
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a 
uranium-contaminated aquifer

Permalink
https://escholarship.org/uc/item/39f51637

Author
N'Guessan, L.A.

Publication Date
2010-03-30
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39f51637
https://escholarship.org
http://www.cdlib.org/


 1 

Molecular Analysis of Phosphate Limitation in Geobacteraceae During the Bioremediation 1 

of a Uranium-Contaminated Aquifer 2 

A. Lucie N’Guessan1,2*, Hila Elifantz1, Kelly P. Nevin1, Paula J. Mouser1, Barbara Methe3, 3 

Trevor L. Woodard1, Kimberly Manley1, Kenneth H. Williams4, Michael J. Wilkins5, Joern T. 4 

Larsen4, Philip E. Long2 and Derek R. Lovley1 5 

 6 

1Department of Microbiology, University of Massachusetts, Amherst, MA  01003-9298 7 

2Pacific Northwest National Laboratory, Richland, WA 99354 8 

3J. Craig Venter Institute, Rockville, MD 20850 9 

4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94706 10 

5Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720 11 

 12 

*Corresponding Author 13 

 14 

 1

 18 

 19 

 20 

 21 

 22 

 23 



 2 

ABSTRACT 24 

Nutrient limitation is an environmental stress that may reduce the effectiveness of 25 

bioremediation strategies, especially when the contaminants are organic compounds or when 26 

organic compounds are added to promote microbial activities such as metal reduction.  Genes 27 

indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures 28 

of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is 29 

associated with a high affinity phosphate uptake system in other microorganisms, had 30 

significantly higher transcript abundance under phosphate-limiting conditions, with the genes 31 

pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript 32 

levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes 33 

increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU 34 

within the subsurface Geobacter species predominating during an in situ uranium bioremediation 35 

field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were 36 

not limited for phosphate.  Addition of phosphate to incubations of subsurface sediments did not 37 

stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the 38 

sediments.  The results demonstrate that Geobacter species can effectively reduce U(VI) even 39 

when experiencing suboptimal phosphate concentrations and that increasing phosphate 40 

availability with phosphate additions is difficult to achieve due to the high reactivity of this 41 

compound.  This transcript-based approach developed for diagnosing phosphate limitation 42 

should be applicable to assessing the potential need for additional phosphate in other 43 

bioremediation processes.  44 

 45 

Keywords: Geobacteraceae / Phosphate-limitation / Uranium bioremediation / Gene expression 46 
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INTRODUCTION 47 

The practice of groundwater bioremediation is often highly empirical (Lovley, 2003).  48 

For example, a common practice intended to stimulate the activity of subsurface microorganisms 49 

involved in bioremediation is to add nutrients, such as nitrogen or phosphate (Exner et al., 1994; 50 

Hinchee et al., 1995; Martani and Seto, 1991; Ronen et al., 1996).  The rationale is that 51 

phosphate is an essential nutrient for microbial metabolism and that phosphate availability may 52 

be low in at least some contaminated environments.  However, without information on the 53 

physiological status of the subsurface microorganisms, it is not clear whether such phosphate 54 

amendments are warranted or even desirable.  Addition of phosphate when the microorganisms 55 

are not limited for phosphate, or adding more phosphate than is needed to overcome phosphate 56 

limitation adds unnecessary costs to bioremediation.  Furthermore, adding phosphate beyond 57 

what is necessary to support optimal microbial activity could have unintended negative 58 

consequences.  For example, phosphate may form insoluble precipitates with trace metals and 59 

other cations that are also important nutrients, making these nutrients less available. Thus, 60 

information on the in situ phosphate requirements prior to initiating a bioremediation strategy 61 

and during the course of the bioremediation could make it possible to alleviate phosphate 62 

limitations impeding optimal bioremediation in the most resource- and cost-effective manner.  63 

One of the most effective strategies for monitoring the metabolic state of microorganisms 64 

involved in bioremediation is to quantify in situ levels of gene expression (Lovley, 2002; Lovley, 65 

2003). Geochemical processes in pure cultures as well as in the environment can be linked to 66 

increased levels of mRNA for a particular gene (Holmes et al., 2004b; Holmes et al., 2005). For 67 

example, genes involved in naphthalene degradation (nahA) were also detected in sediments 68 

where naphthalene mineralization was taking place (Wilson et al., 1999). Similarly, high levels 69 
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of merA were measured when high rates of mercury volatilization occurred (Nazaret et al., 70 

1994). In addition, three reductive dehalogenase genes were monitored in samples where 71 

trichloroethene bioremediation was applied (Lee et al., 2008). 72 

 Geobacter species are important agents in the bioremediation of organic contaminants 73 

(Lin et al., 2005; Lovley et al., 1989; Rooney-Varga et al., 1999) as well as uranium (Anderson 74 

et al., 2003; North et al., 2004; Vrionis et al., 2005) and vanadium (Ortiz-Bernad et al., 2004b).   75 

Analysis of gene transcript abundance within the subsurface Geobacter community has been 76 

successful in diagnosing rates of metabolism in Geobacter species as well as nutrient limitations 77 

and stress responses (Holmes et al., 2004b; Holmes et al., 2005; Mouser et al., 2009a; O'Neil et 78 

al., 2008). Analysis of levels of transcripts for the nitrogen fixation gene, nifD, demonstrated that 79 

subsurface Geobacter species were limited for fixed nitrogen in petroleum-contaminated 80 

subsurface sediments and during in situ uranium bioremediation (Holmes et al., 2004b; Holmes 81 

et al., 2005).  This may not be surprising because in petroleum-contaminated aquifers and in 82 

aquifers amended with organic electron donors to promote dissimilatory metal reduction there is 83 

likely to be an abundance of organic carbon, but limiting quantities of other nutrients.  Although 84 

Geobacter species can overcome limitations for fixed nitrogen via fixation of abundant nitrogen 85 

gas (Bazylinski et al., 2000; Coppi et al., 2001; Holmes et al., 2004a), phosphate sources are 86 

likely to be more limited. Until now it has not been possible to assess possible phosphate 87 

limitations of Geobacter species due to a lack of information on genes, which might be 88 

indicative of phosphate limitation.   89 

In other microorganisms, such as Bacillus subtilis, Clostridium acetobutylicum, 90 

Escherichia coli, or Pseudomonas aeruginosa, phosphate-limiting conditions are associated with 91 

increased expression of genes in the pst-pho operon, which encode genes associated with a high-92 
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affinity phosphate uptake system (Aguena et al., 2002; Allenby et al., 2004; Fischer et al., 2006; 93 

Nakata et al., 1984; Nikata et al., 1996; VanBogelen et al., 1996). All of the available Geobacter 94 

sp. genomes contain at least one copy of the pst-pho operon, suggesting that organisms in this 95 

genus share this high-affinity uptake system. In the natural environment, the availability of 96 

phosphorus often determines microbial growth and activity. For this reason, most bacteria have 97 

two phosphate transport systems, which differ in affinity and specificity for phosphate (Bardin 98 

and Finan, 1998). The low affinity phosphate transport system (Pit) transports phosphate into the 99 

cells in the presence of high levels of extracellular phosphate (Bardin and Finan, 1998; Botero et 100 

al., 2000; Gachter and Meyer, 1993; Harris et al., 2001; Van Dien and Keasling, 1999; Voegele 101 

et al., 1997). It is usually constitutively expressed and is dependent of the proton motive force. 102 

The high affinity phosphate specific transport system is induced during phosphate starvation by 103 

the Pho regulon and is an ABC transporter (Aguena et al., 2002; Gebhard et al., 2006; Muda et 104 

al., 1992; Nikata et al., 1996). Therefore, in most environments with low phosphate availability, 105 

the high affinity phosphate transport system is expected to be the primary pathway for phosphate 106 

introduction into cells. 107 

The purpose of the study described here was to identify genes whose expression might be 108 

diagnostic of phosphate-limiting conditions in Geobacter species and to analyze the expression 109 

of these genes during in situ uranium bioremediation to determine if the subsurface Geobacter 110 

species are limited for phosphate under the current strategy of adding only acetate to promote 111 

this process.   The results suggest that Geobacter species are phosphate-limited, but that addition 112 

of phosphate may not stimulate metal reduction because of the high capacity of the sediments for 113 

phosphate adsorption. 114 

 115 
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MATERIALS AND METHODS 116 

Growth of Geobacter sulfurreducens in continuous culture 117 

Geobacter sulfurreducens strain PCAT (ATCC 51573) was obtained from our laboratory 118 

culture collection. G. sulfurreducens was grown in electron donor limited chemostats at dilution 119 

rate of 0.05 h-1 with acetate (5 mM) provided as the electron donor and fumarate (27.5 mM) as 120 

the electron acceptor  at 30°C, as previously described (Esteve-Nunez et al., 2005).  For 121 

phosphate limited chemostats, G. sulfurreducens was first grown to steady state under electron 122 

donor limiting conditions as described above. The medium contained 0.217 mM phosphate. The 123 

medium was then switched to one that was phosphate-free. The chemostats were harvested when 124 

the optical density (OD600) had dropped below 0.2.  Analyses of acetate, fumarate, succinate, 125 

malate and protein were performed as previously described (Esteve-Nunez et al., 2005). 126 

To track the number of mRNA transcripts for pstB and phoU, G. sulfurreducens was 127 

grown under donor limiting conditions as described above. The medium was switched after 128 

approximately 30 hours to one that was phosphate free. When the OD600 had dropped below 0.1, 129 

the medium was again switched to one that contained phosphate. Chemostats were sampled at 130 

different time points and the nucleic acids were extracted from the collected biomass as 131 

described below. 132 

Microarray Analysis comparing acetate limitation and phosphate limitation. 133 

DNA microarray hybridization and data analyses were preformed as previously described 134 

(Methe et al., 2005). The expression ratio between acetate versus phosphate limiting for three 135 

biological replicates and three technical replicates was calculated. 136 

Site and Plot Description. 137 
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Detailed descriptions of the geology, hydrology and geochemistry of the site in Rifle, CO 138 

have been presented elsewhere (Anderson et al., 2003; Vrionis et al., 2005; Yabusaki et al., 139 

2007). The field experimental results described here were obtained as part of the 2007 study of 140 

the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) Site at Rifle, 141 

Colorado. In 2007, the 10 m by 10 m experimental plot was similar in design as the one from 142 

previous field test described in Anderson et al. (2003) and Vrionis et al. (2005) (Anderson et al., 143 

2003; Vrionis et al., 2005). The experimental plot comprised an injection gallery, four 144 

background-monitoring wells, and twelve down-gradient monitoring wells. The injection gallery 145 

was made of ten 1 m spaced injection wells and was positioned approximately perpendicular to 146 

groundwater flow (see Mouser et al., 2009b). 147 

Acetate (5 mM-target concentration) was injected into the aquifer for a total period of 30 148 

days from August to September 2007. The injection period was interrupted by a groundwater 149 

flush from day 10 to day 17 of the experimental period, to mimic a period of acetate limitation. 150 

This study focuses on D02, a well located in the first row of downgradient wells, where some of 151 

the lowest U(VI) concentrations (< 0.13 µM) were achieved by the end of the experimental 152 

period. Furthermore, Geobacteraceae were the predominant organisms in this well for the 153 

majority of the experimental period. 154 

Groundwater Sampling and Geochemical Analysis.  155 

Prior to sample collection, 12L of water were purged from each well at a rate of 156 

approximately 2 L/min. About 15L of groundwater from up-gradient and down-gradient were 157 

filtered onto a series of two 293 mm diameter filters, a 1.2 and 0.2 µm Supor membrane filter 158 

(Pall Life Sciences) at different time intervals through the course of the field experiment. The 159 
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filters were flash frozen in an ethanol-dry ice bath, shipped on dry ice to the laboratory, and 160 

stored at -80˚C until analysis.  161 

Acetate, sulfate, nitrate, and bromide were analyzed on site using an ion chromatograph 162 

(ICS-1000, Dionex, Sunnyvale, CA) equipped with an autosampler (AS40, Dionex, Sunnyvale, 163 

CA). The samples were separated through an AS22 column (Dionex, Sunnyvale, CA) with a 164 

carbonate/bicarbonate (4.5 mM/1.4 mM) eluent. Phosphate was analyzed by ICP-MS. These 165 

samples were run at a 1:5 dilution on a Perkin Elmer Elan DRC II ICP-MS using a Micro Mist 166 

0.2 mL/min nebulizer. The method used a dynamic reaction cell with oxygen as a reaction gas to 167 

form the oxide PO+ (phosphorus oxide) and analyzing the oxide at mass 47, using Ga 69 as an 168 

internal standard. No other elements were analyzed with PO.  Randomly selected samples were 169 

spiked with 5 and 20 ug/L P, typical recoveries were 99% and 105% respectively. QC samples 170 

and laboratory reagent blanks (LBR) were also run, showing minimal drift during analysis, and 171 

no detectable contamination from sample preparation/sampling vessels.  172 

Extraction of mRNA and DNA from G. sulfurreducens chemostat cultures and 173 

environmental samples. 174 

DNA was extracted from pure cultures, and Rifle groundwater filters using the Qbiogene 175 

soil extraction kit (Qbiogene/MP Biomedicals, Solon, OH) as per the manufacturer’s 176 

instructions. Nucleic acids were extracted from chemostat samples as previously described, using 177 

a Trizol:chloroform extraction (Methe et al., 2005). Extraction of nucleic acids from 178 

groundwater samples were done as described elsewhere (Holmes et al., 2004b) with a few 179 

modifications: tRNA was not added to the procedure of mRNA extraction from groundwater 180 

samples; linear acrylamide was excluded from the precipitation step; finally, additional DNAse 181 
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treatment was performed at the end of the extraction using a DNA-freeTM kit (Ambion Inc, 182 

Austin, TX) for all samples.  183 

Design of primers and amplification of phoU and pstB genes 184 

Primers targeting Geobacteraceae phoU, pstB, and proC genes were designed from 185 

nucleotide sequences from G. sulfurreducens (Methé et al., 2003), G. metallireducens, D. 186 

palmitatis, P. carbinolicus, and P. propionicus genomes.   Preliminary sequence data from G. 187 

metallireducens, D. palmitatis, P. carbinolicus, and P. propionicus genomes was obtained from 188 

the DOE Joint Genome Institute (JGI) website www.jgi.doe.gov. Table 1 lists all of the primers 189 

used in this study. All primers had an optimal annealing temperature of 60˚C. The following 190 

PCR parameters were used: an initial denaturation step at 95oC for 5 min, followed by 35 cycles 191 

of 95oC (45 s), 60oC (1 min), 72oC (1 min), with a final extension step at 72oC for 10 min 192 

(Holmes et al., 2004). The PCR products were resolved on 1% agarose gel and the bands of 193 

phoU and pstB at the expected size were excised and purified with a Gel Extraction Kit (Qiagen, 194 

Valencia, CA). Clone libraries were constructed with a TOPO TA cloning kit (Invitrogen, 195 

Carlsbad, CA) according to the manufacturer’s instructions. Plasmid inserts (48) from each 196 

cDNA clone library were then sequenced with the M13F primer using an ABI BigDye® 197 

Terminator v3.1 (Applied Biosystems, Foster City, CA) and ABI DNA Analyzer 3730xl 198 

(Applied Biosystems, Foster City, CA). Sequences were compared to those compiled in 199 

GenBank with the BLAST suit of programs to verify the specificity of each primer. 200 

Sequences obtained were aligned and qPCR primers designed (Table 1) to quantify pstB 201 

and phoU as well as proC in environmental samples as described below. 202 
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Phylogenetic analysis 203 

phoU and pstB gene sequences were compared to NCBI GenBank nucleotide database 204 

using the blastn algorithms (Altschul et al., 1990). Amino acid and nucleotide sequences for 205 

phoU and pstB genes were initially aligned in MEGA version 4 (Tamura et al., 2007) where 206 

phylogenetic trees were inferred.  Distances and branching order were determined and compared 207 

using maximum parsimony and distance-based algorithms (Neighbor-joining and Kimura).  208 

Bootstrap values were obtained from 100 replicates.  209 

Quantification of mRNA transcript levels using Reverse Transcriptase Quantitative PCR 210 

The reverse transcriptase enhanced avian kit (Sigma, St. Louis, MO) was used to reverse 211 

complement RNA from either environmental samples or G. sulfurreducens cultures in 212 

chemostats according to manufacturer's instructions. A 1:10 dilution of the RNA template was 213 

made before the reaction in order to minimize template inhibition. Subsequently, the cDNA was 214 

also diluted (1:10) before the qPCR reaction. Each PCR reaction consisted of a total volume of 215 

25 µL and contained 1.5µL of primers (stock concentration was 20 µM), 12.5 µL Power SYBR 216 

green PCR mix (PE Biosystems, Foster City, CA) and 9.5 µL template. Standard curves were 217 

constructed as previously described (Holmes et al., 2004b), and covered a range of 8 orders of 218 

magnitude. qPCR reactions were performed on a 7500 ABI real time (Applied Biosystems, UK) 219 

according to the ABI guide. The thermal cycling parameter consisted of an activation step at 220 

50˚C for 2 mins, a denaturation step of 95˚C for 10 mins, followed by 45 cycles at 95˚C for 15 221 

secs and 60˚C for 1 min. Triplicate runs of qPCR were done and the fold change was calculated 222 

as the ratio between baseline and the change observed. To verify amplification and correct 223 

amplicon size, aliquots from real-time PCR were examined on a 1% agarose gel stained with 224 
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ethidium bromide. The qPCR primers used are listed in Table 1. The housekeeping gene, proC, 225 

was used for normalization of chemostat and environmental data.  226 

Laboratory Sediment Incubations with Phosphate Amendment.  227 

Laboratory sediment incubations were conducted, as previously described (N'Guessan et 228 

al., 2008), with sediments collected near the acetate-injection test plot. The anoxic sediment-229 

groundwater slurries were amended with 10 mM acetate as well as 250 µM sodium phosphate 230 

(target groundwater concentration). The sediment and groundwater from each set of triplicates 231 

was sampled over time under anaerobic conditions. Incubations without phosphate amendments 232 

served as controls. Analyses of acetate, sulfate, and U(VI) in the groundwater sample was 233 

performed as described above. Iron and uranium concentrations in sediment were determined as 234 

previously described (N'Guessan et al., 2008). Phosphate was analyzed by ion chromatography 235 

(ICS-1000) as described above. 236 

 237 

RESULTS AND DISCUSSION 238 

 239 

Expression of phoU and pstB in response to phosphate limitation in chemostats. 240 

In order to identify Geobacter genes with increased transcript levels during phosphate limitation, 241 

chemostats of Geobacter sulfurreducens were grown under steady-state conditions with acetate 242 

as the electron donor and fumarate as the electron acceptor.  Acetate availability was the factor 243 

limiting growth.  The phosphate concentration was 0.217 mM.  Once steady-state conditions 244 

(protein, 0.045 ± .0001 mg/mL; fumarate, 4.054 ± 0.753 mM; and acetate < 50uM) were 245 

established for four culture vessel medium turnovers, the medium being added to the chemostat 246 

was changed to one that was identical with the exception that phosphate was omitted. As 247 
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phosphate in the culture vessel was diluted, the cell density started to decrease, indicative of 248 

phosphate limitation.  Cells were harvested for microarray analysis when the phosphate 249 

concentration had decreased to 0.086 mM.  At this point cell protein had decreased (0.029 ± 250 

0.004 mg/mL) and (fumarate 6.607 ± 0.436 mM) and acetate (1.106 ± 0.300 mM) concentrations 251 

were much higher.  These changes demonstrate that cell growth was phosphate limited. 252 

The switch from electron donor limiting to phosphate limiting conditions was associated with 253 

changes in expression of a variety of genes involved in transport and binding and energy 254 

metabolism.   A total of 35 genes had transcript levels at least 2-fold higher under the phosphate-255 

limiting conditions (Table 2) whereas 53 genes had transcript levels that were at least 2-fold 256 

lower under this same condition (Table 3).   257 

Decreases in transcript abundance were all less than 5-fold (Table 3).  Most of the genes 258 

with lower transcript levels in phosphate-limited cells were those involved in metabolism and 259 

cell growth and included electron transport proteins, various transport and binding proteins, 260 

ribosomal proteins, and amino acid biosynthesis. The decreased level of transcripts in these 261 

genes is consistent with the slower growth of the phosphate-limited cells and the fact that 262 

phosphorus is an essential nutrient for the synthesis of nucleic acids and ATP.  A similar 263 

response was previously noted in phosphate-limited cells of Sinorhizobium meliloti (Bardin and 264 

Finan, 1998; Krol and Becker, 2004). 265 

The gene with the highest increase in transcript levels in phosphate-limited cells was pstB 266 

(Table 2).  pstB has been annotated as the ATP-binding protein of a phosphate ABC transporter 267 

(Methe et al., 2003; Yan et al., 2004).  It is part of a predicted operon, which also includes phoU 268 

(GSU1095), pstA (GSU1097), pstC (GSU1098), and pstS (GSU1099).  pstA, pstC, and pstS were 269 

also upregulated and are annotated to play a role in phosphate uptake while phoU is predicted to 270 
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regulate the expression of the pst genes (Table 2), consistent with similar operon organization of 271 

related genes in other microorganisms (Aguena et al., 2002; Bardin and Finan, 1998; Fischer et 272 

al., 2006; Nakata et al., 1984; Nikata et al., 1996; VanBogelen et al., 1996). The pst-pho operon 273 

was previously shown to be the most strongly up-regulated operon under phosphate-limiting 274 

conditions in S. meliloti (Krol and Becker, 2004) and Acidothiobacillus ferroxidans ((Krol and 275 

Becker, 2004; Vera et al., 2003).   276 

Other genes with a greater than 5-fold increase in transcript levels in phosphate-limited 277 

cells included a putative metal ion efflux outer membrane family protein (GSU1330); an ABC 278 

transporter permease protein for an unknown substrate (GSU1340); a protein in the GH3 auxin-279 

responsive promoter family but of unknown function (GSU1092); and two hypothetical proteins 280 

(GSU 2700, GSU 1100). The majority of the remaining proteins with transcript levels that were 281 

more than two-fold higher in phosphate-limited cells are hypothetical proteins and proteins 282 

involved in transport (Table 2).  283 

 284 

Changes in pstB and phoU transcripts in chemostat cultures. 285 

The significant increase in transcript abundance of phoU and pstB under phosphate-286 

limiting conditions suggested that their abundance might serve as good indicators for phosphate 287 

limitation during the growth of Geobacter species in the subsurface. This was first evaluated 288 

under controlled conditions with G. sulfurreducens grown in chemostats.  Transcript abundance 289 

of phoU and pstB was normalized to transcript abundance of proC, a housekeeping gene that is 290 

expressed at consistent levels under many growth conditions (Holmes et al., 2005).   As expected 291 

from the microarray study, introducing medium without phosphate into the chemostat resulted in 292 

a decrease in cell density and an increase in acetate as growth became phosphate limited (Figure 293 
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1A). When phosphate was reintroduced into the medium, G. sulfurreducens was able to grow 294 

again and as cell density increased, acetate concentrations decreased (Figure 1A). 295 

Transcripts of phoU and pstB were not detected during steady-state growth prior to imposing 296 

phosphate limitation (Figure 1B).  Levels of phoU and pstB transcripts increased dramatically 297 

under phosphate-limiting conditions. Large standard deviations were observed under phosphate 298 

limiting conditions when cell density was at its lowest and may have varied between triplicate 299 

chemostats. There were more pstB transcripts than phoU transcripts, consistent with the results 300 

from the microarray study.  When the chemostat medium reservoir was switched back to 301 

phosphate-containing medium the number of transcripts for both genes rapidly decreased back to 302 

baseline levels. These results further suggested that phoU and pstB expression levels are a 303 

sensitive indicator of phosphate availability. 304 

 305 

Geochemical changes during in situ uranium bioremediation. 306 

As expected from previous field studies (Anderson et al., 2003; Vrionis et al., 2005), the 307 

addition of acetate to the subsurface resulted in increased acetate concentrations in the 308 

downgradient monitoring well (Figure 2A).  Acetate concentrations declined after the acetate 309 

inputs were stopped temporarily between on day 10 and then began to increase as acetate 310 

additions resumed by day 17.  Because of the residual acetate in the injection well, the 311 

groundwater flush only resulted in a slight decrease in acetate concentration in D02. Increased 312 

acetate concentrations were associated with an increase in dissolved Fe(II) (Figure 2B) and a 313 

decrease in dissolved U(VI) (Figure 2C), suggesting that dissimilatory metal reduction had been 314 

stimulated.  This was associated with a marked increase in the abundance of Geobacter species 315 

in the groundwater (Elifantz et al., 2008; Mouser et al., 2009b).  Geobacter species are known 316 
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Fe(III)- and U(VI)-reducing microorganisms and are considered to be responsible for most of the 317 

dissimilatory metal reduction in these acetate-amended subsurface sediments (Anderson et al., 318 

2003; Finneran et al., 2002; Holmes et al., 2002; Holmes et al., 2005; Istok et al., 2004; Lovley, 319 

1991; Vrionis et al., 2005). Within a period of 20 days of acetate addition, the uranium 320 

concentration in D02 was reduced by more than 80%, starting at an initial background 321 

concentration of about 130 µg/L and diminishing to values well below the EPA maximum 322 

contaminant level (30 µg/L) by the end of the study period (Figure 2C).  323 

Phosphate concentrations remained relatively constant during the field experiment 324 

(Figure 2D). It was originally hypothesized that phosphate concentrations in the groundwater 325 

would increase during biostimulation as a result of the release of iron-bound phosphate species 326 

upon reduction of the iron-oxides (Johnson and Loeppert, 2006). The constant concentration of 327 

phosphate in the groundwater suggests that dissolved phosphate concentrations are in 328 

equilibrium with solid phase phosphate. Therefore, as the microorganisms use phosphate, the 329 

loss of this nutrient from pore water is replaced by reequilibration with the solid phases.   330 

 331 

Diversity of the phoU and pstB genes amplified from the Rifle IFRC site. 332 

To evaluate the diversity of the phosphate metabolism genes found in the groundwater at 333 

the Rifle IFRC site, phoU and pstB genes were amplified from genomic DNA extracted from the 334 

groundwater on day 7 when dissimilatory metal reduction was very active and Geobacteraceae 335 

accounted for over 95% of the 16S rRNA gene sequences recovered in libraries constructed from 336 

groundwater samples (data not shown). Most (36 of 39) of the phoU sequences recovered from 337 

the groundwater sample were in a tight gene cluster sharing 96% similarity to each other (Figure 338 

3A). The other three environmental sequences were closely related, and shared 87-93% 339 
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similarity with the other environmental sequences (Figure 3A).  The low diversity of phoU 340 

sequences was reflected in rarefaction curves (data not shown). At and below 98% similarity 341 

level, rarefaction curves suggested that the entire diversity of the phoU genes were covered in the 342 

clone library. The Shannon diversity index at the 98% similarity level was 1.1.  This low 343 

diversity of phoU sequences is consistent with the low diversity of Geobacter species in this 344 

sample. The environmental samples clustered with the phoU from G. bemidjiensis and 345 

Geobacter sp. M21, an isolate from the Rifle site, and were 85-93% similar to these genes 346 

(Figure 3A). 347 

The pstB genes recovered from groundwater were more diverse (Shannon diversity index 348 

2.1) than phoU,  but, like phoU,  were closely related (77-87% similarity) to the pstB sequences 349 

of Subsurface Clade 1 microorganisms whose genomes are available (Figure 3B). Clusters A, B 350 

and C represented 29%, 12.5%, and 16.7% of the sequences analyzed, respectively (Figure 3B). 351 

Sequences within these clusters were at least 98% similar to each other, suggesting that this gene 352 

is highly conserved. As with the phoU sequences, the pstB sequences recovered from the 353 

subsurface were most closely related to pstB sequences in pure cultures that have been recovered 354 

from the Rifle site and other subsurface environments.   355 

 356 

Abundance of phoU and pstB transcripts in subsurface Geobacter. 357 

 Transcripts of phoU and pstB in the subsurface Geobacter community were not 358 

detectable when acetate amendments were initiated but increased in abundance when acetate 359 

availability increased, stimulating the growth and activity of Geobacter species (Figure 4). With 360 

the exception of a very high abundance of pstB transcripts on day 11, the levels of phoU 361 

transcripts and pstB remained within a relatively restricted range, once acetate in the 362 
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groundwater reached millimolar concentrations (Figure 4).  With the exception of the one 363 

apparent anomaly in pstB abundance on day 11, the relative abundance of phoU and pstB was 364 

higher than that observed under phosphate-replete conditions in chemostats, but somewhat lower 365 

than the abundance of these transcripts under phosphate-limiting conditions.  These results 366 

suggested that phosphate concentrations were less than those required for optimal growth during 367 

in situ uranium bioremediation or that the form of phosphorus was not as readily available as 368 

what might be provided in laboratory studies.   369 

 370 

Addition of phosphate in sediment incubations. 371 

The finding that Geobacter species might be phosphate-limited suggested that the 372 

addition of phosphate to the subsurface might enhance the growth and activity of the subsurface 373 

Geobacter species and might stimulate rates of U(VI) reduction.  Previous studies have 374 

demonstrated that the results from anoxic incubations of subsurface sediment and groundwater 375 

can provide an accurate indication of the impact of subsurface amendments (Finneran et al., 376 

2002; Holmes et al., 2002; N'Guessan et al., 2008; Ortiz-Bernad et al., 2004a).  Therefore, in 377 

order to evaluate whether adding phosphate might stimulate dissimilatory metal reduction at the 378 

Rifle site, sediment and associated groundwater, incubated under anoxic conditions, were 379 

amended with acetate to simulate in situ uranium bioremediation.  As expected from previous 380 

studies (Finneran et al., 2002; N'Guessan et al., 2008; Ortiz-Bernad et al., 2004a), consumption 381 

of the added acetate was associated with the reduction of Fe(III) to Fe(II) and the removal of 382 

U(VI) from the groundwater (Figure 5).  Adding phosphate calculated to increase the 383 

groundwater phosphate concentration to 250 µ M had no impact on the rate of acetate 384 

consumption, Fe(III) reduction, or U(VI) removal (Figure 5).  When phosphate concentrations 385 
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were increased to potentially provide 500µM phosphate, there was still no impact (data not 386 

shown).  387 

One reason that the added phosphate failed to stimulate rates of acetate metabolism metal 388 

reduction may have been the high phosphate adsorption capacity of the sediment.  Added 389 

phosphate was rapidly removed from the groundwater (Figure 5C). It has been shown that 390 

aquifer sediments generally have low phosphorus content and high phosphate sorption capacity 391 

(Mc Callister and Logan, 1978; Patrick and Khalid, 1974).  392 

 393 

IMPLICATIONS   394 

 These findings suggest that phosphate availability may limit the growth of Geobacter 395 

species during subsurface bioremediation and that the phosphate limitation cannot be readily 396 

alleviated with the direct addition of phosphate because of the high adsorptive capacity of the 397 

sediments for phosphate. Despite this phosphate limitation U(VI) is effectively reduced, 398 

suggesting that optimal growth of Geobacter species in the subsurface is not necessary for the 399 

success of this bioremediation strategy. 400 

 Phosphate is commonly added empirically as an amendment to stimulate subsurface 401 

bioremediation without information on whether the microorganisms involved in bioremediation 402 

are, in fact, phosphate limited.  An approach similar to the one described here may be useful for 403 

evaluating whether phosphate additions are warranted.  For example, a strategy for promoting 404 

reductive dechlorination of chlorinated contaminants in subsurface environments is to add 405 

electron donors (Christ et al., 2005; Major et al., 2002), which, as with in situ uranium 406 

bioremediation, may result in phosphate limitations.  However, the potentially complex 407 

geochemistry of phosphate must also be taken into account because as shown here, simple 408 
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addition of phosphate may not materially increase the dissolved phosphate available to the 409 

microorganisms. With no amendment of phosphate, phosphate limitation does not appear to be 410 

an impediment to achieving the goal of U(VI) reduction in field experiments performed to date. 411 

Over longer times of bioremediation (years vs. months) it is possible that adsorbed phosphorous 412 

could be consumed, creating a more serious phosphate limitation. Future research might usefully 413 

focus on the time required to deplete bioavailable phosphate in sediments and on approaches to 414 

releasing sediment phosphate to make it more bioavailable. 415 
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