
UC San Diego
Technical Reports

Title
Application Scheduling on the Information Power Grid

Permalink
https://escholarship.org/uc/item/39d5p5d4

Authors
Zagorodnov, Dmitrii
Berman, Francine
Wolski, Rich

Publication Date
2000-01-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39d5p5d4
https://escholarship.org
http://www.cdlib.org/


Application Scheduling on the Information Power

Grid

�

Dmitrii Zagorodnov Francine Berman

Rich Wolski

U. C. San Diego

November 23, 1998

Abstract

One of the compelling reasons for developing the Information Power

Grid (IPG) is to provide a platform for more rapid development and exe-

cution of simulations and other resource-intensive applications. However,

the IPG will ultimately not be successful unless users and application

developers can achieve execution performance for their codes. In this pa-

per, we describe a performance-e�cient approach to scheduling applica-

tions in dynamic multiple-user distributed environments such as the IPG.

This approach provides the basis for application scheduling agents called

AppLeS. We describe the AppLeS methodology and discuss the lessons

learned from the development of AppLeS for a variety of distributed appli-

cations. In addition, we describe an AppLeS-in-progress currently being

developed for NASA's INS2D code, a distributed "parameter sweep" ap-

plication.

1 Introduction

The NASA Information Power Grid (IPG) project provides an important op-

portunity to improve the e�ciency and e�ectiveness of Aerospace Engineering

simulations, Earth Observation System applications, and other large-scale sci-

enti�c and engineering applications. Computational Grid computing platforms,

such as the evolving IPG, provide the potential to run applications at larger

problem sizes, or to scale them beyond the capabilities of a single resource. To

deploy such applications, considerable infrastructure must be built to enable

�

This work was supported in part by NPACI/NASA Award ASC9619020, NSF ASC-

9701333, DoD Modernization Contract 9720733-00, DARPA Contract N66001-97-C-8531. The

authors' e-mail addresses are fberman,dzagorodgcs.ucsd.edu and frichgcs.utk.edu.

1



users to perform even simple execution tasks. However, even when such infras-

tructure is in place, careful and e�ective application scheduling is required to

ensure that the IPG delivers its vast potential performance to the application

itself.

Experience with PACI (Partnership for Advanced Computational Infrastruc-

ture) applications and other distributed codes demonstrates that scheduling is

key to application performance in shared distributed environments such as

the IPG. Currently, successful applications require substantive staging of data

and computation to execute e�ciently. In interactive systems where the load

and availability of resources changes dynamically and frequently, dedicated use

of resources is hard to achieve, and the time it takes to reserve the resources and

coordinate execution must be added on to the \cost" of the application execu-

tion. For many application developers, turnaround time (i.e. the execution time

of a distributed application including all idle time spent waiting in queues, time

spent staging computation and data, and time lost due to communication de-

lay) is the real performance cost. In order to minimize this cost, the application

must be scheduled to leverage the performance deliverable by system resources

at the time the application will execute.

To achieve application performance, the user or his/her proxy must be able

to determine a potentially performance-e�cient application schedule. Although

application scheduling can be performed by resource schedulers or job sched-

ulers, both types of schedulers prioritize resource utilization over individual

application performance in distributed environments. Many examples exist of

applications which perform poorly even though resources are optimally utilized

(the performance goal of many resource schedulers), and of jobs which perform

sub-optimally even though the larger collection of jobs achieves high-throughput

(the performance goal of most job schedulers). Therefore, it is important that

some mechanism in the system focus on the performance-e�cient execution of

an individual application as a priority. In Grid systems

1

, this role is played by

an application scheduler [Ber98].

2 Application Scheduling

Application schedulers provide a mechanism whose function it is to allocate

the computation, data, and communication of distributed applications so as

to optimize the performance criteria important to the user. Although usually

this performance criteria is some measure of time (execution time, turnaround

time, speedup), other criteria may be important, such as achieving a particular

problem resolution before a speci�ed deadline, a particular level of precision

with respect to the numerical calculations, or convergence. Ideally, a scheduler

will predict performance of the application with respect to a variety of resource

1

In this paper, we will capitalize the term \Grid" when we refer to Computational Grids.

2



assignments and then choose a \best" assignment and schedule with respect to

the user's performance criteria.

Application scheduling for Grid applications is di�cult because the compu-

tational environment is constantly changing. The load and availability of all

shared resources (including communication networks, remote instruments and

computational devices) varies over time as does the con�guration of the under-

lying system due to resource failure, maintenance, and upgrades. A Computa-

tional Grid does not remain the same from one moment to the next. Application

schedulers typically require some form of resource monitoring/forecasting sup-

port, an application-speci�c performance prediction model, user preferences,

and other information sources to determine what schedule might be most ef-

�cient for an application. As application developers and users gain more and

more experience developing applications for distributed resources such as the

IPG, it is clear that adaptivity is a fundamental quality that applications will

need to exploit in order to execute e�ciently.

3 AppLeS

AppLeS (Application-Level Scheduling) is a project focused on the design,

development and deployment of Grid application scheduling agents. Each ap-

plication and its AppLeS join together to form an adaptive instance of the

application which can leverage the execution-time performance characteristics

of dynamic, distributed environments.

AppLeS agents use a number of information sources to make decisions. An

application-speci�c performance model must be provided which describes the

structure of the application and its execution activities relevant to performance.

Dynamic forecasts of resource load and availability are provided by the Network

Weather Service (NWS) [WSH98, Wol98], and the user provides additional infor-

mation about application performance criteria, platform preferences, etc. Fig-

ure 1 provides a graphic of a general AppLeS architecture and its information

sources. Note that each AppLeS interacts with the services and infrastructure

provided by the underlying system (in this case, the IPG) but does not require

any more permissions or rights than its user.

In order to develop a schedule, each AppLeS agent performs the following

functions:

� Resource Selection

AppLeS agents select a collection of candidate resource sets from among

the available resources. Candidate resource sets are ranked with respect

to their potential as an execution platform using an application-speci�c

resource usage function.

� Schedule Planning

For each candidate resource set, possible schedules are developed, and the

3



�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

Application
Performance

Model
Preferences

User
NWS

Computational Grid Infrastructure

Schedule
PlannerSelector

Application

Actuator

Resource

Figure 1: AppLeS architecture. Information to the AppLeS agent is provided by

the Network Weather Service, application performance model, and user. Each

AppLeS develops a custom schedule for its application.

most performance-e�cient schedule on that resource set is determined.

Schedules are compared based on an application-speci�c cost function

which identi�es the schedule that best satis�es the user's performance

criteria.

� Application Deployment

Finally, the application must be deployed or \actuated" using the best

schedule from among the possible choices. In addition, some AppLeS are

developed to allow the application to be rescheduled during execution in

response to dynamic system events or variation in application resource

requirements.

In the �rst phase of the AppLeS project, we have concentrated on developing

AppLeS for a wide variety of distributed applications. The goal of this activity

has been to validate the general paradigm on which AppLeS are based, and

to gain su�cient experience and insight to develop more generalized AppLeS

templates which will bene�t a wider set of application developers and users. In

the following section, we briey touch on the lessons learned from these e�orts.

4 Lessons Learned from AppLeS

The development of the �rst set of AppLeS applications have provided consider-

able insight into the problems surrounding application scheduling in multi-user

4



distributed environments. In the following subsections, we discuss the \lessons

learned" from developing AppLeS scheduling agents for distributed applications.

4.1 Dynamic Information is Critical

The goal of an AppLeS scheduler is to promote performance for its application.

There is considerable evidence both from practical experience, and in the litera-

ture, that indicates that static information is insu�cient for the development of

performance-e�cient schedules. Dynamic information and forecasts can serve

as a basis for adapting application schedules to deliverable resource performance

at execution time.

Figure 2 shows an example of this. The graph shown is a plot of a set of

runs of a two-dimensional Jacobi application. Shown are measured execution

times using two partitionings: an HPF-style static block decomposition and an

AppLeS strip decomposition in which the size of the strips are determined using

dynamic forecasts of resource load and availability. During this set of runs, the

partitioning which used dynamic information generally outperformed (rendered

smaller execution times) the partitioning which used static information. What

is striking is the performance of each scheduling method in response to dynamic

events. At the point where problem sizes of around n = 1800 were being exe-

cuted, the gateway between the Parallel Computation Laboratory and the San

Diego Supercomputer Center (whose workstations formed the distributed cluster

platform for these experiments) went down. The dynamic forecasts developed

by the AppLeS agents were able to adapt to the greatly reduced performance

of the link by selecting alternative resources, whereas the static partitioning

method could not use this information e�ectively. More information about the

Jacobi2D AppLeS can be found in [BWF

+

96]. Experiments with other AppLeS

agents [SW98, SBWS98] corroborate the importance of dynamic information

and forecasts in developing performance-e�cient schedules.

4.2 Model Parameters Can Exhibit a Range of Values

Accurate predictions of performance are critical to good scheduling. However, in

non-dedicated distributed systems, execution performance may vary widely as

other users share resources. In addition, parameters such as latency, bandwidth

or CPU load often used by performance models may also exhibit a range of

performance, impacting predictions of execution time. When the performance

of execution time predictions and parameters vary, any single value provides a

poor indicator of potential performance. One insight that has emerged from

the AppLeS experience is that performance predictions and parameters can be

more accurately represented as distributions, and that scheduling policies can be

developed which utilize the extra information provided by distributions [Sch98].

Figure 3 shows the range of execution time values exhibited by a distributed

red-black Successive Over-relaxation (SOR) application during a set of experi-

5



Figure 2: Plot of actual measurements for back-to-back Jacobi2D application

executions scheduled using a static block decomposition and a dynamic AppLeS

strip decomposition. Points plotted are averages over a number of runs. Also

shown are the predictions made by the performance prediction model used by

the Jacobi2D AppLeS.

ments on a non-dedicated platform. The \tube" shown is a stochastic (distri-

butional) prediction calculated by a performance model which uses stochastic

parameters as inputs. In this case, the stochastic performance prediction nicely

circumscribes the performance range exhibited by the application. Although

the results will vary depending on the model and our ability to identify the

distributions and/or performance ranges of model parameters and predictions,

knowing whether the potential execution performance range is wide or narrow

can make a substantive di�erence on e�ectiveness of the scheduling policy (as

shown below). More information about the stochastic model used for SOR can

be found in [SB98].

4.3 The \Quality" of Performance Predictions Can be

Quanti�ed

Researchers generally agree that good performance predictions form the basis

for good schedules, but what do we mean by \good?" Largely, \good" means

6



Figure 3: Performance of distributed red-black SOR application in a non-

dedicated environment. The \tube" circumscribing the values is a stochastic

prediction given by performance model.

accurate within some acceptable threshold determined by the user or the sched-

uler. Accuracy is just one of the characteristics that the scheduler might want

to quantify with respect to a prediction. Another relevant characteristic is the

\lifetime" over which the prediction exhibits a speci�ed accuracy. Another is

the computational complexity associated with making a prediction. A predic-

tion that requires an hour of CPU time to compute may not be useful in a

dynamic setting, regardless of its accuracy. \Accuracy," \lifetime," \complex-

ity," and other attributes provide additional information, or meta-information,

which can be associated with parameters and predictions. Meta-information

can be useful in that it provides quanti�cation of characteristics which govern

the \quality" or \goodness" of a prediction.

Meta-information may be used to improve schedules. Figure 4 shows the

execution time for a distributed red-black SOR application when scheduled by

a \conservative" scheduling policy and a non-conservative (\mean") schedul-

ing policy. The conservative scheduling policy uses an assessment of the per-

formance variation of the resources in its work allocation decisions { \high-

variance" resources are assigned slightly less work to ensure more predictable

performance { whereas the non-conservative scheduling policy does not use re-

source variance information to make decisions. The �gure shows that for the

7



given set of experiments, the conservative scheduling policy avoids the dramati-

cally poor performance sometimes exhibited by the non-conservative policy, but

in addition, can sometimes be too conservative [Sch98]. Meta-information was

also used in [SW98], in the form of an estimation of prediction accuracy (auto-

matically provided by the NWS) to gain a factor of 2 in execution performance

on a wide-area Computational Grid. These preliminary experiments indicate

that meta-information can provide important additional information which can

be used to improve application schedules.

Figure 4: Performance of a distributed red-black SOR code when executed using

conservative and non-conservative ("mean") scheduling policies. Experiments

were of short duration and done back-to-back on a shared workstation cluster.

4.4 Application Performance is Sensitive to Scheduling

Policy, Input Data, and System Characteristics

Much of the scheduling literature has focused on comparing scheduling policies

and ranking their performance with respect to one another. Experience with

some distributed applications shows that the \best" schedule can actually vary

with load, scheduling policy, data set, and other factors so that no one scheduling

policy is \best" for all applications and settings.

Figure 5 shows a number of trials with a distributed, embarrassingly parallel

ray tracing application on a shared cluster. Two scheduling policies were used {

8



a �xed partitioning which assigns all work initially by allocating work according

to the forecasted \capacity" of the resources at execution time, and a work queue

strategy in which \worker" processes request additional work from a \master"

process as soon as they have completed their current work. The experiments

in the �gure show that for a uniform data set, the �xed partitioning scheduling

policy outperforms (results in smaller execution times than) the work queue

scheduling policy, whereas for a non-uniform data set, the work queue scheduling

policy outperforms the �xed partitioning scheduling policy. In particular, the

\best" application schedule varies with scheduling policy, load and data set. An

intriguing strategy for scheduling may be to identify a set of scheduling policies

which work well in distinct environments and to choose among those policies

dynamically for better performance. More information about the ray tracing

experiments can be found in [SWB98].

0 50 100 150 200 250

Trial

0.0

50.0

100.0

150.0

200.0

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Execution Time Comparison Test

Solaris systems, 8 processors

Fixed dist, large workload

Work queue, large workload

Fixed dist, uniform workload

Work queue, uniform workload

Figure 5: Trials with a distributed ray tracing application with uniform and non-

uniform (\large") workloads, and �xed and work queue partitioning strategies.

These lessons point to several key themes { mitigation of dynamism, ef-

fective adaptivity, quanti�able performance prediction quality { all of which

will be critical to the successful use of the IPG. In particular, the AppLeS ex-

perience indicates that adaptivity is key to dealing with shared, distributed

systems. The challenge will ultimately be to develop systems that provide rel-

evant performance information, and adaptive applications which can leverage

such information. Such environments will be critical for application developers

9



and users who want or need to use distributed platforms to attain performance

for their codes.

In the next section, we build on the lessons learned from previous AppLeS,

and describe a design-in-progress for an AppLeS for NASA's INS2D application.

INS2D is representative of a critical class of applications for the IPG { parameter

sweep studies { and the AppLeS we outline in the next section will serve as a

model for the development of an AppLeS template for this important class of

applications.

5 Work-in-Progress: An INS2D AppLeS for IPG

Incompressible Navier-Stokes equation solver (INS2D) solves the incompressible

Navier-Stokes equations in two-dimensional generalized coordinates for both

steady-state and time varying ows [Rog95]. INS2D is an important component

of larger computational uid dynamics simulations, a key NASA application.

The INS2D code used at NASA Ames is written in Fortran 77 and is targeted to

various Unix workstations as well as MPPs. Typically, the program is executed

multiple times to see how varying one or two parameters through a wide range

a�ects the ow of uid.

Most INS2D \runs" currently execute as a concurrent set of multiple \ex-

periments" on an MPP platform. Acceptable execution times and the ability

to do large problems make MPPs a desirable platform for execution. However,

limited batch access to large MPP resources constrain the use of the application.

NASA researchers would like to study a greater number of concurrent parame-

ter set experiments with shorter turnaround time to reduce the overall time of

the AES simulations in which INS2D is often embedded. Our ultimate goal is

to develop an AppLeS that will allow INS2D to be be scheduled and executed

in a performance-e�cient manner on a mixed batch/interactive IPG platform.

5.1 Scheduling INS2D on a Workstations Cluster

As a �rst step, we developed a scheduler for INS2D targeting an interactive

workstation cluster. The scheduler implements a work queue scheduling algo-

rithm, which keeps all workers occupied by sending them a new job after they

are done with the current one, continuing until there are no more jobs left to do.

The current scheduling algorithm does not take into consideration the relative

speed of the target machines in the cluster, so the last job could be assigned to

the slowest machine and the INS2D parameter sweep would not be completed

until it is �nished.

Note that even the simple work queue scheduling algorithm employed in the

scheduler shows signi�cant performance gains over a parallel implementation

of INS2D using MPI (provided by the developer) as shown in Figure 6. The

MPI implementation assigns equal work to each processor statically. Since this

10



algorithm provides adequate performance for the developers on a target MPP,

it might be tempting to retarget the algorithm in a straightforward manner

for a workstation cluster. Our experiments (typi�ed by Figure 6) demonstrate

that the performance of the application is platform-sensitive, and that the al-

gorithm used to schedule INS2D must take the performance characteristics of

the workstation cluster into account.

It is important for dynamically-scheduled application to be able to acquire

resources on-the-y so that newly available resources can be e�ectively exploited.

With this approach, hosts that become available can be incorporated into the

resource pool without interrupting the computation. The modi�cations we have

made to the original INS2D application to support an AppLeS allows this dy-

namic acquisition and release of resources.

0.0 5.0 10.0 15.0

Time (hours)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

Tu
rn

ar
ou

nd
 (s

ec
on

ds
)

Work Queue

MPI (excluding I/O)

MPI (with I/O)

Figure 6: Turnaround times of two INS2D implementations executed on four

Sun Sparc machines (SPARCstation 5, SPARCstation 10, and two Ultra-2s) one

after another during a 15-hour period.

Figure 6 compares turnaround times of a series of identical INS2D param-

eter sweep runs performed back-to-back on 4 Sun Sparc machines during a 15

hour period. Variation in the execution values is due to contention for resources

throughout the day. The lowest curve shows the total execution time of the

work queue scheduling algorithm, while the middle curve shows the total exe-

cution time of an MPI implementation excluding remote data transfer. Since

the MPI implementation was originally targeted to an MPP environment that

supported a shared �le system, it did not perform the transfer. In IPG com-

putational environments, however, we cannot assume that a shared �le system

11



will be in place across all hosts. If we include the overhead of I/O, the total

turnaround time for the MPI implementation increases by another 10%-20%, as

shown by the highest curve. Note that the slowest machine in the pool executes

the code approximately �ve times slower than the fastest one. Because MPI

implementation assigns cases to processors statically, it ends up waiting for the

slowest machine to compute its share of cases, rendering it 2-2.5 times slower.

5.2 Design of an INS2D AppLeS

Using the preliminary INS2D scheduler discussed in the last section, we are

developing an INS2D AppLeS which will target the IPG. Our approach will

be to leverage the dynamic computational capacity of interactive system re-

sources, and to use predictions of resource reservation delivery and/or batch

queue time to develop schedules for both interactive and batch controlled re-

sources. This approach will di�er from that implemented by Nimrod [AFG

+

97],

SCIRun [MHPJ98], and other projects that do not use dynamic information.

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Case

NWS

Generator
Scheduler

C
o

m
m

u
n

ic
at

io
n

 L
ay

er

NWS

Actuator
INS2D

NWS

Actuator
INS2D

Figure 7: INS2D AppLeS Architecture

The logical structure of the INS2D AppLeS is shown in Figure 7. The

rectangles formed with dashed lines indicate physical hosts that will participate

in the computation. The right half of the diagram illustrates that there could

be any number of worker hosts. Note that, some of these workers might have

been added to the pool after the program began executing. There will only be

one controller host { shown on the left side of the diagram { that will initiate

and control the progress of the computation. In reality, the controller can be

any one of the worker hosts.

The controller will run the scheduling process that sends requests for jobs

along with the appropriate input to actuator processes which will run on the

workers. An actuator process will create a temporary directory, place all the

input �les into it and will spawn INS2D processes to work on that input. The

12



actuator will be noti�ed when INS2D process is done, so it can collect the

output �les, connect back to the scheduler and send it the output �les. All the

hosts in the system will also have Network Weather Service sensors running on

them. The sensors will collect dynamic information about system state (CPU

availability, network bandwidth, network latency, etc.) which will be of use to

an adaptive scheduling policy.

The processes internally will be broken into several logical components with

well-de�ned interfaces between them. The controller process will be broken into

three parts: the case generator, the scheduler, and the communication layer.

The actuator process will also have a communication layer that is distinct from

the rest of the actuator code. The reason for hiding the details of communication

from the rest of the code is so that the INS2D AppLeS can support any number

of communication mechanisms (such as those provided by Globus [FK97], Legion

[GWF

+

94], or Netsolve [CD96]) by only rewriting the communication layer.

The separation of the case generator and the scheduler is important for future

expansions of the application domain. The idea is to modularize the scheduling

functions within the scheduler, and the application speci�cs of INS2D within

the case generator. In particular, the case generator is the only INS2D-speci�c

part of the system. It can supply the following information to the scheduler

upon request: number of cases to schedule, input �les for a particular case, and

information about a particular case (e.g. execution time for speci�c machine,

size of input and output data, memory usage, etc.). The case generator will also

know how to process the output �les, so that whenever the scheduler receives

some results from one of the actuators, it will be able to forward them to the

case generator.

INS2D is representative of a large number of computational programs, used

primarily by the scienti�c and engineering community, that run without any

interaction with the user. These applications typically obtain their parameters

from one or more input �les, perform some computation, and save the results

in one or more output �les. They tend to be computationally-intensive. Fur-

thermore, it is often important to perform the application under a variety of

experimental parameters, i.e. as a parameter sweep. Since each execution of

the application (\experiment") is independent, the parameter sweep can be run

as a multiple experiment \high-throughput" embarrassingly parallel application.

Both MPPs and workstation clusters can be performance-e�cient platforms for

parameter sweep applications. Our ultimate goal is to develop an AppLeS for

such applications, using the INS2D AppLeS as a model, that can e�ciently

target both batch MPP and interactive cluster environments.

6 Conclusion

The IPG provides a tremendous opportunity both to NASA and the commu-

nity at large. The ability to solve complex AES, EOS data-intensive and other

13



important distributed applications in a timely fashion will facilitate an entirely

new and more cost-e�ective way of developing and prototyping complex sys-

tems and simulations. However for applications developers and users, the IPG

will not be a success if it cannot deliver performance on their codes in a timely

fashion. It is important to develop explicit mechanisms to promote the perfor-

mance of applications on the underlying system in order for users to achieve the

performance potential of the IPG.

The AppLeS and Network Weather Service projects provide mechanisms

for exploring adaptive techniques for scheduling applications in dynamic Grid

environments. With the completion of the INS2D AppLeS and with the devel-

opment of AppLeS parameter sweep applications, we hope to demonstrate that

distributed applications can achieve performance in multi-user environments

such as the IPG, and that this process can be approached adaptively and semi-

automatically, enabling such platforms to achieve their maximal usefulness for

the user.

Acknowledgements

We are grateful to Subhash Saini for inviting us to the workshop where the

talk on which this paper is based was given. In addition, we are grateful to

Bill Feiereisen, Dave Dinucci, Bill Van Dalsen, Stuart Rogers, Dennis Gannon,

Bill Johnston, Frederica Darema, Margaret Simmons, Henri Casanova, Jennifer

Schopf, Gary Shao and the rest of the AppLeS team for support and many

substantive and helpful discussions.

References

[AFG

+

97] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R. Sutherst,

and N. White. The nimrod computational workbench: A case study

in desktop metacomputing. In Proceedings of the 20th Australasian

Computer Science Conference, Sydney, Australia, February 1997.

[Ber98] F. Berman. High performance schedulers. In I. Foster and C. Kessel-

man, editors, The Grid { Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann, 1998.

[BWF

+

96] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Appli-

cation level scheduling on distributed heterogeneous networks. In

Proceedings of Supercomputing, 1996.

[CD96] H. Casanova and J. Dongarra. NetSolve: A network server for solv-

ing computational science problems. In Proceedings of Supercomput-

ing, Pittsburgh, 1996. Department of Computer Science, University

of Tennessee, Knoxville.

14



[FK97] I. Foster and C. Kesselman. Globus: A metacomputing infrastruc-

ture toolkit. International Journal of Supercomputer Applications,

1997.

[GWF

+

94] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C.

Weaver, and Paul F. Reynolds. Legion: The next logical step to-

ward a nationwide virtual computer. Technical Report CS-94-21,

University of Virginia, 1994.

[MHPJ98] M. Miller, C. D. Hansen, S. G. Parker, and C. R. Johnson. Simu-

lation steering with SCIRun in a distributed memory environment.

In Seventh IEEE International Symposium on High Performance

Distributed Computing, July 1998.

[Rog95] S. Rogers. A comparison of implicit schemes for the incompress-

ible navier-stokes equations with arti�cial compressibility. AIAA

Journal, 33(10), October 1995.

[SB98] J. Schopf and F. Berman. Performance prediction in production

environments. In Proceedings of IPPS/SPDP, 1998.

[SBWS98] A. Su, F. Berman, R. Wolski, and M. Strout. Using apples to sched-

ule a distributed visualization tool on the computational grid. In

Proceedings of the 1998 Cluster Computing Workshop, Blackberry

Farm, Tennessee, 1998.

[Sch98] J. Schopf. Performance Prediction and Scheduling for Parallel Ap-

plications on Multi-User Clusters. PhD thesis, University of Cali-

fornia, San Diego, 1998.

[SW98] N. Spring and R. Wolski. Application level scheduling: Gene se-

quence library comparison. In Proceedings of ACM International

Conference on Supercomputing, July 1998.

[SWB98] G. Shao, R. Wolski, and F. Berman. Performance e�ects of schedul-

ing strategies for master/slave distributed applications. Technical

Report CS98-598, University of California, San Diego, 1998.

[Wol98] R. Wolski. Dynamically forecasting network performance using the

network weather service. Cluster Computing, 1998.

[WSH98] R. Wolski, N. Spring, and J. Hayes. The network weather service: A

distributed resource performance forecasting service for metacom-

puting. Future Generation Computer Systems (to appear), 1998.

15




