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Vector potentials in gauge theories in flat spacetime

C.W. Wong*

Department of Physics and Astronomy, University of California, Los Angeles,
California 90095-1547, USA

(Received 7 July 2015; published 19 October 2015)

A recent suggestion that vector potentials in electrodynamics (ED) are nontensorial objects under four-
dimensional (4D) frame rotations is found to be bothunnecessary and confusing.As traditionally used inED, a
vector potential A always transforms homogeneously under 4D rotations in spacetime, but if the gauge is
changed by the rotation, one can restore the gauge back to the original gauge by adding an inhomogeneous
term. It is then not a 4-vector, but two 4-vectors: one for rotation and one for translation. For such a gauge, it is
much more important to preserve explicit homogeneous Lorentz covariance by simply skipping the
troublesome gauge-restoration step. A gauge-independent separation of A into a dynamical term and a
nondynamical term in Abelian gauge theories is redefinedmore generally as the terms caused by the presence
and absence, respectively, of the 4-current term in the inhomogeneous Maxwell equations for A. Such a
separation cannot in general be extended to non-Abelian theories where A satisfies nonlinear differential
equations. However, in the linearized iterative solution that is perturbation theory, the usual Abelian
quantizations in the usual gauges can be used. Some nonlinear complications are briefly reviewed.

DOI: 10.1103/PhysRevD.92.085028 PACS numbers: 11.30.Cp, 03.50.De, 12.20.-m, 12.38.-t

I. INTRODUCTION

Lorcé [1] has recently given, among many interesting
results, a nonstandard description of the vector potentials AL
in Lorenz (L) gauges in classical electrodynamics (CED).
His motivation is to be able to claim that the CED vector
potential AðxÞ in any gauge is Lorentz covariant under four-
dimensional (4D) frame rotations. He does this by redefining
homogeneous Lorentz covariance for AðxÞ, but not for x
itself, as inhomogeneous Lorentz covariance where an
inhomogeneous term for 4D translation can be added to
the result of a 4D rotation. He further claims that the Lorenz
gauge is “nothing special” because “one cannot conclude that
the only possible Lorentz transformation law for the gauge
potential is the four-vector one, unless one removes the
residual gauge freedom,” and that vector potentials are
“nontensorial objects” [1].
One objective of this paper is to explain in Sec. II why

Lorcé’s revisionist view is both unnecessary and confusing
compared to the traditional textbook language (Refs. [2–4],
for example) that is already simple, clear, and consistent. In
this standard language using special relativity in flat space
(and not general relativity in curved space), 4-vectors are
defined to transform homogeneously under 4D frame
rotations, just like x itself. For AðxÞ in gauge theories,
the central issue turns out to be whether its chosen gauge in
frame x will remain unchanged after a 4D rotation, i.e., a
homogeneous Lorentz (hL) transformation. We shall show
that the hL transformation of AðxÞ is gauge preserving
in covariant gauges (cg) and gauge nonpreserving in
noncovariant (nc) gauges.

If the gauge is changed for a vector potential AðxÞ in the
rotated frame x0, its altered gauge can be restored back to
the original gauge used in frame x by adding a change-of-
gauge term to give a total gauge-restored but inhomo-
geneous Lorentz transformation. Such an AðxÞ is described
correctly as “not a 4-vector” in textbooks [2,3] because it is
the sum of two 4-vectors, one for rotation and one for
translation. However, one can easily preserve the important
requirement of explicit homogeneous Lorentz covariance
by simply skipping this troublesome gauge-restoration
step. Some implications of this change of perspective are
discussed.
The second objective of this paper is to show in Sec. III

that the vector potential A in electrodynamics (ED) is
nonunique in general by using the separation A ¼ Adyn þ
Andy known from the theory of linear differential equations.
Here, the dynamical (dyn) part Adyn and nondynamical
(ndy) part Andy are, respectively, the solutions of the
Maxwell equations for A with and without the 4-current
density j. This separation further highlights the important
role played by the Coulomb (C) gauge in clarifying a
different known structure of A present in both dynamical
and nondynamical parts: The Coulomb gauge transversality
condition ∇ ·AC ¼ 0 selects a transverse (⊥) or physical
(phys) part AC ¼ A⊥ ¼ Aphys that is known to be gauge
invariant (Ref. [5], for example). It excludes the longi-
tudinal (∥) or “pure-gauge” part A∥ ¼ Apure due to gauge
transformations known to contribute nothing to the field
tensor. The sum A ¼ Aphys þ Apure is thus explicitly gauge
invariant, as shown by Chen et al. [6].
The dynamical/nondynamical treatment is naturally

gauge invariant in ED. The vector potential A is nonunique*cwong@physics.ucla.edu
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because a nondynamical part Andy can be added to any
particular solution to generate other solutions. Andy also has
a transverse/longitudinal (or physical/gauge) decomposi-
tion. Its gauge part is the entire gauge part of A and has no
physical consequences. Its physical part generates nonzero
field tensors Fμν describing transverse electromagnetic
waves in free space and longitudinal electric fields from
scalar potentials satisfying the Laplace equation for differ-
ent boundary conditions. However, in applications such as
Ref. [6], where one is only interested in one particular
solution Adyn for the gauge field bound inside a distinct
atomic state by a unique bound-state boundary condition,
there is no need to add a further Andy term of the physical
type. The dynamical/nondynamical treatment can accom-
modate these special cases, too.
The decomposition of A in ED into parts cannot in

general be extended to non-Abelian theories where A
satisfies nonlinear differential equations. Even the 4-current
and field tensor are themselves gauge dependent. However,
a linearized iterative treatment using perturbation theory
permits Abelian quantizations in the usual gauges as an
approximation. Some nonlinear complications of non-
Abelian gauge theories are reviewed, especially from the
perspective that second quantization is a linearization
process that unavoidably leaves most of the native non-
linearity untreated until after quantization.

II. HOMOGENEOUS LORENTZ COVARIANCE

Recall that a (single-valued) vector field AðxÞ in an
inertial frame x of a flat and isotropic spacetime is one
where its value at point x is a 4-vector, i.e., a 4D “oriented
arrow” of definite length (figuratively speaking) present
in spacetime itself. A 4-vector as used here is any
4-component object of which the components are defined
by the same coordinate axes as the frame x and are
compatible in physical units so that its “length” can be
calculated. Under a hL transformation (i.e., a 4D rotation)
of the coordinate frame defined by x0 ¼ Λx, such a 4D
vector field transforms as

A0ðx0 ¼ ΛxÞ ¼ ΛAðxÞ; because

A ¼ e0μðx0ÞA0μðx0Þ ¼ eνðxÞAνðxÞ∶
A0μ ¼ e0μ · A ¼ ðe0μ · eνÞAν

¼ Λμ
νAν; ð1Þ

where eνðxÞ is a unit vector. This hL transformation gives
the new components A0μ in the rotated frame x0 of each
spacetime arrow AðxÞ of unchanged length and orientation.
The rotation matrix Λ on the rhs for position x ≠ 0 uses a
local x frame (a copy of the x frame with its origin
translated to position x) and not the original x frame
centered at x ¼ 0. In other words, a real 4-vector field is
defined to be based on the 4D real-number system that

transforms as x0 ¼ Λx under 4D frame rotations. It can be
generalized to a complex 4-vector field by adding an
overall phase factor at each position x.
Each 4D vector in AðxÞ defined by Eq. (1) will be called

a hL covariant 4-vector in this paper, meaning a 4-vector
under 4D frame rotations. This is the same object as Lorcé’s
“Lorentz 4-vector” or the usual 4-vector of textbooks [2–4].
Tensors built from covariant 4-vectors are covariant
4-tensors, while an invariant scalar has the same single
value in all hL frames. The language used here and in
textbooks is thus the simplest generalization of 3D spatial
vector fields in Euclidean space of signature (3,0) to 4D
spacetime vector fields in Euclidean space of signature
(3,1), where the spacelike specification comes first, irre-
spective of the overall sign convention used.
In Lorcé’s revised language [1,7,8], 4D rotational

covariance of AðxÞ is redefined as an inhomogenous
Lorentz transformation, containing terms for both rotation
between two frames and translation in a single frame, even
though the most important 4-vector, namely, x itself,
satisfies only a hL transformation. (This exception is
needed because the associated inhomogeneous Lorentz
transformation for x itself defines a full-blown Poincaré
transformation that is not the subject under discussion.)
This inconsistent treatment is the most serious source of
confusion in the proposed revision.
A prime example of the standard usage adopted in this

paper appears in the definition of the gauge-covariant
derivative in QED involving particles of charge e
(e ¼ −jej for electrons):

Dμ ≡ ∂μ þ ieAμ: ð2Þ

In gauge theories of interaction, it is the requirement of
local gauge invariance of the Lagrangian under the local
gauge transformation (LGT) of the complex Dirac field
ψðxÞ→LGT e−ieωðxÞψðxÞ for a charged particle that forces
the introduction of the gauge potential AðxÞ ¼ ∂ωðxÞ,
where ωðxÞ is a real scalar field. Thus, A by design is
the same covariant 4-vector object as ∂ in flat space. The
fact that this A appears in the invariant scalar product
ψ̄γμDμψ in QED is what gives the interaction Lagrangian
ψ̄γμAμψ ¼ j · A (where j ¼ ψ̄γψ) both its interaction and
its explicit hL invariance. This Aμ is thus intended to be a
covariant 4-vector. We shall explain why it sometimes turns
out to be not a 4-vector, thus ruining the explicit hL
invariance of the interaction Lagrangian, and how it can be
chosen to be a covariant 4-vector for any choice of gauge in
frame x for gauge-invariant theories in flat spacetime.
Recall that in CED alone the electromagnetic field tensor

Fμν ¼ ∂μAν − ∂νAμ in frame x is unchanged by the gauge
transformation (GT),

AμðxÞ→GTAμðxÞ þ ∂μΩðxÞ; ð3Þ
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where ΩðxÞ is a real scalar field. The vector potential A
introduced by Eq. (2) is thus highly nonunique. Part of
the resulting redundant gauge degrees of freedom can be
eliminated by imposing a constraint called a gauge con-
dition, expressible in the form

GfAðxÞg≡ CðxÞ · AðxÞ ¼ 0; ð4Þ

where CðxÞ is a chosen covariant 4-vector operator or field.
Under a general hL transformation, the chosen gauge can
be either (a) covariant or gauge preserving and denoted cg
or (b) noncovariant or gauge nonpreserving, denoted
variable gauge (vg):

ðaÞ if ΛCðxÞ ¼ C0ðx0Þ∶
CðxÞ · AcgðxÞ ¼ CðxÞ · Λ−1ΛAcgðxÞ;

¼ C0ðx0Þ · A0
cgðx0Þ;

A0
cgðx0Þ ¼ ΛAcgðxÞ:

ðbÞ if ΛCðxÞ ≠ C0ðx0Þ∶
CðxÞ · AvgðxÞ ≠ C0ðx0Þ · ½ΛAvgðxÞ�: ð5Þ

[The identity C · Λ−1 ¼ ½ΛC�· has been used in Eq. (5).]
Thus, in the standard language, the gauge-preserving
covariant 4-vector property of AcgðxÞ in any covariant
gauge cg described in Eq. (5a) is a consequence of the hL
invariance of its gauge condition.
The inhomogeneous Maxwell equation for A in ED is

∂μð∂μAν − ∂νAμÞ ¼ ∂2Aν − ∂νð∂ · AÞ
≡Lν

μAμ ¼ jν; ð6Þ

where L ¼ LðxÞ is a gauge-dependent linear differential
operator and j ¼ jðxÞ is a gauge-independent covariant 4-
vector in spacetime (because it is made up of point charges
moving with 4-velocities in frame x [9]). For a covariant
gauge cg where AcgðxÞ is a covariant 4-vector, the full
covariant tensor structure of the rank-2 covariant 4-tensorL
is preserved under 4D rotations. So covariant gauges are
indeed special.
Among these cg gauges, the Lorenz gauge is the most

special and indeed unique because its gauge condition ∂ ·
ALðxÞ ¼ 0 allows Eq. (6) to be simplified to

∂2AL ¼ j: ð7Þ

Since LL ¼ ∂2 is now an invariant scalar operator, the
covariant 4-vector nature of AL is dictated by the covariant
4-vector nature of the 4-current j on the rhs [4], even for the
special case j ¼ 0 ¼ ð0; 0; 0; 0Þ. So the covariant 4-vector
property of every solution AL for both j ≠ 0 and j ¼ 0 is a
consequence of the Lorenz condition alone.

Further elaboration of the covariant 4-vector nature of AL
might be helpful. First define ALðxÞ as the multivalued set,
object, or “function” containing all the multiple solutions of
Eq. (7) as its multiple values. Then, display its behavior
under 4D rotation of the external local frame x to x0,

Λ∂2ALðxÞ ¼ ðΛ∂2Λ−1ÞðΛALðxÞÞ
¼ ∂ 02A0

Lðx0Þ ¼ ΛjðxÞ ¼ j0ðx0Þ; ð8Þ

where A0
Lðx0Þ ¼ ΛALðxÞ from Eq. (5a) has been used. So

the wave equations (7) transform covariantly for every
solution contained in ALðxÞ for the simple reason that the
multivalued object A0

Lðx0Þ is exactly the same object as the
original ALðxÞ but with components decomposed relative to
the rotated local frame x0. This covariance refers initially to
the constancy of the 4-component object ALðxÞ under
external frame rotations.
However, ED as a hL-invariant theory in isotropic

spacetime contains an additional symmetry of importance
in physics: Spacetime itself shows no 4D orientation
preference for ED phenomena so that only the relative
orientation between the frame and solution is physically
meaningful. There thus exists a solution ALðx0Þ in frame x
where the solution has been rotated in the opposite
direction and is numerically indistinguishable from
A0
Lðx0Þ. The covariance of Eq. (8) can then be interpreted

as referring to such rotated solutions in hL-invariant
theories. In theories that are not even implicitly hL
invariant, such an interpretation is not admissible.
In Eq. (5b), on the other hand, ΛAvgðxÞ satisfies the

gauge ΛCðxÞ that differs from C0ðx0Þ; it is thus a gauge
nonpreserving covariant 4-vector. If one insists on restoring
the gauge in x0 from gauge ΛC back to the original nc
gauge, it will be necessary in Abelian theories to add an
extra inhomogeneous 4-vector term R0

ΛC→ncðx0Þ≡∂ 0ΩΛC→ncðx0Þ for gauge restoration to give the inhomo-
geneous transformation

A0
ncðx0 ¼ ΛxÞ ¼ ΛAncðxÞ þ R0

ΛC→ncðx0Þ;
where GncfA0

ncðx0Þg ¼ 0 ð9Þ

is the restored gauge condition, and AncðxÞ ¼ AvgðxÞ has
been renamed “nc” for greater clarity. Note that the extra
term R0

ΛC→nc is not concerned with the residual gauge
degree of freedom describing the nonuniqueness of A0

g itself
in a single gauge g in frame x0 for the same field tensor F.
The new term R0

ΛC→nc in Eq. (9) ruins the hL covariance
property of ΛAncðxÞ, however, because the four spacetime
components are treated asymmetrically in noncovariant
gauges. An asymmetry then appears in the differential
operator L on the lhs of Eq. (6) for a noncovariant gauge.
So after gauge restoration, A0

ncðx0Þ of Eq. (9) is no longer a
covariant 4-vector but an hL-noncovariant 4-vector. This is
the standard picture described in textbooks [2,3,5]. See also
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Ref. [10]. In particular, the interaction Lagrangian j · Anc ¼
ðΛjÞ · ðΛAncÞ ≠ j0 · A0

nc, where the 4-current j remains a
covariant 4-vector, is no longer explicitly hL invariant. The
differential equation (DE) (6), too, is no longer covariant
even though all tensor indices correctly describe matrix
multiplications because ΛLncðxÞΛ−1 ≠ L0

ncðx0Þ; the rotated
solutions in frame x also do not solve the same Eq. (6)
with Lnc.
If a gauge-restored but noncovariant 4-vector potential

Anc is used in a gauge-invariant formulation of ED, it must
contain hidden hL covariance because one can always
gauge transform to the Lorenz gauge (or any other
covariant gauge cg) where the hL covariance of Acg can
be explicitly displayed.
Howcan this hiddenhL covariance bemade explicit? This

question can be answered by using the sequential (gauge →
Lorentz → gauge) transformations [11], AncðxÞ →GT

AcgðxÞ →LT A0
cgðx0Þ →GT A0

ncðx0Þ, where x defines any
initial inertial frame and x0 ¼ Λx is the new hL (4D rotated)
frame. The last three A s have the interesting structure

ðaÞ AcgðxÞ ¼ AncðxÞ þ Rnc→cgðxÞ; where

Rnc→cgðxÞ ¼ ∂Ωnc→cgðxÞ;
ðbÞ A0

cgðx0 ¼ ΛxÞ ¼ ΛAcgðxÞ
¼ Λ½AncðxÞ þ Rnc→cgðxÞ�;

ðcÞ A0
ncðx0Þ ¼ A0

cgðx0Þ þ R0
cg→ncðx0Þ: ð10Þ

Here, Λ≡ Λðx; x0Þ. These expressions can be combined to
give the gauge-restored Lorentz transformation relation for
the noncovariant but fixed-gauge 4-vector Anc,

A0
ncðx0Þ ¼ ΛAncðxÞ þ R0

ΛC→ncðx; x0Þ; ð11Þ

R0
ΛC→ncðx; x0Þ ¼ R0

cg→ncðx0Þ þ ΛRnc→cgðxÞ: ð12Þ
Equation (11) is a refinement of Eq. (9) for the same end
result, namely, an inhomogeneous transformation in the 4D
functional space of A involving two hL-related local frames
x and x0 in 4D spacetime with no translation between them.
All the gauge transformations involved in Eqs. (9), (10)

are change-of-gauge ones; none is concerned only with a
residual gauge term causing no gauge change. However, a
necessarily longitudinal residual gauge term RgðxÞ≡∂ΩgðxÞ or R0

gðx0Þ can in general be added to a vector
potential in any nontransverse gauge g and in the frame x or
x0 in these equations without changing their validity. This
Rg is by definition gauge preserving. It is often called a
gauge transformation of the second kind [12]. In Lorenz
gauges, for example, the term satisfies the wave equation
∂2ΩL ¼ 0, or ∂2RL ¼ 0.
Since ED is a linear theory in A, an ED gauge condition

GgfAg ¼ 0 is almost always one satisfying the linearity
property

GgfAgðxÞ þ RgðxÞg ¼ GgfAgðxÞg þ GgfRgðxÞg
¼ 0; ð13Þ

where RgðxÞ is a residual gauge term. This linearity has the
consequence that Ag and Rg separately or together satisfy
the gauge condition. Since the gauge condition also dictates
the hL covariance property of vector potentials, Ag and Rg

separately or together must be only covariant 4-vectors or
only noncovariant 4-vectors. This means that all residual
gauge terms can simply be absorbed into their parent terms
[such as Ag in Eq. (13)] and not shown explicitly, if each Ag

denotes a multivalued object containing all possible values
allowed by the residual gauge degree of freedom.
For the covariant Lorenz gauge, for example, the hL

transform A0
Lðx0Þ ¼ ΛALðxÞ is multivalued if the original

ALðxÞ is multivalued, both containing residual gauge terms.
On the other hand, for the noncovariant Coulomb gauge
where the residual gauge degree of freedom is absent, the hL
transform ΛACðxÞ requires an appropriate multivalued
gauge restoration A0

Cðx0Þ ¼ ΛACðxÞ þ R0
ΛC→C to remove

all unwanted residual gauge terms from ΛACðxÞ. There is
thus also no need for any final gauge transformation or
gauge rotation of the type discussed in Ref. [1]. The fact that
any allowed residual gauge degree of freedom has been
included in the multivalued object Ag will be expressed
mathematically as Eq. (17) in Sec. III from a more general
perspective.
Why should one remain in the same gauge g in frame x0

in a noncovariant gauge? It is good to know how to do it,
but since the gauge degree of freedom under consideration
causes no change in Fμν and the classical properties it
describes, this gauge degree of freedom can be used to
enforce not the noncovariant gauge condition but the hL
covariance of the gauge nonpreserving covariant 4-vector
Avg. That is, one can simply use the hL transform ΛAvgðxÞ
of Eq. (5b) alone without adding the troublesome gauge-
restoring term R0

ΛC→ncðx0Þ, thus allowing the tensor struc-
ture of the inhomogeneous Maxwell Eq. (6) to retain its
usual meaning in flat spacetime.
For the Coulomb gauge, for example, the hL transform

ΛLCðxÞΛ−1 in frame x0 in the variable-gauge approach
differs from the operator L0

Cðx0Þ in the gauge-restored
approach. In either case, the DE has to be solved with
the same operator LCðxÞ in frame x only; the solution is
then transformed differently to frame x0 in different treat-
ments. In the variable-gauge treatment, all residual gauge
terms R0

vgðx0Þ that appear now should also be included. So
Eq. (5b) can be rewritten as the covariant but variable-
gauge gauge condition C · Avg ¼ ðΛCÞ · ðΛAvgÞ ¼ 0 to
define a special kind of hL invariance/covariance for the
original vg ¼ nc gauge in frame x. For the Coulomb gauge
in any frame x, the result is a covariant Coulomb (cC)
gauge. It is also a subset of AL of the Lorenz gauge of which
the element for frame x also satisfies the Coulomb gauge
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condition. This special element can be located from any
element of ALðxÞ by the residual gauge transformation:

A∥
cCðxÞ ¼ A∥

LðxÞ þ ∂∥ΩLðxÞ
¼ 0: ð14Þ

The vector potentials for covariant axial and temporal
gauges can be similarly located.
For an hL-invariant theory such as ED in flat and

isotropic spacetime, physics is independent of the choice
of frame x; all Coulomb-gauge results obtained in any one
frame describe the same physics as Lorenz gauges. This
completes our demonstration that the vector potential A
introduced by the gauge-covariant derivative (2) of Abelian
gauge theories can always be chosen to be a covariant
4-vector in flat space satisfying the hL transformation law
A0ðx0 ¼ ΛxÞ ¼ ΛAðxÞ for any gauge in frame x including a
noncovriant gauge, thus preserving the explicit hL of the
theory.
To summarize, Lorcé’s proposed revision of the 4-vector

language for flat spacetime is unnecessary because the
traditional textbook usage in ED is simpler. The proposal is
confusing because the parent hL transformation of the
spacetime 4-coordinate x under 4D rotations of the inertial
frame centered at x ¼ 0 is not duplicated by the proposed
inhomogenous Lorentz transformation of the vector poten-
tial under 4D rotations of the local frames centered at x.
Finally, the added inhomogeneous term has nothing to do
with a hL transformation to another frame but is instead a
change-of-gauge transformation in one inertial frame
needed to repair or anticipate the gauge damage caused
by the hL transformation.
The last comment applies even to non-Abelian gauge

theories in flat spacetime where AðxÞ ¼ AaðxÞta is a sum
over internal components AaðxÞ associated with the ath
generators ta of the gauge group. What has changed in non-
Abelian (nAb) theories is not the 4D rotation of the external
frame but their GT at point x in frame x [13],

Aμ
a →
nAbGT

Aμ
a þ ∂μΩa þ gfabcA

μ
bΩc þ � � � ; ð15Þ

showing only the leading term of an infinite series in
powers of gf, fabc being a structure constant of the
gauge group.
For SUðNÞ theories with N ≥ 2 where fabc ≠ 0, the

presence of non-Abelian terms dependent on gf causes
serious complications. First, just the first non-Abelian
gauge term shown in Eq. (15) depends on both Ω and
A, allowing it to “twist” the internal structure of A itself in
different ways depending on the exact circumstances in
every gauge transformation. Lorcé’s revision misses the
real culprit that is this troublesome non-Abelian gauge term
and wrongly blames the external frame rotation that is
working properly.

Second, non-Abelian vector potentials satisfy nonlinear
differential equations (nLDE) that cannot accommodate the
non-Abelian gauge transformation (15) easily or even allow
an easy solution of a chosen gauge definition. We shall
return to describe this basic nonlinear obstacle more fully
after first setting the stage by discussing the stated second
objective of this paper.

III. DYNAMICAL AND NONDYNAMICAL PARTS
OF THE VECTOR POTENTIAL

The linear differential equation (LDE) (6) also plays a
central role in determining the origin of the dynamical part
of A in ED:

A ¼ Adyn þ Andy∶

LAdyn ¼ j; LAndy ¼ 0: ð16Þ

That is, Adyn is a particular solution of the inhomogeneous
LDE with a nonzero 4-current j that is gauge independent.
(Note that in QED j≡ ψ̄ðxÞγψðxÞ is a local density where
any arbitrary phases in the fermion fields always cancel in
pairs. The γμs are hL-invariant numerical 4 × 4 matrices
acting on 4-component, hL variant Dirac spinors ψðxÞ. The
spacetime (μ index) structure of the expression is designed
to guarantee the covariant 4-vector property of j under hL
transformation by the hL covariance of the Dirac equation,
or vice versa [12].) An additional nondynamical homo-
geneous solution Andy (for the equation with j ¼ 0 that is
also gauge independent) can be added to Adyn to change the
4D boundary condition satisfied by their sum to some
desirable value without changing the dynamics induced by
the source 4-current j that is already contained in a
particular Adyn. This separation into dynamical and non-
dynamical parts is a gauge-independent process; it can and
should be made before a choice of gauge.
Note that Adyn contains the same dynamics as the

original gauge-invariant but higher-ranked field tensor F.
The nondynamical part Andy ¼ A − Adyn that is left must
include the gauge term ∂μΩðxÞ of Eq. (3) because with
Fμν ¼ 0 the gauge term satisfies the homogeneous LDE.
However, this LDE also has other solutions with nonzero
Fμν that contain real physics, as we shall now discuss.
The dynamical/nondynamical treatment does exact a

price: A gauge degree of freedom now appears explicitly
in the inhomogeneous LDE (6) so that a choice of gauge is
now required before Eq. (6) can be solved in practice. The
LDE itself takes different forms in different gauges, thus
showing explicitly the variety of vector potentials that can be
used to describe the same physics. In Lorenz gauges, both
Andy;L and the residual gauge term RL satisfy the same
homogeneous wave equation. So homogeneous solutions of
the gauge type exist in the Lorenz gauge. There are additional
physical solutions with nonzero Fμν in any gauge. In Lorenz
gauges, they describe free electromagnetic waves in all
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spatial directions in 3D space. In the Coulomb gauge, the
transversality condition excludes all pure-gauge solutions
because they are longitudinal. One is then left with only
“physical” solutions that satisfy wave equations in the 2D
transverse momentum space and a timelike scalar potential
A0 that satisfies a Laplace equation [9].
There are infinitely many solutions for both types of Andy

because of the infinite variety of gauge functions Ω that
appear in gauge solutions and of boundary conditions for
physical solutions. Since a dynamical solution remains a
dynamical solution after the addition of any homogeneous
solution, there are infinitely many Adyn too. Furthermore,
the multivalued Andy;g for any gauge g is already contained
in the multivalued Adyn;g and is not independent of it; if we
enumerate the different values in these multivalued func-
tions as Adyn;gðx; nÞ and Andy;gðx;m; nÞ by adding counting
numbers m; n as additional arguments, then

Andy;gðx;m; nÞ ¼ Adyn;gðx;mÞ − Adyn;gðx; nÞ: ð17Þ

There is thus no additional final gauge transformation,
gauge rotation, or even boundary condition of the types
described in Refs. [1,7] for the simple reason that all
solutions can be included in the multivalued object Adyn;g,
previously called Ag. Its different values have the same
symmetry properties, especially that under hL transforma-
tions, differing only in numerical values.
The situation is similar to that in a much simpler

problem: The one-dimensional (1D) Newton equation
ẍðtÞ ¼ jðtÞ has the multivalued solution xðtÞ≡ xdynðtÞ
containing the entire 2D infinity of numerical solutions
for all possible choices of initial conditions (ICs) from
points of the 2D IC space. A 2D infinity of force-free
homogeneous solutions denoted collectively as xndyðtÞ also
exist, but they can all be extracted from xdynðtÞ using a 1D
version of Eq. (17). The gauge terms are absent, just like the
Maxwell AC in the Coulomb gauge.
Of course, none of the other 2D infinity of multiple

solutions is needed if the particular solution on hand is
already the physical solution satisfying the desired ICs. So
the word “multivalued” is used in this paper in a generic or
familial sense and not in the literal sense that a physical
state shows multiple realities. On the contrary, each
completely specified physical state is described by only
one of these multiple solutions.
The multiple solutions of the vector potential A play a

more complex role, as we have already discussed. For
example, the free electromagnetic waves contained in the
physical part of the nondynamical vector potential Andy

quantize to the infinite variety of free photon states with a
nonzero number of photons of different energies propa-
gating in all directions in space from spatial infinity to
spatial infinity. The multiple solutions of the dynamical
vector potential Adyn contain the additional dynamics

associated with distinct choices of the 4-current j. For
problems involving only the unique gauge field bound in a
specific atomic state, an appropriate “particular” Adyn

solution can be defined without using any Andy term of
the physical type, but the gauge part of Andy can still be kept
to display explicit gauge invariance [6]. More generally,
however, the dynamical/nondynamical treatment provides a
more complete description of the physical contents of A.
The gauge-invariant dynamical/nondynamical separation

of A is also hL covariant, since it depends on the presence
or absence of a covariant 4-vector current j. Equation (6)
then retains its standard hL-covariant tensor structure for
all hL-covariant 4-vectors A, as intended in the original
covariant formalism; this result holds both for the gauge-
preserving covariant 4-vectorAcg in a covariant gauge cg and
for a gauge nonpreserving but covariant 4-vector Avg in the
vg treatment of any other gauge choice. For the gauge-
restored but noncovariant (nc) 4-vector construct Anc for a
noncovariant gauge, however, the additional gauge-restoring
term R0

ΛC→ncðx0Þ destroys the explicit hL invariance of the
interaction Lagrangian. This defect does not prevent QED
quantization in the Coulomb gauge in a single frame [2,3].
So the answer to the objection [14] that a noncovariant

gauge like the Coulomb gauge is not hL covariant is that in
a gauge-independent and hL-invariant theory the Coulomb
gauge used in frame x alone gives correct results because of
either a hidden hL covariance or an actual hL covariance
when used in a variable-gauge context. It is not possible to
preserve explicit hL covariance when the gauge is fixed at
the Coulomb gauge in all frames.
Of course, covariant gauges in general, and Lorenz gauges

in particular, are special because they preserve both their
gauge and the full hL-covariant structure of all expressions in
all hL frames. Nevertheless, it is the Coulomb (radiation or
Landau) gauge that provides the simplest and physically
most intuitive description of electromagnetic radiation or
photons. The 3D space rotation invariance in its gauge
condition allows the radiation/photon to travel in the same
way along any spatial direction ek, while the explicit
spacetime asymmetry in its gauge condition is designed to
confine AC entirely to the 2D subspace of transverse polar-
izations perpendicular to ek. An electromagnetic wave
traveling in a definite direction ek described so nicely by
the Coulomb gauge is an example of a commonplace
phenomenon that the spacetime symmetry of a physical
state can differ from the hL invariance of the underlying
Lagrangian. Finally, the exclusion of the entire gauge degree
of freedom actually means that AC ¼ A⊥ is gauge indepen-
dent or invariant (Ref. [5], for example).
For the inhomogeneous nLDE satisfied by non-Abelian

vector potentials, the separation of A into parts faces a
serious obstacle: There are dynamical solutions Adyn;a for a
nonzero Dirac 4-current ja ¼ ψ̄γtaψ in the inhomogeneous
nLDE and nontrivial nondynamical solutions Andy;a for the
associated homogeneous nLDE with ja ¼ 0. However,

C. W. WONG PHYSICAL REVIEW D 92, 085028 (2015)

085028-6



linear superpositions of Adyn;a and Andy;a, or decomposed
parts of both, do not in general satisfy nLDEs simply
related to the original equations.
One can use systematic perturbation theory [13], how-

ever, when there are no nonlinear instabilities or compli-
cations. An iterative perturbation theory can be set up by
first writing all expressions with the dimensionless non-
Abelian coupling constant g shown explicitly in formulas.
Then, the non-Abelian nLDE for A can be rearranged so
that all terms dependent on g are moved to the rhs,

∂μð∂μAν
a − ∂νAμ

aÞ ¼ −gðjνa þ jν2;aÞ − g2jν3;a; ð18Þ

where the non-Abelian nonlinear terms j2;a; j3;a containing
two and three vector potentials, respectively, may be treated
as gauge 4-currents in an iterative solution; the calculation
starts from a chosen unperturbed Andy (with g ¼ 0 on the
rhs). The calculated terms to order n can then be used in the
nonlinear 4-currents on the rhs to drive the solution to order
nþ 1 in the resulting linearized DE. In this linearized
theory, Abelian quantizations in the usual gauges used in
Abelian theories and Feynman diagrams can be used. This
perturbative method is different from the procedure sug-
gested in Ref. [6].
Such perturbation methods may not always work well

because physical states may contain very significant com-
ponents where one or more linearized gauge bosons appear
when g is large. Certain collective phenomena may require
a great deal of effort to describe.
The nonlinearity of non-Abelian gauge theories causes

further complications [13,15–17]. The non-Abelian fer-
mion 4-current ja ≡ ψ̄ðxÞγtaψðxÞ and field tensor Fa are
both gauge dependent and more difficult to handle. Unlike
the simple mathematical structure allowed by the linear
superposition property of Abelian theories, non-Abelian
nonlinearity admits a multitude of structures at the classical
level: A gauge condition may have multiple solutions called
Gribov copies or no solution at all. The non-Abelian nLDE
(18) with 4-current j ¼ 0 satisfied by AndyðxÞ of pure gauge
can be used to define a nonlinear (with g ≠ 0) classical
vacuum that has infinitely many distinct solutions of differ-
ent internal structures characterized by different topological
winding numbers or kinks −∞ ≤ n ≤ ∞. This topological

structure for all simple Lie groups, including SUðN ≥ 2Þ,
turns out to be the same as that for their SUð2Þ subgroup
alone, according to Bott’s theorem.
The perturbation theory sketched in Eq. (18) can be used

to start from any nonlinear solution Andy;nðxÞ to give an
approximate iterative-perturbative solution with the same
winding number n (or in the same homotopy class) as
Andy;nðxÞ. The resulting linearized perturbation theory can
accommodate second quantization into gauge bosons based
on the topological vacuum state jni centered around the
classical n vacuum. Quantum tunnelings between neigh-
boring jni vacua give rise to transient events lasting only
instances in time called instantons and anti-instantons,
instantons’ time-reversed twins.
Quantization confers the non-native ability of linear

superposition; the true vacuum that includes quantum
couplings between jni vacua is one of the θ vacua
jθi ¼ P

ne
inθjni, where the arbitrary Bloch phase nθ

appearing with a quantum jn ≠ 0i vacuum is n dependent,
as required by the periodic appearance of the degenerate jni
vacua in the 1D winding number space. For θ-independent
Lagrangians and for certain gauges, these θ vacua can be
considered disjoint and duplicate mathematical realizations
of the same physical vacuum.
The native nonlinearity persists even among the quan-

tized gauge bosons, however, for they clump together with
or without interacting fermions into clusters of zero total
non-Abelian charge g. At ultrashort distances, the par-
ticles inside each cluster have been found unexpectedly to
be free and noninteracting, thus leading to the unfamiliar
situation that the physical picture gets progressively
simpler as the distance scale of observation decreases.
Finally, gluons of nonzero charge g cannot propagate
freely in free space. Hence, some of the nondynamical but
physical solutions of Andy of the current-free nonlinear
Yang–Mills equations for A giving nonzero Fμν quantize
to physical states of glueballs of total g ¼ 0 propagating
freely in free space.
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