becomes accessible in which ∆ < 0 and 5Λ < 6. At

5Λ = 6 the pitchfork switches from subcritical to supercritical and in so doing regenerates a
fold at µF , now to the right of the pitchfork. For µP ≤ µ ≤ µF both solutions of Eqs. (4.6)
are valid.

The remaining degenerate parameter regimes involve Υ and Λ (Fig. 4.3), and have direct
physical interpretation as a result of their effect on the µ dependence of the solutions. First,
as Υ → 0 from both above and below µP → ∞. When Υ = 0, ∆ is always positive and
5Λ > 6 so both solutions in Eqs. (4.6) are valid but have the same µ-independent amplitude,

a2
N = 2(5Λ−6)

∆
. A similar phenomenon occurs in the case Λ = 6 when the deposited wave

number, qN , becomes independent of µ and takes the same value for both solutions in
Eqs. (4.6). That is, the nonlinear front leaves the same patterned state in its wake regardless
of the forcing µ. Because µ represents the bifurcation parameter that pushes the system
into the pattern-forming regime, a dependence of aN and qN on µ is to be expected. The
fact that this expectation fails in these subcases is indicative of a nontrivial front selection
mechanism and a nongeneric balance among the cubic nonlinear terms of Eq. (1.1). These
effects are new and cannot be seen in the well-studied case a1 = a2 = 0.

Bifurcation diagrams for the amplitude of the front solutions for sample parameters
are shown in Figs. 4.4 and 4.5 in which we plot ‖W‖∞ = aN versus the parameter µ.
First, Fig. 4.4(a) demonstrates the generic behavior of the nonlinear fronts for a2 = 0, while
Figs. 4.4(b) and (c) show nongeneric behavior that arises when the remaining key coefficients

Υ and ∆ pass through zero. Since Υ = 0 at a1 =
√

8
3

while ∆ = 0 at a1 = 2 we separate

Fig. 4.4 into three diagrams around a1 = 0,
√

8
3
, and 2. In the bulk of the parameter space

the generic case with a1, a2 6= 0 shares the same qualitative characteristics as the cases in
Fig. 4.4 with the corresponding signs of ∆, Υ and Λ. Second, Fig. 4.5 focuses on the regime
5Λ− 6 ≈ 0, only realizable for |a2| > 1√

5
. Here the pitchfork bifurcation responsible for the

branch of fronts switches from subcritical to supercritical (at 5Λ = 6). The resulting solution
branch moves towards the left with decreasing a1 until the Ansatz fails at a1 = −7

3
≈ −2.33
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Figure 4.4: The front amplitudes aN+ (blue) and aN− (red) for (a) Υ > 0, ∆ > 0, (b) several
values of Υ ≈ 0 while ∆ > 0, and (c) for several values of ∆ ≈ 0 while Υ < 0. The parameter

values in each of these plots are a2 = 0 and (a) a1 = (0, 0.7, 1), (b) a1 =
(

1.6,
√

8
3
, 1.65

)
,

and (c) a1 = (1.92, 2, 2.1) as indicated in the panels. The special cases Υ = 0 and ∆ = 0 are
shown in black.
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; the latter branch, corresponding to 5Λ = 6, is shown in black.
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where Γ = 0.

Stability of exact front solutions

We analyze the linear stability of a front by linearizing Eq. (1.1) about such a front, i.e.,
writing A = W (ξ)e−iωt(1 + δ(ξ, t)), |δ| � 1. This yields

δt = δξξ + Uδξ + ia2|W |2δ̄ξ + V (δ + δ̄),

where

U(ξ) ≡ v + 2W−1Wξ + ia1|W |2,
V (ξ) ≡ |W |2 − 2|W |4 + i

(
a1W̄Wξ + a2WW̄ξ

)
.

The quantities U(ξ) ≡ Ur + iUi and V (ξ) ≡ Vr + iVi may be computed from the identities

|W |2 =
a2
N

1 + e2a2Ne1ξ
,

W−1Wξ = iqN + (e1 + ie0)
(
|W |2 − a2

N

)
.

We search for temporal eigensolutions of the form δ(ξ, t) = eσt(δ1 + δ2) + eσ̄t(δ̄1 − δ̄2), where
δ1 and δ2 are functions of ξ alone, leading to the eigenvalue problem

σ

(
δ1

δ2

)
=

(
∂ξξ + Ur∂ξ + 2Vr i (Ui − a2|W |2) ∂ξ

i (Ui + a2|W |2) ∂ξ + 2Vi ∂ξξ + Ur∂ξ

)(
δ1

δ2

)
≡ L

(
δ1

δ2

)
.

The spectrum of the operator L consists of a point spectrum σp and the essential spectrum
σc. However, this operator is non-normal: it does not commute with its adjoint. Non-normal
operators do not obey the spectral theorem, may not have orthogonal eigenfunctions and
can have a point spectrum with high sensitivity to perturbations [43, 148]. Such operators
arise, for example, in the study of spatially varying fluid flows [43, 138]. Conclusions about
stability from point spectra of non-normal operators are complicated by the possibility of
transient growth and we opt in this work to treat only the essential spectrum of L, which
can be computed analytically.

The essential spectrum for a front solution consists of the union of the essential spectra
of the ξ → ±∞ states. The trivial state (at ξ → ∞) is only stable when µ is negative. In
the notation of [84] infinitesimal perturbations of the periodic state present at ξ → −∞ have
the growth rate

σ(q) = ivq − (g + q2)±
√
g2 + q2 (2g − f), (4.9)

where q is the perturbation wave number and

g ≡ 2(µ− q2
N) + [1 + qN(a2 − a1)] a2

N ,

f ≡ (4 + a2
2 − a2

1)a4
N − 2 [1 + qN(a2 + a1)] a2

N − 4q2
N .
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Figure 4.6: Stability of the rotating wave selected in the wake of an aN+ front (a) and an
aN− front (b) in the (a1, a2) plane at µ = −0.1. Stable regimes are indicated in dark grey,
unstable regimes in light grey, and regions with no front solutions in white. The lines Γ = 0
(red) and the lines Λ = 6 (blue) and ∆ = 0 (orange) in the region Γ ≥ 0 are also shown.

We call a solution linearly stable if its spectrum is contained in the left half of the complex
plane. In [84] it was shown that this rotating wave state is stable if and only if f and g are
both nonnegative. Thus the essential spectrum of the front is stable provided f, g ≥ 0 and
µ < 0. It was further shown in [84] that there are two distinct regimes by which the rotating
wave can go unstable: (I) f < 0 and f ≤ g or (II) g < 0 and f > g. The first is characterized
by a marginal wave vector with nonzero real part and the latter by one with zero real part.
Though a complete analysis of the point spectrum is not included here we can calculate the
eigenfunctions of the zero eigenvalue analytically. This eigenvalue has double multiplicity:
translation symmetry gives rise to a zero eigenvalue “Goldstone mode” [54] δ(ξ, t) = W−1Wξ

while rotation symmetry generates the zero eigenvalue phase mode δ(ξ, t) = i.
Although the rotating wave states of Eq. (1.1) form a one parameter family of states (for

fixed system parameters) [84, 86], the front solution computed here selects one particular
rotating wave in the asymptotic limit ξ → −∞. This reduction enables us to plot the
stability in the (a1, a2) plane for fixed µ. In Figs. 4.6 and 4.7 we exclude the spectrum of
A = 0 and plot the stability of the rotating wave selected by the nonlinear front Ansatz
in the two qualitatively distinct regimes µ ≶ 0. For µ < 0 the aN+ branch is stable in a
region of parameter space surrounding the line a1 = −a2, while the aN− branch is rarely
stable. For µ > 0 the aN+ branch is stable in a significantly larger parameter region while
the aN− branch remains mostly unstable. Despite the large regions of instability revealed
in the figure, the dynamical significance of an unstable rotating wave in the wake the front
solution is more subtle. Because we are concerned with the asymptotic dynamics of the front
as t→∞, instabilities behind it are only relevant provided that they propagate to the right
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Figure 4.7: Stability of the rotating wave selected in the wake of an aN+ front (a) and an
aN− front (b) in the (a1, a2) plane at µ = 0.1. Stable regimes are indicated in dark grey,
unstable regimes in light grey, and regions with no front solutions in white. The lines Γ = 0
(red), Λ = 6 (blue) and ∆ = 0 (orange) in the region Γ ≥ 0 are also shown.

with a speed not less than that of the front, i.e., to have an effect the instability must be
absolute in the frame of the leading edge. The propagation speeds of these instabilities and
their effect on the front are computed and analyzed in Sec. 4.5 below.

The stability of the deposited rotating wave is particularly relevant at the Maxwell point
µ = − 3

Γ
at which the front is stationary. This front is associated with the branch aN+ when

Λ− 6 < 0 and aN− when Λ− 6 > 0. We show the stability of the rotating wave selected by
the stationary front in Fig. 4.8. It is easy to see from the figure that the region of stability is
contained in the intersection of Γ(a1, a2) > 0 and Λ(a1, a2) < 6, so the rotating wave selected
at the Maxwell point is only stable for fronts on the aN+ branch. The instability of the aN−
fronts is always of type II and has been confirmed using direct numerical simulation. The
stability at µ = µM of other branch of the Ansatz for which vN 6= 0 can also be studied. The
rotating wave selected by this branch is always unstable. When Λ−6 < 0 the instability can
be either of type I or II depending on parameters but for Λ− 6 > 0 it is always of type II.

4.3 Front dynamics methodology

In the next two sections we apply the ideas of front propagation into stable and unstable
states as discussed in chapter 2 to front propagation in Eq. (1.1). To validate theoretical
predictions we study the evolution of either a localized pulse in the stationary frame or a
half-pulse in the moving frame. Specifically, we take two types of initial half-pulses (reflecting
in x to get a localized pulse): A(ξ) = Θ(−ξ − `) (Heaviside), where Θ(ξ) is the Heaviside
function and ` is a constant, and A(ξ) = γ1(ξ)eiγ2(ξ)Θ(−ξ − `) (random-Heaviside), where
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Figure 4.8: Stability of the rotating wave selected in the wake of the stationary front at the
Maxwell point µ = − 3

Γ
in the (a1, a2) plane. The relevant solution branch is determined by

the sign of the quantity Λ−6. Stable regimes are indicated in dark grey, unstable regimes in
light grey, and regions with no front solutions in white. The lines Γ = 0 (red), Λ = 6 (blue)
and ∆ = 0 (orange) in the region Γ ≥ 0 are also shown.

γ1, γ2 are chosen randomly from uniform distributions on (0.7, 2) and (0, 2π), respectively.
The latter initial condition is constructed so that it does not select any wave number or
amplitude preferentially but still has sufficient amplitude not to decay. The time integration
is carried out using a finite differences (FD) method and a spectral method that are outlined
in chapter 2. Further details about the numerical techniques that are used can be found in
section 4.7.

4.4 Front propagation into a stable state

We turn first to the regime in which the asymptotic state A = 0 ahead of the front is stable
(µ < 0). We are concerned with the time evolution of localized initial conditions. Since the
state A = 0 is stable in this regime, the initial condition must be of sufficient amplitude
so as to avoid immediate decay back to A = 0. When the pitchfork bifurcation to the
branch of front states is subcritical and µ < µF all initial conditions collapse towards A = 0.
When µF < µ < 0, initial conditions of sufficiently large amplitude typically evolve in their
bulk towards one of the stable rotating wave states of Eq. (1.1) generating a pair of fronts
connecting the interior rotating wave at either end to A = 0. After an initial transient the
fronts travel at a constant speed and in opposite directions. When the pitchfork bifurcation
is supercritical the fold always occurs at µ > 0 and the dynamical picture depends more
strongly on the parameters. We address specific cases capturing the distinct behaviors that
result next.
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We find empirically that the selected speed from Heaviside but not random Heaviside
initial conditions is correctly predicted by Eqs. (4.6) in many cases, provided that the cor-
responding solution is stable and the system is known to be well-posed. In Fig. 4.9 we plot
the speed of the two possible fronts, vN±, as a function of the parameter µ in the subcritical
regime for a series of values of the coefficients (a1, a2). Figure 4.9(a) shows the classical case
a1 = a2 = 0 and similar behavior is obtained when one of a1 or a2 is increased to 1. For these
parameters Heaviside initial conditions evolve on a fast time scale towards the rotating wave
corresponding to the stable branch indicated in a continuous blue line and then a pair of
fronts propagate outwards at speed vN+ > 0 expanding the structure, or inwards if vN+ < 0
contracting the structure. Random Heaviside initial conditions in contrast typically do not
approach a fully developed front and instead decay. The red (dashed) part of the velocity
curves below the fold corresponds to vN− and these fronts are unstable since they connect
to an unstable rotating wave. These findings extend previous results for (a1, a2) = (0, 0).

In panel (b) of Fig. 4.9 we show that the rotating wave selected by Eqs. (4.6) need not be
stable. For µ < 0 the curve with parameter values (a1, a2) = (9

2
, 4) is always unstable while

the (a1, a2) = (0, 4) solution restabilizes at a finite negative value of µ. In the former case the
initial value problem is well-posed and initial conditions appear to decay to A = 0. For the
(0, 4) solution it is not known whether the initial value problem is well-posed, but when the
wave selected by Eqs. (4.6) is stable we observe that Heaviside initial conditions converge to a
steady front solution with velocity vN+ and random Heaviside initial conditions do not. Also
shown in this plot is the case (a1, a2) = (0, 2) in which the Maxwell point is located at the
fold on the branch of fronts of Eqs. (4.6). Time stepping simulations suggest that solutions
initiated at the Maxwell point on this branch are not stable and decay to A = 0. Moreover,
since the Maxwell point coincides with the fold there is no parameter region in which fronts
can contract; amplitude decay occurs when µ < µF and expansion when µ > µF .

We next turn to some of the cases in which ∆ < 0 and only one branch of the front
solution exists, persisting for all µ < 0. This branch may be either stable or unstable. In
panel (c) of Fig. 4.9 this is the + branch of the Ansatz and it is stable below some finite
µ < 0. For (a1, a2) = (−2, 1) and when the predicted velocity vN+ > 0, we find convergence
to the Ansatz solution from both Heaviside and random Heaviside initial conditions. When
(a1, a2) = (2.2, 0) and the solution is unstable, both types of initial conditions converged
to a solution with wave number and speed near but not equal to the Ansatz prediction. In
contrast, when the front is predicted to be stable and vN+ > 0, we do not observe convergence
to this solution unless initial conditions of the form A(ξ) = eiqN ξΘ(−ξ − `) are adopted. In
both cases when vN+ < 0 neither Heaviside nor random Heaviside initial conditions evolve
towards a steady front. We are able to realize a front moving at speed vN+ < 0 only with
the initial condition A(ξ) = eiqN ξΘ(−ξ − `). In panel (d) of the figure a similar bifurcation
structure is present but all initial conditions adopted immediately collapsed to A = 0. This
behavior supports the conjecture of [136] that whenever vN < 0, the selection process is
more complex and depends strongly on initial conditions. Furthermore the behavior in the
(a1, a2) = (2.2, 0) case for which a stable front with a positive velocity is predicted suggests
that the system may select a different front solution even when the predicted front is stable.
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Figure 4.9: The velocity vN± of the exact front solution is shown in blue and red, respectively.
The parameters (a1, a2) are indicated next to each curve and dashed lines represent instability
of the essential spectrum. The line v = 0, shown as a black dotted line, is included for
reference.

Moreover, the fronts in Figs. 4.9(c,d) persist as µ→ −∞, while the fronts computed in [86]
do not. This is because each is computed for a fixed wave number whereas the exact front
computed here has a wave number that is µ-dependent. In this case all sufficiently large
amplitude initial data with wave number near qN result in dynamics associated with the +
branch of the exact front solution.
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4.5 Front propagation into an unstable state:

spreading and marginal stability

When µ > 0 the state A = 0 ahead of the front is unstable. In the case of Eq. (1.1) the
spreading speed is easy to calculate but its interpretation is complicated by the nonlinear
terms. An application of Eq. (2.17) to Eq. (1.1) linearized about the state A = 0 leads to
the prediction

v∗ = 2
√
µ, q∗ = i

√
µ, σ∗ = 2µ.

This result implies that the leading edge of a pulled front takes the form e2µt−√µx but does
not predict the nonlinear state that is left in its wake. The simplest possibility is that the
front moves at a constant speed in which case A ≡ A(x − v∗t). A necessary condition for
this to be the case is that the traveling wave A = Reiq(x−v

∗t)+i=(σ∗)t solves the full nonlinear
problem for some amplitude R but trails the leading edge of the front [136]. This is distinct
from the “node-counting” argument of [52], which is automatically satisfied for fronts that
are uniformly propagating. In the present case <[q] = 0 and R2 = 1

2

(
1 +
√

4µ+ 1
)
, so

this front moving with speed v∗ would deposit a zero wave number. This front is excluded,
however, whenever a1, a2 6= 0: at the location of the front interface ia1|A|2Ax, ia2A

2Āx 6= 0
and Eq. (1.1) cannot have a purely real solution. In the following we show that dynamics at
the leading edge of the front nonetheless result in the deposition of a state with zero wave
number in the wake of a pulled front.

Pulled versus pushed: nonlinear selection

In this section we investigate the validity of the nonlinear marginal stability hypothesis (see,
Eq. (2.18)) for the case of front propagation into an unstable state in Eq. (1.1). This is
carried out through a series of numerical studies. Moreover, since vN and κN have been
computed exactly and we analyze all possible selection regimes predicted by Eq. (2.18)
analytically in Appendix B.

Figure 4.10 shows standard behavior of the front speeds predicted from Eq. (2.18). The
case (a1, a2) = (0, 0) is well-studied [49, 135] and is shown in Fig. 4.10(a). Here the transition
from pushed to pulled as determined by (2.18) occurs at µ = 3

4
. Although vN ≥ v∗ for all

µ > 0, the linear decay rate surpasses κN at µ = 3
4

and remains above it as µ → ∞. This
behavior is typical and validates the intuitive prediction that at high enough forcing all fronts
will be pulled. The data points shown in the figure are computed with a finite difference
(FD) code and are plotted with an error bar indicating an associated deterministic correction
to the speed. Details of this correction and its interpretation can be found in Appendix 4.7.
As shown in Fig. 4.10(b) and (c), vN and κN depend strongly on a1, a2 and vN need not
supersede v∗ at large µ. We mention that despite the continuity in the speed at the pushed-
pulled transition the selected wave number of the deposited state in the wake of the front
is generally discontinuous. This “structural instability” has been observed previously in the
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Figure 4.10: Front speed vN (blue) relative to the linear spreading speed v∗ (red) for pa-

rameters (a1, a2): (a) (0, 0), (b)
(
−8

5
, 1

2

)
, (c)

(√
8
3
, 0
)

. The selected (not selected) speed is

indicated by a solid (dashed) line according to Eq. (2.18). The black dots represent speeds
calculated by time-stepping Heaviside initial conditions with FD in the stationary frame and
tracking the motion of the front. The space and time discretizations are ∆x = 0.05 and
∆t = (∆x)2; further details are contained in Appendix 4.7. The deterministic corrections as
a result of the FD approximation (computed in Appendix 4.7) are shown using error bars
on the data points.

cubic-quintic complex Ginzburg-Landau equation [136] and appears here generically with
the inclusion of either a1 or a2.

Fig. 4.11 shows some nonstandard predictions of Eq. (2.18) when a2 6= 0. In Fig. 4.11(a)
the nonlinear front possesses a speed and decay rate that always exceed the linear one.
This serves as a counter-example to the suggestion [136] that the linear front will always
be selected at sufficiently large µ. In this particular case the decay rate of the selected
front is quite small when µ ≈ 0. Consequently a very large domain is needed to measure
the front speed accurately, significantly larger than our standard domain length L = 300.
The best results were obtained for Gaussian initial conditions and a spectral method with a
domain size L(µ) determined by the decay rate λ(µ), here L = 400λ(µ) so that L(0) ≈ 1100.
In Fig. 4.11(b) the nonlinear front has a negative velocity for all µ > 0 where it exists.
In this case Eq. (2.18) does not apply and the asymptotically selected front depends more
strongly on initial conditions. We have found that initial conditions in the form of a sharply
peaked Gaussian pulse undergo blow-up in finite time, while Heaviside initial conditions
decay immediately to A = 0. We conjecture that in this parameter regime the Cauchy
problem is not well posed. In Fig. 4.11(c) the nonlinear front Ansatz fails at some finite
µ > 0. When µ is larger than this value it is not clear whether the nonlinear terms in
the equation saturate for all initial conditions or not. Whereas the case in (b) suffers from
blowup we have found that fronts initiated beyond the µ value where the Ansatz fails are
well behaved. After an initial transient, Heaviside initial conditions evolve with a leading



CHAPTER 4. FRONTS IN SUBCRITICAL SYSTEMS 72

0.0 0.2 0.4 0.6 0.8 1.0
µ

0.1

0.0

0.1

0.2

0.3

v−
v
∗

(a)

0.0 0.2 0.4 0.6 0.8 1.0
µ

2.0

1.5

1.0

0.5

0.0

v−
v
∗

(b)

0.0 0.2 0.4 0.6 0.8 1.0
µ

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

v−
v
∗

(c)

Figure 4.11: Front speed vN (blue) relative to the linear spreading speed v∗ (red) for param-
eters (a1, a2,±), where the symbol ± specifies the front: (a) (−15, 16,+), (b) (4, 1.86,−), (c)
(−2, 1,+). The selected (not selected) speed is indicated by a solid (dashed) line according
to Eq. (2.18). The black squares represent speeds calculated in a domain of length L = 400λ
by time-stepping Gaussian initial conditions in the stationary frame using a spectral method
with parameters ∆t = 0.01, Nx = 4096 and ε = 10−8 (Appendix 4.7). The black dots repre-
sent speeds calculated by time-stepping Heaviside initial conditions in the stationary frame
using a finite difference code with space and time discretizations ∆x = 0.05, ∆t = (∆x)2,
and tracking the motion of the front (Appendix 4.7). The deterministic corrections as a
result of the FD approximation (computed in Appendix 4.7) are shown using error bars on
the data points.

edge moving at the pulled front speed and deposit a rotating wave with a finite wave number
in their wake.

The Benjamin-Feir instability and secondary fronts

Further complicating the selection problem is the fact that the dynamically realized front
may suffer from secondary instabilities. The deposited rotating wave in the wake of the
front can undergo two types of instabilities [84] that may interfere with the propagation of
the front. One such possibility is a Benjamin-Feir (BF) instability that generates a state
of nonzero wave number. If this instability propagates with a large enough velocity that it
overtakes the leading edge of the front, phase slips and spatio-temporal chaos can occur [52,
117, 136, 146].

If the deposited state is unstable to the BF instability then a secondary front inside the
deposited state can result. This front is a pulled Kuramoto-Shivashinsky front [133]. In this
case there are two regimes corresponding to whether or not the secondary front speed, vBF ,
is less or greater than the primary one, v. If vBF < v then the deposited pattern behind the
primary front grows in size at a rate v − vBF and the instability is advected away from the
leading edge. This leads to a double-front structure in the profile of the solution in which the
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distance between the primary and secondary fronts grows with time [72]. In the second case,
vBF > v, the instability catches up with the leading edge producing a front whose asymptotic
character depends on the existence of stable rotating waves. If the primary front is pushed
and the secondary instability deposits a stable rotating wave then a different pushed front
results. If the primary front is pulled and the secondary instability deposits a stable rotating
wave then phase slips at the leading edge must take place in order that the rotating wave be
deposited in the wake of the front. If no stable rotating waves exist then the pulled front may
become incoherent [136]. We have searched a variety of regimes in which all rotating waves
are unstable but have not observed incoherent pulled fronts. On the other hand incoherent
front dynamics can occur for pushed fronts provided the deposited state with wave number
qN is unstable. In the following we elaborate on these notions for both pulled and pushed
fronts.

Pulled fronts suffer from secondary instability to phase-winding states with nonzero wave
number. The dispersion relation for disturbances to a generic rotating wave state in the
stationary frame is provided by Eq. (4.9) with v = 0 and the instabilities only occur when
one or both of f , g is non-positive [84, 86]. As shown at the beginning of Sec. 4.5 the
leading edge of pulled fronts coincides with that of the front that deposits a state of constant
amplitude R and zero wave number. Although these fronts cannot be the true pulled fronts
for generic values of a1 and a2, our observation is that pulled fronts nonetheless deposit a
rotating wave with approximately zero wave number in their wake and the necessary phase
gradient θx (where A = Reiθ) takes the form of a strongly localized pulse at the leading
edge. Consequently the prediction of vBF for the zero wave number rotating wave is a good
estimate for the speed of pulled fronts undergoing this secondary instability.

The zero wave number rotating wave has f = (4 + a2
2 − a2

1)R4−2R2, g = 2µ+R2, where
R2 = 1

2

(
1 +
√

4µ+ 1
)
. When µ > 0 one can show that g > 0 always but f > 0 only if

a2
1−a2

2 < 2. The state suffers from instability when a2
1−a2

2 ≥ 4 for any positive µ, and when

4 > a2
1 − a2

2 > 2 for 0 ≤ µ <
2(a21−a22−2)

(4−a21+a22)2
. Applying the marginal stability criterion to the

dispersion relation for the secondary instabilities produces a prediction for the front speed,
wave number, and frequency of the secondary front. This calculation is shown explicitly at
the end of Appendix A. We discuss an application next.

As an example we consider the case (a1, a2) =
(

5
2
, 1
)

and plot the speeds v∗, vN , and
vBF in Fig. 4.12. In this figure we plot speeds as a function of a variable h which is an
order-preserving one to one reparametrization of µ and depends on a1 and a2. The choice of
h(µ) arises naturally in the calculation of vBF and is defined in Appendix A. In this plot the
BF velocity corresponds to instabilities of the zero wave number rotating wave and not the
rotating wave left in the wake of the nonlinear front. The rotating wave for the nonlinear
front Ansatz is stable for µ . 5, throughout the pulled-pushed crossover. After the transition
occurs from pushed to pulled at µ ≈ 0.072 (left black dot), vBF > v∗ and the pulled front
is unstable. This is shown in Fig. 4.13 for µ = 0.4 (for clarity, larger than the threshold)
and the prediction of the leading edge motion based on the speed v∗ is shown in red. After
a transient, the front propagates at the linear spreading speed but deposits a nonzero wave
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Figure 4.12: Speeds v∗ (red), vN (green), and vBF (blue) for pulled fronts as a function of
the variable h defined in Appendix A.4 for (a1, a2) =

(
5
2
, 1
)
. Increasing h corresponds to

increasing µ. The parameters corresponding to µ = 0,∞ are indicated with dotted lines and
the region in which pulled fronts are selected and vBF > v∗ is delimited by blue shading. The
transition from pushed to BF-unstable pulled fronts, and subsequently from BF-unstable to
BF-stable pulled fronts is marked by black dots.

number approximately equal to qN . This is enabled by phase slips at the leading edge. By
µ ≈ 0.55 (right black dot) the pulled front restabilizes as its speed exceeds that of the BF
instability for the zero wave number rotating wave. This phenomenon is pictured in Fig.
4.14 (µ = 1) in which the speeds v∗ and vBF are shown in red and blue, respectively. The
primary front deposits a state with near-zero wave number followed by a secondary front
that generates a larger amplitude asymptotic state with a different wave number in its wake,
but still close to qN . The separation of the primary and secondary fronts hearkens to the
double front structure observed in [72].

Figures 4.13 and 4.14 also reveal two features at the leading edge that we cannot predict
theoretically. First is the periodic nucleation of amplitude holes or “grooves” whose profile is
shown in Fig. 4.15. These holes increase and then decrease in depth as time passes eventually
merging with the otherwise homogeneous amplitude state left in the wake of the front. In the
case of Fig. 4.13 the time scale on which the holes anneal is much longer than the time scale
for the front propagation and the holes therefore grow in number as the front propagates.
In the case of 4.14 the holes vanish on a comparable time scale to the primary front and
thus only one is present at any given time. This phenomenon can also be seen in Figs. 4.16
and 4.17 at the secondary front interface and has been verified using both FD and Fourier
discretizations. This feature has also been observed in [72] in a nonvariational case, although
there the holes, once nucleated, do not disappear. The second feature visible in both figures
is the presence of phase slips. These occur at the leading edge of the front in Fig. 4.13 and at
the edge of the secondary front (which we suspect is also pulled) in Fig. 4.14. These phase
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Figure 4.13: Space-time plot of the evolution of (a) |A(x, t)| and (b) <[A(x, t)] from Heav-
iside initial conditions in the stationary frame for (a1, a2) =

(
5
2
, 1
)

and µ = 0.4 computed
using FD. The calculation is done on a domain [−100, 100] with Dirichlet boundary condi-
tions on both <[A] and =[A] and only half of the simulation window is shown. The space and
time discretizations are ∆x = 0.2 and ∆t = 0.0025. In this regime after an initial transient
the front is pulled, traveling at speed v∗ to a good approximation. An offset line representing
propagation at speed v∗ is shown in red.

slips occur at the spatial location of the holes and at the time when the holes reach their
greatest depth. These locations correspond to the darkest points along the hole trajectory
in a space-time plot of |A(x, t)|. The phase slips are not a surprise, since the leading edge
dynamics for pulled fronts are set by the linearization about the unstable state and these
may not generate in their wake a stable solution to the nonlinear problem. The eventual
wave number that is deposited by the passage of the front is near qN throughout the domain
but modulated on a much larger length scale.

Turning now to pushed fronts, we compute the velocity of propagation for the BF insta-
bility around an arbitrary phase-winding state deposited in the wake of the front in Eq. (4.4).
Although this analysis was carried out in [84], we generalize it and show that there are addi-
tional solutions to the marginal stability equations for type I instabilities that have not been
previously reported. The details of this calculation are included in Appendix A. There are
two broad instability regimes for pushed fronts depending on whether the far-field marginal
wave number has a nonzero (type I) or zero (type II) real part.

We first discuss the case of instability to perturbations with a wave number of finite
real-part at onset, type I. This case includes the parameter values (a1, a2) =

(
5
2
, 1
)

of the
previous discussion but not near µ = 0 where a pushed front is predicted. In order to find
finite wave number instability near µ = 0 we must choose parameters in the region ∆ < 0
and so select (a1, a2) =

(
−2, 1

2

)
. The corresponding far-field rotating wave is unstable for
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Figure 4.14: Space-time plot of the evolution of (a) |A(x, t)| and (b) <[A(x, t)] from Heavi-
side initial conditions in the stationary frame for (a1, a2) =

(
5
2
, 1
)

and µ = 1 computed using
FD. The calculation is done on a domain [−100, 100] with Dirichlet boundary conditions on
both <[A] and =[A] and only half of the simulation window is shown. The space and time
discretizations are ∆x = 0.1 and ∆t = 0.005. In this regime after an initial transient the
front is pulled, traveling at speed v∗ and a secondary front separates from the leading edge
traveling at a speed vBF . Offset lines representing propagation at speeds v∗ (red) and vBF
(blue) are also pictured.

µ ∈ (−0.1888, 0.5184]. An evolution plot for Heaviside initial data at µ = 0 is shown in
Fig. 4.16 in a frame moving at speed vN . The initial data are immediately unstable to a
traveling wave which is advected leftwards relative to the primary front moving at speed vN
to the right. Simultaneously the leading edge of the front generates a distinct rotating wave
with a wave number exactly equal to qN as can be seen from Fig. 4.17 in which we plot the
amplitude Ã(ξ, t) that omits the wave number of the primary rotating wave (Appendix 4.7).
The resulting secondary front between these two rotating waves is slower than the primary
one indicating that the secondary front instability is convective in the frame moving at speed
vN and so separates from the leading edge. Our prediction for the secondary front speed,
vBF , can be checked by transitioning to a frame moving at that speed as shown in Fig. 4.17.
Because the rotating wave in the wake of the primary front has not been restored in this
plot the secondary front can be clearly distinguished. After a transient the secondary front
is stationary in this frame and generates a rotating wave behind the primary one with a
different wave number.

The case of instability with respect to perturbations with asymptotically zero wave num-
ber (type II) is realized when (a1, a2) = (9

2
, 5). The corresponding far-field rotating wave

exhibits instability for µ ∈ [−0.0283, 0.1087). When µ < 0 Heaviside initial data decay to
A = 0 but for µ > 0 a front subsists. A space-time plot is shown in Fig. 4.18. Initially
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Figure 4.15: Solution A(x, t = 35) computed from Heaviside initial conditions in the station-
ary frame using FD for (a1, a2) =

(
5
2
, 1
)

and µ = 1, showing <[A] (green), =[A] (red) and
|A| (blue) on half of the computation domain. The discretization parameters are ∆x = 0.1
and ∆t = 0.005.

Figure 4.16: Space-time plot of the evolution of (a) |A(ξ, t)| and (b) <[A(ξ, t)] from Heaviside
initial conditions in the moving frame for (a1, a2) =

(
−2, 5

2

)
and µ = 0. The speed of the

moving frame is vN and the front is pushed. In this simulation we use time step ∆t = 0.01,
number of Fourier modes Nx = 6144, and cutoff ε = 10−10.
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Figure 4.17: Space-time plot of the evolution of (a) |Ã(ξ, t)| and (b) <[Ã(ξ, t)] from Heaviside
initial conditions in a frame moving at speed vBF for (a1, a2) =

(
−2, 5

2

)
and µ = 0. In this

simulation we use time step ∆t = 0.005, number of Fourier modes Nx = 6144, and cutoff
ε = 10−10.

Figure 4.18: Space-time plot of the evolution of A(ξ, t) from Heaviside initial conditions in
the moving frame for (a1, a2) = (9

2
, 5) and µ = 0.025. The speed of the moving frame is vN

and the front is pushed. In this simulation we use time step ∆t = 0.01, number of Fourier
modes Nx = 3072, and cutoff ε = 10−5.
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Figure 4.19: Continuation of the space-time plot in Fig. 4.18 over a longer time interval with
an initial condition of different amplitude. Offset lines representing propagation at speed
vBF (blue) are also pictured.
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Figure 4.20: Time-series of |A(ξ0, t)| (red) and ln |A(ξ0, t)| (blue) representing a vertical slice
of the evolution shown in Fig. 4.19 at ξ0 = 100. The amplitude A = aN is plotted with a
thick dashed line (black) and A = 0 is also shown for reference.
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a rotating wave born at the front interface invades the initial condition to the left, leaving
an amplitude gradient across the structure. The invasion is largely complete by t ≈ 500
and the resulting state persists over a long time scale, until t ≈ 1000. At this point an
amplitude perturbation grows to such an extent that it triggers an abrupt collapse of the
structure. Since µ > 0 the A = 0 solution is unstable, and the remnant of the front near
the leading edge generates a sequence of traveling pulses that break-up into an interval of
spatio-temporal chaos (1000 . t . 1800). Near t ≈ 1800 the chaos abruptly subsides and
most of the original front is restored. This state persists for a few hundred timesteps or so
before it collapses again. The longer time series shown in Fig. 4.19 shows that this is part of
a recurrent process with alternating coherent and incoherent episodes. The space-time plots
demonstrate that the primary front travels at the predicted speed vN when the deposited
state is coherent but that the front is slightly delayed when the deposited state is incoherent.
We cannot predict the front speed in these chaotic intervals. Figure 4.20 provides another
perspective on the chaotic behavior shown in Fig. 4.19. The figure shows the time series
|A(ξ = 100, t)| and highlights the abrupt collapse episodes towards |A| ≈ 0 that trigger the
intervals of spatio-temporal chaos, before the system returns to coherence. It is noteworthy
that even in the coherent phase the amplitude |A| always initially overshoots the target
amplitude aN and thereafter decreases, ultimately triggering a collapse episode.

Since the secondary instability is of type II we can easily compute vBF ≈ 1.878 using
the methods in [84]. This speed is much greater than both the frame speed vN ≈ 0.3623
and the linear spreading speed v∗ ≈ 0.3162 and so the secondary instability quickly catches
up with the front. The speed vBF is indicated in Fig. 4.19 as an offset blue line and shows
good agreement with the observed speed at which large amplitude perturbations impact the
front triggering the onset of incoherent front propagation. In contrast, the speed between
the A ≈ 0 amplitude holes behind the leading edge and the spatio-temporally chaotic state
is also well defined but cannot be predicted with our methods. It is also worth noting that in
the intervals of incoherent motion the leading edge of the front propagates neither at vN nor
v∗. If the episodic breakdown of the front exhibited in Fig. 4.19 persists for all time it would
generate a counterexample to the nonlinear marginal stability conjecture of van Saarloos and
Hohenberg that the front must in the long time limit propagate at the predicted speed, vN
[136].

We were unable to find parameter regimes for which vBF > vN in the pushed front regime
and the secondary instability was of type I. This would be an interesting case since it is not
clear what would happen to the speed of the primary front. In the pushed case the front
speed depends on a nonlinear mechanism and is affected by the rotating wave in the wake
of the front. If an instability overtakes the front thereby changing it to one outside of the
family described by the Ansatz would the speed change? The search for this situation is
nontrivial because for every different choice of (a1, a2) one must recompute and invert the
function h(µ) whose branches must in general be chosen by hand (Appendix A), evaluate
vBF on the appropriate elliptic curve and write vN in terms of h on each branch. As a result
it is not straightforward to scan parameter space.
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4.6 Discussion

In this chapter we analyze in some considerable detail the properties of fronts connecting
a stripe pattern to a spatially homogeneous state. For this purpose we use the generic
amplitude equation describing a weakly subcritical bifurcation to the pattern state. For
µ < 0 (the subcritical regime) this equation exhibits bistability between the pattern and the
homogeneous state implying that the speed of the front is determined by nonlinear processes.
Fronts of this type are called pushed fronts. In contrast, in the supercritical regime (µ > 0)
the homogeneous state is unstable and the marginal stability criterion of Dee and Langer
[52] then suggests that sufficiently localized initial conditions evolve into an invasion front
whose speed is selected by linear processes. Such fronts are pulled.

To examine these predictions and the transition between them as the bifurcation parame-
ter µ varies we construct a class of exact nonlinear front solutions with an explicit expression
for the front speed. In the subcritical regime this speed vanishes at an analogue of a Maxwell
point, corresponding to the presence of a heteroclinic connection between the stripe state and
the homogeneous state. These exact solutions extend into the supercritical regime and the
question arises therefore as to when the marginal stability criterion prevails. This question
is addressed already in the work of van Saarloos [134] (see also [49]) but only for the special
case when the coefficients (a1, a2) both vanish, and the system exhibits gradient dynamics.
This early work highlighted the fact that pushed fronts, propagating at vN , do indeed persist
well into the supercritical regime and are dynamically selected by localized initial conditions.
Our work extends this result to cases where (a1, a2) are nonzero and shows that (i) the linear
stability mechanism does indeed prevail for sufficiently large µ and most values of (a1, a2),
i.e., that for 0 < µ ≤ µ‡(a1, a2) nonlinear speed selection does indeed take place while the
speed is selected by linear processes only for µ > µ‡(a1, a2), and that (ii) there exist parame-
ters (a1, a2) for which µ‡(a1, a2) = 0 and others for which µ‡(a1, a2) =∞. Examples of these
degenerate cases are shown in Fig. 4.11(a),(b). In Appendix B we show that options (i) and
(ii) are the only ones that can occur and obtain the conditions on (a1, a2) for the presence of
the degeneracies mentioned above. These conditions are complicated, but can in principle
be replotted in the (a1, a2) plane. In particular, we show that the speed selection inequalities
do not allow the selection of a nonlinear front after the first transition from pushed to pulled
(µ > µ‡(a1, a2)).

In fact, the details of the transition from pushed to pulled fronts are complex since the
selection process depends on the steepness of the initial solution profile, and the stripe state
deposited in the wake of the moving front may or may not be stable. We emphasize that
the wave number of this state is selected dynamically and is not in general the equilibrium
wave number kc of the underlying pattern. As a result the deposited state is susceptible to
secondary instabilities. These are of Benjamin-Feir type and may be convective or absolute
in the frame of the front [146]. The former do not disrupt the stripe state since the growing
perturbations are advected away from the front, but in the latter case the instability manifests
itself in the vicinity of the front and may lead to its disruption. We have exhibited several
examples where the front undergoes episodic complex time-dependence that we attribute to
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this process. Specifically, we have identified four distinct processes that bear on the wave
number of the invading stripe state:

• The wave number becomes kc + εqN if the front is pushed and the rotating wave with
this wave number is stable,

• The wave number remains kc when the front is pulled and vBF < v∗, where vBF
corresponds to the secondary instability of the invading kc state,

• We do not have an analytical prediction of the wave number if the front is pulled and
vBF > v∗ and the secondary instability interacts with the original kc front, although it
appears to remain near kc + εqN despite the presence of phase slips,

• We do not have an analytical prediction of the wave number if the front is pushed and
vBF > vN , where vBF is now the speed of the secondary front generated by instability
of the kc + εqN front; in the example shown in Fig. 4.19 the intermittent dynamics of
the front preclude the selection of an asymptotic wave number.

Our work provides a detailed discussion of the different regimes that may be encountered
as one traverses the (a1, a2) parameter space. We believe that some of the conditions required
for the applicability of the Ansatz are likely related to the conditions for well-posedness of
the non-gradient system a2 6= 0. We have not, however, studied instabilities associated with
unstable point eigenvalues in the spectrum of the front but note that these, if present, may
lead to rich dynamics localized at the front. Evidently much remains to be learned about
problems involving the invasion of one state by another, even in situations as simple as that
studied here.

4.7 Numerical methods

Time-stepping simulations were carried out using two numerical approximation schemes
as outlined in chapter 3. Depending on the initial data and the possible types of front
propagation behavior the simulations are either performed in a frame at rest or in one moving
at constant speed. In the moving frame the spatially extended front solutions typically have
a nontrivial wave number qN 6= 0 in the limit ξ → −∞. To overcome the difficulty of
approximating the boundary condition for this state, we write A(x, t) = Ã(ξ, t)ei(qN ξ−ωt) =
Ã(ξ, t)eiqNx and solve the following equation instead:

Ãt = (µ−q2
N)Ã+(v+2iqN)Ãξ+Ãξξ+i

(
a1|Ã|2Ãξ + a2Ã

2 ¯̃Aξ

)
+
(

1 + qN(a2 − a1)− |Ã|2
)
|Ã|2Ã

subject to Neumann (Dirichlet) conditions on the real (imaginary) part of the solution at
both boundaries. After an initial de-aliasing Heaviside initial conditions generate continuous
initial data.
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We also employ the finite difference (FD) method Eq. (3.5) using implicit Euler for the
time discretization. The FD simulation is carried out in the stationary frame with Dirichlet
boundary conditions imposed on both real and imaginary parts of the solution. We study
the evolution of localized Heaviside initial data originating in the center of the domain.

When µ > 0 the A = 0 state is unstable resulting in the amplification of any numerical
instabilities that occur ahead of the front. Growth of such instabilities interferes with the
propagation of the leading edge and renders a velocity measurement of the initial leading
edge impossible. For the FD code this is not a problem since solution values initialized at 0
remain 0 until the leading edge reaches them. However, the Fourier scheme propagates small
errors in each mode throughout the spatial domain and can nucleate instabilities ahead of
the front. To prevent this we set A(x) = 0 for any x such that |A(x)| < ε at every time step.
If ε is small enough this has the effect of quenching instabilities ahead of the front before
they can grow but leaves the front at amplitude above ε intact. The required magnitude of
ε depends on both the time-step and the value of µ and is chosen to be as large as feasible.
Values of ε used here vary from 10−12 to 10−4.5. The smaller ε is, the smaller is its effect
on the speed of the front. Because it quenches the instability of the leading state the speed
of pulled fronts is reduced. This makes the computation of the front velocity difficult and
typically produces a speed less than the analytical prediction. Consequently we use almost
exclusively the FD method to measure front speeds.

In order to measure the speed of fronts numerically we select a fixed height h and calculate
the trajectory, xf , of the level set |A(xf )| = h. After an initial transient the front reaches
a constant velocity and we measure its speed ẋf by a linear fit to xf (t). We keep h as
small as possible to avoid behavior that occurs behind the leading edge. The prescription
for computing the data in Figs. 4.10 and 4.11 is:

• Initialize Heaviside initial data of extent 50 at the center of the domain of length 300.
Run a simulation with ∆x = 0.05 and ∆t = (∆x)2.

• The simulation is run for time T = 100
2
√
v∗∆t

and the location of the front is measured by
the level set with h = 0.01. This allows the front to remain a distance > 50 away from
the boundary throughout the experiment. For simulations near µ = 0, where v∗ = 0,
the simulation time is taken to be in the range [30000, 50000] such that a stable velocity
is achieved and h = 0.0001.

• A line is fitted to the second half of the data xf (t) (i.e. t > T
2
) to measure the front

speed. This ensures that we discard the transient associated with the initial condition
and measure the front speed only for a well-developed front.

It is pointed out in [63] that for an FD scheme an exact prediction of the errors in the
linear spreading speed in terms of the FD discretization can be derived. Letting Anm =
εeσFD(n∆t)−iqFD(m∆x) in (3.5) and keeping lowest order terms in ε yields the FD dispersion
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relation σFD(qFD) which solves the transcendental equation

1− e−σFD∆t

∆t
= µ−

(
2

∆x
sin

(
∆xqFD

2

))2

.

In the limit ∆x,∆t� 1 we can apply the marginal stability criterion and determine that

v∗FD = 2
√
µ+ 2µ

3
2 (∆t) +

5µ
5
2

3
(∆t)2 +

µ
3
2

12
(∆x)2 +O(∆t,∆x)3 ,

q∗FD = i

[
√
µ− µ

3
2 (∆t) +

5µ5/2

6
(∆t)2 − µ3/2

8
(∆x)2

]
+O(∆t,∆x)3 ,

σ∗FD = 2µ+
4µ3

3
(∆t)2 − µ2

6
(∆x)2 +O(∆t,∆x)3 (4.10)

by solving linear algebraic problems order by order. Since ∆x, ∆t are assumed to be positive,
the signs of the resulting corrections are determined. Here we assume that the errors do not
cause the spreading wave number to become complex. We have not seen any evidence in our
numerics that this should be the case and it greatly simplifies the calculation. Because the
time integration uses a first order method the resulting velocity has an error of first order in
∆t. However, since we impose the constraint that ∆t = (∆x)2 in every simulation the error
is O((∆x)2).

Assuming that the method for measuring the velocity from simulations is accurate and
a pulled front occurs, then the measured front velocity is biased deterministically by the
corrections in Eq. (4.10). We can interpret the analytically predicted corrections in two
ways. We can either compare simulation results directly to v∗FD and not v∗ or we can
subtract the deterministic correction v∗FD − v∗ from the data and compare it to v∗. In this
work we have chosen to plot the simulation data with an error bar showing the unbiased
quantity because we do not have any result concerning the corrections to vN due to FD
(Figs. 4.10 and 4.11). The corrected value effectively eliminates the discretization error
caused by the finite differences approximation but does not mitigate any other errors that
could be introduced by the simulation parameters or implementation. A comparison of
these corrections for simulations with varying discretizations ∆x is shown in Fig. 4.21. Here
the measured data are shown as circles and the corrected data as squares. The collapse of
the data after corrections have been subtracted supports the robustness of the corrections in
Eq. (4.10) and suggests that there is an additional slowing of the velocity below the expected
v∗ value. This slowing is almost certainly due to the imposed Dirichlet boundary conditions
in the simulation which artificially pin the leading edge of the front. The effect of boundary
conditions and finite domain size is studied in [63] and is known to lead to this type of
slowing down.
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Figure 4.21: Front speed vN (blue) relative to the linear spreading speed v∗ (red) for pa-
rameters (a1, a2) = (0, 0). The selected (not selected) speed is indicated by a solid (dashed)
line according to Eq. (2.18). The navy (∆x = 0.1) and orange (∆x = 0.05) circles represent
speeds calculated by time-stepping Heaviside initial conditions using FD in the stationary
frame and tracking the motion of the front with ∆t = (∆x)2. The squares represent the
values of the speeds after subtracting the corrections identified in Eq. (4.10).
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Chapter 5

Forced Snaking

5.1 Introduction

Many natural systems form spatial patterns under stimulation by an external potential, or
forcing, that is heterogeneous in space. One of the most successful approaches for studying
such pattern formation has been by the use of model equations, most prominently the Swift-
Hohenberg equation. In this work we shall concern ourselves with models such as SHE that
are under the influence of weak, large scale, parametric periodic forcing. The evolution of a
weakly subcritical pattern A(x, t) = εA(X,T )eikx+c.c.+. . . is then described by the envelope
function εA(X,T ), where X = ε2x and T = ε4t and the small parameter ε is simultaneously
a measure of the distance from the onset of pattern formation and of the subcriticality of
the pattern. If the spatial forcing is on an ε−2 lengthscale then A(X,T ) satisfies Eq. (1.1)
with µ = µ(x) [86] where we use (x, t) in place of (X,T ). The present chapter is concerned
primarily with Eq. (1.1) in the simplest case, a1 = a2 = 0. We mention that the cubic GLE
with µ = µ(x) was derived and studied in [99].

When the pattern-forming instability is subcritical the SHE exhibits stationary localized
states (LS) organized in a “snakes-and-ladders structure” within a snaking or pinning region
[7, 10, 32, 34, 98]. The reduction of this equation to GLE, valid for ε � 1, compresses this
region into an exponentially thin interval in the vicinity of a codimension two point [32]. In
a truncated system such as Eq. (1.1) with µ constant, stationary LS are found at a single
value of the bifurcation parameter µ, corresponding to the formation of a heteroclinic cycle
between the trivial state A = 0 and a nontrivial homogeneous state A = A0 6= 0. When
a2 = 0 this parameter value corresponds to the well-known Maxwell point at which the
energies of A = 0 and A = A0 coincide [84, 86]. We show here that the presence of spatial
forcing, µ = µ(x), restores classical homoclinic snaking, and discuss its similarities to and
differences from the homoclinic snaking observed in SHE with homogeneous forcing. We do
not study SHE with spatial forcing (but see [85, 149]).

Steady states of Eq. (1.1), A(x, t) = u(x), satisfy a nonautonomous second-order
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complex-valued ODE,

0 = µ(x)u+ uxx + ia1|u|2ux + ia2u
2ūx + |u|2u− |u|4u

in contrast to SHE with homogeneous forcing, which is an autonomous fourth-order real-
valued ODE. The LS in the latter are the result of pinning of fronts between a spatially
homogeneous state and a spatially periodic state [98, 125]. This effect is absent from Eq.
(1.1) when µ is constant. However, spatially periodic forcing turns A0 = u0 into a periodic
state, thereby producing the conditions favoring pinning and hence the presence of LS.
Experiments by Haudin et al. [75, 76] confirm this basic idea even though they employ both
additive and multiplicative spatial forcing. We call the snaking that results forced snaking.

5.2 Localized states with homogeneous and

inhomogeneous forcing

The bifurcation diagram for homogeneous forcing µ = m0 is shown in Fig. 5.1. The fig-
ure shows that the localized states (LS) bifurcate subcritically from the primary branch of
constant amplitude states, u0, and exhibit an abrupt increase in L2 norm near the Maxwell
point µM corresponding to monotonic growth in length. This growth ends when the struc-
ture comes close to filling the available domain and the LS branch terminates on the primary
branch near its fold. In this region the LS resemble holes in an otherwise homogeneous state
u0 6= 0. We examine here the effect on this structure of spatially periodic forcing of the form

µ(x) = m0 +m1 cos

(
2πx

`

)
and consider two cases, ` = 10 and ` = 50. As shown below these two cases exhibit
qualitatively different behavior. We do not discuss here the details of the transition between
them.

All steady state solutions of Eq. (1.1) were computed using the numerical continuation
software AUTO [56] with either Neumann or periodic boundary conditions. The localized
states we compute are independent of the boundary conditions provided they remain well
localized.

Periodic forcing with ` = 10

When m1 6= 0, i.e., µ = µ(x), the nontrivial homogeneous state u0 becomes a periodic state
with spatial period 10. Figure 5.2 shows the branch of periodic states for m1 = 0.1. The
associated LS bifurcate from this branch at small amplitude, undergo snaking in a well-
defined interval of m0 centered on µM , before terminating on the branch of periodic states
near its fold. Since this process is absent when µ is constant we refer to the resulting behavior
as forced snaking.
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Figure 5.1: Bifurcation diagram showing homogeneous and localized states when µ = m0

is constant. Plots to the right show solutions u(x) at the labeled points, computed on a
half-domain with Neumann boundary conditions.

The LS shown in Fig. 5.2 consist of an odd number of peaks. The figure shows that
each back and forth excursion across the snaking or pinning region results in the addition of
one wavelength of the forcing on either side of the localized structure, thereby maintaining
parity. Figure 5.3 shows that the snaking branch of Fig. 5.2 is one of a pair of intertwined
LS branches shown in blue (even number of peaks) and red (odd number of peaks) and
accompanied by a set of asymmetric “rung” states (green) that connect opposite folds on
the two snaking branches. These exist between every pair of folds. Thus the resulting
structure echoes the properties of standard homoclinic snaking such as that observed in
SHE with homogeneous forcing [34, 98].

To explore the similarities to standard homoclinic snaking in greater detail we perform a
linear stability analysis of the LS states on the branch of even LS between successive saddle
nodes on the left as pictured in the schematic bifurcation diagram in Fig. 5.4 (top left). For
this purpose we compute stationary solutions u(x) homoclinic to u = 0 at evenly spaced
points in arclength s and solve the nonautonomous linear problem. We make the Ansatz
for perturbations around the base state A(x, t) = u(x) + (a(x) + b(x))eσt +

(
a(x)− b̄(x)

)
eσ̄t

which yields the linear problem,

σ

(
a
b

)
=

(
L11 L12

L21 L22

)(
a
b

)
≡ L(u)

(
a
b

)
(5.1)
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Figure 5.2: Bifurcation diagram showing periodic and localized states when m1 = 0.1, ` = 10
on a domain of size L = 500 with Neumann boundary conditions. The homogeneous and
localized states for m1 = 0 are shown in grey for comparison. Plots on the right show
solutions u(x) at the labeled points.

where

L11 = ∂xx + µ(x)− 3|u|4 + |u|2
(
2− ū2 − u2

)
+
ū2 + u2

2

+ ia2 (uūx − ūux) + i
a1

2
(ū+ u) (ux − ūx) + i

a2

2

(
u2 − ū2

)
∂x

L12 =
1

2
(u− ū) (ū+ u) (2uū− 1) + ia2 (ūux + uūx)− i

a1

2
(u− ū) (ux − ūx)

+ i
[
a1|u|2 −

a2

2

(
ū2 + u2

)]
∂x

L21 = −1

2
(u− ū) (ū+ u) (2uū− 1) + ia2 (ūux + uūx) + i

a1

2
(ū+ u) (ūx + ux)

+ i
[
a1|u|2 +

a2

2

(
ū2 + u2

)]
∂x

L22 = ∂xx + µ(x)− 3|u|4 + |u|2
(
2 + u2 + ū2

)
+
ū2 − u2

2

+ ia2 (uūx − ūux)− i
a1

2
(u− ū) (ūx + ux) + i

a2

2

(
ū2 − u2

)
∂x.

When a2 = 0 then L(u) is self-adjoint and therefore has a real spectrum. In this case
solutions take the form f(x)eσt in which f may be complex-valued but σ ∈ R. Figure 5.4
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Figure 5.3: Bifurcation diagram showing periodic and localized states when m1 = 0.1, ` = 10
on a periodic domain of size L = 100. The two snaking branches shown are characterized by
the number of peaks: even (blue) and odd (red). Connecting each pair of folds is a branch of
asymmetric rung states (green) only one of which is shown. The snaking branches bifurcate
together from (and reconnect together to) a domain-filling periodic state. Plots on the right
show solutions u(x) at the labeled points, shown over the full domain 0 ≤ x ≤ 100.

shows the six most positive eigenvalues σ of u(x) as a function of s; the vertical dashed
lines indicate the locations of the saddle nodes. The eigenfunctions corresponding to the five
largest eigenvalues at the locations indicated in solid grey lines are shown in the top right
panels in order of decreasing eigenvalue.

The results show that branch segments slanting up from left to right are stable while those
slanting up from right to left are unstable as in standard homoclinic snaking. Moreover at
each saddle node the number of unstable eigenvalues changes by two, one with an even
eigenfunction and one with an odd eigenfunction; latter is responsible for the presence of the
asymmetric rung states that bifurcate from the branch of LS. We note that this is unlike the
behavior in the SHE where the odd eigenvalue bifurcates on the unstable branch away from
the fold and thus only a single mode bifurcates through the fold. In this case both modes are
localized at the fronts bounding the LS. In addition, there is (an extended) neutrally stable
phase mode iu along the entire snaking branch, corresponding to invariance with respect to
the symmetry {u → eiαu |α ∈ R}. This mode corresponds, respectively, to the first and
third eigenfunctions at locations A and B. This symmetry is inherited from invariance of
SHE with respect to small scale translations; translation invariance on large scales is broken
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Figure 5.4: The real (green) and imaginary (blue) parts of the eigenfunctions f(x) corre-
sponding in order to the five largest eigenvalues σ (largest first) at locations marked by the
letters A (top center) and B (top right) along with u(x) shown in grey. The bottom plot
shows the six largest eigenvalues σ for LS between successive left saddle nodes indicated by
the thick blue trace in the schematic snaking diagram (top left); the nonmonotonic eigen-
value has multiplicity two. The two top eigenfunctions at B can be combined into even and
odd eigenfunctions. Parameters are m1 = 0.1, ` = 10.
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Figure 5.5: The width of the region of forced snaking when ` = 10. The blue and green
traces show the continuation of the left and right folds on the snaking branch, respectively.
The black trace is the continuation of the fold on the primary branch. Plots on the right
show solutions u(x) at the labeled points.

by the forcing. Consequently the usual Goldstone mode is absent.
Despite the commonalities between forced and standard snaking there are significant

differences. In forced snaking the width of the snaking region grows linearly with the am-
plitude of the forcing, in contrast to classical snaking in which the snaking region is initially
exponentially thin. This behavior hearkens to the linear theory of Arnold tongues, here
corresponding to the 1:1 spatial resonance. Figure 5.5 shows the corresponding behavior in
the present case. The figure shows the left (blue curve) and right (green curve) folds high
up the snaking branch in the (m0,m1) plane; forced snaking occurs in between. The figure
shows that the left folds asymptotically approach (but do not reach) the fold on the branch
of periodic states (black curve) and that the behavior of the loci of the folds near m1 = 0 is
linear, m0 ∝ m1.

Inclusion of a1 and a2

When (a1, a2) are nonzero the snaking structure of localized states is preserved though the
pinning region changes. We first consider the effects of including a1 alone which does not
break the gradient structure of the equation. As a1 is increased from zero the snaking
solutions of Eq. (1.1) are no longer real-valued. In particular, the solutions acquire an
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Figure 5.6: The width of the region of forced snaking for ` = 10 and m1 = 0.1 is delimited
with solid black lines. The dashed line a1 = 4√

3
beyond which the homogeneous problem is

not well-posed is shown for reference. Plots on the right show solutions u(x) at the labeled
points. As a1 increases the phase wave number of the solutions increases as it does in the
fronts of chapter 4.

approximately uniform phase gradient which we refer to as a phase wave number. An
example of such solutions is shown in Fig. 5.6. This figure depicts the boundaries of the
pinning region as a1 is increased from zero and shows that the snaking is preserved but the
pinning region occurs at different m0 values. In addition the wave number of the snaking
states grows larger with a1 which is consistent with the behavior of the exact front solutions
to Eq. (1.1) derived in chapter 4. As a1 grows large the size of the pinning region expands and
the folds on the snaking branch appear to approach the bound a1 = 4√

3
for well-posedness of

the homogeneous problem. This prevents the computation of any snaking solutions beyond
this bound via parameter continuation.

This type of analysis can also be carried out with the parameter a2. Snaking solutions
for increasing a2 are depicted in Fig. 5.7. In each subplot we depict the boundaries of the
pinning region in the (m0, a2) plane and fix either a1 (a) or m1 (b). In subplot (a) we set
a1 = 0 and only focus on a2. As expected the pinning region widens as m1 is increased
and the curve m1 = 0 corresponds to the generalized Maxwell point given by vN(m0) = 0
of the branch of exact front solutions derived in chapter 4. This behavior also occurs for
a2 = 0 and a1 <

4√
3

when m1 increases from zero (not shown). On the other hand unlike
the previous case, a2 = 0 and a1 > 0, the pinning region here shrinks as a2 is increased
and moves asymptotically close to m0 = 0. In Fig. 5.7(b) the parameter m1 = 0.1 is fixed
and the pinning region boundaries are drawn for a1 = 0, 1 and 5. When a1 is included the
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Figure 5.7: The width of the region in the (m0, a2) plane of forced snaking for ` = 10. (a)
Here a1 = 0 and the region width is plotted for m1 = 0 (red), 0.01 (blue), 0.1 (black). (b)
Here m1 = 0.1 and the region width is plotted for a1 = 0 (black), 1 (blue), 5 (red).

main effect is to shift the pinning region in the (m0, a2) plane so that it is not symmetric
under a2 → −a2. In addition, with a2 6= 0 it is possible to access parameter regimes in
which a1 >

4√
3

through continuation, the case a1 = 5 is shown here. Interestingly these
solutions appear to be trapped away from a2 = 0. For the homogeneous problem the known
sufficient condition for well-posedness of Eq. (1.1) when a1 = 5 is 3 < a2 < 7. As shown
the continuation is carried out past this point and it is not known whether the initial value
problem is well-posed in this regime despite the existence of these ODE solutions. As shown
in chapter 4 this need not be the case and there are likely many families of stationary
solutions in poorly posed parameter regimes. Although there are no known conditions for
well-posedness of Eq. (1.1) when µ is spatially periodic the conditions for the homogeneous
problem are a are reference point.

We next turn to the linear stability of snaking solutions when a1 and a2 are nonzero.
When a1 > 0 and a2 = 0 the linear stability properties of the snaking states are largely un-
changed. The linear operator in Eq. (5.1) remains self-adjoint and has a real spectrum. The
snaking branches destabilize and restabilize in the same fashion as in the a1 = 0 case where
a pair of eigenvalues oscillates through σ = 0 changing stability at folds. The associated
eigenfunctions are localized at the fronts bounding the localized state. This similarity to the
a1 = 0 case is expected since the new term in Eq. (1.1) does not break any symmetries of
the problem.

In contrast to the previous behavior inclusion of a2 6= 0 breaks the gradient structure of
the system and renders the linear stability operator non self-adjoint. Breaking the gradient
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structure of the system opens a pathway for oscillations and Hopf bifurcations to occur and
has been studied in the case of homoclinic snaking in the SHE [31]. For concreteness we study
one specific case here, a1 = 0 and a2 = 1. In this case we find that the stability structure is
similar to previous cases at the right folds of the snaking branches but not at those on the
left. Specifically, at the right fold on a branch of snaking states two real eigenvalues cross the
imaginary axis simultaneously destabilizing the branch. These eigenfunctions are localized
at the two fronts bounding the localized state as in previous cases. In contrast, near the
left fold an additional pair of real eigenvalues cross the imaginary axis. This is portrayed in
Fig. 5.8 where the arclength value associated to the fold is marked with a vertical dashed
line. The eigenfunctions associated to this crossing are shown in Fig. 5.9 where the third
eigenmode is the neural phase rotation, iu. For a short distance beyond the fold the branch
remains unstable with four unstable modes. Then the modes combine in pairs to form
doublets with σ = σr± iσi and eventually re-stabilize generating a pair of Hopf bifurcations.
These bifurcation points give rise to branches of time-dependent localized states which we do
not attempt to compute here. We remark further that in the SHE with nongradient terms
[31] only one pair of complex eigenvalues is present and thus only one Hopf bifurcation is
expected. Here the case is different because every eigenmode destabilization caused by the
bifurcation of a symmetric eigenmode is accompanied by the asymmetric one. Then unstable
modes with the same parities are combined into pairs of complex eigenvalues. Thus there
are four unstable modes (two Hopf bifurcations) rather than two (one Hopf bifurcation).

Periodic forcing with ` = 50

We now repeat the previous analysis with ` = 50, i.e., with forcing on a substantially larger
scale. In this regime we also observe forced snaking but the snaking structure is destroyed
for large enough m1. This destruction occurs via the interaction of the snaking states with
nearby periodic states consisting of an array of strongly localized pulses centered in regions
where the cosine forcing is positive, {x | cos

(
2πx
`

)
> 0}. Much like particle wavefunctions in

quantum mechanics, these states either have or do not have a pulse at each “location.” This
behavior becomes possible when the characteristic lengthscale of the front is smaller than
the forcing lengthscale so that a complete localized pulse can fit on each positive lobe of the
forcing. As a result these states interact only weakly and no longer snake.

Snaking and breakup for small m1

For small m1 the forced snaking observed with ` = 50 shares many characteristics with
that observed for ` = 10. In particular, as m1 increases a snaking branch opens with finite
angle around the Maxwell point of the homogeneously forced system (Fig. 5.10(a)). Figure
5.10(b) shows that for small m1 these snaking branches bifurcate from and reconnect to a
periodic state that fills the domain. This state (not shown) is readily obtained by continuing
the extended states in the parameter m1; during this process the wavelength of this state
remains equal to the forcing wavelength but the state develops hysteresis. As a result the
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Figure 5.8: The top five stability eigenvalues σ are plotted as a function of arclength, s, near
the left fold of the snaking branch when m1 = 0.1, ` = 10 and (a1, a2) = (0, 1). The arclength
value associated with the fold in the branch is marked by a vertical grey dashed line and
correspond to a pair of additional eigenvalues becoming unstable. The eigenfunctions at
this fold are plotted in Fig. 5.9. Beyond the fold four unstable eigenvalues recombine into
pairs of doublets (σ = σr ± iσi) and then stabilize in a pair of consecutive Hopf bifurcations
(pictured).
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Figure 5.9: Eigenfunctions at a left fold on the snaking branch when m1 = 0.1, ` = 10 and
(a1, a2) = (0, 1). The top plot shows the base state at the fold where |u| (blue), <[u] (green),
=[u] (red) and the plots below show eigenfunctions in order of decreasing <[σ]. At this fold
the five largest eigenvalues are real and thus the eigenfunctions take the form u1 = u1r+ iu1i.
We plot u1r with a solid line and u1i with a dotted one.
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Figure 5.10: (a) The boundaries of the snaking region (blue & green lines) when ` = 50.
The loci of the primary bifurcation from u = 0 and of the top left and right folds of the
primary periodic state are shown in black. In this region the primary periodic states exhibit
tristability (not shown). (b) Bifurcation diagram for m1 = 0.001, 0.01, 0.035 showing LS
branches on a domain of size L = 500 with Neumann boundary conditions. The snaking
branches were continued from the saddle nodes marked with dots and their widths are
indicated in (a) using horizontal lines and corresponding colors.

snaking region overlaps the region of tristability of the periodic state (Fig. 5.10(a)) and as
the snaking interval broadens with increasing m1 the left folds of the snake collide with the
top left fold of the periodic state (this occurs at m1 ≈ 0.035, Fig. 5.10(a)) leading to the
destruction of the snake as shown in Fig. 5.11.

Foliated snaking in the tristable regime

As m1 increases beyond breakup and m0 is appropriately reduced the holes between adjacent
peaks deepen towards the trivial state u = 0 and the periodic states begin to resemble an
array of isolated pulses. We refer to such solutions as pulse trains (PT). Figure 5.12 shows
that for m1 = 0.1 the pulse trains below the bottom left fold take the form of a periodic array
of spikes while those above the fold resemble a periodic array of lumps. This dichotomy is
reflected in the spatially mixed pulse trains that bifurcate from this fold as indicated in the
solution profiles at the right of Fig. 5.12. The pulse trains emerging from the fold possess
either a lump or spike at each location of a maximum in the cosine forcing. As a result there
are 2N distinct domain-filling states of this type where N is the number of such maxima in
the domain. Since the norm of a state with n lumps and N −n spikes does not change when
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Figure 5.11: (a) Bifurcation diagrams for m1 = 0.035 (red) and m1 = 0.05 (blue) when
` = 50. (b) Solution profiles for m0 ≈ −0.188 and m1 = 0.05 with the red (black) profiles
corresponding to the upper (lower) black dots in (a). Owing to its complexity the blue curve
in (a) was terminated after a finite arclength.

these are reordered we only show one example for each pair (n,N − n) (blue curves).
Far from the fold, the mixed PT enter the tristability region and interact with other

periodic states. The alignment of the corresponding folds suggests that these correspond to
tangencies between appropriate stable and unstable manifolds. Those on the left involve the
upper periodic state whose peaks are no longer isolated, those in the center appear to involve
periodic states with a smaller wavelength likely originating in a different spatial resonance,
while those on the right correspond to the right boundary of the snaking structure before
the collision with the fold. To avoid clutter these branches have been terminated after a
finite arclength (blue curves).

Figures 5.13 and 5.14 provide a more detailed look at the structure in this region, and
reveal the presence of a series of branches of finite pulse trains (FPT). These are connected
via pulse-adding bifurcations in which solutions consisting of n pulses add two additional
pulses in the tristability region, one on either side, that enable the solution to connect to
a branch of n + 2 pulses. Since this process preserves the parity of the pulse train there
is a separate series of such states for odd and even numbers of pulses. Of course, when
the domain size prevents further pulse-adding bifurcations this process stops and the FPT
branches with n = 8 and n = 9 both terminate close to the fold of the domain-filling state
with 10 pulses in the domain.

We understand this behavior as follows. The pulses in an n-pulse state at the left are
essentially noninteracting (they are trapped by the forcing potential); as a result a finite pulse
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Figure 5.12: Bifurcation diagram for m1 = 0.1 when ` = 50 showing periodic PT (in magenta
and black) consisting of lumps (stable, above lower left fold) and spikes (unstable, below lower
left fold), as well as 9 branches of spatially mixed PT (blue) that bifurcate from this fold.
These consist of n lumps and 10 − n spikes, where n = 1, 2, . . . 9. Solution profiles, u(x),
corresponding to the labeled points are shown on the right.

train cannot grow via snaking. Instead, the pulse train enters an interval in m0 where the
pulses interact more strongly and the state takes the form of a LS with n peaks. In this region
the pulse train is able to snake, and thereby grow in length. Once a pair of pulses is added,
one on either side, the solution moves out of the region of strong interaction, generating
a state with n + 2 noninteracting pulses. Figure 5.15 shows details of this mechanism for
n = 2. Based on the connectivity of the corresponding FPT branches we call this bifurcation
structure foliated snaking.

For larger m1, e.g., m1 = 1, the two upper folds on the branch of periodic states move
to the right of the primary bifurcation thereby destroying the region of tristability and
subsequently annihilate. In this case the mixed PT emerging from the spike-lump fold
continue all the way to the right edge of the bistability region (blue curves in Fig. 5.16(a)).
As in the m1 = 0.1 case these states have either a spike or lump at each forcing maximum
and we only compute states with adjacent lumps. As these mixed PT are continued to the
right the amplitude of the lumps (spikes) grows (decreases); at the right boundary of the
bistability region the spikes vanish and the mixed PT states merge with the FPT emerging
from the primary bifurcation to periodic states (red curves in Fig. 5.16(a)). The fact that
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Figure 5.13: Bifurcation diagram for m1 = 0.1 when ` = 50 showing branches of FPT based
on one spike (blue), three spikes (red) and five spikes (green). The periodic branch is shown
in black. Sample solutions at locations indicated by corresponding letters are shown on the
right. The solution corresponding to the connection between the blue and red LS branches
is colored magenta. The branches interconnect at the left folds. Mixed PT branches are
omitted.

these mergers occur in cusps provides evidence that each state is made up of independent
“particles.” To see this, suppose that a single lump state at x = X can be written ulχ(x−X),
in which χ vanishes whenever |x − X| > C, and a spike state at x = Y can be written
usχ(x− Y ). Then we can write the state representing a 1 lump, 2 spike FPT (blue curve in
Fig. 5.16(b)) as ulχ(x−X)+us

∑
m χ(x−Ym) and the state representing a single lump (red

curve in Fig. 5.16(b)) ulχ(x − X). If the “particles” do not interact, i.e., |X − Ym| ≥ 2C
(which appears to be true in the numerics), then these states have norms proportional to√
u2
l + 2u2

s and
√
u2
l , respectively. As m0 increases towards the primary bifurcation, mc,

these converge to the same norm; moreover, since us → 0 linearly in mc −m0 the branches
meet at an angle. Figure 5.16(b) shows that for these values of m1 these cusps are also the
termination points of the mixed FPT originating at the left folds of the FPT branches, i.e.,
the foliated snaking structure now collides with the primary bifurcation at m0 ≈ −0.913.
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Figure 5.14: Bifurcation diagram for m1 = 0.1 when ` = 50 showing branches of FPT based
on two spikes (blue) and four spikes (red). The periodic branch is shown in black. Sample
solutions at locations indicated by corresponding letters are shown on the right. The solution
corresponding to the connection between the blue and red LS branches is colored magenta.
The branches interconnect at the left folds. Mixed PT branches are omitted.

5.3 Discussion

We have discussed in some detail the effects of spatial forcing with different wavelengths on
the existence and properties of spatially localized states in the subcritical Ginzburg-Landau
equation describing the primary bifurcation to a stationary roll or stripe pattern. We have
found that when the amplitude of the forcing is sufficiently small its presence generates the
familiar snakes-and-ladders structure of localized states in the vicinity of the Maxwell point.
We have called the resulting behavior forced snaking. We have also shown that larger scale
forcing degrades the interaction between adjacent peaks leading to the appearance of finite
pulse trains. In these trains the pulses interact indirectly via the imposed forcing. Such
trains cannot grow in length via snaking and so extend into a parameter regime where direct
interaction between adjacent pulses dominates and snaking can take place. Once the train
has added peaks on either side the solution branch returns to the noninteracting regime as
a longer pulse train. This sequence of transitions proceeds apparently indefinitely leading to
foliated snaking. We present cartoons of these two scenarios in Fig. 5.17.

Our results bear considerable similarity to recent work on forced snaking in other systems
[7, 25, 38]. In each of these cases the forcing opens a wedge of finite opening angle containing
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Figure 5.15: Bifurcation diagram for m1 = 0.1 when ` = 50 showing details of the FPT
branch with two spikes (blue curve in Fig. 5.14). The folds on the periodic branch are
denoted by dotted lines. Sample solutions corresponding to the labeled points are shown on
the right.

Figure 5.16: Bifurcation diagram for m1 = 1 when ` = 50. (a) The first two panels show
FPT branches emanating from the primary bifurcation (red) and mixed PT branches (blue)
emanating from the fold on the periodic branch (black). Sample solutions profiles are shown
on the left. (b) The second two panels show the one and three lump FPT branches (red,
green) connected by a mixed FPT branch composed of one lump and two spikes (blue).
Solution profiles are shown on the right.
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Figure 5.17: Schematic bifurcation diagram illustrating the topologial differences between
forced snaking and foliated snaking in spatially parametrically forced systems.

localized states that snake for small forcing amplitude, but the snaking breaks down with
increasing forcing amplitude. This breakdown is associated with the interaction between the
LS and the fold of the periodic state generated by the forcing. This interaction can lead to
the formation of a stack of isolas as in [161]–[25] or, as in the present case, foliated snaking.
In the former case the LS interact with right folds on periodic states, while here and in [7]
the interaction is with a left fold. These situations profoundly differ since in the former case
the manifolds of the periodic states that are involved extend beyond the fold while this is
not the case in the latter. Thus an interaction with a right fold leads to the breakup of the
snake into a stack of isolas connecting n pulse states with n+ 2 pulse states [38, 161] while
an interaction with a left fold leads to the pulse-adding bifurcations organized within the
foliated snaking structure identified here. The interaction with the right fold is here played
by the interaction of the snaking structure with the primary instability to the periodic state.
No isolas appear in this case and the FPT branches remain interconnected [29].

The results of this work extend to two dimensions: all the states discussed here may be
extended in the y direction by writing U(x, y) = u(x) although these may suffer y-dependent
instabilities [32], thereby further complicating the snaking structure [8]. In addition, there
are patterned structures that are fully localized in two dimensions such as those observed in
the experiments of Ref. [75]. The study of these states is beyond the scope of this work.
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Chapter 6

Depinning: Spatially Periodic Forcing
and Subcritical Fronts

This chapter focuses on the dynamics of localized structures in Eq. (1.1) and links the
front dynamics studied in chapter 4 with the stationary snaking solutions of chapter 5. The
dynamical regimes nearby the snaking branch for Eq. (1.1) are summarized in Fig. 6.1. In
this chapter we discuss dynamics in regions I–IV focusing mainly on the dynamics in the
shaded regions (II and IV) where depinning occurs. Studies of dynamics in region V are left
to future work.

6.1 Dynamics of forced snaking

To begin a discussion of the dynamics of snaking structures we first set a1 = a2 = 0. Because
in this case Eq. (1.1) is a gradient system its dynamics in a given parameter regime approach
stable stationary states. The most basic dynamical regime occurs in region I. There the only
stationary solution is A = 0 and it is the global attractor of the dynamics. As a result when
any snaking solution is taken as an initial condition with parameters set in region I the entire
solution collapses to A = 0 in amplitude as shown in Fig. 6.2(a).

The next straightforward regime is in region III, the pinning region. Here the periodic
branch is stable as are snaking states of all integer numbers of cosine wavelengths. Given a
small perturbation an unstable snaking state solution evolves into a stable one either below
it or above it on the bifurcation diagram. This is illustrated in Fig. 6.2(b). This occurs
by the translation of the fronts bounding the localized state by a single cosine period. If a
finite amplitude perturbation is given then the solution may evolve into any of the stable
solutions.

A more complicated picture emerges in regions II ans IV where there are no snaking
solutions but the periodic branch remains stable. The result of this is that the snaking
solutions evolve by the motion of their fronts, like in region III, but these do not halt after
a single cosine period. In light of this the fronts bounding the snaking solution are said to
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Figure 6.1: Bifurcation diagram for snaking solutions (blue) and the periodic branch, P
(black) when m1 = 0.1, ` = 10 and a1 = a2 = 0. Regions I–V demarcate distinct dynamical
regimes: (I) all solutions collapse to u = 0, (II) and (IV) depinning occurs as snaking
solutions destabilize but P remains stable, (III) snaking solutions are stable, (V) u = 0
destabilizes and pulled front propagation may occur.

be “depinned.” This depinning process is illustrated for region II in Fig. 6.3 and for region
IV in Fig. 6.4. The space-time plot shows that the fronts move in increments, slowing as
the stationary state with n ± 2 bumps is neared. In the bifurcation diagram this can be
understood as evolution just outside the pinning region towards increasing or decreasing
norm. As this occurs fold solutions higher or lower on the the branch of localized states
are inevitably approached. The slow dynamics near these folds suggests that an asymptotic
procedure might be carried out to capture the dynamics nearby.

We seek to compute the branch of traveling waves that bifurcates out from a snaking
branch fold just outside of the pinning region. This calculation is analogous to the one
carried out in chapter 2 for the SHE [30] and here we perform it in full generality including
the terms a1, a2 6= 0. We focus on the right side of the pinning region, though an analogous
procedure can be carried out on the left, and set m0 = m+ + ερ where m+ is the m0 value
corresponding to the right boundary of the pinning region. This value is asymptotically
approached exponentially from the right by the folds high up on the snaking branch. We next

assume that A(x, τ) = A0(x)+
√
εA1(x, τ)+εA2(x, τ)+O

(
ε
3
2

)
where A0 is the solution at a

right fold high up on the snaking branch. The dynamics occur on a slow time scale τ =
√
ε t.

At lowest order we obtain the stationary GLE which A0 solves and at order
√
ε we obtain
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Figure 6.2: Space-time plots showing the dynamics of snaking solutions in region I (a) and
region III (b) where ` = 10, m1 = 0.1, a1 = a2 = 0. The amplitude |A(x, t)| is plotted. The
solution in region I exhibiting amplitude decay to A = 0. The initial solution in (b) is from
an unstable snaking branch and quickly evolves into a stable snaking solution.

Figure 6.3: Space-time plots showing depinning dynamics in region II where ` = 10, m1 =
0.1, a1 = a2 = 0: (a) the amplitude |A|, (b) <[A], (c) the measured depinning time versus
the distance from the pinning region ρ. The tracked front position is shown in (b) with a
dashed line.
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Figure 6.4: Space-time plots showing depinning dynamics in region IV where ` = 10, m1 =
0.1, a1 = a2 = 0: (a) the amplitude |A|, (b) <[A], (c) the measured depinning time versus
the distance from the pinning region ρ. The tracked front position is shown in (b) with a
dashed line.

the linear problem L(A0)A1 = 0 where L(A0) is the linear operator formed by linearization
of Eq. (1.1) around A0. This linear equation is solved by A1 =

∑
i αi(τ)ni(x) where ni

are the null eigenfunctions of the linear operator. There are three such modes at a fold:
the phase mode iA0 and two edge modes, one spatially symmetric and one antisymmetric
as discussed in chapter 5. Since there is nothing breaking spatial reflection symmetry or
the phase symmetry in the initial value problem only the even mode, ne, has a nonzero
coefficient. At order ε one obtains the linear problem

−L(A0)A2 = −dαe
dτ

A1 + ρA0 +
(
Ā0A

2
1 + 2A0|A1|2

) (
1− 3|A0|2

)
− 3A3

0Ā
2
1

+ ia1

(
|A1|2A0x + Ā0A1A1x + A0Ā1A1x

)
+ ia2

(
A2

1Ā0x + 2A0A1Ā1x

)
which has a solution if the RHS is orthogonal to the nullspace of L†(A0). This operator is
not self-adjoint when a2 6= 0 in which case the null eigenfunctions are computed numerically.

After imposing the orthogonality conditions an ODE in αe(τ) is obtained. When a2 = 0
and the linear operator is self-adjoint the only nonzero overlap results from the inner product
with the adjoint null eigenfunction ne. When a2 6= 0 we have found in practice that there
is only one reflection symmetric adjoint null eigenfunction and thus also only one nonzero
overlap. The resulting ODE is of the same form as that obtained for the SHE,

dαe
dτ

= I1ρ+ I2α
2
e,
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Figure 6.5: Space-time plots showing depinning dynamics in region IV where ` = 10, m1 =
0.1, a1 = 1

2
and a2 = 0: (a) the amplitude |A|, (b) <[A], (c) the measured depinning time

versus the distance from the pinning region ρ. The tracked front position is shown in (b)
with a dashed line.

where we assume that ne is normalized by 〈n†e, ne〉 = 1 and

I1 =
〈
n†e , A0〉

I2 =
〈
n†e ,

(
Ā0A

2
1 + 2A0|A1|2

) (
1− 3|A0|2

)
− 3A3

0Ā
2
1 + ia1

(
|A1|2A0x + Ā0A1A1x + A0Ā1A1x

)
+ia2

(
A2

1Ā0x + 2A0A1Ā1x

)〉
.

As in the case of the SHE this ODE can be integrated from τ = −∞ to τ = ∞ as a proxy
for the complete depinning process from one saddle-node to the next. This produces the
time estimate T = π√

I1I2ρ
to travel between saddle-nodes. This estimate is compared with

the observed depinning in time evolution simulations and is shown in Figs. 6.3(c) and 6.4(c)
as a straight line.

As in the case of linear stability inclusion of a1 6= 0 does not change the qualitative
behavior of the system. A case of depinning to the right of the pinning region is shown in
Fig. 6.5. Here the solution can be seen to have a wave number but otherwise acts like the
a1 = 0 case. The asymptotic depinning calculation also shows excellent agreement.

When a2 6= 0 the dynmaics change and the asymptotic calculation fails to capture the
observed behavior. Figure 6.6 shows the measured depinning speed at the right side of
the pinning region. The measured speeds do not collapse to the theoretical prediction and
instead approach a finite value at ρ = 0. Moreover as shown in Fig. 6.7 for ρ . 10−4 the
solution exhibits a long transient before approaching the traveling wave branch. One possible
reason for this is that the branch of traveling waves that emerges from the fold does not do
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Figure 6.6: A plot of depinning speeds versus the distance from the pinning region for ` = 10,
m1 = 0.1, a1 = 0 and a2 = 1. A linear fit to all but the last two points is also shown (blue
dashed). This linear fit a

√
ρ + b has slope a = 0.13923 and b = 0.0028350 whereas the

predicted depinning speed has a slope 0.130753.

so to the right, i.e. ρ > 0. In this case the transient could be due to the slow dynamics
governed by the null eigenmodes at the fold.

The finite velocity at ρ = 0 also suggests that the stable branch of traveling fronts may
persist to the left of the fold in the interior of the snaking region. In order to check this we
perform time evolution simulations in which we first set ρ = 10−4 and wait for the system
to reach the traveling front branch and then reduce the parameter into the pinning region
(ρ < 0). Figure 6.8 shows the measured speeds as a function of ρ. As expected these speeds
suggest the existence of the traveling front branch in the interior of the pinning region, a
phenomenon that does not occur in the gradient system. Unfortunately we were only able
to perform these calculations up until ρ ≈ −0.003. Since we do not initialize the time
simulations exactly on the traveling front branch after ρ is reduced the mismatch becomes
larger with |ρ|. Eventually the simulations only follow the traveling wave for a short time
before converging to a stable snaking state as shown in Fig. 6.9.

6.2 A strongly nonlinear asymptotic approximation of

depinning

We are interested in capturing dynamics of depinning fronts that occur outside of the pinning
region. The analysis here uses the exact nonlinear front solution derived in chapter 4 as a
base state for the asymptotics. In principle we wish to do this analysis for arbitrary values of
a1 and a2 although the presence of a2 at lowest order causes all higher orders to involve a non
self-adjoint linear operator. This makes imposing solvability conditions difficult since there is
no general method to determine the null eigenfunctions of the adjoint operator analytically.
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Figure 6.7: Space-time plots showing long transient dynamics in depinning from the right
side of the pinning region when ` = 10, m1 = 0.1, a1 = 0 and a2 = 1: (a) the amplitude |A|,
(b) <[A]. Here ρ = 0.0001 and the initial state undergoes a long transient before escaping
to a traveling front branch.

0.0003 0.0002 0.0001 0.0000
ρ

0.0025

0.0030

0.0035

0.0040

0.0045

T
−

1

Figure 6.8: A plot of depinning speeds inside the pinning region for ` = 10, m1 = 0.1, a1 = 0
and a2 = 1. These calculations are initiated by initially time stepping a depinning solution
for ρ = 0.0001 and then reducing the parameter ρ and measuring the average speed.
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Figure 6.9: Space-time plots showing repinning dynamics in the interior of the pinning
region when ` = 10, m1 = 0.1, a1 = 0 and a2 = 1: (a) the amplitude |A| (b) <[A]. Here
ρ = −0.00035 and the initial state propagates a short while along a traveling front branch
before repinning on a stable snaking solution.

To mitigate this we consider small a2 = ε ã2.
The basic strategy for the asymptotics is to approximate a pulse solution by a pair of

displaced fronts. Equation (1.1) has an exact front solution when m1 = 0, as computed in
chapter 4, and a pair of these are glued together to form a pulse. Equations of motion for
the positions of both fronts are then derived through an asymptotic expansion by imposing
solvability conditions order by order.

Setup of the asymptotic procedure

This calculation is performed near the Maxwell point of the unforced system m0 = − 3
Γ

where
the dynamics are slow. We first move to a center of mass frame, z = x−φ(t), and introduce a
time dependent phase ω(t): A(x, t) = e−i

∫
ω(t) dτu(z, t). We also choose a width for the pulse

L(t) that is a function of time. Next we make the central assumptions of this procedure, (1)
that m1 = ε m̃1, a2 = ε ã2, m0 = − 3

Γ
+ ε m̃0 and (2) that all of the time dependence of the

solution associated to corrections of the exact front solution (including φ, ω and L) occur on
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a slow time τ = ε t. Making these assumptions and substituting into Eq. (1.1) yields

ε uτ = − 3

Γ
u+ uzz + |u|2u+ ia1|u|2uz − |u|4u

+ ε

[
m̃0u+ iωu+ φ̇ uz − L̇

∂u

∂L
+m1 cos

(
2π(z + φ)

`

)
u+ iã2u

2ūz

]
.

We then expand the solution as u = u0(z, τ)+ε u1(z, τ)+. . . and impose solvability conditions
order by order to extract the dynamics.

The lowest order problem is the nonlinear ODE

0 =− 3

Γ
u0 + u0zz + |u0|2u0 − |u0|4u0 + ia1|u0|2u0z. (6.1)

When the fronts bounding the pulse u0 are far apart then the derivative ∂u0
∂L

is equal to
1
2
u0z in the vicinity of each front and vanishes elsewhere up to exponentially small terms.

Thus at least locally this equation reduces to the one considered in chapter 4 at the Maxwell
point and a pulse can be constructed using the exact front solution. This front deposits a
homogeneous solution with wave number qN and takes the form,

aNe
iqNz

(
1 + e2a2Ne1z

)− 1
2
−i e0

2e1 ≡ aNe
iqNzF (z).

By reflection symmetry aNe
iqNzF̄ (−z) is also a solution. This allows us to construct the

pulse,

u0 = aNe
iqNzF

(
z − L(τ)

2

)
F̄

(
−
[
z +

L(τ)

2

])
(6.2)

= aNe
iqNzF1 (ξ+)F2 (ξ−)

where ξ± = z ∓ L(τ)
2

. This pulse has a width L(τ) and is an approximate solution to Eq.
(6.1). Specifically, for large L (6.2) solves Eq. (6.1) up to exponentially small terms in L.

The linear operator

The lowest order problem gives rise to a linear operator, L, that is based on (6.2) and appears
at all higher orders. The linear operator may be written,

L(W ) ≡ − 3

Γ
W +Wzz + ia1

(
ū0u0zW + u0u0zW̄ + |u0|2Wz

)
+ |u0|2

(
2 + 3|u0|2

)
W + u2

0

(
1 + 2|u0|2

)
W̄ .

This operator is self-adjoint despite the presence of skew-Hermitian terms such as W̄ . Be-
cause of these terms and the complex coefficients one must be careful in computing the
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adjoint operator in the basis (W, W̄ ) and it is more straightforward to do so in the ba-
sis (R, I) where R(z) and I(z) are the real and imaginary parts of W . We ommit such a
calculation here.

The operator L has 3 approximate null eigenfunctions all inherited from symmetries.
This is normal for linearizations about pulse states. The eigenfunctions consist of a phase
rotation mode, n0 = iu0, plus two Goldstone-type modes n1 = u0z = aNe

iqNz (F ′1F2 + F1F
′
2)+

iaNqNe
iqNzF1F2 and n2 = ∂Lu0 = aN

2
(−F ′1F2 + F1F

′
2). The first of these, n1, is the true

Goldstone mode for the pulse and is antisymmetric with respect to its center z = 0. This
mode is inherited from global translation symmetry. Also related to translation symmetry,
the mode n2 is symmetric about the pulse center reflecting the fact that for L� 1 the two
fronts are independent and can translate freely in opposite directions. This mode arises only
in the limit of large L i.e. as a result of our lowest order approximation.

At each order in the asymptotics a linear problem of the form 0 = L(f) + g is obtained.
This problem is solved by first imposing solvability conditions on g and then inverting L.
The imposition of solvability conditions is somewhat subtle and we review it here. Suppose
that n(x) is a null eigenfunction of L and therefore in the self-adjoint case also its adjoint,
L†. In order for the linear problem to be solvable we must require that 〈n, g〉 = 0 where
〈·, ·〉 is the inner product defined on the space of functions in which we seek a solution to
the linear problem. If we write g and n in terms of their real and imaginary parts then this
can be posed on L2 : R→ R2 so the inner product is written

〈n, g〉R2 =

∫ ∞
−∞

(nr, ni) ·
(
gr
gi

)
dx =

∫ ∞
−∞

nrgr + nigi dx.

Thus there is one real-valued condition for each null eigenfunction of L†. Though this basis
makes the condition clear it is typically simpler to write down these inner products in the
space of complex valued functions i.e. L2 : R→ C where,

〈n, g〉C =

∫ ∞
−∞

n̄g dx.

In this form note that 〈n, g〉R2 = <[〈n, g〉C] so only the real part of the inner product
corresponds to the true solvability condition and not the imaginary part. In many problems
imposing this constraint causes the entire inner product to vanish but it is not strictly
necessary and does not happen for the calculations in this chapter. We thus adopt the
convention 〈n, g〉 = <[〈n, g〉C] to impose solvability conditions.

A few identities

Before initiating the asymptotics it is useful to review a few identities that elucidate the
structure of the null eigenfunctions and are helpful in simplifying solvability conditions. The
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identities are

u0z = a2
Nλu0 (e1S1 − ie0S2) + iqNA0

n2 =
a2
N

2
λu0 (e1S2 − ie0S1)

S1(ϕ) ≡ 1− ϕ2

(ϕ+ λ)(1 + ϕλ)

S2(ϕ) ≡ ϕ2 + 2ϕλ+ 1

(ϕ+ λ)(1 + ϕλ)

ϕ ≡ e2a2Ne1z

λ ≡ e−a
2
Ne1L.

These identities are written so that symmetries in z become apparent. Specifically when

z → −z then ϕ → 1
ϕ

. The identity S1(ϕ) = −S1

(
1
ϕ

)
shows that S1 is antisymmetric and

S2(ϕ) = S2

(
1
ϕ

)
shows that S2 is symmetric.

Asymptotics beyond lowest order

The O(ε) problem is

0 = L(u1) + (m̃0 + iω)u0 + iã2u
2
0ū0z + φ̇ u0z − L̇

∂u0

∂L
+m1 cos

(
2π(z + φ)

`

)
u0

and each null eigenfunction gives rise to a solvability condition:

0 =
[
qNI0 − e0a

2
NλI1

]
φ̇+ ωI0

0 =
[
λa2

N

(
e2

0I3 + e2
1I2

)
− e0qNI1

]
φ̇− e0ωI1 − e1m1 sin

(
2πφ

`

)
I4

0 = m̃0I1 −
λa2

N L̇

2e1

(
e2

0I2 + e2
1I3

)
− ã2e0λa

2
NI7 +m1 cos

(
2πφ

`

)
I5 + ã2qNI6
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where Ik are the integrals

I0 =

∫ ∞
−∞
|u0|2 dz =

log(λ)

e1 (λ2 − 1)

I1 =

∫ ∞
−∞

S2|u0|2 dz =
−λ2 + 2λ2 log(λ) + 1

e1λ (λ2 − 1)2

I2 =

∫ ∞
−∞

S2
2 |u0|2 dz =

−7λ4 + 8λ2 + 4 (2λ4 + λ2) log(λ)− 1

2e1λ2 (λ2 − 1)3

I3 =

∫ ∞
−∞

S2
1 |u0|2 dz =

λ4 − 4λ2 log(λ)− 1

2e1λ2 (λ2 − 1)3

I4 =

∫ ∞
−∞

S1|u0|2 sin

(
2πz

`

)
dz =

π2 sin
(
πL
`

)
csch

(
π2

a2Ne1`

)
a2
Ne

2
1 (λ3 − λ) `

I5 =

∫ ∞
−∞

S2|u0|2 cos

(
2πz

`

)
dz = −

π2 cos
(
πL
`

)
csch

(
π2

a2Ne1`

)
a2
Ne

2
1 (λ3 − λ) `

−
2πλ sin

(
πL
`

)
csch

(
π2

a2Ne1`

)
e1 (λ2 − 1)2

I6 =

∫ ∞
−∞

S2|u0|4 dz = a2
N log(λ)

−5λ4 + 4λ2 + 4 (λ2 + 2)λ2 + 1

2e1λ (λ2 − 1)4

I7 =

∫ ∞
−∞

(
S2

1 + S2
2

)
|u0|4 dz

=
4a6

Nλ
2 (λ6 + 15λ4 + 30λ2 + 10)

e1 (λ2 − 1)9 log(λ)− a6
N (247λ8 + 1672λ6 + 1372λ4 + 72λ2 − 3)

30e1λ2 (λ2 − 1)8 .

These can be performed using contour integration after the substitution z = logϕ
2a2Ne1

. We

assume in the asymptotics that L � 1. This implies that λ � 1 since the existence of the
front requires |a1| < 4√

3
and thus

√
3

4
≤ a2

Ne1. To keep the asymptotics consistent we only
keep the leading order terms in λ in the solvability conditions.

Finally the solvability conditions may be rearranged to give the following ODEs:

ω = φ̇

√
1− α2

α

(√
3

4α
− 1

L

)

φ̇ = − α4γ

1 + 8
√

3
3L
α (α2 − 1)

sin

(
πL

`

)
sin

(
2πφ

`

)
L̇ = m̃0

16α3

√
3
− ã2

3 (80α4 − 9)
√

1− α2

160α5
+ 2α4γ cos

(
πL

`

)
cos

(
2πφ

`

)

where we have reparametrized a1 by inverting the relation α =
√

3
4a2Ne1

=

√
1− 3a21

16
and set

γ = 32π2m1

3`
csch

(
4π2α√

3`

)
. The phase ω is slaved to the dynamics of φ and can thus be ignored.
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a1 m+ |A| = |B| depinning time scaling vadler scaling
0 -0.14377 -0.14034 0.116 0.142
1
2

-0.15108 -0.14807 0.104 0.134

Table 6.1: This table compares the asymptotic calculation modeling depinning using the
exact front solution to the behavior measured in time simulations. The comparison includes:
the parameter value delimiting the right boundary of the pinning region m+ along with
the predicted value from the condition |A| = |B| in the asymptotics, and semi-analytical
scaling of the depinning time with the distance from the pinning region (the slope α of the
line T−1 = α

√
ρ) with the corresponding scaling from the asymptotic calculation of the

depinning speed vadler.

In the context of a reflection-symmetric initial value problem as we have here the appropriate
initial conditions for these ODEs are φ(0) = 0 and L(0) = L0. In this case φ̇ = 0 for all
time and therefore both the center of mass and phase have no dynamics. In general this
need not be the case and the phase responds to the width mode if the initial conditions are
asymmetric. Thus in the symmetric case the relevant ODE is

L̇ = A(m̃0) +B(m̃1) cos

(
πL

`

)
, (6.3)

an Adler equation for L. Note also that this is exactly the normal form for a SNIPER
bifurcation which is responsible for depinning.

Dynamics of the Adler equation

The Adler equation, Eq. (6.3), has two dynamical regimes. If |A| < |B| then Eq. (6.3) has
two fixed points. One of the fixed points is unstable and the other is stable. These two fixed
point persist until |A| = |B| where they coincide. In this context this condition provides an
estimate of the size of the pinning region. When |A| > |B| there are no fixed points and
L increases with time. This corresponds to the depinned case where the fronts propagate
outwards. In this regime one can compute the average speed of propagation by the time
required for the pulse to expand by 2` (or each front to propagate distance `),

vadler = 2`

(∫ 2`

0

dL

L̇

)−1

=
√
A2 −B2.

This velocity can be compared to the time estimate for depinning while the m0-value associ-
ated to the condition |A| = |B| can be compared to the parameter value delimiting the right
boundary of the pinning region m0 = m+. These comparisons for a few of the cases consid-
ered here are shown in Table 6.1. While the estimate of the boundary of the pinning region
is very good the estimated depinning speed is only accurate in order of magnitude. This
could likely be improved by generalizing the asymptotic calculation away from the Maxwell
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point by using the full velocity dependence of the traveling front solution at arbitrary pa-
rameter values. Unfortunately this generates a non self-adjoint linear operator in the first
order problem and prevents a fully analytical calculation.

The ability of this method to capture depinning is remarkable mainly because it is entirely
analytical and does not require any numerically computed solutions. This suggests that the
traveling front branch that depinned solutions approach is a perturbed version of the hete-
roclinic front solution derived in chapter 4, giving the latter further significance. Moreover
this also suggests that the non-depinning behavior of snaking states with a2 6= 0 might be
understood by computing the branch of depinned traveling fronts in a similar manner. This
analysis can be performed analytically up to the computation of the adjoint eigenfunctions
at which point some numerical solutions will be necessary. One possible approach would be
to keep all of the possible terms in the solvability conditions, derive the ODES, compute
the conditions on their coefficients delimiting each dynamical regime and only afterwards
compute the solvability integrals. This would allow one to study the dynamical regimes as
a function of m̃0 rather than deriving a single set of ODEs for each m̃0 value.
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Chapter 7

Application: Gap Solitons

7.1 Introduction

Discrete solitons have been the subject of intense study in nonlinear optics since their predic-
tion in 1988 [42, 45]. A particular type of soliton known as the “gap soliton,” first proposed in
1994 [95], arises amidst a competition between nonlinear self-focusing effects and anomalous
diffraction in periodic waveguides. These structures are typically modeled using a nonlin-
ear Schrödinger equation (NLSE) in the presence of an external periodic potential, i.e., the
Gross-Pitaevskii equation (GPE). An enormous amount of theoretical work has been done
on the structure and stability of solutions to this model for a variety of nonlinearities, e.g.
[2, 114, 123]. More recently an effort has been made to understand solutions referred to as
multipole solitons or soliton complexes that involve arrays of nearly identical solitons pinned
to the periodic potential [1, 94, 157, 163, 164]. Related work has investigated multipulse
solutions in a cubic-quintic medium in which the solution possesses a finite set of identical
maxima but is not composed of isolated solitons [23, 44, 114, 151]. Our work connects these
two distinct types of structures providing a unified picture of how they relate to one another
in the cubic-quintic case and elucidates their stability properties.

The simplest models for optical solitons describe a Kerr medium resulting in a NLSE
with a cubic nonlinearity. More complex nonlinearities arise in other systems, however, and
cubic-quintic nonlinearities in particular have been observed in a plethora of experiments
[101, 118, 142, 155, 162]. These are the subject of the present chapter. In the presence of an
externally imposed spatially periodic potential V (x) the resulting cubic-quintic GPE takes
the form

−iAt = Axx − V (x)A+ |A|2A− |A|4A. (7.1)

This is an equation for a complex-valued order parameter A(x, t). In the following we focus on
the case of sinusoidal potentials and seek oscillatory solutions of the form A(x, t) = e−im0tu(x)
describing a rotating wave with fixed albeit nonuniform spatial profile. Such states are
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solutions of the nonlinear ordinary differential equation (ODE)

0 = uxx +

[
m0 +m1 cos

(
2πx

`

)]
u+ |u|2u− |u|4u

≡ uxx +N (u, x). (7.2)

This equation takes the form of Eq. (1.1) for stationary solutions with a1 = a2 = 0 and a
periodically oscillating bifurcation parameter. Therefore it shares the forced snaking solu-
tions that were discussed in chapter 5 [126]. Here we are interested in particular in spatially
localized solutions of this equation, i.e., in solitary wave solutions of the GPE. Such solutions
are frequently called solitons (a custom we follow below) although they are not true solitons,
i.e., solutions of a completely integrable partial differential equation (PDE).

To determine solitary wave solutions of Eq. (7.1) one must understand the (spatial)
linear dispersion relation around the trivial solution u = 0 of Eq. (7.2). Because the linear
problem is periodically forced it is described by Floquet theory and possesses a characteristic
band-gap structure. Specifically, the Floquet exponents for the linear problem only have a
nonzero real part in certain regions of the (m0,m1) parameter plane and are otherwise purely
imaginary. These regions in the (m0,m1) plane are referred to as band-gaps and are shown
in white in Fig. 7.1. For parameters in these regions u ≡ 0 is a hyperbolic fixed point of
Eq. (7.2) and the ODE can therefore support solutions that are homoclinic to u = 0. These
solitary wave solutions are colloquially referred to as gap solitons.

For fixed m1 the band structure (white regions in Fig. 7.1) takes the form of a countable
set of intervals in m0. The first of these intervals, −∞ < m0 < m∗(m1), is of infinite extent
and is called the semi-infinite gap. All higher gaps are finite open intervals. In the following
we study gap solitons restricted to the semi-infinite gap in which the ODE (7.2) has two
simultaneously hyperbolic fixed points. These two solutions are u(x) = 0 and a periodic
solution with period `, the period of the externally imposed potential. Here we interpret
the forced snaking solutions of chapter 5 in terms of gap solitons of the GPE. Some of the
solutions appear in earlier work [114, 151] but are not discussed at the level of detail included
here.

Homoclinic snaking [32, 33] is present in both discrete [37, 44, 144, 161] and continu-
ous [41, 67, 109, 150, 151] models of optical systems. This term describes the origin and
properties of a large or infinite multiplicity of spatially localized structures present within
an interval of parameter values such as those present in the Lugiato-Lefever equation [41],
a complex-valued equation for the amplitude of the (transverse) electric field in a continu-
ously pumped optical cavity. This equation is of second order in space and consequently its
stationary states solve a 4th order ODE which supports standard homoclinic snaking, eg.,
[67, 120, 150]. In contrast, the focus of this paper is on snaking that results from imposed
periodic spatial modulation, i.e., on forced snaking. It is generally assumed that the effects of
discreteness in a discrete system are analogous to the imposition of a periodic potential, the
Peierls-Nabarro potential. However, in such systems the spatial period is the discretization
length, in contrast to the system we study in which the period ` of the imposed poten-
tial is much larger than the discretization length which is taken to vanish (the continuum
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Figure 7.1: Band-gap structure in the (m0,m1) plane for the lowest three gaps of the lin-
earization of Eq. (7.2). Solutions that are homoclinic to u ≡ 0 (equivalently A ≡ 0) represent
solitons and exist only within the band gaps (white regions in the diagram).

limit). Since ` may be smaller than, comparable to, or larger than the intrinsic (nonlinear)
lengthscale of the fronts present in the continuum regime, several distinct cases arise. In
other words, the continuum problem contains a nontrivial extra parameter, the length ` of
the imposed potential, and its dynamics are therefore necessarily richer than those of the
discrete models studied, for example, in [37, 107].

This chapter is organized as follows. In section 7.2 we summarize the bifurcation structure
of the solutions in chapter 5 highlighting the aspects that are relevant in the gap soliton
context. We show that the spatial scale of the potential, `, has a major impact on the
bifurcation structure of these solutions. In section 7.3 we compute the linear stability of the
snaking solutions in the context of Eq. (7.1) and discuss the dynamics of perturbed solutions
in section 7.4. The chapter concludes with a discussion in section 7.5 and in section 7.6 we
detail our numerical methods. In Appendix C we report on a strongly nonlinear theory that
captures the behavior of oscillating localized states.

7.2 Forced snaking

For fixed parameters Eq. (7.2) possesses multiple multipulse solutions. As a function of the
parameter m0 these solutions lie on a countable set of distinct bifurcation curves. In chapter
5 we term this behavior forced snaking. These localized solutions are real-valued despite
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Eq. (7.2) admitting complex solutions. To see this we write u(x) = r(x)eiφ(x) yielding

rxx − rφ2
x − V (x)r + r3 − r5 = 0

d

dx
log
(
r2φx

)
= 0. (7.3)

Integrating Eq. (7.3) once leads to φx = Kr−2, implying that rxx−K2r−3−V r+r3−r5 = 0.
When K 6= 0 this equation does not admit solutions that are homoclinic to r = 0, i.e. to
u = 0, implying that such states are only possible when K = 0 and that φ is therefore
constant. Without loss of generality we take φ = 0.

The details of this bifurcation structure depend significantly the three parameters m0, m1

and ` characterizing the equation. In the following we summarize the main results concerning
localized states in Eq. (7.2). These fall into two distinct regimes depending on the lengthscale
of the forcing, `, and in each case are analyzed in stages as we increase the potential depth,
m1, from zero.

Short-scale forcing, ` = 10

For small values of ` the addition of periodic parametric forcing to the GLE model produces
localized states that exhibit classic snaking. The addition of parametric forcing on a short
lengthscale (here ` = 10) causes the constant amplitude solutions on the primary branch of
the GLE to become periodic with the same period as the forcing. Figure 7.2 shows a pair
of intertwined branches of localized states that bifurcate from the newly periodic primary
branch at low amplitude (location D) and enter a pinning region as they are continued in the
parameter m0, exhibiting snaking, before terminating on a branch of domain-filling periodic
states (location E). The solutions on these branches are characterized by the number N of
bumps of the periodic state contained within them. This number can be either odd or even.
Each back and forth excursion of the solution branch across the pinning region results in
the addition of one new bump on either side the solution thereby maintaining the parity of
N . In addition, a set of spatially asymmetric “rung” states connects opposite folds on the
snaking branches. Only one rung is shown in the figure. This structure does not change
qualitatively when m1 is increased.

Each N -bump solution occupies two consecutive sections of the snaking branch separated
by a fold on the right, a lower section with a larger slope and an upper one with a smaller
slope (Fig. 7.2). Figure 7.3 shows a pair of solutions, the dashed line from an upper section
and the solid line from the previous lower section, both at the same parameter value, showing
the process whereby the folds on the right are responsible for the appearance of an extra
pair of pre-bumps on either side. The center parts of the solutions are the same. As m0

decreases the pre-bumps grow into full bumps turning the state into a N + 2-bump solution.
The asymmetric rung branches can be understood in terms of this dichotomy. Rung

states, like the one shown in Fig. 7.2, are made up one half of the dashed solution and one
half the solid solution shown in Fig. 7.3. As they are continued in m0 the structure gains
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Figure 7.2: Bifurcation diagram showing periodic and localized states when m1 = 0.1, ` = 10
on a periodic domain. The two snaking branches shown are characterized by the number N
of bumps: even (blue) and odd (red). Connecting each pair of folds is a branch of asymmetric
rung states (green) only one of which is shown. The snaking branches bifurcate together from
(and reconnect together to) a domain-filling periodic state. Plots on the right show solutions
u(x) at points marked with (•), shown over the full domain 0 ≤ x ≤ 100. Solutions labeled
with (�,�) have m0 = − 3

16
and are relevant to the stability calculations (Fig. 7.6) and time

simulations shown below. Solutions marked with magenta circles are shown explicitly in
Fig. 7.3.

a single full bump on one side and thus changes parity (N bumps to N + 1). Thus rung
branches connect opposite folds on the odd and even branches. Previous work on “symmetry
breaking” in gap-soliton systems [103] has found similar asymmetric solutions.

Long-scale forcing, ` = 50

For larger values of the forcing wavelength, `, localized states persist but are not arranged in
the traditional “snakes and ladders” structure. As documented in chapter 5, the bifurcation
structure of the localized states now depends more strongly on m1. For small m1 classical
snaking is observed but at a moderate value, here m1 ≈ 0.035 with ` = 50, the snaking
structure breaks down entering a regime that we have termed “foliated snaking.” An example
of this scenario is pictured in Fig. 7.4 in which we plot soliton states taking the form of finite
pulse trains (FPT), with an odd number of peaks. Similar states consisting of a finite even
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Figure 7.3: Two successive 4-bump snaking solutions at m0 = − 3
16

, m1 = 0.1, ` = 10. The
stable solution is drawn with a solid line and the unstable one with a dashed line (see section
7.2). These solutions correspond to the magenta points in Fig. 7.2.
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Figure 7.4: Bifurcation diagram for m1 = 0.1 when ` = 50 showing FPT branches based on
one spike (blue), three spikes (red) and five spikes (green). The periodic branch is shown
in black. The branches interconnect at the left folds. Panels on the right show solutions
u(x) at points marked with (•), shown over the full domain 0 ≤ x ≤ 500. Solutions labeled
with (�,�) have m0 = −0.15 or m0 = −0.1 and are relevant to the stability calculations
(Fig. 7.7) and time simulations shown below.
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number of solitons are also present. In the foliated snaking regime soliton branches with
odd/even number of peaks maintain parity-preserving interconnectivity, but the bifurcation
diagram is significantly different. This is because the FPT states may sample solitons from
either the upper (lump) or the lower (spike) branch of periodic states (black curve in the
figure) resulting in FPT with all possible combinations of lumps and spikes, with gaps (u = 0)
permitted. The lumps and spikes are located at the cosine maxima (i.e., minima of V (x),
as expected). Because of the up-down symmetry, u → −u, states with negative (i.e., dark)
lumps are also present. Thus FPT consisting of a mix of bright and dark solitons are possible,
although these are not considered here.

All branches of localized states with spikes bifurcate from the primary bifurcation point
at m0 = mc and initially take the form of a pulse train with N spikes. As they are continued
in m0 the branch passes the leftmost fold thereby turning the spikes into lumps. Upon further
continuation the lump state undergoes a complicated set of bifurcations that ultimately add
a pair of spikes, one at either edge of the structure, and allow the branch of N lumps to
connect to that with N + 2. In principle arbitrary combinations of spikes and lumps can
be combined to form localized states indicating that the complete bifurcation diagram is in
fact much more complicated. Here we only consider states formed by either N spikes or N
lumps that are adjacent to each other.

The above scenario becomes yet clearer at larger m1 when the rightmost folds collide
with m0 = mc. Figure 7.5 shows the results for m1 = 1. Like the lower m1 value, pulse
trains can be constructed with either a lump, spike or u = 0 at each cosine maximum and
thus one can construct families of soliton states. A FPT with N lumps and M spikes when
continued in m0 below mc turns around at the left fold on the branch of periodic states.
At this fold the lumps and spikes coincide but as m0 increases back towards mc any spikes
in the structure shrink to u ≡ 0. Thus a 1-lump, 2-spike solution coincides with a 1-lump
solution when m0 = mc and the two branches meet in what is effectively a cusp.

The presence of the cusp is indicative of the separation of scales in Eq. (7.2). Between
the bumps the ODE solution is exponentially small (a property that is exacerbated as `
increases) and the nonlinear terms in Eq. (7.2) are therefore even smaller while the potential
is O(1). Thus to high accuracy the solution between the bumps may be taken to be u = 0.
This means that the localized soliton states behave as independent concatenations of lumps
and spikes rather than a single family: the nonlinear terms do couple the bumps, but do
so exponentially weakly. The cusps that are observed in the bifurcation diagram are thus
expected to be blunt upon close inspection, but with curvature inversely related to the
exponentially small coupling between the pulses.
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Figure 7.5: Bifurcation diagram for m1 = 1 when ` = 50 showing FPT branches based on one
spike (blue) and three spikes (red) emanating from the primary bifurcation and a mixed PT
branch consisting of one lump and two spikes (magenta) connecting the two. The periodic
branch in shown in black. Sample solution profiles are shown on the right.

7.3 Stability

The linear stability of the solution A(x, t) = e−im0tu(x) of Eq. (7.1) may be studied using
the Ansatz

A(x, t) = e−im0t
(
u(x) + [a(x) + b(x)]eσt + [ā(x)− b̄(x)]eσ̄t

)
followed by linearization in the complex amplitudes a and b. This procedure leads to a linear
eigenvalue problem for the growth rate σ:

−iσ
(
a
b

)
=

(
0 ∂xx + Ñ (u, x)

∂xx +Nu(u, x) 0

)(
a
b

)
≡ L

(
a
b

)
. (7.4)

In writing this equation we have assumed that u(x) is real-valued, with Ñ (u, x) ≡ N (u, x)/u,
Nu(u, x) ≡ ∂vN (v, x)|v=u and N defined as in Eq. (7.2). We solve this eigenvalue problem
using a Fourier pseudo-spectral method details of which are discussed in Appendix 7.6. This
eigenvalue problem has the null eigenfunction (a, b) = (0, u) with algebraic multiplicity 2.
The multiplicity of the eigenvalue can be seen by differentiating uxx + N (u, x) = 0 with
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respect to m0 yielding the identity

− [∂xx +Nu(u, x)]
∂u

∂m0

= u (7.5)

from which it follows that ∂m0u is a generalized eigenfunction with eigenvalue 0. The presence
of the potential breaks translation invariance which would otherwise generate an additional
null eigenfunction.

When σ 6= 0 this eigenvalue problem can be diagonalized, viz.

σ2a = −
[
∂xx + Ñ (u, x)

]
[∂xx +Nu(u, x)] a.

From reflection symmetry it is clear that if σ is an eigenvalue of this equation, then −σ
and ±σ∗ are eigenvalues also. Thus stable solutions have a spectrum entirely confined to
the imaginary axis. Instabilities occur when eigenvalues exit the imaginary axis into the
right half-plane. If these eigenvalues have zero imaginary part the instability is known as an
exponential instability; otherwise it is an oscillatory instability (OI). In this work we have
only found exponential instabilities; however, the occurrence of OI can be subtle [96] and
eigenvalues may have very small real parts. We leave a careful study of OI to future work.
In the diagonalization performed here σ2 > 0 corresponds to a pair of eigenvalues on the
real axis, symmetric about σ = 0, whereas σ2 < 0 corresponds to a pair of symmetrically
disposed eigenvalues on the imaginary axis. Since the diagonalized eigenvalue problem may
not capture all of the zero eigenvalues that are present we check the results by computing
the nullspace of the operators ∂xx + Ñ (u, x) and ∂xx +Nu(u, x) as well.

Short-scale forcing, ` = 10

Stability results for forced snaking solutions replicate known results at low amplitude and
exhibit stability switching at folds higher up on the snaking branch. In Fig. 7.6 we plot
curves of the squares of the three largest eigenvalues, σ2, as a function of the arclength s
along the two branches of snaking solutions measured from the bottom. These are computed
by calculating the entire eigenspectrum for a series of solutions along the bifurcation curve.
Folds on the solution branches are denoted by grey vertical dotted lines at the associated
location s. The continuation is initiated at low amplitude (point D in Fig. 7.2) where the
branch with an odd (even) number of bumps is stable (unstable). In the even case the
branch restabilizes before the first fold is reached but no stability change occurs in passing
the first fold on the odd branch. Despite this behavior at the lowest folds subsequent folds
do coincide with stability switching for the snaking solutions. Most of the unstable segments
of each branch are in fact unstable with respect to an additional unstable eigenvalue as well
that leaves the imaginary axis and returns to it between the folds. However, the real part
of this second eigenvalue is strictly smaller than that of the primary one and is thus of little
dynamical importance. As can be seen by the ordering of eigenvalues in the figure no other
eigenvalues go unstable in traversing either branch.
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Figure 7.6: The three largest linear stability eigenvalues σ2 for the solutions in Fig. 7.4
computed as a function of the arclength s. The largest eigenvalue σ2 is plotted using a solid
black line while all smaller eigenvalues are shown using a dashed line. Inset (A) represents a
branch of solutions with an even number of bumps while inset (B) represents a branch with an
odd number. Specific base states at m0 = − 3

16
(grey) and the corresponding eigenfunctions

(largest eigenvalue in black, second largest eigenvalue in blue) of the even-bump branch are
plotted above (A) with the corresponding results for the odd-bump branch shown below (B).
In each case the real part <[a(x)] of the eigenfunction is shown using a solid line while the
imaginary part =[b(x)] is plotted using a dotted line. In some cases a(x) ≡ 0 and we omit it
from the eigenfunction plot. In each case the open circles (which may overlap) indicate the
location of the base states used to compute the eigenfunctions shown.



CHAPTER 7. APPLICATION: GAP SOLITONS 129

The decorrelation between stability switching and the location of the folds is a conse-
quence of the structure of the temporal stability eigenvalue problem for solutions of the GPE
as explained in [159]. In this paper the author shows that for a large class of NLS-type equa-
tions the algebraic multiplicity of the 0 eigenvalue does not change at fold bifurcations in
the ODE (7.2). Thus, no eigenvalues can escape into the right half-plane. Instead, the effect
of the 0 eigenvalue of the operator ∂xx +Nu(u, x) is to change the geometric multiplicity of
the 0 eigenvalue of L. Specifically, at the fold bifurcation the identity (7.5) is invalid and
the eigenvalue 0 does not have any generalized eigenfunctions [159]. However, the algebraic
multiplicity of the zero eigenvalue of L is preserved by the presence of a “fold eigenfunction”
of the operator ∂xx +Nu(u, x). The effect on the 0 eigenspace of L can be thought of as a
change between the following Jordan blocks:(

0 1
0 0

)
→
(

0 0
0 0

)
.

The “fold eigenfunction” is intimately related to the divergence of the function ∂m0u as
the fold m0 = mF is approached, ∂m0u ≈ (m − mF )−

1
2 . Multiplying the identity (7.5) by√

m−mF before taking the limit shows that ∂m0u passes smoothly into an eigenfunction of
the operator ∂xx +Nu(u, x) at mF . Of course this mechanism does not preclude additional
eigenvalues passing through 0 at folds in the ODE but it does not mandate it. For a rigorous
treatment of this argument we direct the reader to Ref. [159].

The character of the instabilities and the failure to switch stability at the first folds
can be gleaned from the structure of the associated stationary state and its eigenfunctions.
Figure 7.6 shows the two eigenfunctions corresponding to the most unstable eigenvalues
(black and blue) at arclength locations marked by open circles. These points were chosen all
to be at the parameter value m0 = − 3

16
so that the periodic state is the same in all cases.

Because the eigenvalues observed here are all real the Ansatz (7.4) for the perturbations is
too general and we find that a(x) is purely real while b(x) is purely imaginary. We thus plot
<[a] with a solid line and =[b] with a dashed line in each subplot. In a few cases <[a] ≡ 0 and
is omitted. In each case the corresponding base state is shown in grey. All of the subplots in
each row have a consistent vertical scaling so the amplitudes of the nonlinear states can be
compared. The largest eigenvalue for the unstable states corresponds to an eigenmode (black)
that is antisymmetric across the structure with a(x) localized at the structure boundaries.
This type of edge-localized mode is observed in classical snaking systems. However, because
the corresponding b(x) 6≡ 0 this mode also rotates the real-valued stationary state u(x) into
a fully complex and hence dynamic state.

When there is a second unstable eigenvalue, the associated eigenmode is symmetric across
the structure. This mode thus corresponds either to growing or shrinking of the structure
depending on the sign of a(x). As in classical snaking, this mode takes the solution to the
branch segment above or below in the snaking structure by growing or shedding the bumps
at both boundaries of the structure simultaneously. However, because the associated b(x) is
again nonzero the resulting solution becomes fully complex and hence also time-dependent.
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Which mode is selected depends of course on the nature of perturbation around the stationary
state.

The symmetric mode is not always unstable, however, and remains stable along the first
instability intervals on both branches. We believe that this nonuniversal behavior, just like
the decorrelation between the first folds and stability switching, is a consequence of the
small spatial extent (and hence small norm) of the soliton states in this regime. Similar
pre-localized behavior near the base of the snaking branches is present in classical snaking
as well and causes the small-norm solutions to have different properties from their more
spatially extended brethren higher up on the branch.

Long-scale forcing, ` = 50

In the foliated snaking regime the stability results are considerably different. Figure 7.7
shows the squares of the largest eigenvalues, σ2, for the 1-lump and 3-lump foliated snaking
branches (blue and red branches from Fig. 7.4). The 1-lump branch is stable except during
pulse addition, i.e. between its second and last fold, where it is unstable. This instability is
the result not only of eigenvalue crossings at the folds but of additional crossings inside the
instability interval as well. The 3-lump branch has a similar structure with all the instability
intervals associated with the pulse addition process. The most remarkable feature of these
results is that stability switching does not occur at the spike-lump fold and pulse trains
with both spikes and lumps are stable. This is in significant contrast to the dissipative case
studied in chapter 5 where spikes are always unstable.

Solutions with N lumps and M spikes have a multiplicity N + M zero eigenvalue. The
intuition for this is as follows. The null eigenfunction (a, b) = (0, u) is localized at the
position of the solution. In a finite pulse train the solution nearly vanishes between the
lumps or spikes and therefore the nullspace can be parametrized by linear combinations of
the eigenfunctions (0, uk), where uk is the null eigenfunction corresponding to a solitary lump
or spike positioned at the kth cosine maximum.

7.4 Dynamics

In order to validate our stability calculations and determine the effects of perturbations to
the stationary snaking states we turn to time evolution of Eq. (7.1). These simulations are
executed in a rotating frame, that is, we set A(x, t) = e−im0tu(x, t) and study the evolution
of u(x, t). Details of the numerical implementation are documented in section 7.6. Equation
(7.1) has a number of conserved quantities including an “energy”

E ≡
∫

Ω

|ux|2 −
[
m0 +m1 cos

(
2πx

`

)]
|u|2 − 1

2
|u|4 +

1

3
|u|6 dx, (7.6)

where Ω is the system domain, as well as the L2 norm or “power” of the solution. We refer
to the integrand of Eq. (7.6) as the energy density E(u) of the solution. Because of these
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Figure 7.7: The five largest linear stability eigenvalues σ2 for the solutions in Fig. 7.5 com-
puted as a function of the arclength s. The largest eigenvalue σ2 is plotted using a solid
black line while all smaller eigenvalues are shown using a dashed line. Inset (A) represents
the single pulse FPT branch while inset (B) represents the three-pulse FPT branch. Typical
base states (grey) and eigenfunctions (largest eigenvalue in black, second largest eigenvalue
in blue) on the branch with with an even number of bumps are plotted above (A) with the
corresponding results for the branch with an odd number of bumps shown below (B). In
each case the real part <[a(x)] of the eigenfunction is shown using a solid line while the
imaginary part =[b(x)] is plotted using a dotted line. In some cases a(x) ≡ 0 and we omit
it from the eigenfunction plot. The states are mostly computed at m0 = −0.15 (except for
the one marked in red); their location is indicated using open circles (which overlap when
an eigenvalue is degenerate).
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conserved quantities it is often difficult to simulate dynamics on the real line if the solution
radiates energy. When the domain is unbounded radiation may escape to infinity and though
energy is conserved globally local dynamics appear to be dissipative [121, 122]. In simulations
of this type it is popular to replace the real line by a finite interval with artificial damping
imposed at the boundaries. We elected not to do this since there is no well-established
method for imposing the damping and incorrect methods will result in unphysical reflected
waves that interfere with the solution. For the simulations performed here we chose periodic
boundary conditions without any artificial damping. This choice allows us to make precise
statements about the time evolution of structures on a periodic domain.

This section is divided into three parts. We first focus on the linear dynamics associated to
gap soliton solutions, i.e., the time evolution of gap solitons subjected to small perturbations.
We observe that a perturbed unstable gap soliton typically evolves into a coherent state that
oscillates around a distinct stable stationary gap soliton. This observation leads to the
second part of the section in which we describe a set of strongly nonlinear dynamics of
perturbed stable gap solitons. We report a pair of unbinding phase transitions (or depinning
bifurcations) in which perturbed stable gap solitons transition from being bound (pinned)
by the periodic potential and confined in space, to having sufficient energy to propagate in
space. These transitions are strongly nonlinear because they require O(1) perturbations.
Aspects of these results are also supported by an asymptotic theory described in Appendix
C in which we show that the dynamics are well described by two degrees of freedom. The
third section ties these two parts together. We first show that the bound coherent states
arising from perturbed linearly stable and unstable gap solitons can be mapped onto the
theory we develop in Appendix C. We also show that the theory accurately describes one of
the unbinding transitions.

All of the time simulations performed here are done using the same basic set of param-
eters. The time integration is performed with a split-step method (see Appendix 7.6) with
n = 1000 spatial grid points and a time step dt = 0.001. The method is pseudo-spectral and
periodic boundary conditions are adopted. The energy E of the solution is well conserved
during all of the time simulations, varying at most on the order 10−9. To present the time
evolution results we have elected to show three solution measures: the amplitude |u| of the
solution, its real part <[u] and its energy density E(u). Since each of these solution measures
has very different scales we plot them with three distinct color maps that are kept consistent
throughout the chapter. This is reflected in Figs. 7.8 through 7.12.

Linear dynamics of gap solitons

Time simulation of snaking solutions for ` = 10 replicate known results for low amplitude
gap solitons in the semi-infinite gap. We confirmed through the linear stability calculation in
Fig. 7.6 and by time-stepping snaking solutions of Eq. (7.1) the well-known result that the 1-
bump branch is stable and the 2-bump branch is unstable near the primary bifurcation [160].
Owing in part to energy conservation, asymmetric perturbations such as multiplication by
a phase gradient, eiηx with η � 1, cause both 1-bump and 2-bump solutions to oscillate in
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space around the stationary solution. This is similar to known behavior for 1- and 2-bump
gap solitons both in the continuum regime [160] and in discrete models [107] although in the
present case the oscillations are more visible. We suspect that these oscillations are largely
suppressed by the damping boundary conditions and large value of m1 ∼ 6 for the confining
potential that are typically used in the literature [151, 160] in contrast to the case of periodic
boundary conditions with a modest value m1 = 0.1 used here. Stable solutions higher up on
the snaking branches have dynamics similar to those near the primary bifurcation. Because
solutions retain any energy associated with the initial perturbation these stable solitons all
execute qualitatively similar dynamics.

Linearly unstable solutions higher up on the snaking branches also all behave in a sys-
tematic fashion. Every N -bump solution exists on a stable and unstable branch segment
separated by a right fold (Fig. 7.2). The main difference in the profiles of the solutions on
these two segments is the presence of defects on either side as shown in Fig. 7.3. As can
be seen from Fig. 7.6 an odd parity eigenfunction is always associated to the most unstable
eigenvalue. This eigenfunction acts to grow one of the defects and eliminate the other. This
causes an N -bump unstable solution to evolve into an oscillatory solution that cycles around
another stable snaking state with N + 1 bumps. This evolution can be seen in Fig. 7.8. The
solution oscillates in space as can clearly be seen by comparing panels (a) and (b). We em-
phasize here that although the simulation is conducted in a particular rotating frame (fixed
m0) all the snaking solutions with different m0 remain valid solutions in this frame although
they now rotate in time. Thus, if the solution migrates towards another snaking solution
then generically it is expected to rotate as we observe. As alluded to above we conjecture
that the spatial oscillations would be suppressed or at least damped if the radiation given
off were allowed to escape. In this case the stable snaking solution to which the dynamics
appear to migrate may become an attractor in time.

When appropriate perturbations are selected the unstable symmetric eigenmode can also
be observed. In Fig. 7.9 the time evolution of a 3-bump snaking solution (point S3 in Fig. 7.2)
is perturbed by the symmetric eigenfunction. The growth of this mode causes the solution
to evolve into a breather whose width fluctuates sinusoidally in time. When the solution
width expands laterally (t ∼ 200, 500, 700) the inter-bump height decreases, preserving the
L2 norm. This is best seen in Fig. 7.9(a) or (c). At t ∼ 800 this process ends when the more
unstable asymmetric mode becomes visible. Because the equation is reflection-symmetric
this is likely due to the growth of numerical errors in either the initial condition or the
subsequent timesteps. Further time evolution (not pictured) confirms that beyond t = 800
both asymmetric and symmetric oscillations occur but the solution still remains localized
near a 3-bump snaking state.

Like stable forced snaking solutions, stable solutions in the foliated regime also have
simple dynamics. We focus on stable solutions with a phase gradient perturbation. Although
there are many qualitatively different types of stable solutions in the foliated regime they
all have oscillatory dynamics similar to the forced snaking case. To look at one specific case
we consider a 1-lump 2-spike solution from the 1-lump branch with a larger phase gradient
perturbation, η = 0.1. The initial solution, point S4 in Fig. 7.4, is the last base state pictured
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Figure 7.8: Time evolution of an unstable 2-bump snaking solution (point S2 in Fig. 7.2)
perturbed by the unstable antisymmetric eigenfunction. The initial condition is the second
base state pictured in Fig. 7.6 on the even branch. The simulation is performed with m0 =
− 3

16
, ` = 10. Plot (a) shows |u|, (b) <[u] and (c) E(u). The solution decays after t ≈ 180 into

an asymmetric oscillatory state that appears to cycle around a stable three-bump snaking
solution. Wave radiation is visible in panel (b).

in Fig. 7.7. When the phase gradient is this large the spatial and temporal oscillations are
clearly distinguishable (Fig. 7.10). Furthermore the lumps and spikes appear to oscillate
independently with oscillation frequencies that depend on the amplitude and spatial extent
of u(x). The lump oscillates in space and rotates in time while the spikes maintain their
phase and only oscillate in space. The spatial oscillation frequencies of the two spikes are
identical but smaller than that of the central lump.

The dynamics arising from the unstable branches of the foliated snaking states are com-
plicated. We only treat two examples here. Although the FPT made up of clearly separated
lumps and spikes are stable, the regime near m0 ≈ −0.15 includes a variety of unstable
solutions as well. As shown in Fig. 7.7 unstable solutions may possess a variety of unstable
modes but we only focus here on two examples, and only on the most unstable eigenmodes.
The first of these, S5 in Fig. 7.4, is the third base state on the 1-lump branch as pictured in
Fig. 7.7. This state has only one unstable eigenfunction and this eigenfunction is odd. The
time simulation in Fig. 7.11 shows that the solution decays after t ≈ 500 in a spectacular
fashion into three oscillatory pulses and a single traveling pulse. The spatial extent of the
oscillatory pulses varies and hearkens to the fact that lumps and spikes vary in amplitude
and width with m0. The oscillatory pulses are deposited in adjacent wells of the potential
and oscillate as trapped states.
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Figure 7.9: Time evolution of an unstable 3-bump solution on the odd snaking branch
snaking branch (point S3 in Fig. 7.2) perturbed by the symmetric unstable eigenfunction.
The initial condition is the second base state pictured in Fig. 7.6 on the odd branch. The
simulation is performed with m0 = − 3

16
, ` = 10. Plot (a) shows |u|, (b) <[u] and (c)

E(u). As a consequence of the initial perturbation the solution oscillates symmetrically in
space while rotating; at t ≈ 800 the (more unstable) asymmetric mode becomes apparent.
Though not shown here, evolution beyond this point is oscillatory and both symmetric and
antisymmetric dynamics occur.
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Figure 7.10: Time evolution of a stable 1-lump 2-spike solution on the first foliated snaking
branch (point S4 in Fig. 7.4) perturbed by a phase gradient η = 0.1. The initial condition
is the fourth base state pictured in Fig. 7.7 for the 1-lump foliated branch. The simulation
is performed with m0 = −0.15, ` = 50. Plot (a) shows |u|, (b) <[u] and (c) E(u). As a
consequence of the initial phase gradient perturbation the central lump oscillates in space
and rotates while the spikes at the sides only oscillate. The frequencies of the oscillations
depend on the spatial extent of the lumps/spikes.
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Figure 7.11: Time evolution of a 1-lump unstable solution on the first foliated snaking
branch (point S5 in Fig. 7.4) perturbed by an unstable antisymmetric eigenfunction. The
initial condition is the third base state pictured in Fig. 7.7 on the 1-lump foliated branch.
The simulation is performed with m0 = −0.1, ` = 50. Plot (a) shows |u|, (b) <[u] and (c)
E(u). The solution decays after t ≈ 500 into four distinct states. Three of these oscillate in
space and phase and appear to cycle around a variety of 1-pulse solutions. The oscillation
frequencies depend on the height and spatial extent of the pulses. A remaining pulse is
shed with a definite average speed to the right and in an infinite domain we expect this
“radiation” to continue propagating to infinity.

The last case of instability we consider is one in which one of the most unstable eigen-
functions is of even parity. The base state, S6 in Fig. 7.4, is the fourth on the 1-lump branch
as pictured in Fig. 7.7 and the time simulation is shown in Fig. 7.12. The evolution shows
that the state quickly evolves into a breather whose width oscillates regularly in time. We
have not investigated even parity instabilities systematically but conjecture that many of
them manifest themselves in a similar fashion.

Unbinding transitions

The study of traveling solitons in optical latices has a rich history. The specific phenomenon
of soliton unbinding and propagation takes the name “mobility” in much of the gap soliton
literature. A great deal of work has examined the mobility of solitons in discrete lattices
where uniformly traveling solutions do exist; we direct the reader to the review [91] for a
comprehensive history. This work includes proofs of existence of traveling solutions [112]
and examinations of the effects of phase gradient perturbations on stationary solitons [107].
For example, in [111] the speeds of solitons subject to such a perturbation are computed.
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Figure 7.12: Time evolution of a 1-lump unstable solution on the first foliated snaking
branch (point S6 in Fig. 7.4) perturbed by the symmetric unstable eigenfunction. The
initial condition is the fourth base state pictured in Fig. 7.7 on the 1-lump foliated branch.
The simulation is performed with m0 = −0.15, ` = 50. Plot (a) shows |u|, (b) <[u] and (c)
E(u). After t ≈ 100 the solution decays into a breather that maintains its parity in space
but oscillates in space, phase and amplitude.

To our knowledge less analytical work has been done in the continuum context [93, 165]. A
notable exception is Ref. [92] that focuses on a PT-symmetric cubic NLSE with spatially
periodic modulation in both linear and nonlinear terms and employs an adaptation of the
inverse scattering transform to compute soliton speeds analytically in the shallow potential
limit. We are unaware of any similar work on gap solitons in the cubic-quintic NLSE studied
in this chapter and now turn to examine, both numerically and analytically, the mobility of
gap solitons in this context.

Stable stationary gap soliton solutions have a temporal spectrum entirely contained on
the imaginary axis and thus oscillate when a small perturbation is added. Since Eq. (7.1)
conserves energy it is natural to parametrize perturbed stationary solitons by their extra
energy. When this energy is small the dynamics are determined by the linear spectrum of
the stationary solution and are thus oscillatory. For larger energies the dynamics are fully
nonlinear. When the energy of the perturbed soliton is sufficiently high it unbinds from
the potential allowing the fronts flanking the localized state to propagate. Some of this
dynamical behavior is captured by the strongly nonlinear asymptotic analysis contained in
Appendix C.

We first turn to asymmetric perturbations. In line with the theory (Appendix C) we
consider perturbations with a uniform phase gradient so that the initial condition is u(x, 0) =
eiηxu0(x) where u0(x) is a stationary gap soliton solution. As shown in Appendix C the
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Figure 7.13: Time evolution of a stable 1-lump solution on the first foliated snaking branch
(point S7 in Fig. 7.4) with a phase gradient perturbation of magnitude (a) η = 0.1, (b)
η = 0.4 and (c) η = 1 shown in terms of a space-time plot of |u(x, t)|. The simulation is
performed with m0 = −0.15, ` = 50. For small η (a) libration occurs. As η is increased
the solution begins to unbind (b) and when η is sufficiently large the solution travels with
nonzero average speed (c).

dynamics of the center of mass of such an initial condition follow that of a mathematical
pendulum. Specifically, as η is increased from zero the motion transitions from the “libration”
regime, in which the soliton’s center of mass oscillates with zero average speed, to the
“rotation” regime, where the center of mass moves with nonzero average speed. Three
snapshots of this transition are shown in Fig. 7.13. In panel (a) of the figure a 1-lump gap
soliton (solution S7 from Fig. 7.4) with an added initial phase gradient η = 0.1 executes
libration motion. As the initial phase gradient is increased the soliton begins to depin and
splits into pulses some of which move with a nonzero average speed (rotation regime) while
others remain pinned executing libration. This is shown in panel (b) of Fig. 7.13 where
η = 0.4. As the leading pulse propagates it deposits “mass” into successive wells of the
potential. Because the equation is mass-preserving the leading pulse is drained of mass as
this occurs and may itself become trapped (Fig. 7.14). Further increase in η shifts the motion
more solidly into the rotation regime. For large enough η the bulk of the pulse does not split
but moves with a single nonzero average speed, Fig. 7.13(c). Although a small amount of
mass appears to escape from the moving pulse the fraction of mass lost is trivial compared
to the total. On a periodic domain integration for longer times reveals a stationary state in
which the pulse travels at a same constant average speed. The average speeds of the center
of mass of these pulses are well predicted by our asymptotics (see below).
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The crossover from the libration to the rotation regime is associated with complex be-
havior, particularly in the long time limit. In the early stages of unbinding solution S7
propagates with a nonzero average speed but still loses mass in the potential. A long time
simulation is shown in Fig. 7.14. The solution propagates while shedding pulses which are
trapped by the potential much like occurs for an unstable solution in Fig. 7.11. Because
the domain is periodic the leading pulse eventually collides with the remains of the original
state near t = 700, giving up most of its mass but allowing a small and faster untrapped
pulse to propagate away on the far side. This reconnection is facilitated by the potential
and is unlike the true soliton behavior of the unforced NLSE since mass is exchanged be-
tween the colliding pulses. A later stage of this dissolution process for a larger perturbation
gradient, η = 0.8, is shown in Fig. 7.15. Here the bulk of the mass travels with a nonzero
average speed. Fracturing of the leading pulse leads to smaller pulses that are slower but
still untrapped Only a small amount of mass is trapped in the wells of the potential. As
time progresses splitting of the pulses continues until masses traveling at a range of average
speeds are present. Of particular interest are the small amplitude quasistationary structures
deposited by the drifting pulse; these represent lost mass trapped in different wells of the
potential. We have not investigated this behavior for arbitrarily large domains but here, in a
finite domain, the solution appears to reach a pseudo-steady state. We conjecture that on an
infinite domain the initial pulse or soliton disintegrates in a similar fashion, and eventually
ceases to exist as an identifiable structure. As η increases further the pulses travel at larger
and larger average speeds and appear to execute fewer oscillations. These oscillations are
never eliminated, however, since states traveling at constant speed cannot exist in equations
like Eq. (7.1) when m1 is nonzero, cf. [124].

We next examine the effect of a symmetric perturbation on the unbinding transition. In
order to study symmetric modes we consider a phase perturbation of a stationary gap soliton
that is symmetric with respect to the soliton’s center of mass. Specifically, we take initial
conditions of the form u(x, 0) = eiρ(x−α)2u0(x), where x = α represents the location of the
soliton’s center of mass.

Because of the mass-conserving property of Eq. (7.1) symmetric perturbations of sufficient
amplitude cause a qualitatively different transition from antisymmetric ones. As in the
antisymmetric case the local phase gradient at the position of the fronts flanking the localized
state determines the direction of the front motion. In the antisymmetric case the phase
gradient at both fronts is identical and both fronts move in the same direction with the same
speed, regardless of whether the motion is a libration or a rotation. The main qualitative
difference in the symmetric case is that the sign of the phase gradient is now opposite at
the two fronts. As a result for small ρ each front moves with the same speed but in opposite
directions generating a state that is a symmetric analog of libration, i.e., a breathing state,
as shown in Fig. 7.16(a) where ρ = 0.01. As can be discerned from the coloring of the
plot the amplitude of the pulse grows when its width decreases and vice versa. Thus the
dynamics conserve the soliton mass. When ρ is increased to a sufficient extent the fronts
acquire a nonzero mean speed and propagate outward away from the center of the structure,
Fig. 7.16(b). This causes a competition between the growth in width of the pulse and decrease
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Figure 7.14: Long time evolution of a stable 1-lump solution on the first foliated snaking
branch (point S7 in Fig. 7.4) with a phase gradient perturbation of magnitude η = 0.3 shown
in terms of a space-time plot of |u(x, t)|. The simulation is performed with m0 = −0.15,
` = 50. The simulation shows that initially the pulse propagates with the theoretically
predicted velocity but soon breaks up at t ≈ 50 into an oscillating structure and a propagating
pulse which subsequently sheds mass into the wells of the potential depositing a sequence of
trapped pulses. Because the domain is periodic a collision between the remaining traveling
pulse and the original pulse occurs near t ≈ 700 resulting in the reabsorption of most of its
mass by the original pulse and diffraction of the traveling pulse that remains.
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Figure 7.15: Long time evolution of a stable 1-lump solution on the first foliated snaking
branch (point S7 in Fig. 7.4) with a phase gradient perturbation of magnitude η = 0.8 shown
in terms of a space-time plot of |u(x, t)|. The simulation is performed with m0 = −0.15,
` = 50. The simulation shows that even at late times the solution continues to propagate
and shed mass into the wells of the potential. Because the domain is periodic a type of
pseudo-steady state is achieved at very long times in which the solution mass disperses into
components propagating at a range of speeds.
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Figure 7.16: Time evolution of a stable 1-lump solution on the first foliated snaking branch
(point S7 in Fig. 7.4) with a symmetric phase gradient perturbation of magnitude (a) ρ =
0.01, (b) ρ = 0.02, (c) ρ = 0.1 shown in terms of a space-time plot of |u(x, t)|. The simulation
is performed with m0 = −0.15, ` = 50. For small ρ (panel (a)) breathing motion occurs.
As ρ is increased the solution begins to unbind symmetrically and the fronts bounding the
pulse propagate in opposite directions with identical speeds (panels (b) and (c)).

in its amplitude. For ρ = 0.02, panel (b), the fronts detach from the central structure in
the form of two traveling pulses, and leave a librating or breathing mode at the center. For
even larger gradients, ρ = 0.1 in panel (c), the soliton expands yet more rapidly although a
breathing structure in the center remains. We have found a qualitatively similar sequence
of transitions for other symmetric perturbations, such as eiρ|x−α|u0(x), and conjecture it to
be generic.

Perturbations that involve a combination of symmetric and asymmetric parts exhibit
similar “two regime” dynamics. We do not perform a complete analysis of the general case,
eiη(x−α)+iρ(x−α)2u0(x), but provide two examples in Figs. 7.17 and 7.18. In Fig. 7.17 we
set η = 0.1, ρ = 0.01 and show that the gap soliton falls into a libration regime in which
both symmetric and antisymmetric oscillations of different periods occur. When η and
ρ are increased sufficiently the soliton undergoes an unbinding transition similar to those
described above albeit asymmetrically. That is, the fronts on either side propagate outward
at different speeds. This is shown in Fig. 7.18 where η = 0.2 and ρ = 0.02. Initially the two
fronts propagate in opposite directions with different speeds. In a short time the structure
is shorn apart when a series of pulses escape to the right leaving a librating mode at the
origin. The process of unbinding is evidently complex and we do not attempt to analyze
it further. In principle one could predict thresholds in the (ρ, η) parameter space for the
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Figure 7.17: Time evolution of a stable 1-lump solution on the first foliated snaking branch
(point S7 in Fig. 7.4) with a phase perturbation with η = 0.1 and ρ = 0.01 shown in terms
of a space-time plot of |u(x, t)|. The simulation is performed with m0 = −0.15, ` = 50.

unbinding transition but we leave this type of analysis to future work.

Analysis of coherent states

In this section we project the time evolution dynamics of the previous sections onto the two
degrees of freedom described by the theory in Appendix C. This theory is designed to capture
the dynamics of the center of mass of a pulse-like solution, for which we derive an ODE, and
is therefore applicable to dynamics governed by spatially asymmetric modes. Concretely,
the theory applies to scenarios such as those portrayed in Figs. 7.8, and 7.10 but not those
in Figs. 7.9 or 7.12. The theory also applies in situations where the center of mass has a
nonzero average speed as in the case of the first unbinding transition (Fig. 7.13).

We divide this section as follows. We first discuss the application of our theory in the
libration regime for a pulse with a phase gradient perturbation. In this case the PDE initial
condition can be mapped directly to an initial condition for the ODE. Next we describe the
evolution shown in Fig. 7.8 in which an unstable solution evolves into an oscillatory coherent
state. In this case we do not know the initial conditions for the ODE. Finally, we discuss
the application of the theory in the rotation regime and compute the average speed of a
traveling pulse.

As a first application of the theory in Appendix C we turn to the evolution of the single
pulse solution S7 with a phase gradient perturbation η = 0.1. This is the same simulation
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Figure 7.18: Time evolution of a stable 1-lump solution on the first foliated snaking branch
(point S7 in Fig. 7.4) with a phase perturbation with η = 0.2 and ρ = 0.02 shown in terms
of a space-time plot of |u(x, t)|. The simulation is performed with m0 = −0.15, ` = 50.

as that shown in Fig. 7.13(a) but we integrate the solution until t = 3000. Although the full
time evolution plot is omitted here the dynamics are nearly identical to those of the central
pulse in Fig. 7.10. The Ansatz for the solution that is used in our theory is

A(x, t) = ei
∫
ω(t)dt+i

α̇(t)
2

(x−α)v(x, t)

where v is a near-stationary pulse and α is its time-dependent center of mass (see Appendix
C for more details). At every time step we compute the center of mass, x = α(t), of the
solution using Eq. (7.8) and extract the phase

∫
ω dt from the nearest point on the mesh to

x = α. We fit a linear regression to
∫
ω dt and subtract the trend, producing Ω(t). The time

series for α and Ω are easiest to understand in Fourier space and are shown in Fig. 7.19(a)
and (b). These signals can be messy and difficult to differentiate with respect to time which
is required to compare the numerical results with the ODE description. To regularize them
we set to zero all Fourier amplitudes corresponding modes with wave number outside the
boundary of the figure. After regularization the phase ω is reconstructed by differentiating
Ω in Fourier space and adding back the slope of the trend in real space. Finally, a snapshot
of the solution amplitude is shown at a fixed time in Fig. 7.19(c) in order to map the pulse
width onto the theory. Here we show the theoretically predicted pulse width L (dashed black
line) according Appendix C along with an empirically determined width (grey line). These
lines indicate the locations of the fronts bounding the structure at each instant in time.
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Figure 7.19: Amplitude of a discrete Fourier transform of the time series for (a) Ω(t) and
(b) α(t) as a function of the Fourier space wave number ν for the time evolution of solution
S7 with η = 0.1. All Fourier amplitudes corresponding to frequencies beyond the domain
size are set to 0. (c) |u(x, 500)| on the interval [−100, 100] along with lines denoting the
positions of the fronts. Each pair of lines is placed symmetrically with respect to α(500):
width L = 25 (black dashed) and width L = 31 (grey).
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We evaluate the accuracy of the ODE description of the PDE dynamics (Eqs. (C.3)-
(C.4)) using three distinct projections as depicted in Fig. 7.20. The first of these, (a) in
the figure, uses the energy of the solution (Eq. (7.6)). We plot the PDE energy, E , using a
dashed black line which is conserved along with the energy in the Ansatz used in the theory,
Eq. (C.1). After performing the energy integral with Eq. (C.1), the Ansatz energy becomes
a function of α and α̇ (E = f(α, α̇)) which we evaluate using the measured signal. Because of
inaccuracies arising from the numerical differentiation of the signal near the boundary of the
time domain we suppress the plotted signal near the boundary both here and in subsequent
plots in this section. A red line denotes the average of the Ansatz energy. Though the
Ansatz energy fluctuates in time its average represents approximately ∼ 84% of the total
energy. This mismatch is likely a consequence of the fact that the Ansatz is a low order
approximation allowing energy loss in the form of radiation (which is not in our Ansatz),
and that the sampling of α(t) is insufficiently precise. This is potentially the cause of the
very slight drift in Ansatz energy (Fig. 7.20(a)) seen over the sampling interval.

The second projection, Fig. 7.20(b), is onto the phase space of Eq. (C.4). We plot the

trajectory in the space (β, α̇) where β =
√

2λ`
π

sin
(
πL
`

)
sin
(
πα
`

)
. In these variables true

trajectories of the ODE are circles. By inspecting Eq. (C.1) it is evident that an initial
phase gradient perturbation η corresponds to an initial value α̇(0) = 2η for the ODE. The
ODE trajectory corresponding to this initial condition is shown as a red circle. In order to
plot the sampled dynamics the pulse width, L, must be specified. The theory predicts that
L = 25 (shown in black) but we also plot an empirically chosen width L = 31 in grey (see
Fig. 7.19(c)). Although the theoretical prediction is not far off, the grey curve is in near
perfect alignment while the black curve is not. We suspect that this has to do with the
extent to which the Ansatz can model lump states at lowest order and conjecture that a
higher order asymptotic calculation would lead to an improved prediction of the location of
the two fronts.

The last projection onto the ODE, Fig. 7.20(c), examines the prediction for the phase
variable ω. The theory predicts a phase ω = 3

16
+ ε ω2(t) ≡ ωT which we plot for L = 25

(black) and L = 31 (grey) along with the sampled signal ω ≡ ωS (blue). The averages of the
signals are plotted with dashed lines. The figure shows that despite the fact that the signals
are not perfectly periodic the dominant period is the same for all three and ωS is exactly
out of phase with the other two. When we use the theoretically predicted width L = 25, we
find that the signal amplitudes of ωT and ωS appear to be in good agreement although their
means differ. However, with the empirically determined width L = 31 the means are in good
agreement. It is worth noting here that because the evolution of the PDE solution behaves
as ei

∫
ω dt the mean of ω provides the dominant contribution to the oscillations observed in

the <[u] plots earlier in this section.
Next we turn to the evolution in Fig. 7.8. Because there is an initial transient during

which the initial condition destabilizes before entering a coherent state we measure the signals
α and ω only after t ∼ 300. The signals are much noisier in this case although the same
double peak signal is present for α (not pictured). In this case we have chosen not to set an
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Figure 7.20: ODE projections for dynamics of solution S7 with η = 0.1. (a) The PDE energy
E (Eq. (7.6)) as a function of time (black dashed) along with the instantaneous energy E(t)
from the Ansatz (C.1) (black solid) and its mean (red). (b) α(t) in the phase space of

Eq. (C.4) where β =
√

2λ`
π

sin
(
πL
`

)
sin
(
πα
`

)
. Trajectories of the sampled signal are plotted

for the cases L = 25 (black) and L = 31 (grey) along with the analytical trajectory for the
initial condition α̇(0) = 0.2 (red). (c) The sampled signal ωS as a function of time (blue)
along with ωT for the cases L = 25 (black) and L = 31 (grey). The means of the signals are
shown with a dashed line. To make the periods distinguishable the signals are plotted up to
t = 1000 though the time evolution is carried out to t = 3000.
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empirical pulse width and use the analytical prediction L = 25. The ODE projections are
shown in Fig. 7.21. Here the Ansatz energy, panel (a), appears to be much noisier than in
the previous case. This is likely due both to the relative increase in radiation which is visible
in Fig. 7.8 and also to the fact that the PDE solution does not map directly to a single ODE
trajectory. This is because the projection of the PDE dynamics provides a 1D picture of the
dynamics in the ODE phase space. Unlike the case of a phase gradient perturbation, which
maps to a unique ODE trajectory, arbitrary perturbations of the PDE solutions can lead to
energy transfer between different PDE modes potentially resulting in the evolution of the
ODE energy when projected down to the ODE phase space even though the ODE conserves
energy.

Despite the noise, the average energy is again close to the total PDE energy and we
therefore argue that the model captures a significant portion of the dynamics. Using the
mean Ansatz energy an initial value for α̇ can be constructed by setting α = 0. The ODE
trajectory corresponding to this energy level is plotted in Fig. 7.21(b) in red along with the
sampled trajectory for α in black. The solution can be seen to oscillate near the red line
although occasionally it makes deviations. Since the PDE dynamics occur in a nominally
infinite-dimensional phase space we cannot hope to capture all the details using a 1D model.
However, the agreement that we see in panel (b) of the figure suggests that despite this
fact our 1D theory does indeed capture a large portion of the dynamics even though energy
contained in other PDE modes does cause deviations from the ODE phase space trajectory.

Panel (c) of Fig. 7.21 shows the behavior and prediction of the phase. As is obvious
from Fig. 7.8(b) the phase behavior in this simulation is complicated and sampling ω is
somewhat messy. Despite regularizing the signal the sampled phase (blue curve) likely
has an exaggerated amplitude although the mean should be accurate. We find that the
theoretical prediction with L = 25 agrees well with this mean (black line) and this is so for
the oscillation period as well. The oscillations do not, however, agree in amplitude.

To close this section we look at the theoretical predictions in Appendix C for the rotation
regime. Specifically we return to the evolution of solution S7 with a large phase gradient
perturbation (Fig. 7.13(b) and (c)). Our theory predicts that for sufficiently large phase
gradients the center of mass of the solution will begin to propagate with nonzero mean
speed. This speed can be computed analytically as done in Appendix C. In Fig. 7.22 we show
this analytical prediction (black) along with the numerically measured speeds for increasing
initial phase gradient η (blue points). The simulations are carried out by timestepping the
solution to t = 100 and tracking the center of mass x = α(t). A linear regression is fit to the
trajectory in order to measure the speed. For lower values of η, nearer the transition from
the libration regime, the speed measurement is less accurate. By η = 0.8 the measured and
predicted speeds are in near perfect agreement. Although not shown here we have verified
that Eq. (C.3) also becomes increasingly accurate as η moves farther into the rotation regime.
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Figure 7.21: ODE projections for dynamics of Fig. 7.8. (a) The PDE energy E (Eq. (7.6))
as a function of time (black dashed) along with the instantaneous energy E(t) from the
Ansatz (C.1) (black solid) and its mean (red). (b) α(t) in the phase space of Eq. (C.4) where

β =
√

2λ`
π

sin
(
πL
`

)
sin
(
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`

)
, with the black line showing the PDE trajectory for the sampled

signal with L = 25 and the red line the trajectory from Eq. (C.4) with initial condition
determined by the mean Ansatz energy. (c) The sampled signal ωS as a function of time
(blue) along with ωT for the case L = 25 (black). The means of the signals are shown with
a dashed line.
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Figure 7.22: Average speed vrot of the center of mass of solution S7 as a function of η, the
phase gradient of the applied perturbation. The theoretical prediction given by Eq. (C.6) is
shown in black while the empirical speed obtained from the simulation results is shown in
blue.

7.5 Discussion

Owing to the enormous body of work on gap solitons we begin the discussion by emphasizing
the key new results in this work.

• We show that the lengthscale of the periodic potential, `, can greatly affect the bifur-
cation structure of the solutions that are present in the semi-infinite gap. We report
new gap solitons exhibiting foliated snaking along with their bifurcation structure and
stability. Specifically we show that solutions are either “multipulse solitons” exhibit-
ing classical snaking or “soliton complexes” exhibiting foliated snaking, depending on
` and m1.

• We demonstrate that gap solitons depin in a systematic fashion when perturbed by
asymmetric and symmetric phase gradients.

• We provide a strongly nonlinear theory to describe the dynamics of gap solitons subject
to a phase gradient perturbation. This theory accurately predicts the speeds of rapidly
propagating solitons.

The impact of the lengthscale of the potential, `, is derived from its relation to the
spatial decay rate of fronts in the unforced equation. When m1 = 0 Eq. (7.2) has a unique

lengthscale, λ, determined by the decay rate of fronts that connect u = 0 to u =
√

3
2

. These
fronts have a spatial decay rate equal to the spatial eigenvalue of the linearization around
u = 0. These fronts are used in our asymptotic analysis in Appendix C. This lengthscale
persists when m1 > 0 and its value relative to the imposed lengthscale of the potential
determines the bifurcation structure of localized solutions. In the limit ` � λ the fronts
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span multiple periods of the potential and classical snaking results. In the gap soliton
literature these states are frequently referred to as multipulse solitons. In the opposite limit,
`� λ, a pair of fronts fits inside each period of the potential thus supporting a single pulse
at every cosine maximum. This is the foliated snaking regime and the resulting states are
frequently known in the literature as soliton complexes. We show that the choices ` = 10 and
` = 50 are able to capture these two distinct regimes although m1 must be sufficiently large
to establish foliated snaking. In sufficiently shallow potentials we conjecture that classical
snaking occurs always.

Turning to dynamics we show that gap solitons depin from the potential under suffi-
ciently large phase gradient perturbations and capture this behavior with a strongly nonlin-
ear theory. Through our theory of soliton depinning we were able to identify the two broad
dynamical regimes (libration and rotation) that result from phase gradient perturbations.
Specifically, the theory shows that the dynamics of the center of mass behaves like a pendu-
lum. By extrapolating from the numerical simulations of symmetric perturbations we can
conjecture that each front bounding the localized states has this pendulum-type behavior.
Of particular interest is our observation of soliton fission, in which a depinned soliton ra-
diates energy and breaks up into less energetic components that can then become trapped
again.

The main natural extension of this work is to higher dimensions, cf. [44]. A significant
literature already exists on localized snaking solutions in discrete and continuous models in
two and three dimensions. To our knowledge the effects of the potential lengthscale have
not been studied in these contexts and foliated snaking is likely to play an important role.

Further extension of this work to study of the effects of ` on gap solitons in higher
gaps is also envisaged. These gap solitons are quite different than those in the semi-infinite
gap studied here since there is no stable stationary front when m1 = 0 out of which they
can be constructed. Of course, the possibility that classical and foliated snaking may be
differentiated in experiments in photonic systems is also exciting. Some work along these
lines has been initiated in dissipative systems that also exhibit forced snaking [76] but we
are not aware of any such work in optical systems.

7.6 Numerical methods

Linear stability calculations

Temporal stability calculations were performed by discretizing the linear eigenvalue prob-
lem using pseudo-spectral methods [147]. After discretization the block off-diagonal matrix
eigenvalue problem for the eigenvalue σ was transformed to one of half the dimension for the
eigenvalue σ2.

As a pre-processing step for the stability calculations we transfer the ODE solutions to
a uniform mesh by interpolation and then run a series of Newton iterations to increase the
accuracy of the solution. Away from bifurcation points we do this using a Newton Conjugate
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Gradient method with preconditioning as described in [160]. The solution is approximated
at 1000 points with pseudo-spectral derivatives and the Newton iterations are run until
‖N (u)‖2 ≤ 10−14. Despite the comments in [158] we observe failure of this method nearby
fold bifurcations. At these points the Jacobian is rank-deficient and unchecked Newton
steps along its null space typically lead to divergence. We remedy this by performing a
singular value decomposition of the Jacobian at each Newton update step and subtract off
the projection of the Newton update along the singular vectors whose singular value falls
below some threshold. At degenerate folds we typically observe that more singular values fall
below the threshold as the Newton updates proceed. This method eliminates any Newton
descent along the selected directions. Thus in order to optimize the accuracy of the solution
it is important not to subtract off projections until the associated singular value is small.
The threshold for this procedure is sensitive to the number of points in the discretization and
undoubtedly the accuracy of the conjugate gradient calculations. After appropriately tuning
the threshold, we observe a typical convergence to ‖N (u)‖2 ≤ 10−11 using this method.

Time evolution simulations

Time-stepping simulations are implemented with the split-step method Eq. (3.7). Details
can be found in [160]. Because (3.7) corresponds to rotations in either real or Fourier space
it preserves the L2 norm and energy of the solution up to numerical errors. We observe good
energy preservation for long simulation times.

Computation of the center of mass

In this section we detail the numerical implementation of the center of mass detection. A
natural definition for the center of mass, x = α, is

α ≡ 1

||u||

√∫
Ω

xu2 dx. (7.7)

However, on periodic domains Eq. (7.7) is not straightforward to implement. This is because
the weight x in Eq. (7.7) is not a periodic function. If the solution stretches across the
boundary of the domain then the weight is incorrect. Specifically, Eq. (7.7) will give the
correct center of mass on an interval but not on a circle. Solving the problem of properly
weighting u to compute the center of mass on a circle is nontrivial since we only have access
to a numerical sample of u(x) and not the function itself, and of course we do not know α a
priori. We therefore require a method that only uses integrals over u(x).

We propose the following method to determine α. First we define the constants A and
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B,

A =

∫
Ω

sin

(
2πx

D

)
u2(x) dx

= cos

(
2πα

D

)∫
Ω

sin

(
2πz

D

)
u2(z − α) dz − sin

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz

≈ − sin

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz

B =

∫
Ω

cos

(
2πx

D

)
u2(x) dx

= cos

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz + sin

(
2πα

D

)∫
Ω

sin

(
2πz

D

)
u2(z − α) dz

≈ cos

(
2πα

D

)∫
Ω

cos

(
2πz

D

)
u2(z − α) dz ,

where D is the domain length. To obtain these expressions we work in the center of mass
frame and assume that the structure is approximately symmetric in this frame. This ap-
proximation is also inherent in the standard definition, Eq. (7.7). We define the location of
the center of mass by

α ≡ D

2π
arctan

(
−A
B

)
. (7.8)

This definition treats the interval [0, D] as periodic and gives the correct weighting to solu-
tions that span the boundary. We have found it to be much more accurate than Eq. (7.7).
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Chapter 8

Impact and Outlook

The heart of this dissertation describes a mechanism by which spatially forced weakly sub-
critical systems support a family of localized states. This phenomenon occurs in a variety
of physical systems both dissipative and not. In this final chapter we briefly place the con-
tributions of this work within a broader view of the field and then focus on possible future
research directions.

8.1 A broader context

The front propagation problem is an old one, some of the earliest work dating back to
1937 when Fisher published “The wave advance of advantageous species,” and Kolmogorov,
Petrovsky and Piskunov simultaneously published “A study of the diffusion equation with
an increase in the amount of substance.” From then on front propagation occupied a major
area of research in a variety of disciplines. One important application was in the field of
pattern formation where amplitude equations exhibiting front phenomena could be rigor-
ously derived. Our work fits into this effort. Specifically, fronts in Eq. (1.1) were studied
extensively in the 1980s and 90s but a full derivation of the exact front exhibited in chapter
4 was never completed. We reiterate moreover that since all systems which undergo a change
from sub to supercriticality for appropriate parameters pass through the limit in which Eq.
(1.1) is applicable our work is of wide appeal. We are aware of at least one case [105] in
which the analytical expressions that we derived for the front speed (vN) and trailing wave
number (qN) are in use for ongoing research.

One of the main applications of the exact front solution that we study in chapter 4 is the
transition between pulled and pushed fronts for propagation into an unstable state. This
topic remains a current area of research and much remains unknown [16, 17, 66]. Predictions
based on the nonlinear marginal stability conjecture for front speeds were known in the case
a1 = a2 = 0 [136] but we generalized them. In particular we showed that in some parameter
regimes crossover to pulled fronts does not occur no matter how unstable the trivial state,
and that in others the crossover occurs immediately when the trivial state destabilizes, i.e.
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at µ = 0. We also identified a series of behaviors including wave number resetting phase
slips and chaotic fronts in Eq. (1.1) that are known in other models [133].

As part of our front selection analysis we also performed an explicit calculation of sec-
ondary front speeds. In performing this type of calculation the wave number k in the dis-
persion relation σ(k) is promoted from real to complex and equations for the speed involve
complex derivatives of σ. In the case considered here the dispersion relation is not analytic in
k and has branch cuts which renders a straightforward analysis tremendously complicated.
Instead our approach was to perform a homomorphic transformation of k eliminating the
branch cuts and ultimately reducing the problem to intersections of polynomials. In this
form we were able to clearly distinguish cases in which k is real and those where it is not,
analytically as a function of parameters. Although this type of problem appears frequently
these techniques are not in widespread use and it is more typical to use numerics. Our con-
tribution shows that after reduction to polynomials significant understanding of the solution
structure can be gained analytically despite not having explicit solutions for k.

Amplitude equation (1.1) is also the setting for the main results in this work concerning
forced snaking. We show that homoclinic snaking occurs in second order systems that
have spatial periodic parametric forcing. One of the main appeals of this result is that the
system under consideration is strikingly minimal. We combine what is in effect a real-valued
bistable reaction diffusion equation with the requirement that the state bistable with u = 0
be periodic. This second condition is enforced by promoting one of the coefficients of the
equation to a periodic function of space. These ingredients are sufficient to support snaking
solutions which generalizes the maxim “snaking requires oscillatory tails which only occur in
fourth order systems.” Here the precise meaning of “oscillatory tails” is that the state u = 0
have spatial eigenvalues with nonzero imaginary parts. Our result shows that this is not a
strict requirement for snaking, since here the linearization of u = 0 is a second order Floquet
problem, and that more care must be taken in non-autonomous problems. Because the form
of the forcing in this work is a cosine the exact model can be written as a fourth order
nonautonomous dynamical system, but snaking surely occurs in second order systems with
more general types of forcing that preclude this simple reduction. As a result our discovery
of forced snaking shows that snaking phenomena are indeed more generic and ubiquitous
than previously thought.

A further ramification of our results concerning forced snaking is the theoretical validation
of a number of experiments. Specifically, we reproduce the snaking behavior observed in [75,
76] and have set it in a more general context. We also show, with our work on foliated
snaking, that the experimental parameters matter. Depending on the balance of system
parameters very different snaking structures may appear, either forced or foliated. Moreover
this balance can be tuned by adjusting the lengthscale of the imposed spatial forcing. To
our knowledge foliated snaking has not been observed in experiments. In addition, the
experimental observations of forced snaking in dissipative systems have not captured unstable
states which play a crucial role in the bifurcation structure. Observation of unstable states
might be achieved in future research by the application an appropriate control method as in
the work of [153].
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Finally, in the context of gap solitons our results provide new directions for future work.
As noted in chapter 7 structures exhibiting snaking had been observed in the GPE prior
to our work, though much less focus had been given to the 3-5 case and even less to the
semi-infinite gap. Our main contributions in this area were first to provide a more complete
bifurcation picture including the existence not only of a pair of snaking branches but also
of the asymmetric rung states, and second to identify the regime of foliated snaking in the
gap soliton context. We are aware of no other work identifying these solutions and their
close relation to snaking states. A major consequence of our work is that such solutions
should exist in all of the cases of snaking discovered previously whenever the forcing is on
a sufficiently large length scale. As gap solitons have been thoroughly explored in higher
dimensions this insight could spawn a plethora of interesting new research.

8.2 Extensions and new projects

Exact solutions

There are a variety of obvious extensions to our work in chapter 4 on exact solutions to
Eq. (1.1). These begin with their existence and stability. Although we computed an exact
solution and studied the parameter regimes in which it exists, the solution is not meaningful
if the PDE initial value problem is not well posed. We outlined the known results about the
well-posedness for Eq. (1.1), but a necessary condition has not be found in general. It is
likely that such a bound on parameters is related to the existence conditions for the exact
front and requirements determined here, like Γ > 0, might help to formulate the appropriate
rigorous bounds. Moreover, in the regions where we know the problem to be ill posed one
interpretation is that the asymptotic assumptions underlying the derivation of the amplitude
equation have failed. Specifically the cubic and quintic terms are of the same order in such
a scenario and higher order terms are needed in order to saturate. This suggests an avenue
for going beyond the region Γ > 0 (or a1 <

4√
3

if a2 = 0) by reformulating the asymptotics
to include these higher order terms.

With respect to the stability of the exact front solution one component left out of our
work is a study of point eigenvalues. Point spectra are known to exist in linearizations about
front solutions and the non-normal linear operator obtained here when a2 6= 0 invalidates
many classical results about stability that are known for the self-adjoint case. Such a study
is difficult to carry out numerically in a traditional fashion because of the imposition of the
trailing boundary condition behind the front and the segregation of the point and essential
spectra. The correct method with which to carry out this analysis is via the computation of
the Evans function [73, 89, 137]. The Evans function is a holomorphic function constructed
in such a way that its roots occur at the locations of the point eigenvalues. Numerically the
Evans function is computed by taking appropriate contour integrals around a region to the
right of the imaginary axis in order to identify any unstable eigenvalues. This method is
in widespread use for the study of the stability of traveling solutions to PDEs and integral
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equations [48, 73, 89, 137].
Another obvious extension of our work on the exact front solution is to compute the

family of exact pulses also proposed by van Saarloos and Hohenberg [132]. As in the case of
the front no analysis including (a1, a2) has been carried out to our knowledge. One reason
that the pulse solution is less well known is the comment in [132] that the solution is unstable
and thus of little dynamical significance.This situation might change when the (a1, a2) terms
are included or by the presence of periodic forcing as done in this work. In fact, traveling
pulse solutions have already made an appearance in our study of the dynamics of fronts.
When (a1, a2) = (9

2
, 5) the front solution exhibits intermittent collapse which occurs in the

amplitude of the state behind the front. This amplitude decay ceases near the leading edge of
the front leaving a traveling pulse which persists for some time. An exact family to traveling
pulses might inform our understanding of the dynamics in this situation and could provide
insight into the propagation speed.

Forced snaking

Given the large number of parameters in Eq. (1.1) a number of avenues remain for future
work. We have not investigated the effect of (a1, a2) on foliated snaking solutions. We know
from (Fig. 4.2) that the heteroclinic front solution has a lengthscale that depends on (a1, a2)
and becomes long in certain regimes. Because this heteroclinic is the base state from which
snaking states are formed when m1 > 0 it is natural to think that foliated snaking could be
accessed by changing (a1, a2) rather than `. This in addition to continuation of the known
foliated snaking branches in (a1, a2) promises to involve much more complicated bifurcations.

In addition to stationary solutions there are multiple regimes in which the stability of
solutions could be more thoroughly investigated. The most obvious extensions are to per-
form the type of Benjamin–Fier stability analysis on the forced snaking states with nonzero
(a1, a2) as was performed for fronts. Beyond this, we have not systematically investigated
the stability of foliated snaking states. Although we did verify that lumps are stable and
spikes are not, additional interesting scenarios could occur. For m0 beyond the right folds
of the foliated snaking branches there is presumably depinning-like behavior but the region
in which this can occur, i.e. to the left of the primary bifurcation, shrinks to zero as m1 is
increased. When this region vanishes the solutions would “depin” in a region where u = 0
is unstable and a competition between pushed depinning fronts and pulled fronts will occur.

A more basic topic on which we are currently working is the identification of the necessary
bifurcations required in order to transition from forced to foliated snaking. The physical
interpretation of increasing m1 (adiabatically, say) is to deepen the wells of the applied
potential which in the ` = 50 case ultimately splits the snaking states into individual pulses.
This process is of obvious interest to experimentalists who are focused on the control of such
structures. In particular, we discuss in chapter 5 the collision of folds that precedes the
foliated regime (Fig. 5.10) but many details remain missing. While chapter 5 is focused on
the snaking branch that emerges for small m1 it is not concerned with the origins of the
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lumps and spikes. Our work in progress on this topic reveals the situation to be significantly
complex.

From a more theoretical perspective another important component of forced snaking
that is not understood is the dynamical system phase-space picture. Homoclinic snaking
in nonautonomous systems such as SHE has a well developed theoretical understanding.
The creation of the large multiplicity of localized states is facilitated by the formation of a
heteroclinic tangle [10, 68]. In the case of forced snaking a similar mechanism is likely at
work but the problem is of a different form and does not obviously fit into existing theory
due to the nonautonomous term, especially when the forcing is not a pure cosine. It could
be interesting to generalize the existing theory to deal with this situation.

Relating to the idea of more general forcing functions is forced snaking when the forcing
is quasi-periodic. Concretely this could be achieved by the forcing

µ(x) = m0 +m1 cos

(
2πx

`

)
+m2 cos

(
α

2πx

`

)
where α is a real parameter. When α is chosen such that the two cosines are commensurate
we expect to see a familiar form of forced snaking but when α is irrational the situation is
much less clear. Indeed, even the linear problem with this type of quasi-periodic forcing is
exceedingly complex [166]. This type of perturbation does not break reflection symmetry in
the problem but would likely break reflection symmetry in many of the snaking solutions.
This may significantly alter the stability of snaking states and the depinning process. This
scenario can be realized by continuing the known forced snaking solutions in m2 and as long
as the states being continued are localized then one need not worry about the boundary
conditions which would otherwise be subtle for generic α. This type of situation has no
analog in classical SHE snaking.

Front propagation

The propagation of fronts into a nonhomogeneous unstable state is one of the most exciting
extensions of this work. Many people have worked on this problem in the context of integral
equations [27, 47] as well as reaction-diffusion equations [18, 19, 20, 21, 156] to name only
a few. However, a number of interesting questions remain unanswered. One problem, posed
by van Saarloos in [133], is to perform the linear spreading point calculation in periodic
media. Although significant progress beyond this type of analysis has been made in the
mathematical literature, few if any physics papers have tied this to real problems with
numerical experiments. Moreover, a concise physical interpretation of the linear spreading
point in a periodic framework is lacking. Specifically, an explanation of the role of band-gaps
in the propagation of fronts remains unclear. From the gap soliton literature it is known that
localized structures exist in the higher gaps. These could interfere with the front propagation
process and have not been studied to our knowledge in the dissipative context. At an even
more basic level the physical situation is obviously quite different in the homogenization
limit, ` → 0, versus the WKB limit, ` → ∞, and it would be interesting to understand the
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physical effects of inhomogeneities in each case on front propagation and selection. Both of
these limits are susceptible to asymptotic analysis so that a mix of numerical and analytical
results could be compared.

Finally, one necessary component of the aforementioned research proposals is to compute
branches of traveling fronts. This is simple for uniformly moving fronts but more complicated
when the state left in the wake of the front is periodic and the front moves with a nonconstant
speed. In this case one cannot eliminate time from the problem by changing frames and the
setting of the downstream boundary condition is nontrivial. Work on continuation of this
type of front is currently underway [105] and applications are widespread. A few that come
to mind here are to continue the branches of pushed fronts from the subcritical regime
where m0 < 0 to m0 > 0 along with the branch of pulled fronts emerging at m0 = 0.
Another application is to continue the branches of depinning fronts that were observed in
the nongradient case with a2 = 1 back into the interior of the pinning region.
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Appendix A

The Benjamin-Feir Instability

This appendix is devoted to finding all solutions of Eq. (2.17) obtained from the disper-
sion relation for perturbations of nonlinear rotating wave solutions of Eq. (1.1). Because
the marginally unstable wave number, q∗, is generically complex the dispersion relation can
exhibit branch cuts and complicated dependence on the phase of the radicand. These proper-
ties render the task of solving the marginal stability equations analytically in their standard
form intractable and their numerical solution unstable. In this section we instead transform
these equations into polynomial equations and show that after appropriate transformations
all the solutions lie along a unique elliptic curve. We thus provide an explicit parametriza-
tion of the solution curves and a numerically tractable route to computing the desired front
speed. The entirety of the calculation is done in the stationary frame and we are particularly
interested in the speed vBF selected by secondary (Benjamin-Feir) instabilities.

A.1 Setup

Before analyzing the generic case, we note that there are two nongeneric situations that can
occur, corresponding to 2g − f = 0 and g = 0, respectively. When g = 0 the dispersion
relation reads σ = ±

√
−fq2−q2 and for each sign of the root there are four cases to consider

depending on the sign of f and the quadrant of q. In each case we solve the marginal stability
equations in the original variables to verify that q lies in a consistent quadrant. In the table
below we take the positive root.

sgn(f) quadrant of q σ solution of Eq. (2.17)

−1 1 , 4
√
|f |q − q2 q∗ =

√
|f |
2

(1± i)

−1 2 , 3 −
√
|f |q − q2 q∗ =

√
|f |
2

(−1± i)
1 1 , 2 −i

√
|f |q − q2 q∗ = 0

1 3 , 4 i
√
|f |q − q2 q∗ = 0
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As shown in the table, the first two cases are consistent while the second two are not. Since
the case of the negative root is obtained by switching the dispersion relations and q values
of rows 1 ↔ 2 and 3 ↔ 4, there is no consistent case and hence no solution for the branch
with negative root. In the case 2g = f the dispersion relation is σ = ±|g| − g − q2 and the
condition < [σ′(q)] = 0 implies qr = 0 so that q∗ = i

√
|g| − g.

In the general case (f 6= 2g, g 6= 0) we work in terms of the parameters c = g
2g−f , d = 1

cg

and we define θ(q) via the relation σ(q) = θ(q)+c−1
cd

. We also introduce the shorthand notation
sz ≡ sgn(z). The condition (2.17) becomes

< [θ′] = 0, −= [θ′]=[q] = < [θ] + c− 1, =[q] > 0, (A.1)

along with the obvious requirement <[σ] > 0. With the introduced parameters and relation
(4.9) we have

θ = ±sg
√
dq2 + 1− c

(
dq2 + 1

)
, θ′ = ±sg

dq√
dq2 + 1

− 2cdq.

To resolve the branches in
√
dq2 + 1, consider the holomorphic substitution q = 2t√

|d|(sd−t2)

which parametrizes both branches in t but double-counts the physically irrelevant point q = 0
at t = 0 and∞. With this substitution the argument of the square roots becomes the square
of sd+t2

sd−t2
. Letting t = x + iy, where x, y ∈ R, it becomes clear that x and y always appear

squared in the relevant parts of Eq. (A.1). Thus we are free to choose their sign such that

=
[
sd+t2

sd−t2

]
> 0. Eliminating the square roots produces

sgθ =
1
2
h+sd
h−sd

(t2 + sd)
2 ± (1− t4)

(t2 − sd)2 ,
sgθ
′√
|d|

=

{
4t

h−sd
h+t2

1−t4 (+)
4sdt
h−sd

1+ht2

1−t4 (−)
,

where h is a real variable defined by

h ≡ 2 |c| − sd
2 |c| sd + 1

.

Since the factor
√
|d| cancels out in the equation for =[θ′], the change of variables reduces a

4-parameter problem (q, f, g) into a 3-parameter problem (t, h) with eight cases depending
on sd and sg and the sign of the root.

A.2 First condition

We are now prepared to begin resolving the condition < [θ′] = 0 and focus first on the positive
root. In the (t, h) variables this reduces to

<
[
t (h+ t2)

1− t4

]
= 0. (A.2)
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We now proceed by clearing all denominators under the assumption that they do not vanish
and return to nongeneric points like t =

√
i later. Setting t = x+ iy, relation (A.2) expands

to
x
{
h
(
x4 − 2x2y2 − 3y4 − 1

)
+
(
x2 + y2

)3 − x2 + 3y2
}

= 0. (A.3)

Note that the trivial condition x = 0 results in a purely imaginary t and this is the well-
known solution with purely imaginary q [84]. In addition to this solution there is a set of
solutions with nontrivial x and it is those solutions that we consider in what follows.

When x 6= 0 Eq. (A.3) is a polynomial in even powers of x and y. Introducing u = x2

and v = y2 we obtain

u =
1

4

(
h− k3

hk − 1
+ 3k

)
(A.4)

with k = u + v. The case h = ±1 in which there are extra solutions k = ±1 is included in
the set of nongeneric cases that are discussed at the beginning of this Appendix.

As for the negative root, the relation <
[
t(1+ht2)

1−t4

]
= 0 gives

x
{

3y4
(
hx2 − 1

)
+ y2

(
3h
(
x4 + 1

)
− 2x2

)
+
(
x4 − 1

) (
hx2 + 1

)
+ hy6

}
= 0.

Ignoring the case x = 0, the other factor may be written in terms of (u, k) as

u =
1

4

(
hk3 − 1

h− k
+ 3k

)
.

From here we work in the (h, k) variables where k remains to be set by the second condition
in Eq. (A.1).

A.3 Second condition

The second condition in Eq. (A.1) for the positive root can be written as

− 8sg
h− sd

=
[
t (h+ t2)

1− t4

]
=
[

t

sd − t2

]
= sg<

[
1
2
h+sd
h−sd

(t2 + sd)
2

+ (1− t4)

(t2 − sd)2

]
+ c− 1, (A.5)

where c can be eliminated in favor of h. Depending on the signs sd and sg, there are four cases,
each generating an equation in t and h. We proceed with each by clearing denominators and
writing the expressions in the form of polynomials.

After writing relation (A.5) in the variables defined in Sec. A.2 and imposing the relation
(A.4) we obtain the polynomial equation

P(h, k) ≡
(
h2 − 1

) (
k2 + 1

)2
(k − sd)2

+ sg(hk − 1)
{
h
(
k4 + 3

)
k − 3k4 − 1− 2sd

(
k3 + k

)
(hk − 1)

}
= 0. (A.6)



APPENDIX A. THE BENJAMIN-FEIR INSTABILITY 164

-4 -2 0 2 4

-4

-2

0

2

4

h

k

(a)

-4 -2 0 2 4

-4

-2

0

2

4

h

k

(b)

-4 -2 0 2 4

-4

-2

0

2

4

h

k

(c)

-4 -2 0 2 4

-4

-2

0

2

4

h

k

(d)

Figure A.1: Four cases of the <[q] 6= 0 generic solutions to the Benjamin-Feir stability
equations for the positive root: (a) g > 0, d > 0 (b) g > 0, d < 0 (c) g < 0, d > 0 (d)
g < 0, d < 0. Here the zero level-set of Eq. (A.6) is plotted in red and the region u, v > 0
and =[σ] > 0 is plotted in blue. The solutions correspond to the intersections of the red
curve with the blue regions.

This equation must be solved along with constraints u, v > 0. The solution curves of different
sd and sg are plotted in red in Fig. A.1 along with the region in which both u, v > 0 and
<[σ] > 0 (also written in h, k variables) in blue. Intersections of the red curve with the blue
regions correspond to secondary solutions of Eq. (2.17) in which q is not purely imaginary.

The polynomial equation P = 0 can be transformed into a simpler form, the Weierstraß
form. Since P is quadratic in h we write the equation in the form (Ah + B)2 = m(k)2n(k)
where m is quadratic or cubic in k and n is quartic in k. We then define h′ = Ah+B

m(k)
so

the equation takes the form (h′)2 = n(k). Using standard techniques to put the curve into
Weierstraß form, we choose the point k = 1 and compute the quadratic `(k) that is triply
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tangent to
√
n(k). The quantity `(k) has a second intersection with the original curve at kc.

We define

l =
k − 1

h′ − `(k)
, p =

(k − 1)(k − kc)
h′ − `(k)

,

which takes the original curve to an elliptic curve in (l, p). Subsequently, we take L =
A(p)l+B(p) choosing A,B so that the L2 term has unit coefficient and the term linear in L
vanishes. Next take P = Cp+D where C,D are chosen to set the P 3 coefficient to 4 and the
P 2 coefficient to 0. The resulting elliptic curve can be parametrized by the Weierstraß ℘-
function. After a final rescaling of both L, P to clear denominators the first case sd = sg = 1
reduces to

L2 = 4P 3 − 435P + 1081,

whose solutions are parametrized by a particular Weierstraß ℘-function with elliptic invari-
ants (g1, g3) = (435, 1081). In fact, all four cases of different (sd, sg) have solution curves
that can be parametrized by the same Weierstraß ℘-function albeit in different variables.
We thus provide an explicit description of the solution curves.

The second condition in Eq. (A.1) for the negative root can be written as

− 8sgsd
h− sd

=
[
t (1 + ht2)

1− t4

]
=
[

t

sd − t2

]
= sg<

[
1
2
h+sd
h−sd

(t2 + sd)
2 − (1− t4)

(t2 − sd)2

]
+ c− 1

and reduces to another polynomial equation,

P(k, h) ≡
(
h2 − 1

) (
k2 + 1

)2
(k − sd)2

+ sg(h− k)
{

3hk4 + h−
(
k4 + 3

)
k − 2sd

(
k3 + k

)
(h− k)

}
= 0.

The solutions of this equation in each of the four cases are plotted in red in Fig. A.2. This
case can also be reduced to the same Weierstraß ℘-function.

A.4 Speed

The analysis above shows that there is in general either one or two solutions to the marginal
stability equations for the Benjamin-Feir instability. The solution with qr = 0 is given in
[84] and here we show that there is also a solution qr 6= 0. The secondary solution with
nontrivial wave number qr only exists under certain conditions and never coexists with the
qr = 0 solution. For each pair sg, sd the values of h for which there is instability are restricted
to the following intervals:

Parameters Instability conditions qr 6= 0 qr = 0
d > 0 g > 0 h ∈ (−1, 0) all h nowhere
d > 0 g < 0 h ∈ (−1, 1) h ∈

(
−1, 7

9

)
h ∈

(
7
9
, 1
)

d < 0 g > 0 stable
d < 0 g < 0 h ∈ (−∞,−1) ∪ (1,∞) nowhere all h
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Figure A.2: Four cases of the <[q] 6= 0 generic solutions to the Benjamin-Feir stability
equations for the negative root: (a) g > 0, d > 0 (b) g > 0, d < 0 (c) g < 0, d > 0 (d)
g < 0, d < 0. Here the zero level-set of Eq. (A.6) is plotted in red and the region u, v > 0
and =[σ] > 0 is plotted in blue. The solutions correspond to the intersections of the red
curve with the blue regions.
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based on the instability requirements derived in [84]. The qr = 0 speed was computed in [84]
but can be written in h, d variables for the two relevant cases when g < 0:

vBF =


(5−
√

9h2+2h−7−3h)
3
2

√
2d(h+1)(

√
h+1−

√
9h−7)

, d > 0,
√

(h−1)(9h+7)sh+1+3h+5√
(h−1)(9h+7)sh+1+1−h

√√
(h−1)(9h+7)sh+1+3h+5

2d(1−h)
, d < 0.

The speed for solutions with nonzero qr may be written

vBF =


8k(sdh−1)

(k2+1)(h2−1)

√
(hk−1)(h+k)
|d|(k2−1)

(+)

8k(h−sd)
(k2+1)(h2−1)

√
(k−h)(hk+1)
|d|(k2−1)

(−)
.

The signs (±) correspond to the two different branches of the dispersion mentioned at the
beginning of this section and k is to be evaluated on the curves of solutions obtained above.
Once a pair (a1, a2) has been selected h and d are functions of µ only, although it is typically
more convenient to plot the results in terms of h. When plotted in this fashion the h-values
corresponding to µ = 0,∞ depend on a1 and a2.

To apply the above results we consider the instability of a rotating wave with wave
number zero, as is observed in the wake of pulled fronts. Recall that these fronts exist along
the entire line a1 = −a2 for all µ and at discrete values of µ off it. The expressions for f, g
take the form

f =
(
4 + a2

2 − a2
1

)
R4 − 2R2

g = 2µ+R2,

where R2 = 1
2

(
1 +
√

4µ+ 1
)

and thus g > 0. Based on the results above these are unstable
to BF instability when d > 0 and the instability deposits a fixed nonzero wave number
qr 6= 0. With α ≡ a2

2 − a2
1 the expression for c yields a relation between µ and h:

µ =
2(h− 1)((α− 2)h+ α + 2)

((α− 4)h+ α + 4)2
.

Next, d can be written in terms of h by first passing to µ variables,

√
|d| =

√∣∣∣∣ α

4µ+ 1

∣∣∣∣ =

∣∣∣∣α + (α− 4)h+ 4√
α(h+ 1)

∣∣∣∣ .
It is now clear that with this parametrization h = 2+α

2−α corresponds to µ = 0 and h = 4+α
4−α to

µ =∞ and v†, v∗ and vBF can all be plotted in terms of h as in Fig. 4.12.
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Appendix B

Nonlinear Selection Inequalities

In this section we determine the selection pattern dictated by the inequalities (2.18) governing
the selection of the pushed front in Eq. (1.1), referred to as the nonlinear marginal stability
criterion (NMS). By selection pattern we mean the intervals of µ ∈ [0,∞) in which the pair
of inequalities is either satisfied (N, nonlinear selection) or not (L, linear selection). The
boundaries of these intervals, generically a set {µ‡(a1, a2)}, occur when at least one of the
inequalities becomes an equality and define the selection pattern (e.g. N–L–N or N–L...etc).
In the original variables, the (a1, a2) dependence of the inequalities (2.18) is far from obvious
and the expressions are manifestly unwieldy. Numerical examination of these inequalities in
all three parameters is difficult to carry out, let alone visualize. To overcome this difficulty we
focus only on determining possible selection patterns and not the explicit values {µ‡(a1, a2)};
thus we seek general conditions on (a1, a2) independent of µ that are required for a given
selection pattern.

B.1 Reduction of inequalities

To proceed we introduce changes of variables to show that (2.18) may be recast as a pair of
quadratic inequalities. In order to determine which selection patterns are possible we reduce
these to finite cases of inequalities that only depend on a1, a2 and not on µ. After sufficient
simplification these logical statements can be verified analytically using a computer algebra
system (Mathematica). We consider all possible selection patterns and show either that a
particular pattern is not possible or provide a pair (a1, a2) for which it occurs.

We first determine which root of the Eqs. (4.6) is appropriate for NMS. The inequalities
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(2.18) can be rewritten as

√
Γ

2
√

3

Λ− 6

∆
± Γ

2
√

3∆

√
2Λ

(
1 + s∆

µ|∆|
2Λ

)
>
√
µ, (B.1)

√
Γ

2
√

3

(5Λ− 6)

∆
± Υ

2
√

3∆

√
2Λ

(
1 + s∆

µ|∆|
2Λ

)
>
√
µ. (B.2)

Here s∆ denotes the sign of ∆. To apply the marginal stability criterion we select the sign
(±) in the inequalities (B.1) and (B.2) corresponding to faster spatial decay rate and larger
velocity and both must be positive at µ = 0 [136]. In particular, in order for the front speed
to be selected by NMS either

Λ− 6±
√

2ΓΛ > 0,
√

Γ(5Λ− 6)±Υ
√

2Λ > 0, ∆ > 0

or
Λ− 6±

√
2ΓΛ < 0,

√
Γ(5Λ− 6)±Υ

√
2Λ < 0, ∆ < 0 (B.3)

must hold and the root with larger velocity and faster decay rate must be chosen. When
∆,Υ > 0 this always corresponds to the positive root, which always exists. When ∆ > 0
and Υ < 0 the positive root always exists with positive velocity while the negative root has
negative velocity whenever it exists. Thus the positive root is selected. For ∆ < 0 and
Υ > 0 both roots violate the conditions in Eq. (B.3). For ∆ < 0 and Υ < 0 the positive
root always satisfies the NMS conditions while the negative root never does. These results
are summarized in Table B.1.

Υ > 0 Υ < 0

∆ > 0 + +

∆ < 0 NMS does not apply +∗

Table B.1: The selected root of Eqs. (4.6) for nonlinear marginal stability near µ = 0. The
case ∆,Υ < 0, marked by ∗, is complicated at larger values of µ because the two decay rates
and the corresponding velocities are oppositely ordered (see text).

It is further possible to show that when µ > 0 both of the selections in the ∆ > 0 cases
remain valid. When ∆ < 0 neither solution ever exists with positive velocity for Υ > 0 while
for Υ < 0 the selection can be quite complicated. As shown in Fig. 4.5, for 5Λ− 6 < 0 the
negative sign solution exists for µ sufficiently large and this solution has positive velocity.
In fact, it is easy to see from Eqs. (B.1) and (B.2) that when both solutions exist with
positive velocity their decay rates and velocities will be oppositely ordered, vN+ < vN− and
κN+ > κN−. Because of this it is not clear that NMS applies in this µ range and which
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solution to choose if it does. We check whether either choice results in the selection of a
nonlinear front according to the NMS inequalities.

We now proceed to reduce Eqs. (B.1) and (B.2) to polynomial inequalities. Because we

consider µ > 0 we define µ̃ ≡ µ|∆|
2Λ

which is strictly positive and also the constants

b1 = s∆
(Λ− 6)

2
√

3

√
Γ

2Λ|∆|
, b2 = s∆

Γ

2
√

3|∆|
, b3 = s∆

(5Λ− 6)

2
√

3

√
Γ

2Λ|∆|
, b4 = s∆

Υ

2
√

3|∆|
so that the pair of inequalities take the form bi ± bi+1

√
1 + s∆µ̃ >

√
µ̃ for i = 1, 2. To

eliminate the square roots we introduce a holomorphic substitution µ̃ = f(t) with t ∈ (0, 1)
(see Table B.1) chosen to be bijective on the full domain µ̃ ∈ [0,∞) so that the arguments of
both roots are squares of positive quantities. After this substitution each inequality reduces
to an inequality quadratic in the parameter t.

s∆ µ̃ 1 + s∆µ̃ µ̃−domain bi ± bj
√

1 + s∆µ̃ >
√
µ̃

1 4t2

(1−t2)2
(1+t2)2

(1−t2)2
µ̃ ∈ (0,∞) (bj − bi)t2 − 2t+ (bi + bj) > 0

−1 4t2

(1+t2)2
(1−t2)2

(1+t2)2
µ̃ ∈ (0, 1) (bi ∓ bj)t2 − 2t+ (bi ± bj) > 0

Table B.2: Substitutions that eliminate both square roots in Eqs. (B.1) and (B.2). The root
signs have been chosen to match s∆ according to the relevant roots classified in Table B.1.
The quantity µ̃ is defined in the text. In both cases t ∈ (0, 1).

At this point the question of selection can be reduced to one of solving quadratic equations
in t in the interval (0, 1). In the generic case, each of the inequalities Eqs. (B.1) and (B.2)
loses validity at µ values for which an inequality becomes an equality, or the square root of
the quadratic terms in Table B.1 becomes zero. That is, the intervals on which the selection
is either N or L are separated by points at which at least one of the inequalities becomes
an equality. The nongeneric case in which a double root occurs is of higher codimension
and is dealt with separately. Thus we can determine selection patterns by tracking the roots
obtained when Eq. (B.1) and Eq. (B.2) are equalities. Each of Eq. (B.1) and Eq. (B.2)
corresponds to a single quadratic equation which may have 0, 1, or 2 roots in (0, 1), so there
are 19 possible arrangements of the roots each of which could be a different selection pattern.
In what follows we show that the only possible selection regimes are N, L, and N–L. Thus
the set {µ‡(a1, a2)} reduces to a single member where µ‡(a1, a2) is either 0 (L), finite (N–L)
or ∞ (N).

To proceed we derive t-independent conditions on the coefficients of the quadratic equa-
tions that determine properties of their roots. We organize this discussion based on various
properties of the root arrangements. To simplify the discussion we introduce two polynomials

h1(t) = αt2 − 2t+ β,

h2(t) = γt2 − 2t+ δ (B.4)
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to represent the two polynomials inherited from Eqs. (B.1) and (B.2). We assume β > 0
based on the qualification in [136] that NMS holds when the nonlinear velocity is positive at
µ = 0. Without loss of generality we also assume that Eq. (B.2) is satisfied at m = 0 because
it is proportional to a2

N so δ > 0. We use the standard logical notation for “AND”, A∧B, to
represent the condition that A and B are both true. Note that since the conditions generally
depend on parameters, the joint condition ∧iAi is only false when it fails for all parameter
values. Recall that both Γ, Λ are positive and the conditions (Γ > 0)∧(Υ > 0)∧(5Λ−6 < 0)
and (Γ > 0) ∧ (Υ < 0) ∧ (Λ− 6 > 0) are false.

B.2 Number of roots

In subcritical systems Eq. (2.18) is typically satisfied at µ = 0, so if both equations (B.4)
have an even number of roots the inequalities will also be satisfied for µ → ∞. This is
unphysical since at a sufficiently large forcing the linear dynamics usually take over [136].
In order to translate this property to one of the quadratic roots consider h1. If h1(0) > 0
then the equation has an even number of roots in (0, 1) provided h1(1) > 0 (recall that we
exclude the nongeneric case of double roots) or

β > 0 and α− 2 + β > 0

with a similar statement for h2. In order to distinguish between the polynomial having zero
or two roots we also check the discriminant and the derivative at t = 1. If the polynomial has
positive discriminant then it has two roots. If there are two roots, because both polynomials
have derivative −2 at t = 0 then both roots are in (0, 1) if and only if the derivative is
positive at t = 1. These conditions (for two roots) are

αβ < 1 and α > 1.

Applying this procedure to the equations from Table B.1 yields the conditions in Table B.2.

s∆ even # of roots 2 roots

1 bj > 1 and bi > −bj b2
j − b2

i < 1 and bj − bi > 1

−1 bi > 1 and bi > −bj b2
i − b2

j < 1 and bi − bj > 1

Table B.3: Conditions for each of Eqs. (B.1) and (B.2) to have an even number of points of
equality. In the case ∆ < 0 the positive root was selected.
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h1(t)
zero one two

h2(t)

zero (−15, 16)
(
3, 9

2

)
impossible

one impossible (2, 2)
(
0, 1

2

)
two impossible impossible impossible

Table B.4: Summary of the possible numbers of roots for ∆, Υ > 0. When the condition
can be satisfied an example (a1, a2) for which this is possible is shown. All of the parame-
ters except the zero-zero case satisfy the known condition sufficient for global existence of
solutions to the Cauchy problem.

Case ∆, Υ > 0

The conditions for an even number of roots are:(
Γ2 > 12|∆|

)
∧
(

Λ− 6 > −
√

2ΛΓ
)
,

(
Υ2 > 12|∆|

)
∧
(

(5Λ− 6)
√

Γ > −Υ
√

2Λ
)

which can be true individually or both together. The conditions for two roots are:(
2ΛΓ2 − (Λ− 6)2Γ < 24∆Λ

)
∧
(

2
√

3
√

2Λ∆ < Γ
√

2Λ− (λ− 6)
√

Γ
)
, (B.5)(

2ΛΥ2 − (5Λ− 6)2Γ < 24∆Λ
)
∧
(

2
√

3
√

2Λ∆ < Υ
√

2Λ− (5λ− 6)
√

Γ
)
. (B.6)

The first of these Eq. (B.5) can be true or false but Eq. (B.6) is false for all parameters so
h1 always has 0 or 1 roots. A summary of all possible scenarios is provided in Table B.4
along with sample parameters when possible. These results rule out 12 of the possible 19
root arrangements.

Case ∆ > 0, Υ < 0

The conditions for an even number of roots of h1 are the same as those above but must now
be checked along with Υ < 0 instead. For h2 it is easy to see that the condition bj > 1 or
Υ > 2

√
3∆ fails and it therefore always has a single root. As before the allowed possibilities

are summarized in Table B.5 and a total of 14 root configurations are ruled out.

Case ∆ < 0, Υ < 0

In this section we only treat the positive root of Eqs. (B.1) and (B.2) and leave the case
where both roots exist to Sec.B.5. The conditions for an even number of roots are(

(Λ− 6)2Γ > 24Λ|∆|
)
∧
(
(Λ− 6)2Γ > 2ΛΓ

)
,(

−(5Λ− 6)
√

Γ > 2
√

3
√

2Λ|∆|
)
∧
(
−(5Λ− 6)

√
Γ > Υ

√
2Λ
)
,
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h1(t)
zero one two

h2(t)

zero impossible impossible impossible
one impossible

(
2, 1

5

) (
−7

4
, 0
)

two impossible impossible impossible

Table B.5: Summary of the possible numbers of roots for ∆ > 0, Υ < 0. When the condition
can be satisfied an example (a1, a2) for which this is possible is shown. All of the parameters
satisfy the known condition sufficient for global existence of solutions to the Cauchy problem.

h1(t)
zero one two

h2(t)

zero impossible impossible impossible
one impossible

(
−2, 1

2

)
(−2, 1)

two impossible impossible impossible

Table B.6: Summary of the possible numbers of roots for ∆ < 0, Υ < 0. When the condition
can be satisfied an example (a1, a2) for which this is possible is shown. None of the regimes
fall in the known global existence region.

where we used the fact that Λ− 6 is negative in this regime to simplify the expressions. The
latter set of inequalities is always false so h2 always has a single root. The condition for two
roots of h1 is(

(Λ− 6)2Γ− 2ΛΓ2 < 24Λ|∆|
)
∧
(
−(Λ− 6)

√
Γ + Γ

√
2Λ > 2

√
3
√

2Λ|∆|
)
.

Checking the three remaining cases produces the results in Table B.6.

B.3 Root ordering

Next we derive conditions to determine the root ordering for the two polynomials. This
dictates whether or not the selected velocity can jump discontinuously.

If selection of either L or N changes three times there will generically be a discontinuous
jump in the selected velocity. The analysis in Sec. B.2 does not rule this out because in
the case that h1 has two roots and h2 has one, both roots of h1 may be smaller than that
of h2. Thus when the root of h2 is encountered (as µ is increased) the predicted velocity
will jump discontinuously. We assume that h2 has a single root in the interval because the
case in which both quadratics have two roots in (0, 1) was ruled out in Sec. B.2. Another
possible cause of discontinuity in the selected velocity occurs if Eq. (B.2) breaks first, before
Eq. (B.1), since both inequalities are satisfied at µ = 0. Given the previous results this can
only occur in the case that h2 has one root in (0, 1) that is smaller than any of the roots of
h2 in the interval.
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We now derive a condition that is implied by the two root orderings mentioned above,
thus indicating whether or not they can occur. First, it is possible to show that δ > β > 0
regardless of the parameter values. Because of this ordering it is clear that for either of the
two properties mentioned above to occur, h1 and h2 must cross and the common value must
be positive. In the former case tcross is greater than both roots of h1, and in the latter case
tcross is smaller than any roots of either polynomial. It is easy to see that the difference of
the polynomials, (h2 − h1)(t) = (γ − α)t2 + (δ − β) has either zero roots or two roots of
opposite signs. Since h2(0) > h1(0) then the root of h2 is smaller than those of h1 if and
only if h2 − h1 has a root tcross ∈ (0, 1) such that (h2 − h1)(tcross) > 0. These conditions are
equivalent to the conditions

γ + δ < 2 h2 has one root in (0, 1)

γ − α < 0 h2 − h1 has a root

δ − β < γ − α tcross ∈ (0, 1)

(γ − α)(δ − β) + δ − β > 0 (h2 − h1)(tcross) > 0.

We have verified that these conditions cannot be satisfied which shows that the selected
velocity cannot suffer discontinuous jumps.

B.4 The case of double roots

Each double root in either of the quadratic inequalities generically drops the dimension of
parameter space by one. In order for a double root to exist the discriminant must vanish,
either αβ = 1 or γδ = 1. In each case these conditions factor,

(a1 + a2)∆ = 0,

(16 + (a1 + a2)(3a1 + 11a2)) ∆ = 0,

and each case can be reduced to a 1-parameter space of solutions. It can be shown that
16+(a1 +a2)(3a1 +11a2) = 0 is incompatible with the requirement Γ > 0, so the second case
can be reduced further to ∆ = 0. Interestingly, if there are two double roots the solutions
are still described by a single parameter specified by ∆ = 0. As mentioned in 4.2, when
∆ = 0 the Ansatz solutions that are used here cease to be valid and a different analysis has
to be conducted using the appropriate solutions. We omit this step.

Excluding the case ∆ = 0 we analyze the root structure for a single double root of h1.
When a1 = −a2 then h1 has a double root and all of the coefficients collapse to h1(t) =
√

3
(
t− 1√

3

)2

, h2(t) = −2
(
t− 1√

3

)
. The roots are independent of parameters and coincide.

This is the classic case that arises when a1 = a2 = 0 and hereby extends along the whole
line a1 + a2 = 0.
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B.5 The case Υ, ∆ < 0 with both solutions of the

Ansatz

In this case the negative root solution to Eqs. (4.6) exists for µ ∈
(

1− Γ(5Λ−6)2

2ΛΥ2 , 1
]

and

corresponds to a positive velocity. Although this solution does not exist at µ = 0, this
velocity can be compared to the linear prediction. Because we know that κN+ > κN− and

κN− = 0 at µ = 1− Γ(5Λ−6)2

2ΛΥ2 we focus on h2 in order to see if Eq. (B.2) can ever be satisfied.
First one can check that γ + δ < 2, which means that h2 is negative at 1. Since we know

that h2 is negative at µ = 1− Γ(5Λ−6)2

2ΛΥ2 this means that it has either 0 or two roots. Then one
can check that γδ < 1 (h2 has roots) and γ < 0 (h2 is positive between the roots) cannot
both be satisfied. Thus the aN− branch is never relevant.



176

Appendix C

Asymptotics for Oscillations of Gap
Solitons

We perform an asymptotic analysis in the limit 0 < m1 � 1 in order to extract equations
of motion for localized structures in Eq. (7.1). It is known that Eq. (7.2) has an exact
front solution when m1 = 0 for appropriate values of m0. This front solution is translation-
invariant and its reflection (x→ −x) is also a solution. Therefore the basic idea behind our
method is to use a pair of these fronts to form a pulse solution. In the m1 = 0 case such
a pulse is not a stable solution but in the presence of the periodic potential the fronts are
able to pin thereby stabilizing the structure. This technique has been used by a number of
previous authors in order to study front dynamics and pinned states [47, 75].

Our Ansatz for a time-dependent solution to Eq. (7.1) is as follows,

A(x, t) = ei
∫
ω(t)dt+i

α̇(t)
2

(x−α)v(x, t)

v(x, t) = aB (− [x− xL])B (x− xR) +W (x, t)

xL = α− L

2

xR = α +
L

2
. (C.1)

Here a is a real constant and aB(x) is the front solution to Eq. (7.2) when m1 = 0; the
correction W is assumed to be small. The two real-valued functions α and ω are selected in
order that this Ansatz solve Eq. (7.1). The two fronts that bound the localized structure are
located at x = xL and x = xR with x = α(t) representing the center of mass motion (i.e.,
the antisymmetric dynamics of the pulse). Thus L is the (fixed) pulse width.

In order to ensure that the Ansatz (C.1) satisfies Eq. (7.1) at leading order the two
fronts must be placed sufficiently far apart. Although u(x, t) = aB(x) is an exact solution
to Eq. (7.1) when m1 = 0, ũ(x) = aB(x)B(−x + x0) is not. On the other hand, there does
exist an exact pulse solution that is exponentially close to ũ. The use of a pair of fronts
rather than an exact pulse solution simplifies both the calculations that follow and their
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interpretation. The error incurred is exponentially small in L and we therefore assume that
L is sufficiently large that it is negligible in what follows.

C.1 Asymptotic procedure

We begin the procedure by defining the scaling of the terms in Eq. (C.1). The dynamics
that we capture occur on a slow time τ , τ = εt, where ε � 1 is a suitably defined small
parameter. We work in the center of mass frame, z = x−α, and adopt the following scaling
for the phase and forcing:

ω(τ) =
ω0

ε
+ ω1(τ) + εω2(τ)

m1 = ε2µ.

The resulting equation for v(z, τ) is

0 = iεvτ +ε2

[(
α̇

2

)2

− α̈

2
z + µ cos

(
2π(z + α)

`

)]
v−(ω0 +εω1 +ε2ω2)v+vzz+ |v|2v−|v|4v

and we expand v as follows:

v(x, t) =W0(z) + εW1(z, τ) + ε2W2(z, τ).

The lowest order equation is

0 = W0zz −
(
ω0 − |W0|2 + |W0|4

)
W0. (C.2)

It follows that if ω0 = 3
16

then Eq. (C.2) has the front solution

W0(z) =

√
3

2

√
1

1 + e
√
3

2
z
≡
√

3

2
B(z).

Using the fact that
√

3
2
B(−z) is also a solution, two of these fronts can be patched together

to form the Ansatz as described above. Specifically we take

W0(z) =

√
3

2
B

(
−
[
z +

L

2

])
B

(
z − L

2

)
≡
√

3

2
B1(−z)B2(z).

This solution is not exact but results in only a small error if L is large compared to the
spatial decay rate of the front, 2√

3
.

Because the lowest order problem is nonlinear, all of the higher order problems involve a
linear operator L that is based on this front. If U = R(z) + iI(z) with R and I real-valued
this operator diagonalizes. That is, L(U) = L0(R) + iL1(I), where

L0 = ∂zz −
3

16
+ 3W 2

0 − 5W 4
0

L1 = ∂zz −
3

16
+W 2

0 −W 4
0 .
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The operator L is self-adjoint and has 3 approximate null eigenfunctions. This is normal
for linearizations about pulse states. We report these in the notation (R, I). The eigen-
functions consist of a phase rotation mode, n0 = (0,W0), plus two Goldstone-type modes

n1 = (W0z, 0) =
(√

3
2

(−B′1B2 +B1B
′
2) , 0

)
and n2 =

(√
3

2
(B′1B2 +B1B

′
2) , 0

)
. The first of

these, n1, is the true Goldstone mode for the pulse and is antisymmetric with respect to
its center z = 0. This mode is inherited from global translation symmetry. Also related
to translation symmetry, the mode n2 is symmetric about the pulse center reflecting the
fact that for L � 1 the two fronts are independent and can translate freely in opposite
directions. This mode arises only in the limit of large L, i.e., as a result of our lowest order
approximation.

The O(ε) equation is

0 = L(W1)− ω1W0.

To enforce the solvability condition for n2 we must require ω1 = 0. Then we may also take
W1 ≡ 0. At second order we obtain,

0 = L(W2) +

[(
α̇

2

)2

− α̈

2
z + µ cos

(
2π(z + α)

`

)
− ω2

]
W0.

The two solvability conditions can be written

0 = − α̈
2
I1 − µ sin

(
2πα

`

)
I3

0 =

[(
α̇

2

)2

− ω2

]
I2 + µ cos

(
2πα

`

)
I4

with the integrals Ik defined as follows,

I1 = 〈n1, z W0〉
I2 = 〈n2,W0〉

I3 =

〈
n1, sin

(
2πz

`

)
W0

〉
I4 =

〈
n2, cos

(
2πz

`

)
W0

〉
.

Here we have used the fact that W0 and n2 are even functions of z while n1 is odd to simplify
the expressions.
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It follows that there are only four distinct integrals to calculate. To simplify the expres-

sions we set c = e−
√
3

4
L, yielding the expressions

I1 =
3L

8 (c2 − 1)

I2 =
6− 3c2

(√
3L+ 2

)
8 (c2 − 1)2

I3 =

√
3π2csch

(
4π2
√

3`

)
sin
(
πL
`

)
`(c2 − 1)

I4 = −
πcsch

(
4π2
√

3`

)
2(c2 − 1)

(
3c2 sin

(
πL
`

)
c2 − 1

+
2
√

3π cos
(
πL
`

)
`

)

≈ −

√
3π2csch

(
4π2
√

3`

)
cos
(
πL
`

)
`(c2 − 1)

+O(c).

To obtain these expressions we have used the substitution s = e
√

3
2
z followed by contour

integration.
The ODEs thus take the simpler form

ω2 =
α̇2

4
+
λL

4
cos

(
πL

`

)
cos

(
2πα

`

)
(C.3)

α̈ = −λ sin

(
2πα

`

)
sin

(
πL

`

)
, (C.4)

where λ = 16
√

3π2µ
3`L

csch
(

4π2
√

3`

)
. It is clear from these equations that ω is slaved to the dynamics

of α.
Initial conditions for the oscillators can be derived by considering the time-independent

problem. Instead of using the Ansatz (C.1) we seek an order-by-order expansion of the
stationary localized snaking solutions. In this case α becomes time-independent and ω2 ≡ 0
but the asymptotics are otherwise unchanged. In particular since our structures are centered
with respect to a cosine period we must have α = 0, `

2
; from the solvability conditions in

Eqs. (C.3) and (C.4) it follows that we also require L = k(`/2) with k an odd positive integer.
For example, a localized state spanning 3 cosine wavelengths would have L = 3` and α = 0.
Because the time-dependent calculation is designed to capture dynamics around perturbed
stationary localized states we take α(t = 0) = 0 and α̇(t = 0) = 2η (the phase gradient
perturbation) as initial conditions.

Before continuing to the solution of Eqs. (C.4) we first discuss the role of symmetries
of the original system in the ODE dynamics. The original system described by Eq. (7.1)
possesses at least three important continuous symmetries when m1 = 0. These include
spatial translation u(x, t) → u(x + y, t), phase rotation u(x, t) → u(x, t)eiω, and Galilean
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invariance u(x, t)→ u(x+ vt, t)ei
v
2(x+ v

2
t). The last of these suggests that solutions traveling

at a uniform velocity are not translating but rather rotating (with angular frequency v2

4
)

in a moving frame. The introduction of the cosine forcing in Eq. (7.1) formally breaks the
spatial translation and Galilean symmetries but does not preclude the existence of states
that travel with nonuniform velocity. Indeed, it is clear from the first terms of Eq. (C.3)
that the Galilean structure persists for the average velocity of the solution. That is, if the
center of mass velocity, α̇, has a nonzero time average vcm then in the frame moving at this
velocity the same structure has a zero average velocity but rotates in time with a frequency

equal to v2cm
4

.

C.2 ODE dynamics

We next discuss the dynamics of stationary localized states that are perturbed by a phase
gradient. These states follow the dynamics of Eq. (C.4) where L = k(`/2) for an odd integer

k. Changing the variables (α, τ) to new variables called (x, t), where α = `
2π
x and t =

√
`

2πλ
τ ,

puts the equation of motion in canonical form,

ẍ+ sin(x) = 0, (C.5)

and the motion reduces to that of a pendulum. There are thus two distinct dynamical
regimes: libration and rotation. In the case of the solitons the libration regime corresponds
to oscillations of the center of mass in space with zero mean speed while the rotation regime
corresponds to propagation of solitons with nonzero mean speed. These regimes are distin-
guished by the value of the first integral of the equation of motion, the initial velocity, since
the initial displacement is zero, x(t = 0) = 0. Integrating Eq. (C.5) once we obtain,

ẋ2

2
− cos(x) =

ẋ2
0

2
− 1.

The initial velocity can be translated back to the Ansatz variables by noticing that

∂x

∂τ

∣∣∣∣
τ=0

= 2η

√
2π

`λ
,

and is thus proportional to the magnitude of the “phase gradient” perturbation used in our
simulations. Libration occurs when 0 < ẋ0 < 2 while rotation occurs when ẋ0 > 2. Thus

the critical transition at which solitons become “unbound” takes place at ηc(`) =
√

λ`
2π

.

In the specific cases considered here, ` = 10, 50 and µ = 0.1, we find ηc(10) ≈ 0.387√
L

and

ηc(50) ≈ 1.240√
L

.
The oscillation period in both the libration and rotation regimes may be computed in

terms of elliptic integrals using standard techniques. Specifically, in the libration regime
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Figure C.1: The inverse periods of oscillation in the libration regime (solid line) and rotation
regime (dashed line) as functions of the initial kinetic energy of the oscillator as measured
by ẋ0.

(0 < ẋ0 < 2) there is a maximum displacement xmax = 2 arcsin
(
ẋ0
2

)
< π so the period is

T̃lib = 4

∫ xmax

0

dx√
ẋ2

0 − 4 sin2
(
x
2

) = 4K

(
ẋ2

0

4

)
.

Here K(x) is the complete elliptic integral of the first kind, K(k) ≡
∫ π

2

0
dθ√

1−k sin2 θ
, and the

tilde over T̃lib refers to the scaled time, τ . In the rotation regime (ẋ0 > 2) the period is
defined as the time required to execute a single complete orbit,

T̃rot =

∫ 2π

0

dx√
ẋ2

0 − 4 sin2
(
x
2

) =
4

ẋ0

K

(
4

ẋ2
0

)
. (C.6)

In the soliton context this period gives rise to the mean propagation velocity, vrot =
√

`λ
2π

2π
T̃rot

.

In the frame moving at velocity vrot the solution oscillates with period Trot =
√

`
2πλ

T̃rot. The

two periods computed here are plotted in Fig. C.1 as a function of ẋ0.
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