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Abstract

This paper investigates how commonly prescribed pharmacologic treatments for Alzheimer’s

disease (AD) affect Event-Related Potential (ERP) biomarkers as tools for predicting AD

conversion in individuals with Mild Cognitive Impairment (MCI). We gathered baseline ERP data

from two MCI groups (those taking AD medications and those not) and later determined which

subjects developed AD (Convert->AD) and which subjects remained cognitively stable (Stable).

We utilized a previously developed and validated multivariate system of ERP components to

measure medication effects among these four subgroups. Discriminant analysis produced

classification scores for each individual as a measure of similarity to each clinical group (Convert-

>AD, Stable), and we found a large significant main Group effect but no main AD Medications

effect and no Group by Medications interaction. This suggested AD medications have negligible

influence on this set of ERP components as weighted markers of disease progression. These

results provide practical information to those using ERP measures as a biomarker to identify and

track AD in individuals in a clinical or research setting.
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Introduction

Event-Related Potentials (ERPs), which offer a noninvasive means to measure human

electrical brain activity related to cognitive performance with high temporal resolution, have

been shown to be useful biomarkers of Alzheimer’s disease (AD) and its progression.[1–7]

However, little work has been done to investigate the possible effect AD pharmacologic

treatments may have on ERP biomarkers as tools to diagnose or predict AD in individual

patients. Drug treatments, including cholinesterase inhibitors (rivastigmine, galantamine,

and donepezil) and memantine, are often prescribed in clinical practice to patients who

present with Mild Cognitive Impairment (MCI) [8]. This cognitive disorder is often

characterized (in its amnestic form) with impairment in the domain of memory without

significant impact on daily life. A significant proportion of individuals with MCI develop

AD at a later time [8, 9], and predicting individual clinical outcomes is of vital importance

both for timely application of therapeutic treatments and for adequate and appropriate

enrollment in research [10, 11]. There is conflicting data on the efficacy of cholinesterase

modifying medications in the treatment of AD and MCI [12, 13] and even less consensus on

how these treatments may alter disease biomarkers and disease progression. It is essential,

therefore, to determine how AD drug therapies influence biological measures of cognitive

deterioration.

In this article, we will test the impact of AD drug treatments on a previously designed and

validated multivariate ERP approach to predicting AD progression in MCI individuals. This

multivariate system [2] used Principle Components Analysis (PCA) to untangle and separate

the underlying and often times overlapping components of the ERPs, which were measured

in response to a task with working memory and other cognitive demands. The ERP

components were then combined into linear discriminant functions to discriminate between

clinically defined Conversion-to-AD and Stable groups with associated confidence in the

prediction for each individual. This ERP approach was cross-validated and demonstrated

strong prediction accuracy with high confidence (88%) for most individuals (79%).

We will analyze classification scores (the measure of similarity to the Conversion-to-AD or

Stable group) derived from discriminant analysis for MCI subgroups and determine if AD

drug usage affected these scores (built from a weighted combination of ERP component

markers). Simply speaking, these classification scores, which were derived from baseline

ERP data, act as a scale between two clinically defined conditions: later developing AD or

remaining stable over time. Each individual is placed along that scale according to the

position of his or her classification scores. If AD drugs were exerting a positive effect, it

should move the classification scores of those individuals who later develop AD and were

taking the medications closer to those individuals who did not develop AD. This would

appear in individual prediction outcomes as a “less confident” prediction of AD

development (i.e., the individual lies between the Conversion and Stable groups rather than

very close to the Conversion group not taking the drugs) or, ideally if the drugs were

slowing or preventing progression, a prediction of cognitive stability. We will examine what

influence AD medications may have on a multivariate system of ERP component

biomarkers, which is of great practical interest for researchers and clinicians utilizing such a

system to predict outcomes for individual MCI patients.
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Methods

Study Subjects

In this study, we used a subset of 30 elderly individuals diagnosed with MCI (Table 1) from

a group previously used to develop ERP biomarkers as predictors of AD progression [2].

These subjects were recruited from the Memory Disorders Clinic at the University of

Rochester and other affiliated University of Rochester clinics. All MCI subjects were

evaluated by memory-disorders physicians and met consensus criteria for the amnestic

subtype of MCI (“a-MCI”) [8–10, 14]. Subsequent to this initial evaluation and baseline

ERP data collection, each MCI subject was determined to either have converted to clinically

defined AD (through the NINCDS-ADRDA criteria [15] and DSM-IV-TR criteria for

Dementia of the Alzheimer’s Type [16]) or to have remained stable with regard to cognitive

state. These independent determinations were made through clinical follow-ups at a later

date by the same memory-disorders physicians, who were blind to our study data so our

ERP results had no bearing on their clinical judgments. Those subjects who converted were

given the typical clinical assessment of “probable” AD (but referred to here as AD for

brevity’s sake). Chapman et al. [2] fully described the clinical assessment and follow-up of

these MCI subjects. Of the 30 MCI subjects used in this paper, 15 subjects subsequently

converted to AD and 15 remained cognitively stable.

We divided the Convert->AD (referred to as the Progress group in Chapman et al. [2]) and

Stable groups into two subgroups: those who were treated with medications routinely

prescribed in the treatment of memory impairment (including cholinesterase inhibitors and

memantine) at the time of initial ERP data collection and those who were not. For

information on time to conversion or drug duration, see Table 1. Our knowledge of which

patients were or were not taking AD medications did not influence our measures.

Irrespective of drug treatment, each subject underwent the same computer-controlled

experimental paradigm. In addition, because the multivariate analysis and its parameters

which produced the ERP component scores were ignorant of drug information [1, 2], all

ERP measures were objective and “blind” to each subject’s medication status. At the time of

collecting baseline data, all of these subjects were classified as MCI, and it was impossible

to know which subjects later would be placed in which clinical group.

In the Convert->AD group, 8 of the 15 individuals belonged to the AD Medications

subgroup (Meds-Convert) and 7 belonged to the No AD Medications subgroup (NoMeds-

Convert). Likewise, 8 of the 15 subjects in the Stable group belonged to the AD Medications

subgroup (Meds-Stable) and 7 belonged to the No AD Medications subgroup (NoMeds-

Stable). Two subjects (one in the Meds-Convert subgroup and one in the Meds-Stable

subgroup) were taking both a cholinesterase inhibitor and memantine. Subjects taking

donepezil were prescribed standard doses (5 mg – 10mg daily), with one subject in the

Meds-Stable group taking 20 mg daily. Subjects taking galantamine were prescribed

standard doses (16 mg or 24 mg daily). One subject was prescribed rivastigmine (through a

transdermal system at 9.5 mg daily).

Though elderly subjects are very often afflicted with numerous health conditions, comorbid

depression is of particular interest as its symptoms can mimic the cognitive impairments
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seen in AD and MCI. Four subjects in the Convert->AD group (two in each medications

subgroup) and six subjects in the Stable group (two in the Meds-Stable subgroup and four in

the NoMeds-Stable subgroup) were also taking antidepressants (mostly Selective Serotonin

Reuptake Inhibitors) at the time of ERP testing.

The sample of MCI subjects used in our analyses is one of clinical convenience. This is

more advantageous in terms of better reflecting the myriad clinical presentations of MCI and

AD with various comorbidities and demographic dissimilarities. However, demographic

matching was difficult, and some demographic variables may require further study to fully

elucidate how they interact with AD medications. We tested demographic variables for

group, gender, and medications effects (and their interactions) (Table 1). There were no

main effects concerning subject age, and there were no interactions. The Convert->AD

group overall had a slightly higher number of years of education (F(1,29) = 5.10, p < .05),

but this was the only significant result. We performed the Mini Mental State Examination

(MMSE) [17] at baseline ERP data collection to ascertain if the medication subgroups had

comparable levels of dementia at the time of enrollment in our study. This is an important

aspect to examine, as a Medications effect might be attributed to those in the Meds-Convert

group receiving treatment because they were further advanced toward AD than those in the

NoMeds-Convert group. However, this was not found here where the Meds-Convert and

NoMeds-Convert subgroups had the same MMSE mean scores (Table 1). The Stable group

as a whole performed slightly better than the Convert->AD group (F(1,29) = 5.78, p < .05),

but this difference is not important in assessing the Medications effect because members of

both clinical groups are combined in that analysis (mean MMSE score for those taking AD

medications = 26.4 and for those not = 26.7). Women also performed better than men

(F(1,29) = 10.33, p < .01). Gender disparities on neuropsychological testing have been found

in normal and cognitively impaired subjects [18]. However, there was no medication effect

on MMSE performance or any interaction between medications and group or medications

and gender, suggesting the medications subgroups had a comparable level of cognitive

impairment at the time of baseline data collection. For a more complete neuropsychological

assessment of these subjects, see Chapman et al. [2] and Table 1. There also were no main

effects or interactions concerning performance on the Number-Letter task (NL Correct).

There were fewer women taking AD medications than men across both the Convert->AD

and Stable groups (10 men, 6 women). There were also fewer women not taking

medications across both groups (9 men, 5 women). Therefore, any Medications effect on

ERP scores would not likely be attributable to gender, since the gender differences in the

comparison were approximately the same.

Exclusion criteria for all groups included clinical (or imaging) evidence of stroke,

Parkinson’s disease, HIV/AIDS, and reversible dementias, as well as treatment with

benzodiazepines, antipsychotic, or antiepileptic medications. As an additional exclusion

criterion, no subject had a previously clinically administered score of 20 or less on the

MMSE. Our study received IRB approval from the University of Rochester Research

Subjects Review Board, and informed consent was obtained from each subject.
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The Number-Letter Paradigm

Subjects completed a Number-Letter paradigm [1, 2] while ERP data were collected. This

task entails memory storage of one relevant stimulus in order to compare it with a second

relevant stimulus. Two numbers and two letters were flashed individually in random order at

intervals of 750 ms preceded and followed by a filled square comparable in size to the

numbers and letters. All visual stimuli were white and presented briefly (~20 ms) on a dark

background. On a number-relevant block of trials, the participant compared the two numbers

in each trial for numerical order, the letters being irrelevant to the task. On another block of

trials, the numbers were irrelevant and the task involved comparing the two letters for

alphabetic order. At the end of each trial, the participant said “Forward”, “Backward”, or

“Same” to indicate the numerical (or alphabetic) order of the two relevant stimuli.

EEG Recording

Scalp electrodes (O1, O2, OZ, T3, T4, T5, T6, P3, P4, PZ, C3, C4, CZ, F3, F4, and EOG

with reference to linked earlobes) recorded electrical brain activity while the participant

performed the Number-Letter task. The central midline site (CZ) is featured here because it

provides a good view of many ERP components of interest [19–21] with the same paradigm

used here.

Frequency bandpass of the Grass amplifiers was 0.1 to 100 Hz. Beginning 30 ms before

each stimulus presentation, 155 digital samples were obtained at 5 ms intervals.

Subsequently, the digital data were digitally filtered to pass frequencies below 60 Hz, and

artifact criteria were applied to all channels based on the CZ and EOG channels to exclude

those 750 ms epochs whose voltage range exceeded 200 µV or whose baseline exceeded

±250 µV (baseline was mean of 30 ms pre-stimulus). The ERPs were based on correct trials

and data not rejected for artifacts. Mean artifact rejection rate for all MCI subjects was 5.6%

(SD = 11.9%).

Measuring Classification Scores

In this analysis, classification scores represent similarity to clinically-defined groups based

on a set of predictors (ERP components) ( ure 1). Classification scores were computed

through a series of multivariate procedures that transformed averaged ERPs into an

empirically derived sum of weighted ERP component scores for each subject. ERPs were

first derived for each subject from the EEG vectors (155 time points) by averaging each

vector separately for each of the relevancy task conditions (relevant, irrelevant). Then the

first multivariate procedure was applied to measure the latent component structure.

Principal Components Analysis—ERP components were identified and measured by

Principal Components Analysis (PCA) [1, 2, 22–26] with Varimax rotation which allows the

variations due to experimental conditions and individual differences in the data to define the

ERP components [2]. We previously performed the PCA using a correlation matrix of the

155 time points on 48 individuals and their task conditions: 12 with clinically diagnosed

AD, 12 MCI individuals, 12 elderly Controls, and 12 young subjects. Eight components

were retained by Kaiser’s Eigenvalue > 1 rule (accounting for 95% of the variance). The

components included well-known components, such as C415, which is often called
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parietally-loaded P3 [27–29], contingent negative variation (CNV) [30], memory “storage”

component C250 [28, 31], C145 [32], as well as other early and late components. This set of

components provided powerful discriminators of AD from normal aging [1] and predictors

of progression to AD in these same MCI subjects [2].

PCA produces two important measures derived from the implicit structure of the ERP

waveforms: component loadings and component scores. Both are essential to generating

classification scores. The component loadings represent the temporal waveforms of each

ERP component [1, 22]; a subset of these component waveforms appears in Figure 1. These

component waveforms represent a vector of scoring coefficients for each component derived

from the correlational relationships among the time points of the ERPs (this is something of

a simplification to visually represent this mathematical procedure) [22]. This vector can be

applied to the vector of ERP time points for each task condition (relevant, irrelevant) for

each subject. The product of this multiplication is an ERP component score; each subject has

a score for each component by each condition (component_condition).

Discriminant Analysis—Given this set of eight ERP components, a stepwise procedure

determined which of the component_conditions had the greatest power in differentiating

between the two clinically defined groups (Convert->AD, Stable). This was done before

consideration of drug treatment. The selected ERP components are shown in Figure 1 (in the

order they were chosen by the stepwise procedure). After selecting the predictor variables,

discriminant analysis [33, 34] then determined an empirically derived discriminant function

for classifying a subject into one or other group. This function is comprised of discriminant

coefficients (or classification coefficients) for each ERP component_condition, and each

coefficient can be considered the ERP component’s weighted contribution to the

discriminability of the function. The classification score is then derived by multiplying each

ERP component score by its discriminant coefficient and summing these products and a

constant (Figure 1). The subject is then assigned to one group or the other based on the

computed value being higher or lower than zero, and posterior probabilities of group

membership are then determined [34, 35]. A larger classification score implies that a subject

is more confidently placed in either the Convert->AD group (positive) or the Stable group

(negative) because of a strong similarity to one group, whereas a difference closer to zero

suggests the subject is not strongly similar to either group. The individual prediction results

of this analysis, including the associated probabilities, are discussed in detail in Chapman et

al. [2]; in brief, this discriminant function was capable of predicting AD or cognitive

stability correctly for most MCI individuals (79%), and the predictions were confident

(88%). Here we are concerned with whether the classification success, engendered by the

discriminant function, is influenced by AD drug treatments.

Factorial ANOVA—We used analysis of variance (ANOVA) on the relation of ERP

classification scores to two factors, clinical Groups (Convert->AD, Stable) and AD

Medications (Taking, Not Taking) in a two-way factorial design. This provided an efficient

way to utilize the sample to separately test two main effects (with 14 subjects per group or

greater) and their interaction.
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We anticipated a significantly large Group effect, based on previous strong results with

individuals in predicting clinical group membership [2]. A hypothetical positive drug effect

should be fairly large to influence ERP biomarkers as predictors of AD conversion. We

assumed that AD drugs would have the effect of making individuals more Stable (i.e., make

difference scores more negative). We estimated a mean difference score between the

Convert->AD group and the Stable group of 3.75, which meant we had power > 0.9 to

detect a main clinical Group effect at alpha = 0.05. We estimated an AD Medications effect

might be smaller than the clinical Group effect and chose a mean difference score of 2.25

between those taking medications and those not. Given the sample size, we would be able to

detect a Medications main effect with power = 0.89 and a Group × Medications interaction

with power = 0.42 (see Discussion for explanation of actual results).

Statistical Analysis

All statistical procedures were performed with SAS 9.1.3 [36]. The FACTOR and SCORE

procedures were used to generate the ERP component solution and calculate ERP

component scores for the MCI groups. The STEPDISC and DISCRIM procedures were used

to build the discriminant functions. All ANOVAs were performed using the GLM

procedure. Power calculations were performed with the GLMPOWER procedure.

Results

Group mean differences among the classification scores of the clinically defined Convert-

>AD and Stable groups and their medications subgroups were examined with ANOVA. The

effects of interest were the main effects of clinical Group and of AD Medications (referred

to simply as “Medications” for brevity’s sake) and the interaction between Group and

Medications. “Group” in this case refers to the clinical group (whether or not the subject

actually did develop AD or remain stable) rather than the outcome predicted by the ERP

measures (represented by the classification scores).

Mean classification scores (Table 2) indicate that the Convert->AD group showed larger

positive classification scores, whereas the Stable group showed negative classification

scores. This reflected the large significant Group effect in that most individuals received a

correct baseline classification score (prediction) relative to their eventual clinical diagnosis

(Convert to AD or Stable) (Table 3). This was expected given the strong predictive

outcomes for individuals discussed in other work [2]. Of greater interest for this paper is the

Medications effect and its interaction with Group. For the Medications main effect, there

was no significant difference between those taking medications and those who were not.

Additionally, there was no significant interaction between Group and Medications.

Graphing the classification difference score for each subject clearly depicts the large Group

effect (Figure 2) in that most of the subjects in the Convert->AD group lie on the positive

side above the zero line. This indicates the ERP predictions of who would convert to AD

were mostly correct. Most of the subjects in the Stable group are below the zero line, again

showing the accuracy of the ERP predictions of who would remain stable as MCI. Those

subjects taking AD medications appear randomly among those not taking medications rather

than grouped, indicating AD medications had no effect on ERP classification score. This
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was true for both clinical groups, confirming the lack of significant interaction between

Medications and Group.

Although few subjects were taking antidepressants (Table 1), we examined the effect of

antidepressants since psychiatric medications are often prescribed for the elderly. The same

large clinical Group effect was found (F(1,22) = 21.77, p = 0.0001). However, the main

effect of Antidepressants (F(1,22) = 2.74, p = 0.11) was not significant, nor was there an

Antidepressant by Group interaction (F(1,22) = 0.05, p = 0.83). There was also no main AD

Medications effect (F(1,22) = 0.50, p = 0.49), no significant interaction between

Antidepressants and AD Medications (F(1,22) = 0.32, p = 0.57), and there was no

significant three-way interaction (F(1,22) = 0.97, p = 0.34).

Discussion

We have shown in previous work that ERP components can function as biomarkers of AD in

individuals [1] and can predict with good accuracy the future occurrence of AD in MCI

individuals [2]. In this article, we examined a pertinent question: do AD pharmacologic

treatments taken by MCI individuals at baseline affect ERP components as predictors of AD

decline? This is a practical issue as any diagnostic system implemented for clinical use must

be sufficiently robust and accurate to withstand the numerous variations among patients.

There are also theoretical implications about the efficacy of AD drug regimens as a means to

slow or prevent the progression of dementia.

We have found that this weighted combination of ERP component measures was not

significantly affected by AD drug treatments. Our analysis made use of the classification

score for each MCI individual. Selecting this measure provided some key advantages: 1) the

ERP classification score is a direct measure of how similar an individual is to either group

(Convert->AD or Stable), 2) this score allows the selected ERP components to contribute to

the classification through empirically derived weights (discriminant coefficients), and 3)

degrees of freedom considerations suggest usage of fewer measures (and thus fewer

analyses). ANOVA results showed a significant main clinical Group effect, which was

expected given this weighted combination of ERP components discriminated MCI

individuals with statistically significant accuracy in previous work [2]. We found no

significant Medications effect (suggesting that AD drugs across both the groups produced

little effect on the ERP component scores). Most importantly, there was no significant

Group by Medications interaction. These results are strikingly depicted in Figure 2, where

nearly all of the clinically-diagnosed Convert->AD group lie above the midline (where the

classification difference = 0) and nearly all of the Stable group lie below the midline. This

represents the large and significant Group effect at the level of individuals (p < 0.0001, df =

1, 26). If there was a beneficial Medications effect, it should manifest in the subjects taking

AD treatments having more negative classification scores (more Stable-like) than those not

taking AD drugs. Furthermore, if there was an interaction between Group and Medications,

medication users might appear differently in each clinical group. However, subjects who

were taking AD medications (subjects marked with an “X”) are fairly randomly distributed

within each group, confirming that AD medications had very little influence on ERP

classification scores. Thus we conclude that regardless of whether or not an MCI individual
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was taking AD medications at the time of baseline testing, these ERP components were

unaffected as disease predictors.

This result is further affirmed by analyzing the misclassified subjects from our previous

work [2]. ERP components were capable of correctly classifying 79% of those taking

medications in both the Stable and Conversion groups (χ2 (1, N = 14) = 4.71, p < .05). They

also correctly classified 81% of those not taking medications in both groups (χ2 (1, N = 16)

= 6.30, p < .05). Moreover, they performed with the same accuracy in predicting clinical

outcomes in individuals regardless of medications (χ2 (1, N = 30) = 0.03, p = .85).

There are few published studies discussing how cholinesterase inhibitors affect ERP

components in the literature. Some work has suggested that donepezil and rivastigmine

reduce P300 latency abnormalities in AD [37–39]. These studies were generally conducted

using individuals with moderate-severe AD and therefore drug effects may be more

pronounced. Also, we have examined amplitude changes in this work rather than latency

shifting. Some research has been done on cholinesterase modifying drugs regarding early

somatosensory and visual ERPs in MCI subjects and found drugs effects concerning very

early somatosensory ERPs (N20, P50) but no effects on early visual ERPs (N70, P100,

N150) [40]. Our result concurs that later post-stimulus ERPs (visual and cognitive

processing) do not seem to be affected by cholinesterase treatments to the extent of altering

ERP assessment of clinical status.

We also examined the effect of antidepressants. Though the sample sizes of the users and

non-users subgroups were not balanced for this variable and were very small, our results

indicated that antidepressants also failed to exert a significant effect on our ERP measures.

We believe this is the first demonstration of this result concerning ERPs, though it requires

validation with larger sample sizes.

If AD drugs were exerting a positive effect to reduce AD decline (and thus move the Meds-

Convert group closer to the Stable group in terms of weighted ERP component scores), the

interaction between Group and AD Medications would be significant. This was not the case.

In fact, the mean classification scores (Table 2) and group mean ERPs (Figure,

Supplemental Figure 1) suggested an unexpected outcome. The Meds-Convert group

actually showed the largest positive score (indicating the subjects were more likely to

convert to AD), larger than both Stable groups and the NoMeds-Convert group. This

indicates these individuals moved the mean classification score for the Convert->AD group

further from that of the Stable group, which might be the opposite effect of what the AD

medications would hopefully do. However, these differences were not statistically

significant (between Meds-Convert and NoMeds-Convert: t(1,15) = −0.97, p = .35; between

Meds-Stable and NoMeds-Stable: t(1,15) = 0.23, p = .82).

Because this study employed a clinical sample of convenience, control over demographic

effects was limited. In addition, sample sizes were small. The results concerning our

analysis of antidepressant use should be considered tentative and in need of validation in

light of the small group sizes. We also successfully detected the clinical Group effect (at

alpha <0.0001, Table 3) with the sample size we had in this analysis. We aim in this paper to
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determine if an AD medications effect exists with a magnitude large enough to influence

ERP components as predictors of AD conversion. In this set of data, a magnitude of

difference between the Convert->AD group and Stable group mean scores of 3.4 was large

enough to produce a significant main effect at alpha < 0.0001. At alpha = 0.05, the same

subjects and same dependent variable (ERP scores) would require a mean difference of only

1.4. Thus a significant main effect at this alpha level would be 60% smaller than our main

clinical Group effect. We failed to find a significant main Medications effect; we actually

obtained a mean difference between those subjects taking medications and those not of

−0.38, and this small difference is in the wrong direction. This suggests that if a Medications

effect did exist, it would be trivial and of much smaller magnitude than the main Group

effect [41]. Therefore, the influence of AD medications on the ERP prediction outcomes

would be small and irrelevant. Additional research is of course required to better determine

the reliability and generalizibility of our results. This paper is a first stroke at attempting to

quantify the effects of AD medications on a set of AD biomarkers that has been shown to

accurately predict AD conversion in MCI individuals, and these results must be confirmed

with a significantly larger sample size.

Our results may mirror findings by others that AD therapeutic treatments have little positive

effect in preventing disease progression [13]. Subjects in both our Meds-Convert and

NoMeds-Convert groups still developed AD from comparatively the same state of cognitive

impairment in roughly the same amount of time (though our study lacks the statistical power

to examine if the drugs slowed disease development). More importantly, our ERP

components were able to predict these clinical outcomes accurately from baseline and

despite any AD medications the subjects were or were not taking at the time. However, it

should be noted that these drugs are not currently FDA approved for use in MCI and while

their off-label use is common, their disease modifying effects are not completely known.

Interestingly, one recent study has reported reduced conversion of MCI to AD with

donepezil, but only in patients with concomitant depression [42]. The conflicting body of

evidence regarding these treatments in MCI indicates that the interaction between depression

and AD needs much closer investigation. A more in-depth, longitudinal analysis is also

needed to determine if the AD drugs slowed disease progression over time, and more

research parsing the effects of the individual types of cholinesterase inhibitors would be

beneficial. With only two subjects taking memantine along with a cholinesterase inhibitor,

we can make no conclusions about its impact.

Beyond this practical application, there are theoretical conclusions that can be drawn from

these results. The ERP components most important for measuring disease progression

(including C250 (the “memory storage component”) and C415 (P300)) do not seem to be

affected by AD drugs. This thought should be tempered by an important realization: we

examined only the weighted result of the discriminant function, not each ERP component

individually. This was done to focus on the practical utility of the ERP biomarkers and to

avoid “picking and choosing” which components to analyze. However, this approach limits

the interpretability of the result for individual components. Further research is required to

examine any effects (the type and directionality) AD drugs or other medications commonly

prescribed AD and MCI patients have on specific ERP components.
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Conclusion

We have found that AD medications produced no statistically significant effects on a

multivariate, weighted combination of ERP measures used as biomarkers of AD conversion

in MCI individuals. These ERP measures were significant predictors of which MCI

individuals would later develop AD, but whether or not these individuals were taking

commonly prescribed AD medications at baseline made no difference in these predictions.

This suggests that AD medications have little impact on this system of ERP biomarkers and

their utility in diagnosing and predicting AD in individuals. Additionally, our results add to

a mounting body of evidence that AD medications may produce little significant effect in

preventing AD progression in MCI patients.
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Figure 1.
Linear discriminant function. Component scores are generated by multiplying the vector of

component scoring coefficients (measured with PCA) with the subject’s vector of ERP time

points for task conditions (in this case, Number-Letter stimuli relevant or irrelevant to the

task). It should be noted that the component waveforms depicted above are a vector of

component loadings (shown for simplicity’s sake and mathematically similar to the scoring

coefficients) with the metric restored by multiplying the loading at each time point by the

standard deviation of the dataset at that corresponding time point [2, 22]. The voltage scale
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of the component and ERP waveforms is identical. The ERP component_conditions are

shown in the order they were selected by the stepwise discriminant procedure. The ERP

component scores are then multiplied by discriminant coefficients. These coefficients were

derived by subtracting the classification coefficients developed for the Stable group from

those developed for the Conversion group [34, 35]. After applying discriminant coefficients,

the results are summed and then added to a constant (which is also a difference between the

Conversion and Stable group constants) to produce a classification score for each subject. A

list of the classification coefficients for each of the groups was presented in previous work

[2].
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Figure 2.
ERP classification difference scores. The 30 MCI subjects (15 later Convert->AD, 15

remain Stable) are ordered by the absolute value of their difference scores (decreasing from

left to right). The midline represents a difference score of 0 (not similar to either group).

Subjects above this line were predicted to convert to AD. Subjects below this line were

predicted to remain stable. The six subjects that were misclassified [2] fall on the “wrong

side” of the midline for their clinical group (see x-axis 13–15). Subjects marked by an “X”

were taking AD medications at the time of baseline ERP data collection.
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Table 1

MCI subject baseline demographics. Values appear as mean (SD) unless otherwise specified.

Convert->AD
(n = 15)

Stable
(n = 15)

Meds
(n = 8)

NoMeds
(n = 7)

Meds
(n = 8)

NoMeds
(n = 7)

Gender (M/F) 7/1 5/2 3/5 4/3

Agea 78.7 (5.5) 77.0 (1.4) 72.7 (8.4) 76.1 (4.9)

Educationa 17 (1.3) 16.0 (1.5) 14.0 (0.8) 13.0 (1.3)

Follow-up Timeb 1.3 (0.42–3.9) 0.9 (0.3–3.4) 2.8 (1.9–4.8) 2.8 (1.9–4.5)

Drug Durationc 2.5 (1–23) 0 4.5 (1.5–18) 0

NL Correctd 93.9 (4.3) 96.4 (2.6) 97.4 (1.9) 95.2 (3.6)

Antidepressants (n) 2 2 2 4

Neuropsychological Assessment

MMSEe 25.7 (2.7) 25.7 (3.0) 27.0 (2.6) 27.7 (1.5)

GDSf 3.6 (2.5) 9.5 (9.1) 5.4 (3.3) 8.3 (5.3)

Blessedg 1.3 (0.9) 2.6 (2.7) 1.3 (1.4) 0.9 (0.7)

AMNARTh 37.8 (10.6) 38.4 (4.8) 37.4 (6.9) 37.0 (5.9)

a
Median in years (semi-interquartile range in parentheses). Two subjects did not provide education information in the NoMeds Convert->AD

subgroup.

b
Median number of years (range in parentheses) between initial diagnosis of MCI and subsequent diagnosis of AD (Conversion group) or median

number of years between initial diagnosis and last clinical work-up (Stable group).

c
Median number of months (range in parentheses) subjects took AD medications prior to baseline ERP data collection.

d
Percent of correctly answered trials on the Number-Letter task. All subgroups were similar to like-age, cognitively normal Controls (96.0%, SD =

2.6%). Only correct trials were used in subsequent ERP analyses.

e
Mini Mental State Examination [17]. A higher score (out of 30) indicates more intact cognitive state. This test was performed at baseline ERP data

collection.

f
Geriatric Depression Scale [43]. A higher score indicates a greater degree of depression (as subjectively reported by the subject). A measure less

than 10 is considered not depressed. ANOVA revealed no main Group effect, no Medications effect, and no Group by Medication interaction,
indicating the four subgroups were equally affected by depression. This test was performed at baseline ERP data collection.

g
Blessed Dementia Scale [44]. A higher score indicates a greater negative impact of MCI on activities of daily living. ANOVA revealed no main

Group effect, no Medications effect, and no Group by Medication interaction, indicating memory impairment equally affected the daily activities of
the four MCI subgroups. This test was performed at baseline ERP data collection.

h
American National Adult Reading Test [45]. ANOVA revealed no main Group effect, no Medications effect, and no Group by Medication

interaction, indicating the four subgroups had roughly the same pre-morbid verbal intelligence. This test was performed at baseline ERP data
collection.
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Table 2

Mean ERP classification scores (SD) for the MCI groups and subgroups. These scores are calculated through a

weighted combination of ERP component scores. A discriminant function was created by the discriminant

procedure to classify each individual as an eventual member of the Convert->AD group or the Stable group

based on baseline ERP data. Component scores are similar to z-scores. See Table 3 for ANOVA results

concerning these mean scores.

Classification Score
(Conversion vs. Stable from ERP Prediction)

Clinical Group

  Conversion (n = 15) 1.47 (1.94)

  Stable (n = 15) −1.96 (1.70)

AD Medications

  Taking (n = 16) −0.07 (2.68)

  Not Taking (n = 14) −0.45 (2.36)

Group × Medications

  Meds-Convert 1.92 (1.42)

  NoMeds-Convert 0.95 (2.42)

  Meds-Stable −2.06 (2.09)

  NoMeds-Stable −1.85 (1.29)
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Table 3

ANOVA on the relation of ERP classification scores to two factors, clinical Group (Convert->AD, Stable) and

AD Medications (Taking, Not Taking) in a two-way factorial design. These analyses were performed using

the subjects’ classification difference scores (the result of the Conversion function – the result of the Stable

function).

Source df F p

Group (Conversion, Stable) 1, 26 25.42 <0.0001

AD Medications (Taking, Not Taking) 1, 26 0.32 0.58

Group × AD Medications 1, 26 0.76 0.39
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