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ABSTRACT ARTICLE HISTORY
Sparse regression is employed in diverse scientific settings as a feature selec- Received 23 June 2021
tion method. A pervasive aspect of scientific data is the presence of correla- Accepted 2 March 2022

tions between predictive features. These correlations hamper both feature
selection and estimation and jeopardize conclusions drawn from estimated
models. On .the other hand, theoretical result.s.on sparsity-in.ducing rggular- selection; Sparse regression:
ized regression have largely addressed conditions for selection consistency Information criteria;

via asymptotics, and disregard the problem of model selection, whereby Compressed sensing
regularization parameters are chosen. In this numerical study, we address

these issues through exhaustive characterization of the performance of sev-

eral regression estimators, coupled with a range of model selection strategies.

These estimators and selection criteria were examined across correlated

regression problems with varying degrees of signal to noise, distributions of

non-zero model coefficients, and model sparsity. Our results reveal a funda-

mental tradeoff between false positive and false negative control in all regres-

sion estimators and model selection criteria examined. Additionally, we

numerically explore a transition point modulated by the signal-to-noise ratio

and spectral properties of the design covariance matrix at which the selection

accuracy of all considered algorithms degrades. Overall, we find that SCAD

coupled with BIC or empirical Bayes model selection performs the best fea-

ture selection across the regression problems considered.

KEYWORDS
Correlated variability; Model

1. Introduction

In the last several decades, significant research in the mathematics and statistics communities has
been directed at the problem of reconstructing a k-sparse vector from noisy, linear observations.
In its simplest form, one is concerned with inference within the following model:

y=Xpf+e (1)

with y € R",X € R”? and f§ € R? is a k-sparse vector. The noise is i.i.d, € € R",¢; ~ N(0,0?),
and the observational model is Gaussian, y; ~ N (X;f,¢;). The sparse linear model is employed in
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diverse scientific fields (Tibshirani 1997; Wright et al. 2010; Waldmann et al. 2013; Steyerberg
and Vergouwe 2014; Satija et al. 2015). In real world applications, it is also commonly the case
that the design or covariate matrix X is correlated, so that the columns of X cannot be taken to
be iid. In this setting, the correct identification of non-zero elements of f§, which is crucial for
scientific interpretability, is especially challenging. Yet, a systematic exploration of the effect of
correlations between the covariates on the recoverability of f is lacking.

Statistically optimal sparse estimates of f§ within (1) are returned by the solution to the follow-
ing constrained optimization problem:

min||y — XB|;
[1Bllo < 4

Finding the global minima of problem (2) is NP-hard, though recent progress has been made
in computationally tractable approaches (Bertsimas, King, and Mazumder 2016; Zhu et al. 2020).
The most common approach is to relax the I, regularization. In this work, we focus on the Lasso,
Elastic Net, SCAD, MCP (Tibshirani 1996; Fan and Li 2001; Zou and Hastie 2005; Zhang 2010),
and Uol},.,, an inference framework we introduced in (Bouchard et al. 2017) that combines sta-
bility selection and bagging approaches to produce low variance and nearly unbiased estimates.
To select the regularization strength or otherwise compare between candidate models returned
between these estimators, one must employ a model selection criteria such as cross-validation or
BIC. While the literature on sparsity inducing estimators and model selection criteria is vast,
studies that consider the interaction of particular choices of estimator and model selection criteria
are lacking. In particular, no systematic exploration of the impact of choice of estimator and model
selection criteria on the selection accuracy of the resulting procedure when the predictive features
exhibit correlations has been carried out. In this work, we address this gap by performing system-
atic numerical investigations of the selection accuracy performance of several estimators and model
selection criteria across a broad range of regression designs, including diverse correlated design
matrices. Section 2 summarizes prior theoretical and empirical work on model selection and com-
pressed sensing. We also discuss a scalar parameterization of signal strength in correlated sparse
regression borrowed from (Wainwright 2009) that we call a. In Sec. 3, we outline the scope of this
study and the evaluation criteria used. In Sec. 4 we present the main results. We characterize the
impact of correlated design on the false negative and false positive discovery rates, as well as the
magnitude of coefficients likely to be falsely set to zero or false assigned non-zero values. We reveal
that estimators and selection methods display a remarkable degree of universality with respect to
the correlation strength (quantified by o). We also identify the best performing combinations of
estimator and selection methods under various signal conditions. Connections to prior theoretical
work and concrete recommendations for practitioners are provided in Sec. 5.

()

2. Review of prior work

The statistical theory of the sparse estimators considered in this work is vast and we do not
attempt to review it all here. Our particular focus is on characterizing finite sample selection
accuracy, especially in the context of correlated design. The asymptotic oracular selection per-
formance of the SCAD and MCP are well known (Fan and Li 2001; Zhang 2010) and require
only mild conditions on the design matrix. For the Lasso, one must impose an irrepresentable
condition to guarantee asymptotic selection consistency (Zhao and Yu 2006). The finite sample
implications of these differing requirements have not been explored. A series of works have
addressed the correlated design problem by devising regularizations that tend to assign correlated
covariates similar model coefficients (Tibshirani et al. 2005; Bogdan et al. 2013; Biihlmann et al.
2013; Witten, Shojaie, and Zhang 2014; Figueiredo and Nowak 2016; Li et al. 2018). In fact, the
Elastic Net was the first estimator introduced to exhibit this type of “grouping” effect (Zou and
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Hastie 2005). However, this type of behavior can be undesirable in many real data applications
where covariates may be correlated, yet still contribute heterogeneously to a response variable
of interest.

When the true model generating the data is contained amongst the candidate model supports,
the BIC and gMDL have asymptotic guarantees of selection consistency (Zhao and Yu 2006).
Extensions of these results to the high dimensional case are available (Kim, Kwon, and Choi
2012), but fall outside the scope of this work. Implicit in these theoretical results is that one can
evaluate the penalized likelihoods on all 2° candidate model supports (Shao 1997). Practically,
one first assembles a much smaller set of candidate model supports using a regularized estima-
tors. To this end, the use of the BIC with SCAD has been shown to be selection consistent
(Wang, Li, and Tsai 2007).

A more recent body of work has focused on non-asymptotic analyses of model (1) in the
framework of compressed sensing rather than regression. Here, the sparsity level of f is a priori
known, and the sensing matrix X is typically drawn from a random ensemble. In this setting, it is
possible to establish sharp transitions in the mean square error distortion of the signal vector as a
function of measurement density (i.e., asymptotic n/p ratio) (Donoho, Maleki, and Montanari
2009). Necessary and sufficient conditions on the number of samples needed for high probability
recovery of the support of f§ by the Lasso was treated in (Wainwright 2009). Subsequently, a ser-
ies of works examined the information theoretic limits on sparse support recovery by forgoing
analysis of computationally tractable estimators in favor of establishing the sample complexity of

p
k

(Wainwright 2009; Atia and Saligrama 2009; Aeron, Saligrama, and Zhao 2010; Rad 2011;
Scarlett, Evans, and Dey 2013; Aksoylar and Saligrama 2014; Aksoylar, Atia, and Saligrama 2017;
Scarlett and Cevher 2017). This approach provides information theoretic bounds on the selection
performance of any inference algorithm, and a measure of the suboptimality of exist-
ing algorithms.

Of particular relevance to this work are (Wainwright 2009) and (Scarlett and Cevher 2017),
whose analyses permit correlated sensing (i.e., design) matrices. Let f§... be the minimum non-
zero coefficient of B, ? be the additive noise variance, and ¥ be the covariance matrix of the dis-
tribution from which columns of X are drawn. Denote the set of all subsets of {1,2,...,p} of size
k as Zx. Ty indexes possible model supports. Given S, T € Z; we define the matrix I'(S, T) to be
the Schur complement of Xgrsr with respect to Zrp I(T,S) = Zgrar—
ZS\T)T(ZTT>712T,S\T. Let p(Z,k) be the smallest eigenvalue this matrix can have for any T:
p(Z, k) = minger,\sZmin([(T, S)). From these quantities, we define o

2
o= M (3)

o2

exhaustive evaluation of all ( ) possible supports via maximum likelihood decoding

In Theorem 1 of Wainwright (2009), sufficient conditions on the sample size required for an
exhaustive search maximum likelihood decoder to recover the true model support with high
probability are given in terms of p, k, and o

Theorem 1. Theorem 1 of Wainwright (2009). Define the function g(ci, p, k, o):
glenp ko) = (e + 2048)max{ log (p ; k) , log(p — k)/oc}

If the sample size n satisfies n > g(c1,p,k, o) for some ¢ > 0, then the probability of correct
model support recovery exceeds 1 — exp (—ci(n — k)).

If o' > plog (p — 2k) + 2k/p, then g, and therefore the sample complexity of support recov-
ery, will be modulated by o for p large enough. Many of the design matrices considered in our
numerical study (see Sec. 3) satisfy this condition.
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Figure 1. Design of Simulation Study. (a) (Right column) Coefficients 5 are drawn from a narrowly peaked Gaussian, uniform,
and inverse exponential distribution. (b) (Left column) Design matrices are parameterized as £ = t®;dlmxm + (1 — t)A(L) where
A(L); = exp (=i —j|/L) and Inxm is the m-dimensional identity matrix. Parameters J,m, t and L are shown for each example
design matrix. Also shown are bounds for the minimum and maximum p(Z, k) across k.

In contrast to compressed sensing, the sparsity level of § (i.e., k) is typically unknown in appli-
cations of regression. Furthermore, sufficient conditions on high probability theory such as
Theorem 1 above rely on concentration inequalities, which may formally hold in the non-asymp-
totic setting, but are rarely tight. As a result, the applicability of these results for practitioners
evaluating the robustness of support recovery in finite sample regression is unclear. The main
contribution of this work is to address this gap through extensive numerical simulations. We find
o to be a useful measure of the difficulty of a particular regression problem, and find selection
accuracy performance to be modulated by o even when it does not satisfy the condition
stated above.

Previous empirical works have evaluated the effects of collinearity on domain specific regres-
sion problems (Dormann et al. 2013; Vatcheva et al. 2016) and evaluate the efficacy of various
information criteria for model selection (Schoniger et al. 2014; Brewer, Butler, and Cooksley
2016; Dziak et al. 2020). Finally, the performance scaling of a series of sparse estimators with
sample size is evaluated in (Bertsimas, Pauphilet, and Van Parys 2020).
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Table 1. (Top) Sparsity inducing regularized estimators. 4 and y denote regularization parameters. In this study, we keep y for
SCAD and MCP fixed to 3. (Bottom) Model selection criteria.

Estimator Regularization
Lasso A1Bl;
Elastic Net JalBly + 2l Bl
SCAD W (g < 2) + Y22 1(p) > 2)
Mcp Wax(1— %),
Uolasso A|p|; across bootstraps, see Bouchard et al. (2017)
Model Selection Criteria
Cross-Validation R* averaged over 5 folds
BIC 2logly — XB[2 — log (n)|l,
AIC | 2logly — XBJ3 — 2/l
gMDL (Hansen and Yu 2001) k v Ty — ly — 72 k

~log nfkk)LyAzy‘2 + logn if R >~

2 v =yl n

.
1

glog (%) +Elog (n) otherwise

Empirical Bayes (George and . k+klog(0 9)—k —2((p—k)log (p — k) +klogk) if ¥ yv/k >1
Foster 2000) 2|09\y—)(/1’|§—{m+ 907 (g~ K9 (p k) +klogh) 17 7/
y 'y —2((p—k)log(p — k) + klogk) otherwise

Here and throughout, k refers to the estimated support size, y the model predictions of y, and p is the total number
of features.

In contrast, we specifically consider the differing effects on selection accuracy of joint choices
of estimators and model selection criteria. We demonstrate that the choice of model selection cri-
teria significantly modulates the selection performance of estimators, and that there are empiric-
ally identifiable transition points in the value of o beyond which the selection performance of all
inference procedures degrades.

3. Methods

We consider regression problems with 500 features with 15 different model densities (i.e., |f],) loga-
rithmically distributed from 0.025 to 1. Additionally, we vary over the following design parameters:

1. 80 covariance matrices X of exponentially banded, block diagonal, or a structure that interpo-
lates between the two (see Figure 1).

2. Three different f distributions: a sharply peaked Gaussian, a uniform, and an inverse expo-
nential distribution (see Figure 1)

3. Signal to noise (SNR) ratios of 1, 2, 5, 10. We define signal to noise as |Xf[3/a>.

4. Sample to feature (n/p) ratios of 2, 4, 8, and 16.

To simplify the presentation, we often restrict the analysis to the following three combinations
of SNR and n/p ratio that represent ideal signal and sample, SNR starved, and sample starved
scenarios, respectively:

1. Case 1: SNR 10 and n/p ratio 16
2. Case 2: SNR 1, and n/p ratio 4
3. Case 3: SNR 5 and n/p ratio 2

A distinct model design is comprised of a particular model density, predictor covariance
matrix, a coefficient distribution drawn from one of the three f-distributions, an SNR, an n/p
ratio. Each distinct model is fit over 20 repetitions with each repetition being comprised of a new
draw of X ~ N(0,X) and € ~ N(0,06%), with * set by the desired SNR. We use the term
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Figure 2. Scatter plots of the false negative rate vs. false positive rate for BIC selection (A-C) and AIC selection (D-F) across 3 dif-
ferent model densities (n/p ratio = 4, all signal to noise parameters included). Each scatter point represents a single fit. f§ distri-
butions are encoded in marker shapes (square: uniform distribution, triangular: inverse exponential distribution, circular:
Gaussian distribution). Shaded regions represent regions of equal selection accuracy. The orientation of these regions for differ-
ent model densities illustrates the differing contributions of false negatives vs. false positives, with false positive control being
far more important for sparser models, and conversely false negatives being more important for denser models. Estimators can
be seen to be characterized by specific tradeoffs between the false positive and false negative control, with SCAD/BIC/Uol (red/
green/blue) controlling the false positive rate most aggressively, whereas Elastic Net (orange) controls for false negatives more
effectively. The tails of the scatter points extending toward the bottom right of the plot are comprised of the model designs
with smallest o.

estimator to refer to a particular regularized solution to problem 1 (e.g., Lasso) and model selec-
tion criteria to refer to the method used to select regularization strengths (e.g., BIC). The estima-
tors and model selection criteria we consider are listed in Table 1. We use the term inference
algorithm to refer to particular choices of estimator and model selection criteria.

Let S = {i|, # 0} in eq. 1, and S = {i|, # 0}, i.e., the true and estimated model supports.
Then, we evaluate regression on the basis of selection accuracy (1 —%) false negative
rate (‘S °) and false positive rate ( S\S| °) We use o to associate a single s¢|:al ;lrl" |to measure the dif-
ﬁculty of a regression problem. Smaher o correspond to harder regression problems. In practice,
we do not calculate p(Z, k) explicitly, but rather lower bound it (Supplementary section S1). The
parameter p(X, k) becomes smaller with larger k.

4. Results
4.1. False positive/false negative characteristics

We first visualized support selection performance across estimators by scattering the false nega-
tive rate vs. false positive rate of each fit for several representative model densities (Figure 2 for
BIC and AIC selection, Figure S1 for other criteria). Each scatter point represents the selection
characteristics of fits to a distinct model design averaged over its 20 instantiations. The bounda-
ries of the grayscale partitions of the false positive false negative rate plane correspond to con-
tours of equal selection accuracy. The rotation of these contours with the true underlying model
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Figure 3. (A-C) Scatter plot of the false positive rate and the false negative rate vs. « for each estimator using BIC as a selection
criteria for three different model densities. 8 distributions are encoded in marker shapes (square: uniform distribution, triangular:
inverse exponential distribution, circular: Gaussian distribution). The false positive rate is only weakly modulated by o, but is
ordered by estimator, with MCP/SCAD/Uol consistently having the lowest false positive rates, Lasso intermediate, and the Elastic
Net having the highest false positive rates. The effect becomes pronounced at higher model densities (panel C). For the false
negative rates, scatter points follow a characteristic sigmoidal profile, with a region of stable selection accuracy at low correlation
(high o), followed by an transition point of « after which the selection accuracy monotonically decreases. The effect is again
most visible at higher model densities. At model density 0.046 (panel A, bottom), all estimators are reasonably robust to decreas-
ing alpha. (D-F) Plot of the o-transition point associated with an inference algorithm’s false negative rate as a function of model
density, separated by f distribution and selection method. Error bars are standard deviations taken across repetitions and esti-
mator. The different numerical regimes of the a-transition (highest in panel E, intermediate in panel D, and lowest in panel F)
are attributable to the different characteristic value of f3,;, for the different f distributions.

density reflects the relative importance of false negative and false positive control in modulating
selection accuracy. Specifically, rotation toward the horizontal implies larger sensitivity to false
positives, while conversely rotation toward the vertical implies greater sensitivity toward
false negatives.

The accuracy of estimators exhibited clear structure that depends on the characteristics of the
model design described above. We observe in panel A of Figure 2 that estimators that more
aggressively promote sparsity (SCAD, MCP, Uol in red, green, and dark blue, respectively) fea-
tured better selection accuracy at low model densities (i.e., scatter points for these estimators lie
in the white to light gray shaded regions), whereas those that control false negatives less aggres-
sively, namely the Elastic Net (orange) and to a lesser extent the Lasso (cyan), fared better in
denser true models (panel C). The scatter points for each estimator formed bands that span the
false negative rate. This banding effect was most pronounced for SCAD/MCP/Uol.
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Comparing the BIC selection (Figure 2A-C) to AIC (Figure 2D-F), these scatter plots also
revealed that varying model selection methods also systematically shifted false negative & false
positive characteristics of estimators. Selection methods with lower complexity penalties (i.e., AIC,
CV) lifted the bands up along the false positive direction. Comparing the location of the blue/
red/green scatter points between panels B and E, for example, we note that this effect was most
dramatic for the set of estimators that most aggressively control false positives (SCAD/MCP/Uol).
Consequently, similar tradeoffs as described before arose, with empirically better selection accur-
acy when models are dense obtained for AIC/CV, and vice versa for larger complexity penalties
(BIC). The gMDL and eB methods behaved similarly to BIC (although there are a few exceptions
to this, see Section S2). We conclude that the choice of estimator and model selection criteria are
both important in determining the false positive/false negative rate behavior of infer-
ence strategies.

4.2. a-Dependence of false positives/false negatives

Recalling that the parameter o tunes the difficulty of the selection problem, we scattered the false
positive and false negative rate vs. o for each inference algorithm across different model densities.
A representative set of such plots for BIC selection is shown in Figure 3A-C; other selection
methods are shown in Supplementary Figure S2. There was broadly large variation in perform-
ance modulated by the selection method employed. Furthermore, f-distributions are separately
resolvable due to their different typical values of f3;,. For example, in the bottom axes of Figure
3C, for each estimator, the uniform distribution scatter points (squares) lie to the left of the
inverse exponential distribution (triangular), which in turn lies to the left of the Gaussian distri-
bution (circular).

In line with Figure 2, the false positive rate was not modulated by o (Figure 3A-C, top axes).
In fact, for some estimators, the highest false positive rate was achieved for intermediate o, fol-
lowed by a decline in false positive rate for smaller « (e.g., Lasso in Figure 3C). The false positive
rate is instead a characteristic of each estimator. The SCAD/MCP/Uol class of estimators
achieved lower false positives than Lasso, which in turn featured lower false positives than the
Elastic Net. Model selection criteria can also be classified into a set that led to low false positive
rates (gMDL, empirical Bayes, and BIC) vs. those that lead to high false positive rates (AIC, CV),
although the Elastic Net with empirical Bayes selection featured the highest false positive rate of
any inference algorithm (Figure S2, panels D-F).

On the other hand, the false negative rate scatter points, when separated by f-distribution, fea-
tured consistent behavior across inference algorithms. Focusing on BIC selection, all estimators
achieved low false negative rates at the low model densities (Figure 3A). At intermediate model
densities (Figure 3B), the false negative rate remained low until log o became sufficiently small, at
which point it rapidly increases. This value of loga varied by f-distribution due to the differing
characteristic values of f;,, occurring around loga ~ —7.5 for the Gaussian distribution at
model density 0.327, ~ loga = —10 for the inverse exponential distribution, and ~ loga = —15
for the uniform distribution. Otherwise, this transition point is fairly universal across infer-
ence algorithms.

To produce summary statistics of false negative rates across model densities, selection meth-
ods, and n/p ratio/SNR cases, we fit sigmoidal curves to data for each inference algorithm and
for each f distribution. The sigmoid curve is described by 4 parameters:

a

S = e T ep (Cb(a —aa))

In particular, we use the fitted value for the sigmoid midpoint oy, which we refer to as the
o-transition point, to quantify the value of o at which false negative rate has begun to increase
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Figure 4. Plot of the average « transition point for estimation distortion across all inference algorithms and selection methods
vs. model density for signal case 1. Error bars represent standard deviation. After a model density of > 0.15, the transition gener-
ally occurs at lower correlations (smaller «) for the false negative magnitude. Furthermore, the variance across inference algo-
rithms is consistently smaller for false negatives as opposed to false positives.

appreciably. We found a large degree of universality in this transition point across estimators and
selection methods. In Figure 3D-F, we have averaged curves across estimators and plotted the
mean and standard deviation of the resulting o transition points. Colors now represent each
selection method. The curves for each selection method were strikingly similar within a f distri-
bution, with small standard deviations within each selection method indicating universality across
estimators. The decrease of the o-transition point with increasing model density can be explained
by the overall shift of o toward smaller values due to the increase of p(Z, k) with k.

In the preceding analysis we treated false positives and false negatives as hard thresholded
quantities. On the other hand, one can ask whether false negatives primarily arise from setting
support elements with small signal strength to zero, and conversely whether false positives are
associated with small coefficient estimates. Thus, while exact model support recovery in most
cases is unattainable, one would hope that support inconsistencies produce low distortion of the
desired coefficient vector. To evaluate this supposition, we calculated the average magnitude of
false negatives and false positives, and normalized these quantities by the average magnitude of
ground truth f. In the case of false negative magnitudes, we focused on the uniform f distribu-
tion, as this provides the most “edge” cases of small coefficient magnitudes. Raw scatter plots of
these quantities (not shown) revealed that at low correlations, the hoped for low distortion effect
largely holds true, but that there is an o transition point for both false negative and false positives
after which significantly larger ground truth f; are selected out, and erroneously selected f; are
assigned much larger values relative to the true signal mean.

We again fit sigmoidal functions to the raw scatter points of normalized false negative & false
positive magnitude vs. log o and extracted the a-transition points as in Figures 3D-F. In Figure 4,
we plot the transition point as a function of model density averaged across all estimators, selec-
tion criteria, and fit repetitions. For model densities > 0.15, the transition point occurs at much
smaller correlation strengths for false negative distortions than for false positive distortions. The
variance in the location of this transition point for false negative distortions is noticeably smaller
than for false positive distortions. Nevertheless, similarly to the behavior exhibited by the a-tran-
sition points associated with the false negative rate, the o-transition points for false positive/false
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Figure 5. Oracle selection accuracy as a function of the log model density and « for each of the 3 signal cases described in
Section 3. Each pixel in the colormap is the maximum oracle performance across all estimators for the particular combination of
density and o. For ideal signal characteristics in Case 1 (panel A), near perfect support recovery is in principle possible for a broad
range of correlation strengths for log model densities < —1.9. The similar oracle selection accuracies between cases 2 and 3
(panels B and C) suggest that the sample starved and signal starved regression problems behave similarly. As compared to Case
1, worst case performance for intermediate model densities (log(k/p) > —2.3 and < —0.69) is lower, especially for large corre-
lations. For the densest models (log(k/p) > 0.5), oracle performance is relatively insensitive to correlation strength, reflecting
the insensitivity of the FPR to . Near-perfect support recovery is empirically still possible for the sparsest mod-
els (log(k/p) < —3).

negative coefficient magnitudes is saliently uniform across inference strategies. Overall, these
results highlight the usefulness in the parameter o, which emerges out of tail bounds on the per-
formance of the exhaustive maximum likelihood decoder, as a quantifier of the difficulty of a
sparse regression problem.

4.3. Overall selection accuracy

An inference algorithm deployed in practice must employ both an inference estimator and model
selection criteria. We have therefore determined what the best performing combination is as a
function of underlying model density and «. To set an overall scale for these comparisons, one
can use an oracle selection criteria that simply chooses the support along a regularization path of
maximum selection accuracy. For each value of o and model density, the maximum of this oracu-
lar selection across all estimators gives a proxy for the best achievable selection accuracy in prin-
ciple at finite sample size and SNR.

In Figure 5, we plot the oracle selector for each signal case. In the ideal signal and sample size
case (case 1), the oracle selector was able to achieve near perfect selection accuracy in the fully
dense models (top row, panel C) and those models with density < 0.14 (log model densities
< —2) even in model designs with very small o. The oracle selector suffered moderate loss of
selection accuracy in intermediate model densities for model designs with small « (darker orange
regions of panel C). A similar structure is present in the adequate sample but high noise and low
sample size but adequate SNR cases (cases 2 and 3 in panels B and C, respectively), but the mag-
nitude of selection accuracy performance loss and regions of o and model densities for which the
loss occurred expanded. In particular, only in the very sparsest models (density < 0.05, log model
density < —3) with larger o was perfect selection possible in principle.

For each estimator and selection criteria combination, we take the average deviation of its
selection accuracy from the oracular performance shown in Figure 5 as a measure of sub-optimal-
ity. We divide the analysis into an overall measure of sub-optimality, averaging over all model
densities and «, as well as restricting the averaging to only sparse generative models (model den-
sities <0.3). The results are summarized in Table 2. The best performing inference algorithms are
bolded. When taken across all model densities, in signal case 1 (Table 2, top left), the SCAD with
BIC selection and SCAD with empirical Bayesian selection emerged as the best inference algo-
rithms with respect to feature selection. When restricted to low SNR or low sample sizes (cases 2
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Table 2. Table of summed deviation in selection accuracy from oracular performance. (Top) Case 1 signal conditions (SNR 10,
n/p ratio 16). (Middle) Case 2 Signal Conditions (SNR 1, n/p ratio 4). (Bottom) Case 3 Signal Conditions (SNR 5 and n/p ratio
2). (Left column) All model densities. (Right column) Sparse models only. Best performers are highlighted in bold.

Case 1, All Densities

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 27.000 19.228 25.214 14.483 11.964
Lasso 23.867 14.634 27.151 5.840 5.982
McpP 23.408 4.325 6.948 4.717 5.220
SCAD 16.947 3.233 8.051 3.534 4.039
Uol Lasso 22.163 5.659 33.795 5.020 5.134

Case 2, All Densities

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 22615 22473 18.382 13.092 13.581
Lasso 22495 19.004 19.524 16.708 14.185
McpP 26411 13.521 11.869 14.382 14.671
SCAD 26453 11.789 12.003 12.628 12.266
Uol Lasso 23.366 17.505 27.575 15.959 13.351

Case 3, All Densities

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 18.290 26.087 15.339 10.420 12.985
Lasso 19.424 19.653 17.955 17.632 15.227
MCP 23.590 16.526 14.600 17.211 18.156
SCAD 21.125 15.241 14.119 15.007 15.873
Uol Lasso 22.030 19.866 24.080 17.420 15.268

Case 1, Sparse Models Only

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 35.139 25.146 33.098 17.533 15.371
Lasso 30.622 18.402 35.220 4.601 5.046
McCP 30319 1.121 751 1.033 2.184
SCAD 21.267 0.815 9.361 0.728 1.756
Uol Lasso 29.558 3.290 44522 3.077 3.396

Case 2, Sparse Models Only

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 29.940 18.539 25.556 16.691 13.503
Lasso 26.464 14.120 22.749 9.593 8.965
McpP 30.789 3.879 5.971 4.659 8.013
SCAD 31.579 3.485 8.154 4.213 6.434
Uol Lasso 27.151 7.287 36.588 9.150 7.024

Case 3, Sparse Models Only

Selection Method

Estimator AIC BIC CV/R? Emp. Bayes gMDL
EN 22.596 15.357 21.305 13.346 11.668
Lasso 20.213 10.948 18.151 8.921 8.636
Mcp 24.455 5.059 6.754 6.695 11.546
SCAD 22.070 5.020 9.135 5.884 9.905

Uol Lasso 21.729 7.765 31.733 9.615 7.832
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and 3, Tables 2 middle and bottom, left), these strategies remained amongst the best performing,
with cross-validated SCAD/MCP exhibiting robust selection in case 2, the Elastic Net with empir-
ical Bayesian selection performing the best in case 3. When restricting to sparse models only, false
positive control becomes paramount, and the Elastic Net was no longer competitive. Instead, the
SCAD with BIC or empirical Bayes is near optimal in case 1 (Table 2, top right), and still the
best performing in cases 2 and 3 (Table 2, top and middle, right). MCP exhibited similar per-
formance, with Uol Lasso trailing slightly behind. Thus, in general, the SCAD estimator with BIC
or empirical Bayesian model selection led to the most robust algorithm for feature selection.

5. Discussion
5.1. Connections to prior work

Our numerical work corroborates and extends several results from the statistical literature in a
non-asymptotic setting. We found the frequently employed cross-validated Lasso to be amongst
the worst performing selection strategies. It has been shown that using predictive performance as
a criteria for regularization strength selection with the Lasso leads to inconsistent support recov-
ery (Leng, Lin, and Wahba 2006). A necessary and sufficient condition for asymptotically consist-
ent model selection by the Lasso is for the irrepresentable condition to hold (Zhao and Yu 2006).
In the non-asymptotic setting of this study, we find that the parameter o is a more useful modu-
lator of selection accuracy, and that the irrepresentable constant of Zhao and Yu (2006) tracks
the selection accuracy of Lasso only insofar as it tracks o (section S5). We find that the SCAD/
MCP and Uol Lasso select model supports more robustly in the presence of correlated design. It
is known that the SCAD/MCP do not require any strong conditions on the design matrix for
oracular properties to hold (Loh and Wainwright 2017), and neither does the BoLasso (Bach
2008), upon which the selection logic of Uol is partially based on. Our work demonstrates that
the choice of model selection criteria is as important as the choice of estimator to achieve good
selection accuracy. The model selection criteria we have considered can all be categorized as
penalized likelihood methods. Cross-validation is known to behave asymptotically like the AIC
(Shao 1997). The magnitude of this complexity penalty can be interpreted as a prior on the model
size. We correspondingly find that the BIC performs best in sparse models, whereas the AIC and
CV perform best in dense models. The tension between the BIC and AIC has been noted in the
literature (Yang 2005). The asymptotic selection consistency of using BIC to select SCAD regular-
ization strength has been noted in Wang, Li, and Tsai (2007). Our numerical investigations reveal
that this remains one of the best extant selection strategies in non-asymptotic settings with mild
correlated variability as well.

The empirical Bayesian and gMDL procedures were devised with complexity penalties nomin-
ally adaptive to the underlying model density. We find that these methods lead to good model
selection performance across model densities, but only in ideal signal conditions (i.e., case 1) and
low design matrix correlations. There is therefore possible room for methodological development
of adaptive complexity penalties. We leave this for future work.

5.2. Best practices in real data

Proper model selection is essential for interpretability of parametric models. While sufficient con-
ditions for model selection are available in the literature, they do not provide actionable results
for the practitioner in real data. Our extensive numerical simulations reveal best practices. Non-
convex optimization estimators such as the SCAD and MCP generically perform better at selec-
tion than the Lasso and Elastic Net when the underlying model is sparse. This in line with both
prior numerical work and the understanding that asymptotically, these estimators are oracular
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selectors (Fan and Li 2001; Zhang 2010). Our work reveals that this performance gap remains
even as design matrices become increasingly correlated. While the SCAD and MCP are noncon-
vex problems, recent work has shown that the statistical performance of all stationary points is
nearly equivalent (Loh and Wainwright 2015). Furthermore, development of the optimization
algorithms for these estimators has matured to the point where regularization paths for the
SCAD and MCP can be computed in the same order of magnitude of time as the Lasso/Elastic
Net (see for e.g., Zhao, Liu, and Zhang 2018). Our work provides further motivation for the
adoption of these algorithms. The Uolj,s, algorithm has selection performance competitive with
MCP and SCAD in many cases. Furthermore, as we show in section S4, the OLS-bagging proced-
ure used in coefficient estimates in Uol leads to lower bias/variance estimates than SCAD/MCP.

There is a tradeoff between false positive and false negative control achieved by model selec-
tion strategies. False positive control is largely insensitive to the degree of design correlation.
Practitioners seeking tight control of false negatives in model selection may be inclined to use the
Elastic Net estimator. The presence of a number of fairly generic o transition points after which
selection accuracy degrades, and false negative & positive magnitude inflates suggests a heuristic
criteria that could be estimated from the sample covariance. Specifically, combining empirical
estimates of the precision matrix with empirical estimates of B, and ¢* allows one to estimate
o, and therefore have a rough sense of whether selection and estimation performance is likely to
have degraded due to correlated covariates or low signal strength.

6. Conclusions and future work

Our empirical results reveal that the joint choice of sparse estimator and model selection criteria
significantly modulates selection performance. Nevertheless, with the exception of the previously
mentioned (Wang, Li, and Tsai 2007), theoretical results that capture non-asymptotic behavior of
regularization strength selection via specific model selection criteria are lacking.

We found no inference algorithm to be dominant across underlying model density in the pres-
ence of correlated covariates, including the nominally adaptive empirical Bayes and gMDL selec-
tion criteria. Whether these reflect information theoretic constraints or methodological gaps is a
potentially avenue of future work. We also believe our observation of a universal o-transition
point across false negatives and coefficient distortion to be novel. This phenomena is reminiscent
of the well-known reconstructability transition in compressed sensing as a function of noise level
and sampling density (Donoho, Maleki, and Montanari 2009). An average case analysis of coeffi-
cient support distortion as a function of o or other spectral parameters of the design matrix will
be the topic of future work.
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