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Abstract

Essays on Welfare in a Disinformation Age

by

Huy X. Nguyen

A historical age is often named after its most salient resource. In our cur-

rent age, that resource is information. Information has impacted economics

in transformative ways, from a shift toward services to competition with out-

sourcing and automation. Technologies like mass and social media have made

us more efficient and knowledgeable but also susceptible to untruths.

My dissertation explores the effects of misinformation (inaccurate) and dis-

information (intentionally false) on collective choice, namely that they reduce

expected welfare. I assume the role of a benevolent social planner and design

mechanisms that improve this welfare, given that untruths occur. Then, be-

cause information closely relates to perception, I share a fresh approach on

understanding and appreciating a well-known principle.

In Chapter 1 (Delayed Information Improves Cascades), I consider how the

Internet enables information–be it true, inaccurate, or intentionally false—to

cascade instantly and globally. I design a mechanism to mitigate wrong cas-

cades by limiting the first k, of n, players to observe their own signal but not

the signal or even action of previous players. I show that instant information

(k = 0) performs strictly better than no information (k = n) but that delayed

information (0 < k < n) performs best at an optimal k∗(n, p), where p is signal

accuracy. This suggests that polling and review websites can improve welfare

by reaching a minimum number of ratings before releasing aggregate results.

ix



In Chapter 2 (Pretending Volunteers), I introduce the ability to pretend

in the volunteer’s dilemma. Pretending contributes nothing, but it costs less

than helping and confers honor if the public good is provided and shame oth-

erwise. The main result is that the ability to pretend weakly reduces provision

chance. High values of honor increase provision, especially when coupled with

high shame. In the long run, pretenders dilute the honor from helping and

discourage actual helpers. Authenticated help at a premium can remedy this.

Extensions on sophistication and asymmetry explain why helpers, bystanders,

and pretenders coexist.

In Chapter 3 (Visualization of Revenue Equivalence), I construct three-

dimensional visualizations of revenue equivalence between first-price, second-

price, and all-pay sealed-bid auctions for two bidders with uniformly-distributed

private values. The mean height of each solid represents expected revenue and

is equal across all three formats. I then present a summation approach using

partitioned volumes. As the increments shrink toward zero, the three ex-

pected revenues converge to the continuous limit. Lastly, I share a tangible,

ham-and-cheese model as example of a pedagogical tool.
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Chapter 1

Delayed Information Improves

Cascades

1.1 Introduction

Consider a game of n sequential players deciding whether to adopt a new prod-

uct. This product need not be a commodity or service; it can also represent a

new medicine, technology, politician, or fashion. Each player receives a signal

on whether the new product will lead to prosperity or ruin. This signal is

right with probability p. Each player must decide whether to adopt the new

product based on the choices (not signals) of previous players plus his own

signal. If the count favors one choice over another, he chooses that; if it’s a

tie, he follows his own signal. A player receives utility 1 if he chooses rightly

and 0 otherwise.

The predominant risk among cascade games is that it takes just the first two
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Delayed Information Improves Cascades Chapter 1

players to receive wrong signals for everyone to follow suit like lemmings.1 In

the early nineties, independent authors showed that cascades, right or wrong,

inevitably occur among sequential players when group size becomes sufficiently

large (Welch 1992, Banerjee 1992). This is true even when the signal is non-

binary but finitely many (Bikhchandani et al. 1992); however, the signal dis-

tribution must be bounded for cascades to occur (Smith and Sorensen 2000).

Though cascades exist only under specific assumptions, they nonetheless

provide a useful template in understanding movements and the risks they

pose when misinformed. Cascade models quickly found applications in finan-

cial markets, particularly asset pricing (Welch 1992) and bank runs (Chen

1999).2 Theoretical extensions soon covered multidimensional signals (Avery

and Zemsky 1998), risk aversion (Decamps and Lovo 2006a), transaction costs

(Romano 2007), and reputation concerns (Dasgupta and Prat 2008). Follow-

ing some empirical and experimental studies, the cascade literature has since

waned in popularity.

However, digital advances over the past decade have brought new opportu-

nities and dangers, prompting an urgent reexamination of cascades. Telecom-

munications now enable ideas—be they true (information), inaccurate (mis-

information), or intentionally false (disinformation)—to spread instantly and

globally. Social media giants Facebook, YouTube, and Twitter are often criti-

1The terms ‘information cascade’ and ‘herd behavior’ are often used interchangeably.
However, a cascade refers to some players ignoring their own signal while a herd refers to
all players choosing the same action in the long run. A cascade implies a herd but not
necessarily the reverse.

2Pricing models further require exogenous prices (Avery-Zemsky 1998) and discrete ac-
tions (Lee 1993) for cascades to form. The intuition is that endogenous, updating prices
and continuous actions preserve rather than obscure private information. These are called
the price critique and continuous investment critique, respectively.
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cized for contributing to fake news, echo chambers, and anti-vaccination cam-

paigns. Meanwhile, avant-garde ‘deepfake’ artificial intelligences can render

lifelike videos of anyone’s face and voice.

These challenges exhibit characteristics of cascades because early influ-

encers can disproportionately shape public opinion like never before. People

habitually forward trending ideas without investigating further sources. Agen-

cies, too, once took time to collect and publish aggregate data. Now digital

polls, ratings, reviews, and other signals update in live time, accessible to all.

Their convenience also makes them susceptible to the volatility of first movers.

Left unchecked, digital cascades can exacerbate science myths, sociocultural

polarizations, and even contagious diseases.

Motivated by these concerns, I propose an improvement by delaying infor-

mation such that the first k players (k ≤ n) can see their private signal but not

the choices of previous players. This represents websites revealing a statistic

only after a minimum number of reviews. Players thereafter can see their own

signal as well as previous choices. The tradeoff here is that the initial k players

sacrifice information that would otherwise help their own decision in order to

provide the remaining n− k players a more accurate signal.

For example, suppose n = 20, p = 0.7, k = 4. The first four players have

only their own signal to follow. The fifth player then sees all four of those

actions plus his own signal and makes a more informed decision. The aggre-

gate signal is more accurate because, by the law of large numbers, repeated

randomization reduces the variance. This intuition leads us to conjecture that

delayed information (e.g. k = 4 in this example) can outperform instant in-

3
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formation (i.e. k = 0) in expected welfare.

If k = 4 is indeed better, then what k∗ is best? In other words, if we are

to maximize welfare, for how many k players should we withhold information

before the remaining players from k + 1 onward can see all previous actions?

Equivalently, choose k∗(n, p) to maximize E(W |n, p, k).

Two notable studies exist on delayed cascades. In the first, some players

receive a buy option with a fixed exercise price. It is publicly known whenever

a player exercises their buy option, which creates a positive (informational)

externality about the asset value (Chamley and Gale 1994). The authors find

that pessimistic beliefs lead to no investment, optimistic beliefs lead to instant

investment, and intermediate beliefs lead to randomizing between instant or

delayed investment. In the second, players receive private signals and can

endogenously choose both their actions and also the timing of those actions

(Zhang 1997). The author shows that a cascade in favor of investment always

occurs in equilibrium, and a strategic delay exists prior to cascading. This

delay causes a loss of welfare because the model incorporates a discount factor

δ and assumes waiting is costly.

In these preceding papers, players can strategically choose the timing of

their action. In my paper, however, the order of player actions is exogenously

determined. Furthermore, my model closely follows the original structure of

Bikhchandani, Hirshleifer, and Welch in order to focus on the effect of de-

layed revelation of player actions. My paper thus redirects the agency from

simple-strategy players to a benevolent planner who accepts that cascades are

inevitable but maximizes welfare via delayed information. This is useful for

4
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digital environments where organizations can control when to disclose early

polls or ratings. To my best knowledge, my paper is the first to study cas-

cades where player actions are not revealed until a threshold number of actions

have been made.

In Section 2 (Instant Information), I present the original cascade model

as a baseline I call instant information (k = 0) and derive the formula for

expected welfare. I provide a table for per-person (i.e. percentage) expected

welfare for varying group size n and signal accuracy p. I analyze comparative

statics to show that this welfare is primarily determined by p, whereas n has

negligible impact beyond n > 40 or so players.

In Section 3 (Delayed Information Mechanism), I introduce a delayed-

information mechanism where the first k players see only their private signal

and neither the signals nor actions of previous players. In Section 3.1 (Welfare

Formula), I derive the formula for expected welfare under delayed information

(0 < k < n) and compare this among instant (k = 0) and no (k = n) in-

formation. I prove that no information (k = n) is welfare-minimizing among

possible values of 0 ≤ k ≤ n. This demonstrates the positive information

externality gained from seeing previous actions.

In Section 3.2 (Optimal Delay), I show that delayed information (0 < k ≤

kT < n) outperforms instant information (k = 0), up to a certain threshold

kT .3 In other words, it is possible to delay information too much such that we

are better off with no delay at all. For any n > 2 and p > 1/2, there exists an

optimal k∗(n, p) that maximizes expected welfare E(W |n, p, k). While I did

3Threshold kT is different from welfare-maximizing k∗; generally, k∗ < kT .
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not find a closed-form solution, I do derive an algorithm that identifies k∗ and

use it to compute a table for k∗ based on inputs of n and p.

In Section 3.3 (Approximation Function), I provide an approximation func-

tion to estimate k∗(n, p) by regressing the data generated by the optimal delay

algorithm. Two versions are offered: an ‘accurate’ function with correlation

R2 = 0.982 but cumbersome to use, or an ‘accessible’ function with correlation

R2 = 0.847 but convenient to use. I further simplify the accessible version to

produce a rule-of-thumb that is best used for group sizes n ∈ [10, 50].

In Section 4 (Model Extensions), I explore variants as augments or alterna-

tives to the delayed-information mechanism. In Section 4.1 (Early Disclosure),

I consider disclosure prior to k∗ if the first 2 < m < k∗ signals match. I show

that augmenting this sub-mechanism can further improve welfare. In Section

4.2 (Strict Margin), I propose a mechanism that discloses when one signal

outnumbers the other by three. I show that this path-dependent alternative

performs comparably to a fixed-time disclosure.

In Section 4.3 (Type I/II Errors), I adjust the delayed-information model

to account for Type I and Type II errors by integrating the probabilities a

good or bad product appears good (pG, pB), and the benefit and cost of choos-

ing rightly (b, c). These results greatly extend the model’s applicability over

a wide range of scenarios.

In Section 5 (Discussion), I compare the delayed information problem to re-

lated optimal stopping problems, including confirmation bias, the multi-armed

bandit problem, and the secretary problem. Lastly, I suggest a ‘Rule of 75’ as

the most convenient and portable estimator for k∗(n, p).

6
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1.2 Instant Information

In the classic cascade model, the first player has only his own signal to fol-

low. We can assume p > 1/2 without loss of generality because if a signal is

more likely to be wrong than right, a player can always take the complement

1− p as right. For example, a binary signal that is right 3 out of 10 times is,

counter-intuitively, more useful than one that is right 6 out of 10 times. This

is because we can infer the complement of 3/10, which is 7/10, to be right.

The second player sees the first player’s choice and his own signal. If they

match, he joins the first player. If they differ, which is a tie, he follows his

own signal. Either way, he will follow his own signal.

The third player is where public information can first override private in-

formation. If the first two players match, the third ignores his signal and joins

them because their two counts already outweigh his one. In this case, the

fourth, fifth, and every player thereafter would ignore their signal and join the

group. This is called a cascade. On the other hand, if the first two players

differ, the third gains no useful information and thus follows his own signal.

Effectively, this ‘resets’ the count because the third player acts as if he is the

first.

From this we can conclude that cascades always start on even-numbered

players. Now let us define a signal ‘pair’ as (1st, 2nd), (3rd, 4th), (5th, 6th), and

so on. If a signal pair ever matches (AA or BB), this triggers a cascade. Con-

versely, so long as signal pairs differ (AB or BA), the cascade is postponed.

Equivalently, a cascade starts when one signal’s count exceeds the other by

two. For example, the sequence ABBA resets the count but ABBB triggers

7
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a cascade because there are three Bs to one A—not because there are two

consecutive Bs! Even if the fifth signal is A, Bs still dominate.

To show that delayed information improves cascades, we must first estab-

lish a baseline level of welfare.

Proposition 1. Given group size n > 2, signal accuracy p > 1/2, and instant

information (k = 0), the expected welfare is:4

E(W |n, p, 0) =
n∑
r=0

r · 2min{r,n−r} · pmin{r,n−r+2} · (1− p)min{r+2,n−r} (1.1)

Proof of Proposition 1. Without loss of generality, let A to be the objectively

right choice and B the objectively wrong one; this is unknown to deciding

players. For a given n, there are finite sequences in which exactly r right

signals occur. A forward method is to repeat resets (AB or BA) to accumulate

As while postponing a cascade. Once r right signals are reached, the sequence

cascades-wrong. For example, suppose we want r = 2 right out of n ≥ 6

players. The sequence (AB)(AB)BB... results in exactly r = 2 right players.

The ellipses indicate that subsequent signals, right or wrong, produce the same

result because a cascade has triggered. The parentheses indicate that A and B

can be switched inside and produce the same result. That is, (AB)(BA)BB...,

(BA)(AB)BB..., and (BA)(BA)BB... are equivalent variants.

There is a limitation to the forward method: we cannot count r > n/2

because each A demands one signal pair. To count past the midpoint, we use

a reverse method, which is to instead accumulate Bs via resets then cascade-

4The expression 00 is better understood as equal to 1 rather than ‘undefined’ in this
context. This is relevant in the special case where p = 1 and n = r.

8



Delayed Information Improves Cascades Chapter 1

right. For example, the sequence (BA)AA... results in exactly r = 4 right out

of n = 5 players. Therefore, if:

A)

0 ≤ r ≤ n/2, then the probability of exactly r rights is:

P (R = r) = 2r · pr · (1− p)min{r+2,n−r} (1.2)

There are 2r variants for r reset signal pairs (AB). If n = 2r + 1, then

the last signal is B for a total of n − r wrong signals. If n > 2r + 1, then a

cascade-wrong BB... follows the resets. In this case, subsequent signals do not

affect the probability; that is, we would be multiplying the event A∨B, which

has probability p+ (1− p) = 1. In this case, there are r+ 2 wrong signals that

affect the probability. Equivalently, there are min{r+ 2, n− r} wrong signals

that affect the probability. Note that if n > 2r + 1, n− r ≥ r + 2.

B)

n/2 ≤ r ≤ n, then the probability of exactly r rights is:

P (R = r) = 2n−r · pmin{r,n−r+2} · (1− p)n−r (1.3)

This is simply the symmetric case, switching A and B. If r = n/2, then

both forward and reverse methods are equal. In fact, we can merge the two

probability equations as a unified formula for 0 ≤ r ≤ n:

P (R = r) = 2min{r,n−r} · pmin{r,n−r+2} · (1− p)min{r+2,n−r} (1.4)

9
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Then, the expected welfare is a sum of the random number of right players

(R = r) weighted by the probability exactly r rights occur.

Examples

I now walk through a few examples for intuition. For any n > 2, the

probability of zero rights is P (R = 0) = (1−p)2 because if the first two signals

are wrong, everyone will cascade wrong. On the other end, the probability of

all rights is P (R = n) = p2. For a given n > 2, what is the probability of

exactly one right player, P (R = 1)? Let us start with n = 3. Signals ABB or

BAB produce exactly one right; BBA produce zero rights because player 3

chooses B. Exactly two right players would be ABA or BAA but not AAB.

So, the expected welfare is:

E(W |n = 3) =
3∑
r=0

r · P (R = r|n = 3) =

[
0 1 2 3

]
·



(1− p)2

2 · p(1− p)2

2 · p2(1− p)

p2


(1.5)

For n = 4, ABBB or BABB produces one right; ABAB, ABBA, BAAB,

or BABA, two right; and ABAA or BAAA, three. The idea is that resets

extend the number of rights or wrongs before cascading toward one direction.

The expected welfare is:

10



Delayed Information Improves Cascades Chapter 1

E(W |n = 4) =
4∑
r=0

r · P (R = r|n = 4) =

[
0 1 2 3 4

]
·



(1− p)2

2 · p(1− p)3

22 · p2(1− p)2

2 · p3(1− p)

p2


(1.6)

For n = 5, ABBB... or BABB... produces one right; the ellipses indi-

cate that any signals thereafter produce the same result because a cascade

has occurred. ABABB, ABBAB, BAABB, BABAB, two right; ABABA,

ABBAA, BAABA, BABAA, three; and BAAA... or ABAA..., four. So, we

can extrapolate:

E(W |n = 5) =
5∑
r=0

r · P (R = r|n = 5) =

[
0 1 2 3 4 5

]
·



(1− p)2

2 · p(1− p)3

22 · p2(1− p)3

22 · p3(1− p)2

2 · p3(1− p)

p2



11
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E(W |n = 6) =
6∑
r=0

r · P (R = r|n = 6) =

[
0 1 2 3 4 5 6

]
·



(1− p)2

2 · p(1− p)3

22 · p2(1− p)4

23 · p3(1− p)3

22 · p4(1− p)2

2 · p3(1− p)

p2


...

E(W |n, p, 0) =
n∑
r=0

r · 2min{r,n−r} · pmin{r,n−r+2} · (1− p)min{r+2,n−r} (1.7)

Inputting example numbers (n, p) = (20, 0.7) yields E(W |20, 0.7) ≈ 16.40.

By comparison, with no information where everyone follows their own signal,

the expected welfare is only E(20, 0.7) = 20 · 0.7 = 14.00. Instant information

leads about 82% of the group to the right choice compared to no information’s

70%. Inputting p = 0.5 yields E(W ) = n/2 because the signal is useless;

inputting p = 1 yields E(W ) = n because the signal is perfect.
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p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 58% 66% 73% 80% 85% 90% 94% 97% 99%

20 59% 67% 75% 82% 88% 92% 95% 98% 99%

30 59% 68% 76% 83% 88% 93% 96% 98% 99%

40 59% 68% 76% 83% 89% 93% 96% 98% 99%

50 60% 69% 77% 83% 89% 93% 96% 98% 100%

... ... ... ... ... ... ... ... ... ...

100 60% 69% 77% 84% 90% 94% 97% 99% 100%

Fig 1. Expected % Right By Signal Accuracy & Group Size

More accurate signals lead to a larger percentage of right players. We can

see that scaling n from 40 to 50 or even 100 changes E(W )/n by no more

than one percent, given rounding. For practical purposes, it is safe to say that

signal accuracy p is the primary factor in determining per-person, expected

welfare E(W )/n and that group size n has negligible impact beyond n > 40

or so players with instant information.

1.3 Delayed Information Mechanism

1.3.1 Welfare Formula

Now I introduce a delayed-information mechanism where the first k players see

only their private signal and neither the signals nor actions of previous players.

The expected net welfare of these initial players is k · p. The expected net

welfare of remaining players is more complicated. It depends on whether the

13
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first players acting on their own signals determine a cascade-right, a cascade-

wrong, or a reset.

Proposition 2. For group size n > 2, signal accuracy p > 1/2, and even

delay k, the expected welfare is:

E(W |n, p, k) = k · p+ PCR · (n− k) + PRS · E(W |n− k, p, 0) (1.8)

where the probability of a cascade-right is:

PCR =
k∑

r=(k/2)+1

(
k

r

)
pr(1− p)k−r

the probability of a reset is:

PRS =

(
k

k/2

)
pk/2(1− p)k/2

and the subgame expected welfare of remaining players, should initial play-

ers reset, is:

E(W |n− k, p, 0) =
n−k∑
r=0

r · 2min{r,n−k−r} · pmin{r,n−k−r+2} · (1− p)min{r+2,n−k−r}

Proof of Proposition 2. If, among the k initial players, there are two or more

A (right) signals than B (wrong) signals, then a cascade-right occurs and all

n − k remaining players each get utility 1. If instead Bs outnumber As by

two or more, then a cascade-wrong occurs and remaining players get utility

0. If signals are evenly split, then initial players do not affect the decision

14
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of remaining players. In this case, the remaining players essentially play an

instant-information subgame, so their welfare is identical to Proposition 1

except n players is replaced by n− k players.

Then, the probability that an even k cascades-right is the sum of cases

where A signals exceed B by two or more over all 2k possible cases. Using

binomial expansion, the probability of a cascade-right is:

PCR(R ≥ (k/2) + 1) =
k∑

r=(k/2)+1

(
k

r

)
pr(1− p)k−r (1.9)

The probability of a reset is:

PRS(R = k/2) =

(
k

k/2

)
pk/2(1− p)k/2 (1.10)

And the probability of a cascade-wrong is:

PCW (R ≤ (k/2)− 1) =

(k/2)−1∑
r=0

(
k

r

)
pr(1− p)k−r (1.11)

Because k ≥ 2 is even, k/2 ∈ N. These three probabilities sum to 1. For

even k (or, equivalently, odd k − 1), the total expected welfare is:

E(W |n, p, k) = k · p+ PCR · (n− k) + PRS · E(W |n− k, p, 0) (1.12)

For clarity, I interpret each term. The term k · p is the expected welfare of

the initial players. The terms PCR and PRS are the respective probabilities of
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a cascade-right or a reset, given above; notice that PCW does not appear be-

cause the welfare of remaining players in a cascade-wrong would be zero. The

recursive term E(W |n− k, p, 0) is the subgame expected welfare of remaining

players, given k fewer players and instant information, should the initial play-

ers reset.

An Odd/Even Technicality

Corollary 2. For group size n > 2, signal accuracy p > 1/2, and even delay

k, the expected welfare can be improved by using the odd delay k − 1.

Proof of Corollary 2. Among an initial, odd k−1 signals, there are four possi-

ble cases: A outnumbers B by two or more; B outnumbers A by two or more;

A outnumbers B by one; B outnumbers A by one. The first two cases trigger

a cascade, but the last two depend on the subsequent signal of the even kth

player, which can either reset or cascade toward the leading signal. If the kth

signal matches the majority, a cascade occurs; if it differs, then a reset occurs.

How does this compare with even delay k? Suppose the even kth player is

among the initial group who follow their own signal. If, among the first k − 1

signals, one signal outnumbers the other by two, then a cascade certainly oc-

curs for players k + 1 onward regardless of k’s signal. This is identical to the

case with odd delay k − 1.

If, among the first k− 1 signals, one outnumbers the other by one, the fate

of players k + 1 onward depend on k’s signal. If it matches the majority, a

cascade occurs; if it differs, a reset occurs. This, too, is identical to the case

with odd delay k − 1.

Thus, the expected utility of all but one player is invariant whether we use
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even delay k or odd delay k − 1. Only player k’s utility is marginally greater

under odd delay k − 1 due to a positive information externality. Specifically,

he has a chance to cascade-right, a chance to cascade-wrong, and a chance

to follow his own signal. If he follows his own signal, this is no different

than what he would have done under even delay k. If he cascades, he has a

greater than p chance to cascade-right. This is because the signal accuracy is

1/2 < p < 1 and, by law of large numbers (LLN), more samples are better

than one. Specifically, his utility gain from using odd delay k − 1 instead of

even delay k is:

E(Uk|k − 1)− E(Uk|k)

= P (R ≥ (k/2) + 1) + P ((k/2)− 1 ≤ R ≤ k/2) · p− p

=
k−1∑

r=(k/2)+1

(
k − 1

r

)
pr(1− p)k−1−r

+

[
k/2∑

r=(k/2)−1

(
k − 1

r

)
pr(1− p)k−1−r

]
· p− p (1.13)

≈ ε > 0 (1.14)

To illustrate, consider the game (n, p, k) = (20, 0.7, 4) with even delay k = 4

versus odd delay k − 1 = 3. The marginal fourth player gains E(U4|k = 4) =

0.7 < 0.78 ≈ E(U4|k − 1 = 3), and the respective welfares are 16.67 versus

16.75, a very small difference of 0.08. In general, decreasing from an even

k > 2 to its odd, k − 1 partner in a signal pair is Pareto-improving because
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the marginal kth player gains a positive information externality from seeing

previous actions.5 This is not to be confused with increasing to an odd k+ 1,

which is not Pareto-improving because the k + 1th player loses information.

That E(W |k− 1) = E(W |k) + ε for even k > 2 is an important result that

simplifies our computation by one-half. The matter of odd versus even k∗ is

more technical than practical, as the welfare difference is minimal. Moreover,

because resets occur only with even k, it is magnitudes simpler to compute

welfare via the even component in a signal pair. For these two practical rea-

sons, all subsequent equations use even k and treat E(W |k−1) = E(W |k)+ε,

where ε is negligible.

Proposition 3. Given group size n > 2, and signal accuracy p > 1/2, no

information (k = n) is welfare-minimizing among all possible 0 ≤ k ≤ n.

Proof of Proposition 3. If k = n, no one observes anyone else, so each player

has expected payoff p. If k < n, some players observe others, and those who

follow a cascade have expected payoff of at least p2/[p2+(1−p)2], the minimum

conditional probability of cascading-right given that a cascade has occurred.

This probability is greater than p when:

p2

p2 + (1− p)2
> p (1.15)

p

p2 + (1− p)2
> 1

p > p2 + (1− p)2

5The exception is k = 2 because player two follows his own signal whether or not he sees
player one’s action. Player two gains no information externality and thus no better chance
of choosing rightly.
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p > p2 + 1− 2 · p+ p2

0 > 2 · p2 − 3 · p+ 1

0 > (2 · p− 1)(p− 1)

=⇒ 1/2 < p < 1 (1.16)

Of course, the signal accuracy is innately 1/2 < p < 1, so this is always

true. If k < n, there is a positive probability that at least one player cascades,

so any 0 ≤ k < n is better than k = n.

1.3.2 Optimal Delay

Due to the combinatorial nature of the welfare formula, I could not derive a

closed-form solution for optimal delay k∗(n, p). However, I do derive an algo-

rithm using a few simplifying deductions. First, I recognized symmetry across

the midpoint n/2 to derive the expected welfare of the instant-information

model, E(W |n, p, 0). Second, I developed the concept of signal pairs in the

delayed-information model to show that E(W |n, p, k−1) = E(W |n, p, k)+ε for

even k > 2, where ε is a few percent higher chance for the marginal kth player

to choose rightly. Third, I now substitute the recursive term E(W |n− k, p, 0)

in Proposition 2 with a shifted (i.e. using n− k instead of n) E(W |n− k, p, 0)

from Proposition 1. This transforms E(W |n, p, k) from a recursive formula

into an explicit formula.

E(W |n, p, k) = k · p+ PCR · (n− k) + PRS ·
n−k∑
r=0

r · P (R = r) (1.17)
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where

P (R = r) = 2min{r,n−k−r} · pmin{r,n−k−r+2}(1− p)min{r+2,n−k−r}

Let us return to our numerical example (n, p, k) = (20, 0.7, k). When the

information delay was k = 0, the expected welfare was E(W |20, 0.7, 0) ≈

16.40. That is, about 82% of the 20 players are expected to choose rightly.

This was an improvement over the other extreme of k = n, which yielded

E(W |20, 0.7, 20) = 14, or 70% of players.

Recall that k ≥ 2 is even. Because the first two players already follow their

own signal, E(W |n, p, 0) = E(W |n, p, 2). So, the minimum effective delay

must be k = 4. Those initial players gain expected net welfare of k·p = 4·0.7 =

2.80. If among initial players, right signals outnumber wrong signals by two or

more, remaining players will cascade-right. The probability of this is PCR(R ≥

(k/2) + 1) ≈ 65%, and each of those n− k = 20− 4 = 16 players would gain

utility 1. So, the middle term in the formula is PCR(n−k) ≈ 65% ·16 = 10.43.

If among initial players, right and wrong signals are equally frequent, then

remaining players play a ‘reset’ subgame equivalent to (n, p, k) = (16, 0.7, 0).

This occurs with probability PRS(r = k/2) ≈ 26%, and the expected welfare

from such a subgame would be E(W |16, 0.7, 0) ≈ 13.02. So, the last term is

PRS ·E(W |16, 0.7, 0) ≈ 26% · 13.02 = 3.39.6 Combining all three terms yields:

E(W |20, 0.7, 4) ≈ 2.80 + 10.43 + 3.39 = 16.62 (1.18)

6A cascade-wrong yields utility 0 for remaining n − k players, so this term does not
appear.
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This is about 83% of players choosing rightly, an improvement over the

82% obtained with k = 0. Computing inputs of delay k yields the following

graph for per-person, expected welfare E(W |20, 0.7, k)/n:

Fig. 2. Effect of Information Delay on Expected % of Right Players

The function E(W )/n is discontinuous because its input, k, is a whole number.

Even k and its odd, k−1 partner form a signal pair that produce approximately

equal per-person, expected welfare. From left to right, we see that k = 0, 1, or 2

has the same effect because the first two players already follow their own signal.

Welfare increases with delayed k > 2 and peaks at optimal k∗ = 6. Beyond

this, welfare decreases because the marginal loss of initial players exceeds the

marginal gain of remaining players; essentially, we are delaying information

‘too much’. Next, the threshold kT = 8 is the most we can delay information
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before no delay at all becomes better. Welfare then continues decreasing until

it reaches a global minimum at k = n. This value is 70% because without

information externalities, every player follows his own signal; in this example,

the signal points to the ‘right’ (utility 1 instead of 0) path with p = 0.7 chance.

I extend this graph to a wider range of signal accuracies to produce:

Fig. 3. Effect of Information Delay on Expected % of Right Players

Signal accuracy p improves expected welfare E(W ), though at a concave rate.

Stronger p reduces optimal delay k∗ because a few samples from clear signals

are enough to ascertain the right choice; a hazy signal instead demands more

sampling. The respective k∗ are 6, 6, 4, and 2. Extending the data to varying

group size n produces:
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p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 4 4 2 2 2 2 2 2 2

20 6 6 6 6 4 4 4 2 2

30 10 10 8 8 6 6 4 4 2

40 14 12 12 10 8 6 6 4 2

50 18 16 14 12 10 8 6 4 4

... ... ... ... ... ... ... ... ... ...

100 34 28 22 16 12 10 8 6 4

Fig 4. Optimal Delay By Signal Accuracy & Group Size

Optimal delay k∗ naturally scales with group size n, though at varying rates.

This rate is convex with weak signals, approximately linear with medium sig-

nals, and concave with strong signals. Compare, for example, scaling from

n = 10 to n = 100 with p = 0.55 versus p = 0.95. The weak signal requires 30

more samples while the strong one only 2 more! Then, the expected propor-

tion of players who choose rightly are:
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p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 58% 66% 73% 80% 85% 90% 94% 97% 99%

20 60% 69% 77% 84% 89% 93% 96% 98% 99%

30 61% 71% 80% 86% 91% 94% 97% 98% 99%

40 62% 73% 81% 88% 92% 95% 97% 99% 99%

50 63% 74% 83% 89% 93% 96% 98% 99% 100%

... ... ... ... ... ... ... ... ... ...

100 67% 80% 88% 92% 95% 97% 98% 99% 100%

Fig 5. Expected % Right At k∗ By Signal Accuracy & Group Size

Large groups perform better than small ones, so a planner may consider group-

merging as a sub-mechanism to improve welfare. Notice that two groups of

n = 10 do not perform as well as one group of n = 20, nor do two groups of

n = 20 as well as one of n = 40.

The improvement in welfare is measured by the difference between values

in Fig. 1 and Fig. 5. Relative to an instant-information (k = 0) model, the

delayed-information (k∗) mechanism outperforms by:
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p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 0% 0% 0% 0% 0% 0% 0% 0% 0%

20 1% 2% 2% 2% 1% 1% 1% 0% 0%

30 2% 3% 4% 3% 3% 1% 1% 0% 0%

40 3% 5% 5% 5% 3% 2% 1% 1% 0%

50 3% 5% 6% 6% 4% 3% 2% 1% 0%

... ... ... ... ... ... ... ... ... ...

100 7% 11% 11% 8% 5% 3% 1% 0% 0%

Fig 6. k∗ Outperforms k = 0, By Signal Accuracy & Group Size

If players are too few or the accuracy is too high, then delayed information

has minimal effects. A noticeable improvement begins around n ≈ 15 players,

becoming stronger with increasing n and strongest around accuracy p = 0.65 ≈

2/3. While percentages may seem small at first, the expected improvement

is 11 more players choosing rightly at n = 100. At the scale of Internet

connectivity, an improvement of 11% or more translates to thousands or even

millions more humans choosing rightly. This is especially important when

the great masses forward, share, and retweet signals on public matters like

elections, vaccines, climate change, or in rare cases even Earth’s geometry.7

7Science has demonstrated that vaccines work, climate change is real, and Earth is spher-
ical, the proofs of which are beyond the scope of this paper.
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1.3.3 Approximation Function

I now leave the reader with an approximation function to estimate k∗(n, p).8

While Fig. 4 conveys much information, readers may wish to estimate inter-

mediate values or extrapolate beyond the data range. Economics already has

approximations such as “nominal interest equals real interest plus inflation” or

“doubling time equals 70 (or 72) divided by interest rate.” These oversimplify

the mathematically-precise i = (1 + r)(1 + π) − 1 and t = ln(2)/r ≈ 0.69/r,

but are convenient for single-digit percentages.

In this light, I construct a portable rule-of-thumb that maintains a high de-

gree of accuracy. First, I render Fig. 4 as a three-dimensional mesh to observe

whether k∗(n, p) is linear, quadratic, or logarithmic in relation to its inputs, n

and p. It appears linear in both arguments and, because the gradient changes,

dependent also on the cross term n · p.

8Recall that for even k > 2, E(W |k− 1) = E(W |k) + ε, meaning an even k∗ and its odd,
k∗ − 1 partner are both considered optimal.
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Fig. 7. Effect of Information Delay on Expected % of Right Players

Next, I perform a multivariable, linear regression with to estimate:

k∗i (n, p) = β0 + β1(ni) + β2(pi) + β3(ni · pi) + εi (1.19)

Because most humans are not numberphiles and cannot easily calculate

products mentally, I also perform a regression that omits the cross term. This

of course biases the coefficients but exchanges precision for accessibility:

k∗i (n, p) = β0 + β1(ni) + β2(pi) + εi (1.20)

Variable Accurate Accessible

Constant -2.794* 15.956***

(1.39) (1.89)

Group Size 0.818*** 0.193***

(0.04) (0.02)

Signal Accuracy 4.467** -20.533***

(1.72) (2.45)

Cross Term -0.833***

(0.05)

Observations 45 45

R-squared 0.982 0.847

*p < 0.1, **p < 0.05, ***p < 0.01

Fig. 8. Regression Results for Dependent Variable: Optimal Delay
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The accurate model achieves an exceptional correlation at R2 = 0.982 for the

range of small (n = 10), medium (n = 30), and large (n = 50) group sizes.

The accessible model, though misspecified, still achieves a strong correlation

of R2 = 0.847. I then test their projections on an extreme (n = 100) group size:

p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

(true) 100 34 28 22 16 12 10 8 6 4

(accurate) 100 36 32 28 24 20 16 12 8 4

(accessible) 100 24 23 22 21 20 19 18 17 16

Fig. 9. Model Projections At Extreme (n = 100) Group Sizes

The accurate model matches the true numbers adequately even at ranges well

beyond its data set, overestimating only by single-digit percentages. The ac-

cessible model, of course, lacks the cross term n·p and cannot adapt to extreme

values of n and p. This does not mean the accessible model is less useful. Like

the nominal interest and doubling time approximations, the accessible model

is convenient for small, common inputs. In fact, we can simplify it further as:

k∗(n, p) ≈ 15.96 + 0.19 · n− 20.53 · p (1.21)

≈ 80 + n− P
5

(1.22)

where P is signal accuracy without the % (i.e. P = 100 · p), to match

interest rate r in both the nominal interest and doubling time approximations.

One last time, let us use the example (n, p) = (20, 0.7) to test our rule-of-thumb
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for k∗:

k∗(n, P ) ≈ 80 + n− P
5

(1.23)

=
80 + 20− 70

5

=
30

5

= 6

This is indeed the true answer.

1.4 Model Extensions

1.4.1 Early Disclosure

So far, we understand that the delayed-information mechanism improves ex-

pected welfare by aggregating signals. This reduces variance and optimizes

the risk of a wrong cascade. For example, k∗(40, 0.7) = 10 means that given

n = 40 players and signal accuracy p = 0.7, the initial 10 players should see

only, and thus follow, their own signal. The remaining 30 players then see

all previous actions. This resulted in an expected 35 players choosing rightly

compared to only 33 via instant information (i.e. no delay k = 0).9

What if, while running the above algorithm, we observe the first m = 3

signals to all match? How confident are we that these three signals converge

on the good product? Should we stop collecting samples and disclose this data

9In this section, I round expected welfare (players) to the nearest integer for ease of
visualization.
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early, prior to k∗ = 10?

We know the signal indicates the good product with p chance and the bad

product with 1−p.10 The conditional probabilities the product is good or bad

given a consensus of m signals with accuracy p are:

P (G|m, p) = pm/(pm + (1− p)m) (1.24)

P (B|m, p) = (1− p)m/(pm + (1− p)m) = 1− P (G|m, p) (1.25)

P (G|3, 0.7) ≈ 93% and P (B|3, 0.7) ≈ 7%. If we disclose this data early,

the remaining 30 players will cascade. All players (not each) choose rightly

with 93% chance and wrongly with 7%, so the expected welfare is E(W ) =

0.93 · 40 + 0.07 · 0 = 37.20 ≈ 37. This is greater than the expected 35 from

k∗ = 10, so our instinct may be to disclose early. However, for completeness

we must also check the probabilities of a cascade-same PCS, reset PRS, or

cascade-opposite PCO at k∗ = 10 given that the first three signals matched.

These probabilities necessarily differ from the case where we have not observed

any signals.

It takes two or more counts of one signal over the other to cascade. With

10 samples, a cascade triggers with six or more matching signals. Given that

three already matched, it takes three or more matches (of seven remaining

10Earlier, for sake of generality, we assigned A to be the good product. In practice,
however, we often do not know which of two choices is ‘A’. We know only that the signal is
more likely (1/2 < p < 1) to select the good product.
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samples) to cascade in the same direction:

PCS(R ≥ 3) =
7∑
r=3

(
7

r

)
0.7r · 0.37−r ≈ 97% (1.26)

A reset occurs if exactly two signals (of seven remaining) match the existing

three:

PRS(R = 2) =

(
7

2

)
0.72 · 0.35 ≈ 3% (1.27)

Lastly, it takes one or zero match (of seven) to cascade in the opposite

direction:

PCO(R ≤ 1) =
1∑
r=0

(
7

r

)
0.7r · 0.37−r ≈ 0% (1.28)

Suppose that upon observing the first m = 3 signals matching, we decide

to wait until k∗ = 10 anyway. Then, players 4 through 10 have no information

externality and follow their own, random signal. An expected five of those

seven will choose rightly (0.7 · 7 = 4.90 ≈ 5). With 97% chance, the remaining

30 players will cascade-same and face a P (G|3, 0.7) ≈ 93% chance to choose

rightly (0.93 · 30 = 27.90 ≈ 28). With 3% chance, a reset occurs where

E(W |30, 0.7) = 24.85 ≈ 25 (via Proposition 1). So, the overall expected

welfare is 0.93 · 3 + 4.90 + 0.97 · 27.90 + 0.03 · 24.85 = 35.50 ≈ 36 players

choosing rightly, which is less than the 37 from early disclosure.

Our synthesized algorithm for (n, p) = (40, 0.7) is thus: if the first m∗ = 3

signals match, disclose the three matching actions immediately; otherwise,
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wait until k∗ = 10 to disclose the aggregated ten actions. The first three

signals will match 0.73 + 0.33 = 37% of the time, and expected welfare will

be 37.20 ≈ 37. The remaining 63% of the time, expected welfare will be

35.20 ≈ 35.

The expected welfare of the synthesized algorithm, which includes both

early disclosure m∗ and delayed information k∗, is E(W ) = 37% · 37.20 +

63% · 35.20 = 35.94 ≈ 36. This is a slight improvement over the delayed-

information mechanism alone. It is infeasible to compute optimal m∗ for some

50 combinations of n and p. Nonetheless, the walkthrough for (n, p) = (40, 0.7)

illustrates how a welfare-improving mechanism can be synthesized with—and

further improved by—a sub-mechanism.

1.4.2 Strict Margin

By default, cascades trigger when one signal outnumbers the other by two.

Another idea is to withhold information until one signal ‘wins’ by a stricter

margin, say three. Upon disclosure, all remaining players cascade; that is,

there is no post-disclosure reset.

Conjecture 1. Given group size n > 3, signal accuracy p > 1/2, and win

margin of three, the expected welfare is:

E(W |n, p) =
n∑
r=0

r · 3min{r,n−r} · pmin{r,n−r+3} · (1− p)min{r+3,n−r} · (2/3)In=2r

(1.29)
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where In=2r =


1 n = 2r

0 n 6= 2r

Observation of Conjecture 1. Following the analysis in Proposition 1:

E(W |n = 4) =
4∑
r=0

r · P (R = r|n = 4) =

[
0 1 2 3 4

]
·



(1− p)3

3 · p(1− p)3

6 · p2(1− p)2

3 · p3(1− p)

p3



E(W |n = 5) =
5∑
r=0

r · P (R = r|n = 5) =

[
0 1 2 3 4 5

]
·



(1− p)3

3 · p(1− p)4

9 · p2(1− p)3

9 · p3(1− p)2

3 · p4(1− p)

p3



E(W |n = 6) =
6∑
r=0

r · P (R = r|n = 6) =
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[
0 1 2 3 4 5 6

]
·



(1− p)3

3 · p(1− p)4

9 · p2(1− p)4

18 · p3(1− p)3

9 · p4(1− p)2

3 · p4(1− p)

p3



E(W |n = 7) =
7∑
r=0

r · P (R = r|n = 7) =

[
0 1 2 3 4 5 6 7

]
·



(1− p)3

3 · p(1− p)4

9 · p2(1− p)5

27 · p3(1− p)4

27 · p4(1− p)3

9 · p5(1− p)2

3 · p4(1− p)

p3


...

E(W |n, p) =
n∑
r=0

r · 3min{r,n−r} · pmin{r,n−r+3} · (1− p)min{r+3,n−r} · (2/3)In=2r

(1.30)
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Inputting values for n and p produces the table:

p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 58% 66% 73% 80% 85% 90% 93% 96% 98%

20 61% 70% 79% 86% 90% 94% 96% 98% 99%

30 62% 73% 81% 88% 92% 95% 97% 99% 99%

40 63% 74% 83% 89% 93% 96% 98% 99% 100%

50 63% 74% 83% 90% 94% 97% 98% 99% 100%

... ... ... ... ... ... ... ... ... ...

100 64% 76% 85% 91% 95% 98% 99% 99% 100%

Fig 10. Expected % Right By Signal Accuracy & Group Size

The strict-margin mechanism performs comparably to the optimally-delayed

information mechanism even up to large (n = 50) group sizes. However, it

underperforms for extreme (n = 100) group sizes with weak signal accuracy

(0.50 < p < 0.75); negative differences are parenthesized:
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p = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

n =

10 0% 0% 0% 0% 0% 0% (1%) (1%) (1%)

20 1% 1% 2% 2% 1% 1% 0% 0% 0%

30 1% 2% 1% 2% 1% 1% 0% 1% 0%

40 1% 1% 2% 1% 1% 1% 1% 0% 1%

50 0% 0% 0% 1% 1% 1% 0% 0% 1%

... ... ... ... ... ... ... ... ... ...

100 (3%) (4%) (3%) (1%) 0% 1% 1% 0% 1%

Fig 11. Strict-Margin Performance Relative to k∗

The intuition for this difference is that optimal delay k∗(n, p), being a function

of n, scales with group size. The strict-margin mechanism would have to in-

crease its win margin as n→∞. An optimal win margin m∗(n, p) as a function

of n and p is beyond the scope of this paper. Still, the strict-margin mecha-

nism shows that path-dependent disclosure exists as a comparable alternative

to fixed-time disclosure.

1.4.3 Type I/II Errors

Suppose it is known that among a population, 1/2 of products are good and

1/2 are bad. A good product appears good with probability pG > 1/2, and

a bad product appears good with probability pB < 1/2. As before, we can

assume these inequalities without loss of generality due to complementarity;

in essence, it means the signal is useful. A product that turns out to be good

benefits b > 0, while a product that turns out to be bad costs c ≥ 0. Players
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privately receive a good or bad signal and publicly choose, sequentially, to buy

or not buy the product. Not buying gives utility 0.

Each player receives a good signal with independent probability:

p = (pG + pB)/2 (1.31)

Let γ denote the number of good signals observed among k signals. The

conditional probability the product is good given γ = 1, k = 1) is:

p(G|1, 1) =
pG

pG + pB
(1.32)

The conditional probability the product is good given γ = 0, k = 1 is:

p(G|0, 1) =
1− pG

2− pG − pB
(1.33)

By complementarity, p(B|γ, k) = 1− p(G|γ, k). A rational player who sees

γ = 1, k = 1 buys if:

p(G|1, 1) · b− (1− p(G|1, 1)) · c > 0

=⇒ pG
pB

>
c

b
(1.34)

A rational player who sees γ = 0, k = 1 buys if:

p(G|0, 1) · b− (1− p(G|0, 1)) · c > 0

=⇒ 1− pG
1− pB

>
c

b
(1.35)
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Because players are identical and because pG, pB, c, b are all constants, the

reaction of all players who see only one signal is identical and predetermined.

Thus, there are three cases. First, if players would always buy regardless, then

the expected welfare (prior to any observations) is simply E(W ) = n·(b−c)/2.

Second, if they would always not buy, then welfare is W = 0. These two cases

exist for a variety of parameter combinations, but perhaps it is easiest to imag-

ine the consequences of buying a bad product as minor (low c) or major (high

c).

In both (pooling) cases, player one’s action conveys no information about

his private signal. Even if player two sees player one’s action, he really sees

only one signal, his own. Because player two faces the same situation as player

one, he also performs the same action. The same is true for players three, four,

and onward.

Third, players who see only one bad signal do not buy and receive utility 0.

Players who see only one good signal buy and receive E(uB) = p(G|1, 1) · b−

(1 − p(G|1, 1)) · c. This is the expected utility of an unknown product, given

one good signal. In this (separating) case, a player’s public action conveys

information about his private signal.

What of the second or third player who sees multiple signals? They would

use a more complex conditional probability. A non-cascading player who sees

multiple signals infers the probability the product is good given his sample sig-

nals. Suppose player two sees that player one buys, which implies he received

a good signal.11 Then, player two himself receives a bad signal. What should

11As a reminder, we are in the third (separating) case where actions imply signals; in the
other two (pooling) cases, players cannot infer any signals.
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he do?

In the original model, players follow their own signal in case of ties. In the

Bayesian model, however, the best action depends on pG, pB, b, and c. Player

two sees γ = 1, k = 2 and buys if:

p(G|1, 2) · b− [1− p(G|1, 2)] · c > 0(
2
1

)(
2
1

) · pG · (1− pG) · b− pB · (1− pB) · c
pG · (1− pG) + pB · (1− pB)

> 0

=⇒ pG · (1− pG)

pB · (1− pB)
>
c

b
(1.36)

It is easy to see that sufficiently large b makes a player buy while sufficiently

large c makes him not buy. It is harder to see the effects of pG and pB, so let

us fix b = 2, c = 1 and consider the following examples:

Example 1. (pG, pB) = (0.7, 0.3). The left side is 1, which is greater than

1/2 on the right side, so player two buys. Let this be a basis for comparison.

Example 2. (pG, pB) = (0.9, 0.3). 0.09/0.27 = 1/3 < 1/2, so player two

does not buy. The intuition is that if good products usually appear good,

any bad signal is a major red flag. Inversely, if (pG, pB) = (0.7, 0.1), then

0.27/0.09 = 3 > 1/2, so he buys.

Example 3. (pG, pB) = (0.6, 0.4). 1 > 1/2, so player two buys. This is true

also for (pG, pB) = (0.9, 0.1). In fact, whenever pG + pB = 1, the left side

is 1, so a player buys if and only if b > c. The intuition is that if pG, pB

are symmetric from 1/2, it does not matter whether they are weak or strong

signals. A player simply receives an accurate signal 1/2 < p < 1 whether the

product is good or bad.
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How about players three, four, and onward? In general, a player who sees

γ good out of k signals buys if:

p(G|γ, k) · b− (1− p(G|γ, k) · c > 0(
k
γ

)(
k
γ

) · pγG · (1− pG)k−γ · b− pγB · (1− pB)k−γ · c
pγG · (1− pG)k−γ + pγB · (1− pB)k−γ

> 0

=⇒ pγG · (1− pG)k−γ

pγB · (1− pB)k−γ
>
c

b
(1.37)

Given k initial players who see their own signal but not the signal or even

action of previous players, if:12

A)

min

{
pγ+1
G · (1− pG)k−γ

pγ+1
B · (1− pB)k−γ

,
pγG · (1− pG)k−γ+1

pγB · (1− pB)k−γ+1

}
>
c

b
(1.38)

then a buy cascade occurs where every player from k + 1 onward buys.

This expression means the k + 1th player buys unconditionally, which adds 1

to the existing count of γ good or k − γ bad signals.

B)

max

{
pγ+1
G · (1− pG)k−γ

pγ+1
B · (1− pB)k−γ

,
pγG · (1− pG)k−γ+1

pγB · (1− pB)k−γ+1

}
≤ c

b
(1.39)

then a not-buy cascade occurs where every player from k + 1 onward does

not buy.

12The expression min{a, b} > c simply means a > c and also b > c.
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C)

pγG · (1− pG)k−γ+1

pγB · (1− pB)k−γ+1
≤ c

b
<
pγ+1
G · (1− pG)k−γ

pγ+1
B · (1− pB)k−γ

(1.40)

then a ‘reset’ occurs where player k+ 1 follows his own signal. That is, he

buys on a good signal and does not buy on a bad signal.

I now construct a welfare formula for the conditional-model, separating

case.13 Recall that a social planner understands the stochastic process but

chooses an optimal k∗ without having observed any signals. A reasonable

objective function thus takes the social planner’s perspective prior to any

realized signals. From this perspective, every buyer gains expected utility

E(uB) = (b− c)/2.

Among the initial k players, p = (pG + pB)/2 fraction receive a good signal

and buy. The 1− p fraction who receive a bad signal do not buy and receive

utility 0. The initial k players therefore have expected welfare:

E(WIP |pG, pB, b, c, k) = k · p · E(uB)

= k · (pG + pB)/2 · (b− c)/2 (1.41)

The remaining n−k players randomly face a cascade-buy, cascade-not-buy,

or reset. These events are exhaustive and mutually-exclusive; that is, exactly

one must occur.14 If a cascade-buy occurs, remaining players gain expected

utility E(uB) = (b − c)/2. If a cascade-not-buy occurs, remaining players

13That is, where good signals suggest buy and bad signals suggest not-buy.
14Technically, at least one and at most one must occur, but this is equivalent.
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receive utility 0. If a reset occurs, the k+1th player follows his own signal, which

says ‘good’ with probability p, and gains expected utility E(uk+1) = p·(b−c)/2.

Then, player k+ 2 faces k+ 1 signals that may cascade-buy, cascade-not-buy,

or reset, and so forth recursively. The remaining n− k players therefore have

expected welfare:

E(WRP |n, pG, pB, b, c, k) = PCB(k) · (n− k) · E(uB)

+PRS(k) · [p · (b− c)/2 + E(WRP |n, pG, pB, b, c, k + 1)]

(1.42)

where the probabilities of cascade-buy and reset are functions of: k ob-

served signals, which increase by one each reset; γ good signals, which is

stochastic; and parameters n, pG, pB, b, c, which are fixed:

PCB(k) = P

(
min

{
pγ+1
G · (1− pG)k−γ

pγ+1
B · (1− pB)k−γ

,
pγG · (1− pG)k−γ+1

pγB · (1− pB)k−γ+1

}
>
c

b

)
(1.43)

PRS(k) = P

(
pγG · (1− pG)k−γ+1

pγB · (1− pB)k−γ+1
≤ c

b
<
pγ+1
G · (1− pG)k−γ

pγ+1
B · (1− pB)k−γ

)
(1.44)

Net welfare combines the welfare of initial and remaining players, E(W ) =

E(WIP ) + E(WRP ). An optimal delay k∗ is the argument k that maximizes

this E(W ).

Due to five-dimensional generalizations, I cannot compute tables for k∗

as before. However, the framework here demonstrates the robustness of the

delayed-information mechanism, which can account for the probabilities a good
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or bad product appears good (pG, pB) and the benefit and cost of choosing

rightly or wrongly (b, c). Because the ‘product’ may be a new medicine, the

conditional model accounts for Type I and Type II errors.

1.5 Discussion

The irony of instant information is that its convenience also facilitates dan-

gerous cascades. Humans routinely take information at face value rather than

seek out additional, especially contrary, information.

In a related study on confirmation bias, experimenters told subjects the

sequence 2, 4, 6 follows a hidden rule. Subjects could then write their own

sequence, and the experimenters confirmed whether it follows the rule. This

continued until the subject felt confident to guess the rule. The rule was sim-

ply that numbers strictly increase, yet the vast majority was convinced it was

evens, multiples, or other patterns after little to no checking. In fact, only

one-fifth deduced the rule correctly (Wason 1960).15 A minimum delay of ob-

servations would likely improve performance.

The delayed information problem also bears some similarity to a multi-

armed bandit problem or the secretary problem. The multi-armed bandit

problem, whose name refers to an array of slot machines, is a dilemma be-

tween exploiting an asset known to be profitable versus exploring an asset

whose profitability is unknown (Robbins 1952). Therein lies the similar ques-

tion of how many signals a player should take before committing the remainder

15An interactive version of this game can be found online at:
https://www.nytimes.com/interactive/2015/07/03/upshot/a-quick-puzzle-to-test-your-
problem-solving.html
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of actions to the expected-best product.

The secretary problem, sometimes called the marriage or best-choice prob-

lem, essentially features n random numbers from the same, unknown distri-

bution. A single player draws observations one at a time and must either

permanently reject or accept the draw. Only a single acceptance can be made,

which ends the game. The objective is to maximize the expected value of the

accepted draw. For large n, the solution is to record the greatest number in

the first 1/e ≈ 37% of observations, then accept the first draw that meets or

exceeds this value (Bruss 1984). This is an optimal stopping rule similar to k∗

of my delayed-information cascade model.

One nice feature of the optimal delay k∗(n, p) in the non-conditional model

is independence from the utilities gained from choosing the objectively bet-

ter or worse product. That is, we can always normalize the utilities gained

to one and zero. This results from the fact that utility is not discounted, in

terms of time or money, from waiting for another draw from the distribution.

Regarding the rule-of-thumb, recall that if even k∗ is optimal, then its odd

partner k∗ − 1 is also optimal. As such, we can exchange 80 for 75 to shift k∗

downward by one. In fact, a Rule of 75 may be easier to remember because

75 coincides with the midpoint between 1/2 < p < 1. An easy benchmark to

remember is for moderately-accurate p = 0.75, the optimal stopping rule is

about 1/5 = 20% of group size.

To focus on the characteristics and benefits of a fixed-time disclosure mech-

anism, this paper only briefly discusses two variable-time sub-mechanisms that

could serve as augments. In practice, the accessibility of variable-time disclo-
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sure is limited relative to fixed-time due to greater monitoring and computa-

tion costs. A forward path could be to explore the integration of fixed- and

variable-time mechanisms for further optimization.
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Chapter 2

Pretending Volunteers

2.1 Introduction

Digital media has blurred the reality between what a person promises and

what they deliver. Meanwhile, developments in economic theory have empha-

sized the importance of image motivation (Bénabou and Tirole 2006; Andreoni

and Bernheim 2009).1 A positive image confers real benefits like influence and

access to resources.2 One overlooked aspect of image motivation, however, is

that it incentivizes pretense. If we value what others think, then appearing to

be helpful can be just as good as actually helping. In fact, while pretense has

been studied in some contexts like quality uncertainty or entry deterrence, it

has not received much attention in public economics.3

1In the dictator game, one player of two decides how to split a sum of money. A ‘rational’
player takes all, yet many split 50-50 not only out of fairness but also because they wish to
be perceived as fair by the observers.

2Maslow’s (1943) hierarchy of needs lists self-esteem and self-respect as major motivations
after physiological needs.

3A person may disclose or mimic strength to deter conflict. In an I.Q. contest, players
signaled over-confidence to deter entry and under-confidence provoke entry (Charness et al.
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Pretense in public economics occurs everywhere from a society’s base to

its very peak. For example, Twitter users often bandwagon on trending hash-

tags of social movements. Facebook users can, without cost, display photo

frames to support popular causes. For a minimal $1 on fundraising platforms,

a person can boast contribution toward public goods. At best, bandwagoners

free ride the merit generated by real activists and benefactors; at worst, their

digital gesturing substitutes for and even discourages material aid.

Digital media provides both the audience for image-crafting and the anonymity

for pretense-masking. Indeed, anyone in modern society has almost certainly

witnessed a neighbor, coworker, executive, or politician extol a virtue but act

contrarily. The year 2018 alone saw many examples of corporate and political

media stunts that resulted in no real provision. At the highest levels, United

Nations member states laud development goals in the media but take little to

no real action. When these pretenses impact climate change or humanitarian

crises, the consequences demand critical examination.

Motivated by these considerations, my paper explores the effects of image

concerns in a fundamental economic context—public good provision—when

pretense is possible. A classic game called the volunteer’s dilemma tradition-

ally features players deciding whether to help or bystand. I introduce a third

action called pretend. Pretending does not contribute, but it costs less than

helping and confers honor if the pretense is believed and shame otherwise.

A formal model can help us predict equilibrium levels of pretending and

identify conditions conducive to pretense. Consequently, we might design

2013).
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mechanisms that increase the provision of public goods. Thus I ask: How

does the option to pretend affect the expected level of provision? How do

the equilibrium proportions of helpers, bystanders, and pretenders vary with

group size or the values ascribed to honor and shame? Given that pretense

does occur, what countermeasures might influence it to increase provision?

In Section 2, I formalize pretense in the context of a volunteer’s dilemma.

In addition to help or bystand actions, players can also pretend in order to free

ride an honor benefit if someone else provides the public good. Pretending is

costly but cheaper than helping.4 In the short run, players are näıve and con-

fer honor equally to all claimants—both helpers and pretenders—if provision

succeeds. If provision fails, all claimants are exposed as pretenders and suffer a

shame cost. Helpers also experience a psychological warm glow benefit, which

bystanders and pretenders do not experience.5

In Section 2.1 (Characterizing Equilibria), I establish key assumptions and

fully characterize pure- and mixed-strategy equilibria. One pure-strategy equi-

librium exists, where one player helps while all others pretend. Two possible

mixed-strategy equilibria exist, one mixing on only help/bystand and one mix-

ing on only help/pretend. Only one equilibrium exists at a time, and which

depends on every parameter except group size. Group size still increases the

probability of provision, converging to a constant much like in the original

game. Importantly, I prove that the ability to pretend weakly decreases this

4Mimicry costs some effort to convince others. Further, most people are averse to lying
because it exacts some cognitive or emotional toll. This is true even when lying is unde-
tectable, absent strategic motives, or leads to improved monetary outcomes for everyone
(Gneezy et al. 2013; Abeler et al. 2014; Erat and Gneezy 2011).

5Egoistic utility from giving, as opposed to pure altruism for the recipient’s welfare. The
colloquial term was first coined by Andreoni in 1989.
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probability relative to when players cannot pretend.

In Section 2.2 (Three Cultural Archetypes), I identify the forces that en-

able pretense. Honor encourages helping but also pretending, while shame

discourages pretending. Broadly, three cultural archetypes exist. Low-honor

cultures develop a norm to bystand as the alternative to not helping. High-

honor, low-shame cultures develop a norm to appear helpful, even if that means

pretending. High-honor, high-shame cultures revert to bystanding as the al-

ternative to not helping and do not pretend. This three-culture model helps

explain why pretense is more prevalent in some environments than others.

In Section 2.3 (Honor as Subsidy, Shame as Tax), I analyze the effect of

key variables, particularly honor and shame, on the group’s welfare. Because

welfare as aggregate utility can be trivially maximized via infinite honor and

zero shame, I instead measure welfare as the probability of provision.6 Honor

always increases provision, while shame increases provision only when pretend-

ing exists. I generate a three-dimensional graph of provision as a function of

honor and shame, P ∗(h, s), and show that provision is best maximized by first

increasing honor, then by increasing shame.

In Section 2.4 (Long-Run Sophistication), I model a variant where players

in the long run become aware that those who appear helpful may actually be

pretenders. That is, honor becomes endogenous and discounted by the condi-

tional probability a claimant is a helper. The major consequence is that the

presence of pretenders discourages players from helping because their honor is

diluted by fakes, much like a lemons market. Discouraged helpers in theory

6Indeed, players among some cabals are celebrated for empty gestures and face no reper-
cussion when caught. We can only imagine the magnificent ‘welfare’ of such groups.
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would be willing to pay a premium to distinguish their help as authentic, pro-

vided the premium is not too costly. Authentication improves the probability

of provision in the long run.

In Section 2.5 (Asymmetry and Coexistence), I treat players as having in-

dependent and identically distributed (i.i.d.) private values of honor and warm

glow.7 These represent a player’s utility from looking versus feeling good. In

equilibrium, players select one of three actions based on their individual pref-

erences. Generally, players who do not value looking good bystand; players

who value feeling good help; and players who value looking good but not feel-

ing good pretend. An equilibrium consisting of all three actions can thus be

sustained this way. An illustrated partition helps explain why we often see

helpers, bystanders, and pretenders coexisting in the real world.

In Section 3, I discuss my findings in the context of prominent literature

and suggest subsequent avenues of exploration. To my best knowledge, my

paper is the first to model pretense in public goods provision.

2.2 Volunteer’s Trilemma

The volunteer’s dilemma (Diekmann 1985) is an n-player game in which each

player gains a benefit b from the provision of a public good if at least one

player volunteers to pay a cost c, where 0 < c < b. Each player gains from

the good’s provision but prefers to let someone else pay for the good, a phe-

nomenon known in psychology as diffusion of responsibility or the bystander

7One might argue that players should vary in the help cost, but warm glow serves the
same purpose.
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effect (Darley and Latane 1968). Examples include taking out the trash, help-

ing an injured victim, or enforcing a social norm.8 Various authors have since

covered extensions like asymmetric costs (Diekmann 1993), incomplete infor-

mation (Weesie 1994), or cost sharing (Weesie and Franzen 1998). The studies

closest to my paper incorporate warm glow (Andreoni 1990; Bergstrom et al.

2015) and prestige (Harbaugh 1998; Andreoni and Petrie 2004) but do not

model the pretense of helping.

A problem occurs, and each of n players simultaneously decides to help

(H), bystand (B), or pretend (P ).

Helping costs c and provides the public good. If at least one player helps,

three benefits occur. First, all players enjoy a material benefit b > 0. Second,

only helpers experience a warm glow w > 0. Third, claimants—both helpers

and pretenders—gain honor h > 0. So long as the public good is provided,

everyone is happy and honors claimants fully.9 Thus, I decompose the helper’s

benefit into material, warm glow, and honor components.

Bystanding costs zero and contributes nothing. A bystander receives the

material benefit b only if someone else helped.

Pretending costs more than zero but less than helping, 0 < k < c, and con-

fers honor h only if someone else helped.10 If no one helped, the public good is

not provided so all claimants must be pretenders. Everyone is unhappy, and

8Animals like penguins and marmots are also known to volunteer serving as a lookout
for predators (Dawkins 1976).

9In the short run, players are näıve. In a later section, I compare the long run where
players become sophisticated and discount honor by the conditional probability a claimant
is a helper.

10Honor is non-rival in this setting. One player’s honor gain or loss does not affect
another’s.
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exposed pretenders suffer a shame cost −s < 0. A player i’s utility ui thus

depends on their own action and on whether someone else helps. I summarize

this below:

ui (if someone else helps) ui (if no one else helps)

help (H) b+ w + h− c b+ w + h− c

bystand (B) b 0

pretend (P ) b+ h− k −s− k

where

b = material benefit w = warm glow h = honor

c = help cost k = pretend cost s = shame

Table 1. Actions and Payoffs

Assumption 1. 0 < k < h < w + h < c < b.

All parameters have positive value. The condition c < b is from the original

volunteer’s dilemma. That w + h < c means warm glow and honor alone

do not incentivize a bystander to help; else, H weakly dominates B. That

k < h means pretending is profitable if someone else helps; else, B weakly

dominates P . H is the best response if no one else helps, so it cannot be weakly

dominated. Together, Assumption 1 ensures that no action is dominated and

thus every action is salient.

2.2.1 Characterizing Equilibria

Proposition 1. Given Assumption 1, there exist n pure-strategy Nash equi-

libria where exactly one player helps and all others pretend.
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Proof of Proposition 1. If no one helps, then H is the best response. The

helper gains ui|H = b+w+h−c > 0. (Recall that b > c.) Given that someone

else helps, P is the best response. The pretender gains ui|P = b+h−k, which

is preferred to either ui|B = b or ui|H = b + w + h − c. (Recall that h > k

and w + h < c.)

Pretenders not only free ride the material benefit but also share in the

honor. Whether this is socially wasteful is a matter of perspective, as the

resources expended to pretend are compensated by the utility gained from

shared honor. A materialist view would measure welfare solely by the expected

level of provision.

Proposition 2. Given Assumption 1, in any symmetric, mixed-strategy Nash

equilibrium, each player helps with probability p∗H > 0 and gains expected utility

b+ h+ w − c > 0.

Proof of Proposition 2. Suppose p∗H = 0 such that no one helps and thus no

good exists. Then, a bystander receives ui|B = 0 while a pretender suffers

ui|P = −s − k < 0. If an action is excluded from a mixed strategy, then

its payoff must be weakly less than any included action. However, a helper

would gain ui|H = b + h + w − c > 0, a contradiction. Therefore, p∗H > 0.

In equilibrium, the expected payoff from all actions are equal, so each player

gains unconditional E(ui) = b+ h+ w − c > 0.

Proposition 3. Let p∗H , p∗B, and p∗P be the respective equilibrium probabilities

that a player helps, bystands, or pretends. Given Assumption 1, if:

A)
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c− h− w
b

>
c− k − w
b+ h+ s

then there exists a unique, symmetric Nash equilibrium where p∗H +p∗B = 1 and

p∗P = 0.

B)

c− h− w
b

<
c− k − w
b+ h+ s

then there exists a unique, symmetric Nash equilibrium where p∗H +p∗P = 1 and

p∗B = 0.

C)

c− h− w
b

=
c− k − w
b+ h+ s

then the set of symmetric, mixed-strategy Nash equilibria consists of all

(p∗H , p
∗
B, p

∗
P ) ≥ 0 such that p∗B+p∗P =

(
c− h− w

b

)1/(n−1)

and p∗H+p∗B+p∗P = 1.

Proof of Proposition 3. A game with three actions has potentially up to four

symmetric, mixed-strategy equilibria: mixing on only actions B/P (i.e. p∗B +

p∗P = 1, p∗H = 0); on only H/B; on only H/P ; or on all three H/B/P .11 A

helper always gains b + h + w − c. A bystander gains b only if at least one

other player helps, which occurs with probability 1− (1−pH)n−1. A pretender

gains b+ h− k if the public good is provided and −s− k if it is not. In terms

of expected utilities:

E(ui|H) = b+ h+ w − c (2.1)

E(ui|B) = b[1− (1− pH)n−1] (2.2)

11In general, a game with k actions has up to 2k − k − 1 symmetric, (non-pure) mixed-
strategy equilibria.
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E(ui|P ) = (b+ h)[1− (1− pH)n−1]− s(1− pH)n−1 − k (2.3)

Proposition 2 states that p∗H > 0, so B/P is not an equilibrium. Mixing on

only H/B is an equilibrium if there exists an equilibrium probability p∗B (and

implicitly p∗H = 1− p∗B) that makes a player indifferent between H and B but

still weakly prefer either to P :

E(ui|H) = E(ui|B) ≥ E(ui|P ) (2.4)

b+ h+ w − c = b[1− (pB)n−1] ≥ (b+ h)[1− (pB)n−1]− s(pB)n−1 − k (2.5)

=⇒ p∗B =

(
c− h− w

b

)1/(n−1)

≥
(
c− k − w
b+ h+ s

)1/(n−1)

(2.6)

If instead mixing on only H/P were an equilibrium, then:

E(ui|H) = E(ui|P ) ≥ E(ui|B) (2.7)

b+ h+ w − c = (b+ h)[1− (pP )n−1]− s(pB)n−1 − k ≥ b[1− (pP )n−1] (2.8)

=⇒ p∗P =

(
c− k − w
b+ h+ s

)1/(n−1)

≥
(
c− h− w

b

)1/(n−1)

(2.9)

By Assumption 1 (0 < k < h < w + h < c < b), the fractions have

positive numerators and greater denominators. A fraction between zero and

one (exclusive) raised to a positive power 1/(n− 1) remains between zero and

one, so p∗B, p
∗
P ∈ (0, 1). Mixing on H/B/P is an equilibrium if a player is

indifferent between all three actions. In this case, the probability at least one
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player helps, and thus provides the public good, is updated to 1−(pB+pP )n−1.

E(ui|H) = E(ui|B) = E(ui|P ) (2.10)

b+ h+ w − c = b[1− (pB + pP )n−1] = (b+ h)[1− (pB + pP )n−1]

− s(pB + pP )n−1 − k (2.11)

=⇒ p∗B + p∗P =

(
c− h− w

b

)1/(n−1)

=

(
c− k − w
b+ h+ s

)1/(n−1)

(2.12)

=⇒ p∗H = 1− p∗B − p∗P ∈ (0, 1) (2.13)

The set of all (p∗H , p
∗
B, p

∗
P ) ≥ 0 that satisfy these two conditions include the

cases where either p∗B = 0 or p∗P = 0. However, the parenthesized expressions

are equal only on a set of measure zero in parameter space. In other words,

a three-way, symmetric, mixed strategy generally does not exist except in a

knife-edge case.

Corollary 3. Group size n does not determine which mixed-strategy equilib-

rium exists.

This is not to be confused with n affecting equilibrium probabilities, which

it does as seen below where n appears in the exponent:

Proposition 4. Given Assumption 1, for any mixed-strategy equilibrium, the

individual’s probability of helping is:

p∗H = 1−
(
max

{c− h− w
b

,
c− k − w
b+ h+ s

})1/(n−1)

and the group’s probability of provision is:

P ∗ = 1−
(
max

{c− h− w
b

,
c− k − w
b+ h+ s

})n/(n−1)
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Proof of Proposition 4. Refer to Inequalities 6 and 9. When the left element

(fraction) in the maximum function is greater, only the H/B equilibrium exists

and p∗H = 1−p∗B. When the right element is greater, only the H/P equilibrium

exists and p∗H = 1−p∗P . When both elements are equal, theH/B/P equilibrium

exists (which includes only H/B and only H/P ) and p∗H = 1− p∗B − p∗P . The

probability that at least one player helps is the complement of no one helping,

P ∗ = 1− (1− p∗H)n.

Corollary 4. As n −→∞, p∗H −→ 0 and P ∗ −→

1−max
{
c− h− w

b
,
c− k − w
b+ h+ s

}
.

Proof of Corollary 4. The exponents containing n convergence to 0 for p∗H and

1 for P ∗ as n −→∞. This is the single intermediary step.

How does this probability of provision compare to a world where pretend-

ing is not possible, as assumed in previous models? In those models, only the

help/bystand equilibrium exists, so P̂ ∗ = 1−
(c− h− w

b

)n/(n−1)

. In fact, if we

disable also honor (h = 0) and warm glow (w = 0), we get the original prob-

ability of provision in Diekmann’s volunteer’s dilemma, P̂ ∗ = 1−
(c
b

)n/(n−1)

.

Certainly, P ∗ ≤ P̂ ∗ because the maximum function in P ∗ selects from two

elements as opposed to only the left one.

This leads to the first major result:

Main Result 1. The ability to pretend in a volunteer’s dilemma weakly de-

creases the probability that the public good is provided.
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2.2.2 Three Cultural Archetypes

We now understand that pretense, a hereto ‘unconsidered’, sometimes reduces

the provision of public goods. Specifically, it occurs when the help/pretend

equilibrium exists instead of the help/bystand equilibrium. What factors in-

centivize or disincentivize this equilibrium?

Proposition 5. Given Assumption 1, the unique help/pretend equilibrium

exists when—ceteris paribus—the help cost parameter c is sufficiently small,

when material benefit b is sufficiently large, when warm glow w is sufficiently

large, or when pretend cost k is sufficiently small.

Proof of Proposition 5. Proposition 3 states that when
c− h− w

b
<
c− k − w
b+ h+ s

,

only the H/P equilibrium exists. Rearranging in terms of c, b, k, or w

shows that the H/P equilibrium exists when c < h + w + b(h − k)/(h + s),

b > (c − h − w)(h + s)/(h − k), k < [h2 − (c − h − w)(h + s)]/b, or w >

c− h+ (b · k − h2)/(h+ s). To be clear, these are not four conditions but the

same condition rearranged four ways. If any one condition is true, they are all

true together.

Intuitively, when helping costs little and benefits much, the public good is

more likely to be provided. Knowing this, players are more willing to pretend

in order to free ride both the material benefit and the shared honor. When

players feel good about helping, warm glow serves equivalently as a reduction

in help cost. Lastly and most naturally, pretending happens when it is easier

to pretend.

Costs and benefits are long- and well-understood in economics whereas the
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new variables I introduce, honor and shame, traditionally belong to anthro-

pology. In an effort to bridge the two fields, I first quantitatively analyze the

effects of honor and shame on equilibrium selection then qualitatively interpret

their roles in shaping a cultural norm.

Proposition 6. Given Assumption 1, the unique help/pretend equilibrium

exists when—ceteris paribus—the honor parameter h is sufficiently large and

also the shame parameter s is sufficiently small. When h is sufficiently small

or s is sufficiently large, the unique help/bystand equilibrium exists.

Proof of Proposition 6. Proposition 3 states that when
c− h− w

b
<
c− k − w
b+ h+ s

,

only the H/P equilibrium exists. Rearranging in terms of honor h yields:

f(h) = h2 + (b+ w − c+ s) · h+ [s(w − c)− b · k] > 0 (2.14)

This is a convex parabola with vertical intercept at f(0) = s(w−c)−b ·k <

0. The intercept is negative because Assumption 1 implies parameters are pos-

itive and w < c. This means somewhere in the domain h > 0, there exists a

unique threshold hT where f(hT ) = 0 crosses the horizontal axis. Specifically,

this crossing point occurs at hT = (−B+
√
B2 − 4C)/2 where B = b+w−c+s

and C = s(w−c)− b ·k. Values above this threshold h > hT determine a H/P

equilibrium while h < hT determines a H/B equilibrium.
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Fig. 1. Large Values of Honor Induce Pretense (always)

Similarly, rearranging in terms of shame s shows that the H/P equilibrium

exists when:

f(s) = s+
[
h− b(h− k)

c− h− w

]
< 0 (2.15)

This is a linear function of s with a slope of 1 and an intercept of ambiguous

sign. Assumption 1 implies only that the fraction term is positive because

h > k and c > h+w. This matters because if the intercept is zero or positive,

then the unique H/B equilibrium exists and s has no effect. If the intercept is

negative, then values below this threshold s < sT = b(h− k)/(c− h− w)− h

determine a H/P equilibrium while s > sT determines a H/B equilibrium.
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The intercept is negative when:

b(h− k)

c− h− w
− h > 0 =⇒ h2 − (c− w − b) · h− b · k > 0 (2.16)

This, too, is a convex parabola with negative vertical intercept. So, the

function is positive when h is sufficiently large.

Fig. 2. Large Values of Shame Dissuade Pretense (only when h is large)
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Fig. 3. High-Honor, Low-Shame Cultures Pretend (topology of merged

f(h, s))

How should we interpret these equations? First, honor encourages helping

but also pretending. Second, cultures can be categorized broadly as one of

three archetypes. Cultures that weakly value honor develop a norm to by-

stand as the alternative to not helping. Cultures that strongly value honor

develop a norm to appear helpful, even if that means pretending. Cultures

with high values of both honor and shame revert back to bystanding as the

alternative to helping. A motto for such cultures might be, “Help, or help not;

there is no pretend.” This three-culture model helps explain why pretense is

more prevalent in some cultures than others.
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This leads to the second major result:

Main Result 2. Pretense exists among cultures which strongly honor claimants

but weakly shame pretenders.

2.2.3 Honor as Subsidy, Shame as Tax

From an anthropological lens, honor and shame function like subsidies and

taxes to shape outcomes desired by one’s tribe. In the previous subsection,

we discovered how these parameters affect which equilibrium exists, and thus

whether people pretend. But is pretending good or bad for the tribe, and how

much honor or shame is optimal?

To answer this, we must first define the group’s welfare. One proposal

might be to aggregate individual utilities. However, this leads to the trivial

solution of ‘infinite honor’. That is, welfare is maximized by deifying claimants.

Not only does this violate Assumption 1 (h < c), it is also devoid of insight.

Instead, let us favor a materialist view and take the probability of provision

as the welfare measure.

Proposition 7. Given Assumption 1, for any mixed-strategy equilibrium,

∂P ∗/∂b > 0, ∂P ∗/∂h > 0, ∂P ∗/∂w > 0, ∂P ∗/∂c < 0, ∂P ∗/∂k ≥ 0, and

∂P ∗/∂s ≥ 0.

Proof of Proposition 7. Proposition 4 is the closed-form probability of provi-

sion. The positive or negative sign and numerator or denominator position

determine each parameter’s marginal effect. Assumption 1 implies the numer-

ators are positive, c− h−w > 0 and c− k−w > 0, and the denominators are

greater because c < b. This ensures P ∗ ∈ (0, 1).
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The partial derivatives for all parameters except c are non-negative, which

means increasing anything except help cost weakly increases provision. Pre-

tend cost k and shame s matter only in the help/pretend equilibrium and have

zero effect in the help/bystand one.

Fig. 4. Honor Increases Provision (always, in both equilibria)

P ∗ = min{P ∗H/B, P ∗H/P}

The graph above shows the probability of provision as a function of honor,

P ∗(h). Because P ∗ has a nested maximum function, it assumes one of two

forms depending on which equilibrium exists. Prior to the threshold value of

honor hT , P ∗ = P ∗H/B. At hT , the function is continuous but kinked. After

hT , P ∗ = P ∗H/P .

Increasing honor always increases provision albeit with diminishing marginal

returns. Noticeably, honor’s effect is stronger at low levels of h when the
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help/bystand equilibrium exists. This is because honor motivates helping, but

too much honor makes pretending more attractive.

Fig. 5. Shame Increases Provision (only in the pretend equilibrium)

Merging both two-dimensional figures produces a three-dimensional graph of

the provision probability as a function of honor and shame, P ∗(h, s). I provide

an accompanying contour graph. These help us better observe key results.

Firstly, P ∗(h, s) is non-decreasing in both arguments. Secondly, shame (s)

matters only if honor (h) is sufficiently high. It follows that provision chance

is maximized first by increasing honor then by increasing shame.

65



Pretending Volunteers Chapter 2

Fig. 6. High Honor and High Shame Maximize Provision Chance

This leads to the third major result:

Main Result 3. Cultures which best provide a public good feature high so-

cial reward (honor) and high social punishment (shame). Second-best cultures

tolerate pretense via high honor but low shame. Cultures which least provide

exhibit low honor and low shame.

2.2.4 Long-Run Sophistication

We recurringly say that players ‘receive’ honor or shame, but from whom?

Let us call the people who confer these sanctions ‘the audience.’ The audience

need not be limited to the players themselves. Consider, for instance, a cabal

of politicians acting before the public. It is not so much the judgment of their

peers as it is the judgment of their constituents that matters. The audience

varies by context, but always their belief matters to the players.

In the short run, the audience is näıve. So long as the public good is
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provided, the audience is happy and honors all claimants fully. In the long

run, the audience becomes sophisticated and discounts honor h by the condi-

tional probability a claimant is a helper. This discount factor is p∗H/(p
∗
H +p∗P ),

where p∗H and p∗P are the equilibrium probabilities of helping and pretending.

This makes honor endogenous, affected by the composition of helpers and pre-

tenders in equilibrium. Let hD represent this discounted honor.

Assumption 2. hD = h · p∗H/(p∗H + p∗P ).

Proposition 8. Given Assumptions 1 & 2, exactly one of three symmet-

ric, mixed-strategy Nash equilibria exists: 1) players mix on help/bystand and

no one pretends; 2) players mix on help/pretend and no one bystands; or

3) players mix on all three actions—help, bystand, and pretend–with positive

probability.

Proof of Proposition 8. An equilibrium that mixes only on H/B exists when:

E(ui|H) = E(ui|B) ≥ E(ui|P ) (2.17)

b+ h+ w − c = b[1− (pB)n−1] ≥ (b+ h)[1− (pB)n−1]− s(pB)n−1 − k (2.18)

=⇒ p∗B =

(
c− h− w

b

)1/(n−1)

≥
(
c− k − w
b+ h+ s

)1/(n−1)

(2.19)

An equilibrium that mixes only on H/P exists when:

E(ui|H) = E(ui|P ) ≥ E(ui|B) (2.20)

b+ h · pH + w − c = (b+ h · pH)[1− (pP )n−1]− s(pP )n−1 − k ≥ b[1− (pP )n−1]

(2.21)
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=⇒ p∗P =

(
c− k − w

b+ h · pH + s

)1/(n−1)

≥
(
c− h · pH − w

b

)1/(n−1)

(2.22)

When Inequalities 19 and 22 are both false, then the three-way mixed

strategy equilibrium exists. Given that each other player helps, pretends, or

bystands with respective probabilities pH , pP , pB, the expected utility from

each action is:

E(ui|H) = b+ h
pH

pH + pP
+ w − c (2.23)

E(ui|P ) = (b+ h
pH

pH + pP
)[1− (1− pH)n−1]− s(1− pH)n−1 − k (2.24)

E(ui|B) = b[1− (1− pH)n−1] (2.25)

SubtractingE(ui|B) from each and equatingE(ui|H) = E(ui|P ) = E(ui|B)

yields:

0 = b(1− pH)n−1 + h
pH

pH + pP
+ w − c (2.26)

0 = h
pH

pH + pP
[1− (1− pH)n−1]− s(1− pH)n−1 − k (2.27)

Equilibrium (p∗H , p
∗
P ) must satisfy this system of two equations. There is

no general, closed-form solution due to the interaction between exponents and

fractions. However, by the Nash Existence Theorem, every n-player game

with finite actions has at least one equilibrium. If there are no pure-strategy

equilibria, then there must be a unique mixed-strategy equilibrium. If the

mixed-strategy equilibrium does not mix on only B/P , H/B, or H/P , then it
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must mix on H/B/P .

Proposition 9. Given Assumptions 1 & 2, a player’s probability of helping

and the group’s probability of provision in the help/pretend equilibrium are

strictly less than under Assumption 1 only.

Proof of Proposition 9. When the equilibrium mixes only on actions H/B, any

claimants are unambiguously helpers. When the equilibrium mixes only on

H/P , honor h is discounted. In this case, p∗P = 1− p∗H so the discount factor

simplifies to p∗H . Equating E(ui|H) = E(ui|P ) reduces to:

c− k − w
b+ h · pH + s

= (1− pH)n−1 ∈ (0, 1) (2.28)

A discounted hD = h · pH < h makes the denominator smaller, the fraction

larger, and thus pH smaller on the right side.

Fig. 7. Long-Run Sophistication Reduces Provision
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Fig. 6 illustrates how Equation 28 determines equilibrium p∗H depending on

whether the left side uses endogenous honor hD (long-run, sophisticated au-

dience) or exogenous honor h (short-run, näıve audience). The presence of

pretenders has a double-negative effect on provision. First, pretenders do

not contribute. Second, pretenders dilute honor, which discourages potential

helpers who realize their help may be doubted as fake. This discouragement

shares a structural similarity to the market for lemons (Akerlof et al. 1970).12

In an environment where audiences are sophisticated and some players

pretend, helpers suffer from being pooled with pretenders. Authentication is

relevant only in a help/pretend equilibrium. In a help/bystand equilibrium,

every helper is already believed. Suppose now those helpers have the op-

tion to authenticate (A) their action. Authenticating costs more than helping

(cA > c), but it appears distinct from any other action and guarantees that

the helper earns an undiluted honor h > hD = h · pH .

Proposition 10. Given Assumptions 1 & 2, when authenticating is an op-

tion, exactly one of two symmetric, mixed-strategy Nash equilibria exists: 1)

players mix on authenticate/bystand and no one pretends or helps; or 2) play-

ers mix on help/pretend and no one bystands or authenticates. If the premium

is less than the honor loss, the authenticate/bystand equilibrium exists. If the

premium is greater than the honor loss, the help/pretend equilibrium exists.

Proof of Proposition 10. Helpers who are pooled with pretenders authenticate

12Akerlof, Spence, and Stiglitz shared the 2001 Nobel Prize in Economics for their work
in asymmetric information, of which the market for lemons was a central idea.
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if E(ui|A) > E(ui|H). This occurs when:

(cA − c) < h(1− p∗H) (2.29)

The left side is the extra cost to authenticate while the right side is the

extra benefit from restoring full honor. If marginal benefit outweighs marginal

cost, players pay this premium and mix on actions A/B (i.e. they play H

and P with probability zero). If the premium is too costly, no one plays A

and the equilibrium reverts to mixing on H/P . Mixing on A/P cannot be an

equilibrium because the audience can deduce that any claimant who does not

authenticate is a pretender.

2.2.5 Incomplete Information

The base model assumes every player is identical. A more realistic assump-

tion would be that players are similar in preferences, but each varies in some

individual way. To continue a trend in recent literature on extrinsic versus

intrinsic motivation, I introduce heterogeneity via honor h and warm glow w.

These represent how much a person cares about looking good to others versus

feeling good about oneself.

Let each player have fixed values of hi ∼ U [0, h̄] and wi ∼ U [0, w̄] that

are identically, independently, and uniformly distributed. Individuals know

their own types but not those of others; they know only the distribution from

which these types are drawn. To derive an equilibrium, I use the Bayesian

approach for games of incomplete information (Harsanyi 1967-1968). A strat-
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egy here maps a player i’s type (hi, wi) to an optimal action.13 In a Bayesian

equilibrium, each player best-responds to maximize expected utility given the

randomized types (hj, wj, where j 6= i) of other players.

Proposition 11. Given Assumption 1, under heterogeneity and incomplete

information, a unique equilibrium exists where players choose exactly one of

three actions—help, pretend, bystand—based on their type.

Proof of Proposition 11. Let the binary function pHi(hi, wi) ∈ {0, 1} input a

player i’s types and output the probability i helps, either zero or one. From

i’s perspective, the public good is provided if at least one other player helps,

meaning pHj = 1 for some j 6= i. The good is not provided if no one helps,

meaning pHj = 0 ∀ j 6= i. Thus, the probability at least one other player helps

is E(1−
∏

j 6=i(1−pHj)), where pHj(hj, wj) is a function of uniformly-distributed

random variables hj, wj. Then, i’s expected utility from each action depends

on their own type (hi, wi) and the vector pH = (pH1, pH2, ..., pHn−1) that maps

types to actions:

E(ui|H) = b+ hi + wi − c (2.30)

E(ui|B) = b · E(1−
∏
j 6=i

(1− pHj)) (2.31)

= b · (1−
∏
j 6=i

E(1− pHj))

E(ui|P ) = (b+ hi)(1−
∏
j 6=i

E(1− pHj))− s
∏
j 6=i

E(1− pHj)− k (2.32)

13As shown in Weesie 1994, randomization among alternatives is unnecessary for an equi-
librium to exist and is thus discarded.
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where

E(1− pHj) =

∫ w̄

0

∫ h̄

0

(1− pHj(hj, wj)) · dhj · dwj (2.33)

Player i chooses the action with the greatest expected utility. If this action

is help, then pHi = 1. In equilibrium, the function pHi must hold true given

all other pHj where j 6= i.

While the strategy functions are infeasibly complex, we can still visualize

a mapping of types to optimal actions. A rectangle of dimensions h̄ × w̄

represents the type space for hi ∼ U [0, h̄] × wi ∼ U [0, w̄]. This type space

is divided by three concentric rays into distinct regions corresponding to the

three actions—help, bystand, or pretend. Every player uses this same mapping

to select a pure strategy corresponding to their given type.14

14In fact, I conjecture that a valid partition always exists for any ratio of H : B : P . That
is, given three distinct angles of rays originating from a central point P and given a desired
ratio of H : B : P , I claim that there always exists at least one placement of P , either inside
or outside the rectangle, that partitions the type space into the desired shares. However,
the geometric proof for this is beyond the scope of this paper. I simply mention this for
interested mathematicians.
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Fig. 8. Mapping of Types to Optimal Action

The threshold between bystand and pretend depends only on honor hi. This

is because warm glow wi does not apply to bystanders and pretenders, but

honor incentivizes pretending. At the threshold between help and bystand,

any increase in either hi or wi tips a marginal player toward helping. This is

also true for the threshold between help and pretend, albeit with a flatter slope.

This is because a marginal increase in honor hi certainly increases a helper’s

utility, whereas it has only a chance to increase a pretender’s utility (i.e. if the

good is provided). An alternative intuition is that pretenders already gain hi

if the good is provided, so it takes greater hi than wi to incentivize a marginal

pretender into helping.15

15Mathematically, the help/bystand threshold slope is exactly 45◦ because ∂[E(ui|H) −
E(ui|B)]/∂hi = ∂[E(ui|H) − E(ui|B)]/∂wi. The help/pretend threshold slope is flatter
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In this hypothetical illustration, the areas of help, bystand, and pretend are

respectively 35%, 25%, and 40%. These percentages approximate the mean

populations of altruistic, selfish, and ‘reluctant’ types across previous studies:

Lazear et al. (2012), Dana et al. (2006), Dana et al. (2007). For emphasis, in

an incomplete information equilibrium, a player’s chance to help is either zero

or one. However, from an observer’s perspective, it appears as if p∗ = 35% per

individual.

2.3 Discussion

The key insight of this paper is that in many public goods contexts—economic,

political, social—a ‘help’ signal may not correspond to a ‘help’ action. That

is, people sometimes pretend to contribute, potentially free riding a positive

image without paying the full help cost. How does the ability to pretend affect

good provision? How do group size, honor and shame, sophistication, or asym-

metry affect outcomes? What are consequences of pretense and how might we

mitigate them? Until now, this has been a gap in the public goods literature.

I fill this gap by modeling the volunteer’s dilemma with a third alterna-

tive: pretending to help. Pretending appears identical to helping, contributes

zero toward the public good, and costs less than helping (0 < k < c). Sec-

ondly, I decompose the benefits from helping (or pretending) into material

(b), honor (h), and warm glow (w). These three factors comprise the primary

motivations for contributing toward a public good. Helping confers a material

benefit, honor, and warm glow. Pretending confers honor if the public good is

than 45◦ because ∂[E(ui|H)− E(ui|P )]/∂hi < ∂[E(ui|H)− E(ui|P )]/∂wi.
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provided and shame otherwise. Bystanding costs nothing and confers nothing.

In Diekmann’s (1985) original, n-player volunteer’s dilemma, there are n

pure-strategy Nash equilibria where exactly one player helps and everyone else

bystands. When I introduce the pretend option, these same equilibria instead

become exactly one player helping while everyone else pretends. The intuition

is that if the good is provided, pretenders can also share in honor (Proposition

1). Whether this outcome is socially wasteful is a matter of perspective, as

the utility gained from honor is countered by the cost of pretending. Like the

original model, my pretense model has a unique, symmetric, mixed-strategy

Nash equilibrium where everyone mixes on help/bystand. In addition, it has

one where everyone mixes on help/pretend. Only one of these two equilibria

exists at a time (Proposition 3).

Regarding the effect of group size, in both equilibria as n approaches in-

finity, the probability an individual helps approaches zero and the likelihood

the good is provided approaches a constant between zero and one. This is

consistent with Diekmann’s model (Corollary 4). Whether the mixed-strategy

equilibrium is help/bystand or help/pretend depends on costs and benefits, but

surprisingly not on group size. Specifically, the equilibrium with the smaller

probability of provision is the one that exists. A somber logic implies that

when people can pretend, the public good is less likely to be provided than

when people cannot pretend (Main Result 1).

Pretense exists for sufficiently large values of honor and sufficiently small

values of shame. From an anthropological view, cultures which value image

heavily develop a norm to appear helpful, which motivates pretending (Main
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Result 2). The rise of social media, especially, has created audience effects

and pro-social norms. At the same time, unverifiability behind technological

barriers can and often do incentivize pretense. Fortunately, cultures can im-

prove their probability of public good provision by first raising social reward

(honor), followed by social punishment (shame) (Main Result 3).

The pretending volunteer’s dilemma shares some structural features to Ak-

erlof’s (1970) famous market for lemons. Akerlof argued that when buyers

cannot distinguish between a high-quality car (‘peach’) and a low-quality car

(‘lemon’), they will in expectation pay only the average price of a peach and

lemon. Sellers, on the other hand, know the quality of their car. Given the

lower, average price at which buyers would buy, ‘lemons’ sell while ‘peaches’

leave the market. Similarly, when the audience becomes sophisticated in the

long run, they discount honor by the probability a claimant is really a helper.

Thus, the presence of pretenders has a double-negative effect. First, pretenders

do not help. Second, pretenders dilute honor and discourage potential helpers

from helping (Proposition 9).

Interestingly, discouraged helpers facing diluted honor are willing to pay

extra costs, up to the honor loss, to authenticate their help. When an authenti-

cation option is introduced, either everyone mixes on authenticate/bystand or

everyone mixes on help/pretend (Proposition 10). While it may seem strange,

people sometimes do pay a premium to authenticate their help. A worker

might work in an inconvenient but public space for visibility. A philanthropist

might increase donation to a higher bracket to avoid being listed among lower-

tier donors who may be donating the bare minimum (e.g. $100+ group instead
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of $1 to $99 group). This result is supported by data from Harbaugh’s (1998a)

work on philanthropy and prestige, which shows that when donations are both

tiered and publicized, most donations bunch at the minimum required for in-

clusion in each tier.

In an incomplete information equilibrium, a two-dimensional space exists

that maps types to actions (Proposition 11). Recent work on ‘reluctant’ helpers

by Lazear et al. (2012), Dana et al. (2006, 2007) suggest that people can be

grouped into altruistic, selfish, or ‘reluctant’ types. Reluctant helpers are

motivated by image but would rather not help if unobserved. These types

correspond closely to helpers, bystanders, and pretenders in my heterogeneity

model. The work of these authors estimate that about 35% of the population

are altruistic, 25% are selfish, and 40% are reluctant. In crafting Fig. 8, I took

special effort to equate the areas of the three regions to these percentages.

To focus on the impact of pretense on good provision, I modeled pretense

in the volunteer’s dilemma. A future extension could cover a theoretical model

of a (simplified) public goods game. Experimentally, when people can pretend,

should we expect an increase in claimed volunteers but a decrease in the provi-

sion rate? If so, this would imply that some helpers were relucant and perhaps

also that some bystanders would ‘buy’ honor if only honor were cheaper.
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Chapter 3

Visualization of Revenue

Equivalence

3.1 Introduction

Rarely are the words ‘geometry’ and ‘economics’ heard together, but in the in-

stances where they do overlap, it is worthwhile to illuminate their intersection.

Geometric representations are important in economics because they enhance

our mathematical understanding via visual intuition. A classic example is

identifying surplus, tax, and deadweight areas in a Marshallian supply-and-

demand graph. In two-good consumption, what are indifference curves but

contour lines of a three-dimensional utility mesh? Geometry helps us perceive

the Slutsky decomposition of income versus substitution effect, shift allocations

in the Edgeworth box, and pin-point equilibria from best response intersec-

tions.
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Similarly, a visual representation of the revenue equivalence principle from

auction theory can help us better understand and appreciate a central idea.

Revenue equivalence states that, given certain conditions1, any auction mecha-

nism that produces the same allocation for buyers also yields the same expected

revenue for the seller (Myerson 1981, Riley and Samuelson 1981). Several auc-

tion formats have been proven algebraically to be revenue equivalent, and I

focus only on the geometric aspects.

To be clear, this paper is of an expository and pedagogical nature. It is true

that revenue equivalence holds for any number of bidders and any distribution.

However, figures are difficult enough to visualize beyond three dimensions,

much less amorphous figures. Thus, I limit the geometry to two symmetric

bidders with uniform distribution. It is my intent that these two approaches,

geometric and summation, offer visual intuition to an algebraically-established

principle.

In Section 2 (Geometric), I provide a geometric interpretation of revenue

equivalence between first-price, second-price, and all-pay sealed-bid auctions

for two bidders with uniformly-distributed private values. Importantly, the

mean height of each solid represents expected revenue and is equal across all

three solids. I also overlay the solids to identify regions in the value space

where each auction format yields the greatest revenue.

In Section 3 (Summation), I present a summation approach of revenue

equivalence using partitioned volumes. As these increments shrink toward

1Across auction formats, players must bid according to their type, a specific type must
have the same probability to win, and the lowest type must have the same expected utility,
most commonly zero.
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zero, the expected revenues of all three converge to the same continuous limit.

I also use summations to calculate the variance of each auction format for

a risk-averse seller. In order of ascending variance are the first-price (least),

second-price, and all-pay (greatest) auction formats.

In section 4 (Discussion), I share a tangible, ham-and-cheese model as a

pedagogical tool. I then suggest materials and techniques to construct such

tangible models.

3.2 Geometric

First-Price, Sealed-Bid

Two bidders, i = 1, 2, have private values vi ∼ U [0, 1]. In a first-price

auction, the player with the highest bid wins and pays his bid amount; all

others exchange nothing. In linear bidding strategies with n = 2 players,

each player optimally bids bi = [(n − 1)/n] · vi = vi/2. The seller receives

as revenue the highest bid, or R1st = max{v1/2, v2/2}, and expected revenue

E(R1st) = (n − 1)/(n + 1) = 1/3 (Vickrey 1961).2 The contour curves for a

max function are L-shaped, and the solid is quasi-convex.

2Vickrey originally solved the descending (Dutch) auction, but it is strategically equiva-
lent to a first-price, sealed-bid auction.
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Fig. 1. First-Price Geometry

The axes represent values v1 and v2 while the height is revenue R1st. For

example, the coordinate (v1, v2, R1st) = (0.8, 0.4, 0.4) means the seller receives

max{v1/2, v2/2} = 0.4. Expected revenue E(R1st) is thus the mean height of

the solid.

E(R1st) = E(height) = volume/base = (prism− pyramid)/square (3.1)

= (12 · 0.5− 12 · 0.5/3)/12 = 1/3 (3.2)

Second-Price, Sealed-Bid

Now compare the second-price auction, where the winner pays the second

highest bid. Here, each player optimally bids his true private value, so bi = vi.

The seller receives as revenue the second highest bid, which in this case is also

the minimum R2nd = min(v1, v2), and expected revenue is also E(R2nd) =

(n − 1)/(n + 1) = 1/3 (Vickrey 1961). The contours for a min function are

inverted Ls, and the solid is quasi-concave.
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Fig. 2. Second-Price Geometry

The height now represents R2nd, and so the expected revenue E(R2nd) is the

mean height of the pyramid, which is equivalent to E(R1st) = 1/3.

E(R2nd) = E(height) = volume/base = pyramid/square (3.3)

= (13/3)/12 = 1/3 (3.4)

All-Pay, Sealed-Bid

Lastly compare a third auction, the all-pay, where the highest bidder wins,

but all players pay their bid. Here, players optimally bid according to bi =

v2
i /2. The seller collects Rall = v2

1/2+v2
2/2, which is a quarter-paraboloid with

arc contours.
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Fig. 3. All-Pay Geometry

The expected revenue E(Rall) is the mean height of this paraboloid, which

is also equivalent to R1st = R2nd = 1/3. A simplifying step can be made by

noting that v1 and v2 are independently and identically distributed, so a single

(as opposed to double) integral is sufficient.

E(Rall) = E(height) = volume/base = (paraboloid)/(square) (3.5)

=
[ ∫ 1

0

(v2/2 + v2/2) · dv
]
/12 =

(∫ 1

0

v2 · dv
)
/12 = 1/3

(3.6)

Here are the three auction formats again, side-by-side and overlaid for com-

parison.
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E(R1st) = E(R2nd) = E(Rall) = 1/3

Rmax = max{R1st, R2nd, Rall}

= max{max{v1

2
,
v2

2
},min{v1, v2},

v2
1

2
+
v2

2

2
}

Fig. 4. Geometry Comparison

Out of context, there is little intuition that these separate solids would share

the same volume, much less significance regarding their shape. Yet in auction

theory each solid represents a distinct mechanism, an optimal response, and

an expected revenue. We have thus transformed expected revenue from an
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algebraic object to a geometric one that is mean height. Further, because the

base areas are normalized to one, mean height is equal to volume. Another way

geometry helps our understanding is that overlaying the three solids quickly

shows which format returns the greatest revenue for a given (v1, v2). For

example, when bidder values are equal, along the diagonal, second-price is

best.

3.3 Summation

In this section, I present a summation approach using partitioned volumes for

each of the three auction formats: first-price, second-price, and all-pay. I then

increase the number of partitions toward infinity and show that the asymptotic

limit is consistent with the continuous case.

It may seem as though summations are but a precursor to integrals, but

there are several advantages. First, we can observe the behavior of revenue

functions near the limit. Second, two of the three solids are not ‘smooth’ (i.e.

twice-differentiable) due to a kink along the v1 = v2 axis. This makes sum-

mations a valuable approach to calculating mean and variance. Third, the

material can be presented to advanced youth who have not had exposure to

calculus.

First-Price, Sealed-Bid

Let us partition each player’s continuous value set vi ∼ U [0, 1] into n+1 dis-

crete elements, such that vi ∈ {
0

n
,

1

n
,

2

n
, ...,

n

n
} with equal probability 1/(n+1)

for each element.
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1 1
2

1
2

1
2

1
2

1
2

... ... ... ... ... 1
2

2
n

1
n

1
n

1
n ... 1

2

1
n

1
2n

1
2n

1
n ... 1

2

0 0 1
2n

1
n ... 1

2

vi 0 1
n

2
n ... 1

Fig. 5. First-Price Summation

The axes represent v1 and v2, normalized to [0, 1], and each intersection on the

lattice gives the revenue at (v1, v2). Recall that players are quasi-rational and

bid as if continuous, so the seller receivesR1st = max[v1/2, v2/2]. The expected

revenue E(R1st) is then the sum of revenues weighted by their probabilities.

Observe that the elements in each L-shape are increasing odd numbers. Hence,

E(R1st) =

n∑
k=0

(revenue)(probability)

=

n∑
k=0

(k/2n)[(2k + 1)/(n+ 1)2] =
1

2n(n+ 1)2

n∑
k=0

2k2 + k (3.7)

=
1

2n(n+ 1)2

[
2 · n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2

]
(3.8)

=
1

2(n+ 1)

[2n+ 1

3
+

1

2

]
=

1

2n+ 2
(
4n+ 5

6
) =

4n+ 5

12n+ 12
(3.9)
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⇒ lim
n→∞

E(R1st) = lim
n→∞

4n+ 5

12n+ 12
= 1/3 (3.10)

Second-Price, Sealed-Bid

Partitioning the second-price auction the same way yields:

1 0 1
n

2
n ... 1

... ... ... ... ... ...

2
n 0 1

n
2
n ... 2

n

1
n 0 1

n
1
n ... 1

n

0 0 0 0 ... 0

vi 0 1
n

2
n ... 1

Fig. 6. Second-Price Summation

E(R2nd) =

n∑
k=0

(revenue)(probability)

=

n∑
k=0

(k/n){[2(n− k) + 1]/(n+ 1)2} =
1

n(n+ 1)2

n∑
k=0

2nk − 2k2 + k

(3.11)

=
1

n(n+ 1)2

[
(2n+ 1) · n(n+ 1)

2
− 2 · n(n+ 1)(2n+ 1)

6

]
(3.12)

=
1

n+ 1
(
2n+ 1

2
− 2n+ 1

3
) =

1

n+ 1
(
2n+ 1

6
) =

2n+ 1

6n+ 6
(3.13)
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⇒ lim
n→∞

E(R2nd) = lim
n→∞

2n+ 1

6n+ 6
= 1/3 (3.14)

That limn→∞E(R2nd) = limn→∞E(R1st) = 1/3 means the two expected

revenues converge, and that this limit is consistent with the continuous result.

However, note that ∀ n ∈ N,

E(R2nd) =
2n+ 1

6n+ 6
=

4n+ 2

12n+ 12
<

4n+ 5

12n+ 12
= E(R1st) (3.15)

All-Pay, Sealed-Bid

Deriving the summation formula for the all-pay lattice may seem complex,

but E(Rall) = v2
1/2 + v2

2/2, and v1 and v2 are independent and identically

distributed. So, the sum is simply double a single buyer’s expected payment.

1 1
2

n2+1
2n2

n2+4
2n2 ... 1

... ... ... ... ... ...

2
n

4
2n2

5
2n2

8
2n2 ... n2+4

2n2

1
n

1
2n2

2
2n2

5
2n2 ... n2+1

2n2

0 0 1
2n2

4
2n2 ... 1

2

vi 0 1
n

2
n ... 1

Fig. 7. All-Pay Summation
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E(Rall) =

n∑
k=0

(revenue)(probability)

= 2 ·
n∑
k=0

(k2/2n2)[1/(n+ 1)] =
1

n2(n+ 1)

n∑
k=0

k2 (3.16)

=
1

n2(n+ 1)
[
n(n+ 1)(2n+ 1)

6
] =

1

n
(
2n+ 1

6
) =

2n+ 1

6n
(3.17)

⇒ lim
n→∞

E(Rall) = lim
n→∞

2n+ 1

6n
= 1/3 (3.18)

The asymptotic limit is equal to the other auctions, and to the continuous

limit. How does E(Rall) compare to E(R2nd) or E(R1st) for finite n? E(Rall) =

(2n+ 1)/6n has a smaller denominator than E(R2nd) = (2n+ 1)/(6n+ 6) and

therefore must be larger. Taking common denominators via cross-multiply

shows that ∀ n ∈ N,

E(Rall) =
2n+ 1

6n
=

24n2 + 36n+ 12

72n2 + 72n
>

24n2 + 30n

72n2 + 72n
=

4n+ 5

12n+ 12
= E(R1st)

(3.19)

⇒ E(Rall) > E(R1st) (3.20)

Now consider a risk-averse seller who, expected revenues being equal, prefers

low variance. Which format should he use? Because two of the three solids

are not ‘smooth’ (i.e. twice-differentiable) due to a kink along the v1, v2 axis,

summations offer an alternate approach to calculating variance. The variances
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are:

V ar(R1st) = lim
n→∞

−[E(revenue)]2 +

n∑
k=0

(revenue)2(probability) (3.21)

= −(1/3)2 + lim
n→∞

n∑
k=0

(k/2n)2[(2k + 1)/(n+ 1)2] (3.22)

= −(1/3)2 + lim
n→∞

1

4n2(n+ 1)2

n∑
k=0

2k3 + k2 (3.23)

= −(1/3)2 + lim
n→∞

1

4n2(n+ 1)2
[2 · n

2(n+ 1)2

4
+
n(n+ 1)(2n+ 1)

6
]

(3.24)

= −(1/3)2 + lim
n→∞

1

8
+

2n+ 1

24n2 + 24n
= −1/9 + 1/8 + 0 = 1/72

(3.25)

V ar(R2nd) = lim
n→∞

−[E(revenue)]2 +

n∑
k=0

(revenue)2(probability) (3.26)

= −(1/3)2 + lim
n→∞

n∑
k=0

(k/n)2{[2(n− k) + 1]/(n+ 1)2} (3.27)

= −(1/3)2 + lim
n→∞

1

n2(n+ 1)2

n∑
k=0

2nk2 − 2k3 + k2 (3.28)

= −(1/3)2 + lim
n→∞

1

n2(n+ 1)2

· [(2n+ 1) · n(n+ 1)(2n+ 1)

6
− 2 · n

2(n+ 1)2

4
] (3.29)
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= −(1/3)2 + lim
n→∞

4n2 + 4n+ 1

6n2 + 6n
− 1

2
= −1/9 + 2/3− 1/2 = 1/18

(3.30)

V ar(Rall) = −[E(revenue)]2 +

∫ 1

0

(v2)2 · dv = −1/9 + 1/5 = 4/45 (3.31)

Here are the three auction formats again, side-by-side for comparison.

1st-Price 2nd-Price All-Pay

E[R(n)]
4n+ 5

12n+ 12

2n+ 1

6n+ 6

2n+ 1

6n

limn→∞ V ar[R(n)]
1

72

1

18

4

45

∀n ∈ N, E(R2nd) < E(R1st) < E(Rall)

limn→∞E(R1st) = limn→∞E(R2nd) = limn→∞E(Rall) = 1/3

V ar(R1st) < V ar(R2nd) < V ar(Rall)

Fig. 8. Summation Comparison

3.4 Discussion

To conclude, I share a tangible, ham-and-cheese model as an example of a

pedagogical tool.
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Fig. 9. Tangible Example

The ham (left) represents first-price while the cheese (right) represents second-

price; their square bases are normalized to one. Revenue equivalence states

that the ham and cheese have equal volumes and therefore equal mean heights.

Individuals learn best in different ways: sight, sound, touch, interaction,

perhaps all the above. Tangible models reinforce learning because they are

interactive and audiences can freely rotate the solids. Materials are accessible

at local grocers and cost about 5-10 USD. Carving time takes about 10-15 min-

utes. Vegans may substitute styrofoam, three-dimensional printing, or other

durable materials.

There is perhaps an innate fascination with food or play that keeps us en-

gaged. Trials presenting to graduate, undergraduate, and advanced high school

audiences yielded positive feedback about the tangible model. Educators may

use these visualizations to enhance a reader’s understanding and appreciation
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of auction theory. Future work can identify other areas of economics that

could benefit from visual or interactive learning.
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