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Experimental structure determination can be accelerated with artificial

intelligence (AI)-based structure-prediction methods such as AlphaFold. Here,

an automatic procedure requiring only sequence information and crystallo-

graphic data is presented that uses AlphaFold predictions to produce an

electron-density map and a structural model. Iterating through cycles of

structure prediction is a key element of this procedure: a predicted model rebuilt

in one cycle is used as a template for prediction in the next cycle. This procedure

was applied to X-ray data for 215 structures released by the Protein Data Bank

in a recent six-month period. In 87% of cases our procedure yielded a model

with at least 50% of C� atoms matching those in the deposited models within

2 Å. Predictions from the iterative template-guided prediction procedure were

more accurate than those obtained without templates. It is concluded that

AlphaFold predictions obtained based on sequence information alone are

usually accurate enough to solve the crystallographic phase problem with

molecular replacement, and a general strategy for macromolecular structure

determination that includes AI-based prediction both as a starting point and as a

method of model optimization is suggested.

1. Introduction

The development of artificial intelligence (AI)-based methods

for the prediction of protein structures has been widely

recognized as a turning point in structural biology (Baek et al.,

2021; Jumper et al., 2021; Callaway, 2022; Thornton et al.,

2021). Predictions using AlphaFold (Jumper et al., 2021),

RoseTTAFold (Baek et al., 2021) and related methods (Lin et

al., 2022) are far more accurate than previous generations of

predictions (Kryshtafovych et al., 2021), enabling large-scale

analyses of protein function without requiring experimental

structural information for each protein (van Breugel et al.,

2022; Thornton et al., 2021). Nevertheless, there has been

considerable discussion of the limitations of AI-based models

(Moore et al., 2022; Shao et al., 2022).

The potential for using AlphaFold predictions to facilitate

structure determination by X-ray crystallography and cryo-

EM has been rapidly appreciated in the structural biology

community (Akdel et al., 2022; Barbarin-Bocahu & Graille,

2022; Bond & Cowtan, 2022; Chen et al., 2022; Gong et al.,

2023; McCoy et al., 2022; Medina et al., 2022; Moi et al., 2022;

Stsiapanava et al., 2022). AlphaFold predictions made in the

CASP14 blind test of structure prediction were shown to be

effective as starting models for X-ray structure determination
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using the molecular-replacement method (McCoy et al., 2022).

AlphaFold models and the accompanying predicted aligned

error (PAE) matrices can be used to identify domain bound-

aries in proteins (Oeffner et al., 2022) that could be helpful in

the design of trimmed versions of proteins suitable for crys-

tallization (Lorimer et al., 2009; Perrakis & Sixma, 2021).

AlphaFold predictions can include information from a

template, and we recently showed that a prediction based on a

template can be more accurate than either a sequence-based

prediction or the template itself (Terwilliger et al., 2022). This

property allows iterative improvement of modeling and

AlphaFold prediction, and here we describe an automated

procedure that can accomplish this using X-ray crystallo-

graphic data.

2. Methods

2.1. Data and models from the PDB

We chose models from the PDB with the goal of obtaining a

representative set of challenging structures determined after

the training of AlphaFold (which used structures through

April 2018). We selected all 215 unique protein-containing

structures determined by the single-wavelength anomalous

diffraction (SAD) method over a six-month period (release

dates from 8 December 2021 to 29 June 2022). Crystallo-

graphic data for each model were obtained from the PDB. The

X-ray data typically included the anomalous data used to solve

the structures, but we did not use the anomalous information

(Bijvoet pairs of reflections were averaged). Some structures

contained nonprotein contents, such as waters, ions, small

molecules, RNA, DNA and covalent modifications. All of

these were removed from the deposited models and were not

considered in our analyses. For structural comparisons, protein

chains from deposited models were superimposed on our

automatically generated models using crystallographic

symmetry operations (with origin shifts, as appropriate).

2.2. Automatic structure determination with iterative
AlphaFold prediction

Our procedure for automated structure determination

consists of cycles of AlphaFold prediction, trimming and

splitting predictions into compact domains, molecular

replacement (in the first cycle), morphing full-length predic-

tions onto the model obtained from molecular replacement or

from a previous cycle, refinement, model rebuilding and

trimming. These steps are described in detail below. At least

three cycles are carried out, and the process is terminated

when the rebuilt models for subsequent cycles have an overall

r.m.s.d. to the previous model of less than 0.25 times the high-

resolution limit of the X-ray data (controlled by the parameter

cycle_rmsd_to_resolution_ratio). The rationale for

scaling this to the resolution is that lower resolution structures

are anticipated to have larger coordinate errors. The entire

process is completely automated and can be carried out with

the Phenix PredictAndBuild tool. We used default parameters

in all of the structure redeterminations described here.

2.3. AlphaFold prediction

We used a local installation of AlphaFold2 (Baek et al.,

2021), configured as a server using software from ColabFold

(Mirdita et al., 2022), to carry out AlphaFold predictions using

the simplified methods available in Phenix (Liebschner et al.,

2019). The sequences used in prediction were obtained from

the sequence file supplied by the PDB for the corresponding

structure. An alternative to using a local installation is avail-

able in Phenix; this alternate method uses Google Colab with

a Phenix script to carry out predictions.

Predictions without templates were carried out using

random seeds to initiate five AlphaFold predictions; the

prediction with the highest average pLDDT (confidence)

value was kept. Predictions with templates were carried out in

the same way but supplying a template. Templates consisted of

the rebuilt model obtained in a previous cycle of prediction

and rebuilding. Two forms of templates were used: one

containing just main-chain and C� atoms and one including all

side-chain atoms. For shorter chains both forms of the

template were used (ten total predictions) and for longer

chains only the main-chain and C� atoms were included. This

limitation was due to our server and the uploading method for

template files: side-chain-containing templates packaged for

uploading could not have more than 65 536 characters. This

limitation is not present when using the Phenix Colab script to

carry out the calculation.

2.4. AlphaFold model preparation

We used the Phenix tool process_predicted_model (Oeffner

et al., 2022) to trim residues that had lower than moderate

confidence (pLDDT < 70), to convert pLDDT values to

estimated atomic displacement parameters and to auto-

matically split predicted models into domains.

2.5. Molecular replacement

We used Phaser (McCoy et al., 2007) to carry out default

molecular-replacement (MR) analyses with X-ray data and

the processed AlphaFold predictions. The number of copies of

each prediction used in MR was the number of copies of the

corresponding sequence in the deposited sequence file. During

MR, several values of the high-resolution limit were auto-

matically tried and the one that yielded either a result

reported as convincing by the Phaser software (McCoy et al.,

2007) or the highest value of the log-likelihood gain was used.

The high-resolution limit of the data used after molecular

replacement was the resolution obtained from the PDB entry.

After the first cycle, the trimmed rebuilt model from the

previous cycle was used in place of a model from MR.

2.6. Morphing predicted models onto rebuilt models

Full-length predicted models were morphed (distorted)

to match the model obtained from MR using the Phenix

superpose_and_morph tool (Terwilliger et al., 2022) and the

direct_morph keyword. This tool automatically identifies

parts of the predicted model that match the target model,
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superimposes these parts and then smoothly deforms the

model between the superposed parts. This morphing proce-

dure creates plausible models when the required distortion is

small (in the range of a few Å). However, when the distortion

is large the models can be highly implausible.

2.7. Refinement

The phenix.refine tool (Afonine et al., 2012) was used for

refinement with default values for all parameters, except that

the checks for overlapping atoms and long bond lengths were

disabled to allow refinement to proceed even if an implausible

model was encountered.

2.8. Model rebuilding

The models obtained after MR and refinement were auto-

matically rebuilt with the Phenix AutoBuild tool (Terwilliger

et al., 2008), which carries out iterative crystallographic

rebuilding, refinement and density modification to yield a

rebuilt model and a density-modified map. The resulting

density-modified map was then used in a second stage of

model rebuilding in which the model obtained from MR and

refinement was rebuilt using real-space Phenix tools devel-

oped for models from cryo-electron microscopy experiments

(Terwilliger et al., 2022). After carrying out these two

approaches, the model that had the lowest free R value was

used in subsequent steps.

2.9. Model trimming to match maps

We trimmed the rebuilt models and docked AlphaFold

predictions to provide hypotheses for further structure-

determination steps that only include the parts of the model

that are likely to be correct. The basis for choosing which

segments (sequential sets of residues) in a model to keep

included map–model comparisons and, for predicted models,

the predicted model confidence. Map–model comparisons

consisted of comparing each residue in a model with the

corresponding density map (typically the density-modified

map from model rebuilding) and calculating the local map–

model correlation (the correlation between map values and

those in a map calculated from the model). Predicted model

confidence consisted of the pLDDT values from AlphaFold

prediction.

The first trimming step consisted of removing segments in

which the local map correlation and (for predicted models) the

pLDDT values are below their corresponding cutoff values.

The map correlation and the pLDDT values were smoothed

over a window of typically ten residues (controlled by the

parameter minimum_domain_length). The cutoff values

are calculated from the mean and standard deviation of the

highest half of the correlation (or pLDDT) values, where the

cutoff is typically the mean minus three times the standard

deviation (controlled by the parameter cc_sd_ratio).

The second trimming step consisted of removing residues at

the segment ends that have a map correlation and a smoothed

map correlation below a higher cutoff (typically the mean

minus twice the standard deviation, controlled by the para-

meter cc_sd_ratio_end). Segments that are shorter than

the length of the smoothing window are then removed.

Finally, segments with a much lower mean map correlation

than most segments are removed. This is achieved by calcu-

lating the average map correlation for each segment. The

mean and standard deviation of the top half of these average

map correlations are then calculated. A cutoff is then calcu-

lated as the higher of the mean correlation scaled by a

constant with a typical value of 0.64 (given by the square of the

parameter reasonable_cc_ratio) and the mean corre-

lation minus a constant with a typical value of 0.3 (given by

twice the parameter reasonable_cc_di). All segments

with a mean map correlation below this cutoff are removed

and a new model is created from all remaining segments.

2.10. Construction of docked AlphaFold predictions

In order to create a docked model in which each chain was

identical to an AlphaFold prediction, the chains in a rebuilt

model were used to guide the positioning of AlphaFold

predictions. These docked predicted models are not always

geometrically plausible, as the AlphaFold predictions are not

necessarily the same as the corresponding structures. Rather,

these docked predicted models are a convenient vehicle for

managing the AlphaFold predictions for a structure, and in

some cases they are a reasonable representation of the

structure.

2.11. Model comparisons and map–model correlations

We compared models that were not previously superposed

using least-squares superposition and calculation of r.m.s.

differences in C� positions with the Phenix (Liebschner et al.,

2019) tool superpose_pdbs. Models that were already placed in

appropriate crystallographic positions were compared using

automatic mapping of positions based on space-group

symmetry using the Phenix resolve tool with the compare_

pdb keyword.

Map–model correlations were calculated with the Phenix

tool get_cc_mtz_pdb, which maximizes local map–model

correlation by (i) adjusting the radius used for masking the

map around each atom and (ii) modifying side-chain atomic

displacement factors by adding an incremental value for each

atom beyond the C� atom. The correlations reported are

global (using the entire map).

2.12. Map and model display

Figures were prepared with ChimeraX (version 1.2.5;

Pettersen et al., 2021).

2.13. Data and code availability

Input data for deposited models were taken from the

Protein Data Bank. All models are downloadable from the

PDB with links such as https://files.rcsb.org/download/7tzp.pdb

or (for larger models that are not available in this format)

https://files.rcsb.org/download/7tzp.cif. We used the Phenix

tool fetch_pdb to download models and crystallographic data

for each structure.
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Predicted models, rebuilt models and density-modified

map coefficients are available at https://phenix-online.org/

phenix_data, along with a spreadsheet that contains all of the

raw data and analyses described here. The directory

terwilliger/alphafold_crystallography_2022/

contains a README file describing the contents of the site,

the spreadsheet and a data/ directory with one compressed

archive for each structure containing models and crystallo-

graphic data files. This directory also contains a compressed

archive (alphafold_crystallography.tgz) containing

all of the data and all of the scripts used to create the

spreadsheet.

All code for the Phenix version of the AlphaFold2

Colab is freely available on GitHub at https://github.com/

phenix-project/Colabs. All code for Phenix is available at

https://phenix-online.org.

3. Results

3.1. Crystallographic structure determination using iterative
AlphaFold prediction and rebuilding

Our iterative procedure for macromolecular structure

determination by X-ray crystallography uses AlphaFold

predictions in an initial structure-solution cycle, followed by

cycles of AlphaFold prediction and model rebuilding in which

rebuilt models from one cycle are used as templates for

prediction in the next (Terwilliger, 2003; McCoy et al., 2007;

Terwilliger et al., 2022; see Section 2). This procedure requires

processed crystallographic data (structure-factor amplitudes

and their uncertainties, space group and unit-cell dimensions

for the crystal, and the resolution of the data) and information

about the sequences of the macromolecules that are present

in the crystal. It produces an optimized (density-modified;

Terwilliger, 2000) electron-density map and a model based on

that map. During the procedure the map itself improves as the

model improves, in contrast to the related workflow for single-

particle cryo-electron microscopy (Terwilliger et al., 2022),

where the map does not change. The approach can be used if

the majority or all of a structure consists of protein. If other

components are present, such as RNA/DNA, only the protein

part of the resulting map is interpreted.

3.2. Determination of challenging structures using AlphaFold
prediction

The method of molecular replacement (Rossmann, 1990), in

which an initial model that is similar to the structure to be

determined is used as a hypothesis for the actual structure, has

been applied in about 80% of recent macromolecular crystal

structure determinations (Wang et al., 2017). Once the orien-

tation and location of the initial model have been found, the

model and density map are usually improved by cycles of map

calculation alternating with map representation as an atomic

model with restrained geometry (Perrakis et al., 1999). These

procedures work best if the initial models are within about

1–2 Å (r.ms.d. of C� atoms) over about 50% of the structure

(Abergel, 2013). Excitement about AlphaFold predictions in

the crystallographic field comes from the observation that

such predictions may generally be accurate enough to provide

the necessary starting point for molecular replacement, largely

removing the need to use anomalous scattering or other

experiments to obtain crystallographic phases (McCoy et al.,

2022; Millán et al., 2021; Akdel et al., 2022).

Here, we use an automated procedure to test the iterative

use of AlphaFold predictions in macromolecular crystallo-

graphy. To recreate a situation where challenging new struc-

tures are being determined using AlphaFold predictions, we

selected structures obtained with anomalous scattering, an

approach that is typically used when molecular replacement

is expected to fail, but we did not include the anomalous

diffraction information. For entries in the Protein Data Bank

(wwPDB Consortium, 2018) released in the six-month period

from 8 December 2021 to 29 June 2022 this selection yielded

215 unique structures with resolutions ranging from 1.0 to

4.6 Å.

We applied our iterative procedure for AlphaFold predic-

tion and model improvement to each of the 215 deposited data

sets. In seven cases the initial molecular-replacement step did

not yield any solution and the analysis was not continued. For

the remaining 208 data sets our procedure generated density-

modified (Terwilliger, 2000) electron-density maps and models

interpreting these maps. To identify which maps and models

were at least partially correct, we compared the density-

modified electron-density maps with model-based (Fcalc) maps

calculated from the corresponding deposited structures. Using

a conservative minimum map correlation of 0.5 as a threshold

(Oeffner et al., 2013), 187 of 215 analyses (87%) were

successful and the remaining 28 (including the seven that

failed in molecular replacement) were unsuccessful.

Fig. 1(a) shows the distribution of map–model correlation

values. For the successful cases, the average map correlation

was 0.84. The solid bars in Fig. 1(b) illustrate the completeness

of these structures, as measured by the percentage of C� atoms

in deposited models matching those in the rebuilt models

within 2 Å (Terwilliger et al., 2022). The average completeness

was 90% and all but one of the models were at least 50%

complete. For the unsuccessful analyses (open bars), the

completeness of the models was much lower (average of 20%).

In a few of the successful instances the final structures

contained domains that matched the deposited model but the

connectivity between the domains was incorrect (for example

PDB entry 7e1d, which is a domain-swapped dimer; Bennett et

al., 1994). We included all matching parts by using space-group

symmetry-related copies of each chain from the deposited

models in the comparisons. The overall high success rate

shows that in most cases AlphaFold predictions are accurate

and complete enough to be used as starting models in

macromolecular crystallography.

AlphaFold provides residue-level confidence estimates

including a predicted local difference distance test (pLDDT)

associated with each amino-acid residue (Jumper et al., 2021).

Here, we refer to residues with pLDDT values of 90 or higher

as high confidence and those with values of 70 or higher as

moderate-to-high confidence (Jumper et al., 2021). The success
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of automated structure determination using AlphaFold

prediction was strongly dependent on the percentage of

moderate-to-high confidence residues. For successful cases, an

average of 90% of residues in the AlphaFold predictions were

predicted with moderate-to-high confidence, and the smallest

percentage of moderate-to-high confidence residues was 30%.

For the 28 unsuccessful cases, the average percentage

predicted with moderate-to-high confidence was much lower

(50%).

We assessed the similarity of predicted models and the

corresponding deposited structures in more detail by super-

imposing the models, removing residues with low confidence

(pLDDT < 70) and further removing residues where the

r.m.s.d. (smoothed with a window of ten residues) was greater

than 3 Å. We then noted the r.m.s.d. between matching C�

atoms and the coverage, defined here as the percentage of

residues in the deposited model that were matched by the

predicted model. For successful cases, the average C� r.m.s.d.

was 1.2 Å and the average coverage was 89%. Such values are

normally associated with success in molecular replacement

(Abergel, 2013). For unsuccessful cases the average r.m.s.d.

was 2.8 Å, which was much too high to expect success in

molecular replacement, and the average coverage was 50%, a

borderline value for success. Overall, 19 of the 28 failures had

a coverage less than 50%, an r.m.s.d. over 2 Å, or both.

When determining a new structure, metrics that do not

depend on knowing the true structure are important for

evaluating whether structure determination has been

successful. Fig. 1(c) shows two metrics that are available after

structure determination and that are independent of knowl-

edge of the true structure (McCoy et al., 2007). Log-likelihood

gain (LLG) scores reflect the confidence of placing the model

and free R values reflect the cross-validated agreement of the

model with crystallographic data after model rebuilding and

refinement. The median LLG score for successful structure

determinations with AlphaFold predictions was about 1000,

while for unsuccessful cases the median was 80. We note that

in a large-scale test of molecular replacement with homology

models from the PDB (Oeffner et al., 2018) only 7% of cases

had an LLG score over 1000 (median LLG score of 270). Our

procedure using AlphaFold predictions therefore led to much

higher LLG scores than are typically obtained with homology

models. The median free R value for successful cases was 0.30,

a value that is normally associated with a largely correct but
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Figure 1
Structure redeterminations using AlphaFold predictions obtained during automated structure redeterminations for the 208 analyses that yielded a
molecular-replacement solution. (a) Correlation of maps calculated from deposited models to density-modified maps (Terwilliger, 2000). (b) Percentage
of C� atoms in redetermined models within 2 Å of a C� atom in deposited models after applying overall space-group-specific origin shifts and including
space-group symmetry-related copies in the comparison. Successful cases are shown as solid bars and unsuccessful cases are shown as open bars. (c) Log-
likelihood gain in molecular replacement and free R values for automatic structure analyses. Unsuccessful cases are indicated by open circles. (d) Free R
values as in (c) but shown as a function of the high-resolution limit of the X-ray data.



unfinished structure (a structure that does not contain waters,

ligands or any components other than protein). Fig. 1(c)

illustrates that most unsuccessful solutions had free R values

above 0.5, log-likelihood gain scores below 100, or both,

suggesting that the free R value and log-likelihood gain can

be used effectively to evaluate potential solutions in new

structure determinations using this procedure, as is standard

practice (McCoy et al., 2007). Fig. 1(d) displays the free R

values as a function of the high-resolution limit of the X-ray

data and illustrates that the range of free R values depends

slightly on the resolution of the data.

We evaluated whether our procedure may have yielded

partially correct solutions for some of the cases that we

considered unsuccessful. For example, the model obtained by

automated structure determination for PDB entry 7f05 had a

map–model correlation of just 0.24 and thus was considered

not successful. Supplementary Fig. S1(a) shows that much of

the rebuilt chain B for this structure (dark brown) very closely

matches chain A in the deposited model (symmetry copy from

the deposited model shown in light blue). However, the rest of

the rebuilt model does not match the deposited structure.

Supplementary Fig. S1(b) shows that the density-modified

map is also quite clear. This example shows that even an

unsuccessful structure can contain some correct information.

Furthermore, although our procedure did not complete the

structure, other approaches such as repeating molecular

replacement using this one chain as a starting point (McCoy et

al., 2007) might well do so.

3.3. Iteration of AlphaFold prediction and model
optimization

Our procedure for automatic structure determination

iterates through AlphaFold prediction, using the rebuilt chains

obtained at the end of one cycle of iteration as templates for

AlphaFold prediction in the next. In this procedure, the map

and model quality can improve at two stages. Firstly, the new

AlphaFold prediction using the previously rebuilt model as a

template can yield an improved predicted model (Terwilliger

et al., 2022), and secondly, rebuilding can improve both the

model and the map (Perrakis et al., 1999). Iteration is carried

out until the change in the model from one cycle to the next is

small. As models are not necessarily improved by rebuilding,

they are evaluated based on their free R value, i.e. they are

kept if the free R value decreases.

Fig. 2 shows this procedure applied to PDB entry 7oa7

(Shahin et al., 2022), which includes X-ray data to a resolution

of 1.45 Å. This figure follows the models and their fit to the

map through two cycles of the procedure. The left-hand

column shows ribbon overviews of superpositions onto the

deposited model PDB entry 7oa7 (always in cyan). The two

right-hand columns are close-ups superimposed on the map at

the relevant stage: the central column (Figs. 2b, 2e and 2h)

shows the progression for a region that started out matching

the deposited structure quite well and the right-hand column

(Figs. 2c, 2f and 2i) shows the progression for a region that

started out matching quite poorly. For these two right-hand

columns the predicted models are in magenta and the rebuilt

models are in dark blue, and time moves vertically downward.

The top row shows the initial no-template prediction

(magenta) and the map output from molecular replacement.

The central row shows the rebuilt (dark blue) model and the

map as rebuilt in cycle 1. The bottom row shows the cycle 2

predicted model (magenta) that was given the rebuilt cycle 1

model as a template and the cycle 2 map.

An initial AlphaFold prediction obtained using the

sequence but no structural templates is shown in Fig. 2(a).

Some parts of the predicted model (magenta) match the

deposited model (cyan) quite closely, such as the domain on

the right side of Fig. 2(a) and the region near Ile166 and

Val193. Other parts, such as the region near Tyr21 and Pro141,

have different backbone conformations. Still other parts, such

as much of the domain on the left side of Fig. 2(a), differ by a

combination of local conformations and overall rotation and

translation. Overall, the predicted model differs from the

deposited model by a C� r.m.s.d. of 2.9 Å. The initial density

map obtained after molecular replacement is quite clear in the

region of Ile166 and Val193 where the predicted model

matches the deposited model closely (Fig. 2b). In contrast, the

map is less clear and does not match the predicted model in

the region of Tyr21 and Pro141 where the deposited and

predicted models differ (Fig. 2c).

After automated crystallographic rebuilding starting with

the predicted model shown in Fig. 2(a), the rebuilt model

(dark blue) improves substantially (Fig. 2d); the overall C�

r.m.s.d. to the deposited model is 0.1 Å and 90% of C� atoms

in the deposited model are within 2 Å of those in the rebuilt

model. The density map is also considerably improved (Figs. 2e

and 2f) and matches the rebuilt model quite closely in the

region near Ile166 and Val193 and, most notably, in the region

near Tyr21 and Pro141 where the predicted and deposited

models differed in the previous step.

Using the rebuilt model (Fig. 2d) as a template, a new

AlphaFold prediction was obtained that is very similar to the

deposited model (Fig. 2g; overall C� r.m.s.d. of 0.5 Å) and is

quite different from the initial AlphaFold prediction (Fig. 2a).

Figs. 2(h) and 2(i) show that the template-based prediction

matches the density-modified map both in the region near

Ile166 and Val193 where the initial predicted model matched

the deposited model and in the region near Tyr21 and Pro141

where it did not. The template-based prediction is even more

complete than the template, with 99% of residues in the

deposited model matched within 2 Å by a C� atom in the

prediction. (The model used as a template had only 90%

matched residues.) Note that both the polypeptide backbone

and the side chains in the template-based prediction closely

match the density map (Fig. 2i) and corresponding side-chain

positions in the rebuilt model (compare Figs. 2f and 2i).

Two additional cycles of rebuilding based on the model in

Fig. 2(c) resulted in a 95% complete model, i.e. where 95% of

the C� atoms in the deposited model matched those within 2 Å

in the rebuilt model, with an overall C� r.m.s.d. of 0.1 Å.

In summary, although the initial AlphaFold prediction

obtained for PDB entry 7oa7 was substantially different from
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the deposited model, a structure could be obtained in the first

cycle of our procedure with standard molecular-replacement

and rebuilding procedures. Using the rebuilt model as a

template for AlphaFold prediction, a new prediction was

obtained that was far more accurate than the initial prediction.

Three cycles of iteration for PDB entry 7oa7 led to a nearly

complete model that matched the deposited structure closely

and required approximately 7 h using four processors on a

Linux server.

Although the template-based AlphaFold prediction for

PDB entry 7oa7 is more complete than the rebuilt model, it is

slightly less accurate (C� r.m.s.d. with the deposited model of

0.5 and 0.1 Å for the AlphaFold and rebuilt models, respec-

tively). This is not surprising, as the AlphaFold prediction uses

the experimental data only indirectly (in the form of the

rebuilt model) and has not been adjusted to match the density

map. In a real case, both the rebuilt model and the final

AlphaFold prediction would have utility in subsequent stages

of structure determination, as the rebuilt model is slightly

more accurate and the AlphaFold model is more complete.

Fig. 3(a) shows histograms of free R values in the first and

last cycles of our procedure for all 187 successful analyses. The

free R value decreased with iteration in 88 of 187 cases, and on

average it was reduced from 0.33 to 0.31. Iteration was more

successful when the free R value after the first cycle was poor.

For the 109 cases where the free R value in the first cycle is
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Figure 2
Iterative AlphaFold prediction and model rebuilding with X-ray data for PDB entry 7oa7. (a) Superposition of the AlphaFold prediction without
templates (magenta) and the deposited model (cyan). The region comprising Ile166 and Val193 and the domain on the right are similar in the deposited
and predicted models, while the region of Tyr21 and Pro141 and the domain shown on the left differ between the deposited and predicted models. (b, c)
Close-up views of the AlphaFold prediction without templates superimposed on the density map obtained after molecular replacement and refinement.
The good region containing Ile166 and Val193 is shown in (b) and the poor region containing Tyr21 and Pro141 is shown in (c). (d) Superposition of the
deposited model and the model obtained by molecular replacement and automated model rebuilding using the AlphaFold prediction shown in (a) (dark
blue). (e, f ) Close-up of the model in (d) and the density-modified map obtained from the first cycle of automated model rebuilding. (g) Superposition of
the deposited model and the superposed AlphaFold prediction obtained using the model in (b) as a template. (h, i) Close-up of the predicted model in (g)
and the density-modified map obtained in the second iteration of model rebuilding.



worse than 0.30, 66 were improved by iteration, while for the

78 cases where the free R value was better or equal to 0.30

only 22 were improved. Presumably this is because the

procedures used here do not generally yield free R values

much better than 0.30.

Fig. 3(b) shows the r.m.s.d. between C�-atom coordinates in

AlphaFold predictions for each structure and those in the

corresponding chains of the deposited models. Most points

are below the diagonal, indicating that the final AlphaFold

prediction was more accurate than the initial prediction. For

the initial AlphaFold predictions the median r.m.s.d. was

1.0 Å, while for the final predictions with templates it was

reduced to 0.7 Å.

Overall, Fig. 3 shows that the agreement of rebuilt models

with experimental data was generally very good at the end of

the first cycle (mean free R of 0.33) and improved slightly with

iteration (mean free R of 0.31). The accuracy of the initial

AlphaFold predictions was also good, and improved

substantially with iteration using rebuilt models as templates.

3.4. Characteristics of rebuilt and predicted models

We examined the geometric characteristics of four sets of

models: initial AlphaFold predictions without templates, final-

cycle AlphaFold predictions that used a template, the final

rebuilt model and the deposited model. Figs. 4(a), 4(b) and

4(c) show comparisons between the initial AlphaFold

prediction without templates and the final rebuilt model, and

Figs. 4(d), 4(e) and 4( f) show comparisons between the

AlphaFold predictions with templates and the deposited

model. Fig. 4(a) shows the distribution of percentages of

residues in favored Ramachandran conformations (Williams et

al., 2018). The AlphaFold predictions (open bars) have a mean

percentage of 98%, while the rebuilt models (solid bars)

average to 96%. The percentages of rotamer outliers

(Williams et al., 2018; Fig. 4b) are 0.3% and 2% for AlphaFold

(open bars) and rebuilt models (solid bars), respectively.

Clashes between nonbonded atoms were somewhat worse in

the AlphaFold predictions [Fig. 4c; open bars, mean clashscore

(Chen et al., 2010) of 29] than for rebuilt models (solid bars,

mean clashscore of 10). Fig. 4(d) shows the percentage of

favored Ramachandran conformations for deposited models

(closed bars, mean of 97%) and AlphaFold predictions using

templates (open bars, mean of 98%). Fig. 4(e) shows rotamer

outliers for deposited (closed bars, mean of 2%) and Alpha-

Fold predictions with templates (open bars, 0.3%), and

Fig. 4( f) shows clashscore values for deposited models (closed

bars, mean of 6) and AlphaFold predictions with templates

(open bars, mean of 27). Overall, the AlphaFold predictions

(with or without templates) have somewhat more favorable

main-chain Ramachandran conformations and the fewest

rotamer outliers of the four sets of models, while the deposited

models have the best clashscore values.

4. Discussion

Our analysis shows that AlphaFold predictions obtained based

on sequence information alone are usually accurate enough to

solve the crystallographic phase problem with molecular

replacement. As we have shown previously, partially complete

rebuilt models, such as those obtained by automatic model

building, can be used effectively as templates to guide subse-

quent AlphaFold predictions, and the resulting predictions can

be more accurate than either the template or predictions made

without templates (Terwilliger et al., 2022). Finally, we find

that if a relatively accurate model is used as a template for
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Figure 3
Iterative AlphaFold prediction and model rebuilding with X-ray data. (a) Free R values for the rebuilt model after the first (open bars) or last (closed
bars) iteration of prediction and rebuilding (using the cycle with the lowest free R value as the last iteration). (b) R.m.s. differences between the first
chain in each deposited model and the corresponding initial AlphaFold predictions (carried out without templates at the beginning of the first cycle;
abscissa) and final AlphaFold predictions (carried out with templates in the last cycle; ordinate). One PDB entry (7dz9) is not shown as no rebuilt model
was obtained for the first chain in the PDB entry so that the AlphaFold models in each cycle were the same. The inset includes nine cases that are not
shown in the main panel where the initial r.m.s.d. was greater than 3 Å.



AlphaFold prediction, the resulting predicted model can

maintain both the overall conformation of the template and

the details of side-chain conformations.

4.1. Strategy for crystal structure determination using
template-guided AlphaFold prediction

These observations suggest how the overall strategy for

macromolecular crystal structure determination can be revo-

lutionized with AI-based predictions. In this new strategy,

AlphaFold predictions are considered to be hypotheses for the

actual structure. These predictions have confidence measures

reflecting the expected accuracy for each residue in the

prediction. Initially, the information available for structure

prediction consists of the sequence of each chain and multiple

sequence alignments based on these sequences. As structural

information is accumulated, new predictions are made that

incorporate this information.

This new strategy for macromolecular crystal structure

determination starts at the planning stage and continues

through the stage of obtaining a final model. In the planning

stages of an experiment, confidence measures for AlphaFold

predictions can be used to assess whether predicted models

obtained using sequence alone will be useful as starting points

for structure determination. Also, the AlphaFold predictions

can be used to design trimmed versions of a macromolecule

that can be successfully crystallized (Perrakis & Sixma, 2021).

To begin structure solution, AlphaFold predictions,

trimmed to remove low-confidence regions, can be used as

search models in molecular replacement, with a high prob-

ability of yielding a molecular-replacement solution that is at

least partially correct.

As in a conventional structure-determination workflow, the

next stage consists of refinement of the molecular-replacement

solution, followed by iterations of map calculation, density

modification and model rebuilding. This stage is typically

carried out by existing automatic procedures that can improve

both the model and the accuracy of the density maps (Perrakis

et al., 1999). If there are major components of the structure

that are not protein (i.e. RNA or DNA), these components

would need to be built based on the density map, yielding a

more complete model and an improved density map as well. In

our procedure, such additional components are automatically

used in subsequent cycles.

Once an improved model has been obtained, AI-based

prediction can be used again. This time, a working model is

used as a template to guide AlphaFold prediction, as

demonstrated here. This step can be thought of as a method of

model optimization using AlphaFold. The working model

guides AlphaFold prediction, yielding a prediction that has

information from the working model but potentially with

improved geometry or a more accurate overall conformation.

This template-guided AlphaFold prediction can be carried out

with or without information from multiple sequence align-

ments. The optimized models obtained in this way can be quite

accurate, but as they are obtained without direct use of

experimental information they may not exactly match the

density map at this point.

The new set of AlphaFold predictions can then be super-

imposed on corresponding parts of the working model, refined

using experimental data and then considered as new hypoth-
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Figure 4
Geometric and packing characteristics of predicted and rebuilt models. (a) Histogram of the percentage of residues with ‘favored’ backbone
conformations (open bars, AlphaFold predictions obtained without templates; closed bars, rebuilt models). Calculations for AlphaFold predictions
include residues with a pLDDT of 70 or above. (b) Histograms of rotamer outliers (unlikely side-chain conformations). (c) Histograms of clashscore
(Chen et al., 2010) values. (d, e, f ) As (a, b, c) except that the closed bars represent deposited models and the open bars represent AlphaFold models with
templates (final cycle of iteration, trimmed to remove residues not matching map or with a pLDDT of less than 70; see Section 2).



eses about the structure. It is anticipated that after a typical

application of the procedure described here, both the working

model and the refined new AlphaFold predictions would be

compared with the density map, and a new composite model

incorporating the best parts of each would be created. This

composite model could be used as the starting point for

another iteration of model rebuilding, or if it is sufficiently

complete it could be used as a starting point for adding ligands,

waters and other small molecules and covalent modifications.

If the resolution of the data is high, this model might also be

modified to explicitly add alternate conformations.

This overall strategy for structure determination differs

from long-established procedures at three important steps: (i)

at the planning stage, where AlphaFold predictions can give an

idea of how challenging an experiment will be and where they

can guide the design of crystallization constructs (Perrakis &

Sixma, 2021); (ii) in the initial structure-determination stage,

where trimmed AlphaFold predictions can be used in molecular

replacement (McCoy et al., 2022; Barbarin-Bocahu & Graille,

2022; Akdel et al., 2022); and (iii) in the model-optimization

stage, where template-guided AlphaFold prediction may be

able to improve models continuously in the analysis (Terwil-

liger et al., 2022).

A central part of this overall strategy is making use of the

synergy between model rebuilding and AlphaFold prediction.

Using a model obtained in one cycle as a template for

AlphaFold in the next cycle often leads to improvement in the

AlphaFold prediction, which can result in better model

building and density maps in the next cycle as well. Iteration of

this procedure therefore can yield improved AlphaFold

predictions, final rebuilt models and density maps. According

to our analysis, improvement of AlphaFold prediction is more

pronounced (Fig. 3b) than the improvement in density maps

(as reflected by the free R value; Fig. 3a). This is likely due to

our use of long-established and very effective procedures for

iterative model rebuilding with macromolecular crystallo-

graphic data during the first cycle, so that subsequent cycles

have less effect on the density map and have a larger effect on

the AlphaFold predictions.

4.2. Template-guided AlphaFold prediction in
crystallography and cryo-electron microscopy

We have previously taken advantage of iterating AlphaFold

prediction and model rebuilding in the interpretation of

density maps from cryo-electron microscopy (cryo-EM;

Terwilliger et al., 2022). The synergy between AlphaFold

prediction and model building is similar in the crystallographic

and cryo-EM cases, but not identical. The major difference is

that in the case of crystallographic data the density map can

improve dramatically, while with cryo-EM data the density

map is generally fixed. Although it might be anticipated that

this would result in better AlphaFold predictions and working

models by iteration with crystallographic data, our tests show

that the improvement is similar for the two types of experi-

mental methods. For crystallographic data, the median r.m.s.d.

between AlphaFold predictions and matching PDB entries

was reduced from 1.0 to 0.7 Å by iteration; for cryo-EM

structures, the initial median r.m.s.d. was higher (2.5 Å) but

was reduced proportionally to 1.6 Å by iteration. It seems

possible that the limiting step in both cases may be model

rebuilding, and with recent developments in AI-based map

interpretation (Jamali et al., 2022) this limitation might be

greatly reduced, potentially leading to greater improvement

than already obtained by iteration.

Our tests of an automatic procedure for initial crystallo-

graphic structure determination demonstrate that this overall

strategy is likely to be generally effective, as most of the

challenging structures that we analyzed could successfully be

redetermined.
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