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Abstract 

The role of anastasis in the regeneration of the Drosophila melanogaster wing disc 

By 

Rebecca Cheng 

Apoptosis is the process of highly regulated programmed cell death that utilizes 

caspase-3 to initiate the executioner phase of apoptosis. However, under certain 

circumstances, cells are able to survive its activation through a process called 

“anastasis”. Anastasis has been documented to occur in several cell lines and in 

Drosophila melanogaster. However, the purpose of anastasis and how it is regulated 

are currently unknown. In Drosophila, anastasis can be visualized using a previously 

created biosensor, CasExpress, that permanently marks cells that have survived 

caspase-3 activation with GFP. CasExpress can detect anastasis in Drosophila wing 

disc during normal development. Since Drosophila wing discs have been used as a 

model for studying regeneration, it would be beneficial to use this model to 

investigate if anastasis occurs during tissue regeneration. Using the CasExpress 

system, we found that anastasis occurs during regeneration in response to reaper-

induced tissue damage. To determine if anastasis is required for regeneration, 

overexpression of reaper in cells that have undergone caspase-3 activation  results 

in a decrease in the number of CasExpress positive cells. We found that the removal 

of cells that survive caspase-3 activation during tissue ablation does not manifest in 

a significant change in wing size, possibly due to the incomplete killing of anastatic 

cells. To start unraveling how anastasis is regulated, CasExpress was utilized in 

screening the requirement of several genes known to function in wound healing.  
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Chapter I: Introduction 

1. Background on apoptosis 

 

Programmed cell death is fundamental for embryogenesis, tissue 

homeostasis, and the immune response system. The most well studied form of 

programmed cell death is apoptosis. The word apoptosis originates from the Greek 

word απόπτωση, meaning “falling off”. It was first described in Kerr et al. as a 

mechanism for cell deletion that is a series of morphological changes that takes 

place in two stages [1]. The first stage is comprised of nuclear and cytoplasmic 

condensation and the fragmentation of the cell into multiple membrane bound 

compartments. Additional morphological characteristics have since then been 

defined, these include membrane blebbing, chromatin condensation, and 

chromosomal DNA fragmentation [2]. In the second stage, these apoptotic bodies 

are taken up by phagocytes and then degraded by lysosomal enzymes. This mode 

of elimination provides safe disposal of damaged DNA and prevents an inflammatory 

response [3]. Apoptosis has a key role in the proper development of a multicellular 

organism. The absence of apoptosis in the blastocyst results in the compromise of 

future maturation and can lead to early embryonic death or the formation of 

abnormalities in the fetus [57]. Apoptotic cell death is carried out by a family of 

cysteine-aspartate proteases known as caspases [4]. 

 

Biochemistry of apoptosis-caspases, extrinsic vs intrinsic apoptosis 
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Caspase zymogens are single chain proteins, with an N-terminal prodomain 

that precedes the conserved catalytic site. During activation, the catalytic domains 

are cleaved to form subunits that interact with each other. The activation of 

caspases occurs by a conserved mechanism that is subject to strict regulation, as 

once they are activated, they cleave a wide variety of cellular substrates, thus 

leading to rapid cell death [5]. Caspases with apoptotic roles are classified into two 

categories, initiators and executioners. Initiator caspases are apical caspases in 

apoptosis signaling cascades and are activated in response to death inducing 

stimuli. The pool of initiator caspase substrates is limited and includes self cleavage, 

BCL-2 homology 3 (BH3)-interacting domain death agonist (BID), and executioner 

caspases. Executioner caspases are the proteins that cleave hundreds of different 

substrates and are largely responsible for the phenotypic changes seen during 

apoptosis [6]. Caspases can be activated in two ways- an extrinsic pathway through 

external signals received from receptors on the cell’s membrane or intrinsically 

within the cell [7]. 

 

Mitochondrial role in intrinsic apoptosis 

The extrinsic pathway of apoptosis is activated by binding of death ligands to 

receptors on the surface of the cell. Once activated, these death receptors, such as 

tumor necrosis factor (TNF) related apoptosis inducing ligand receptor (TRAILR) and 

FAS, can activate initiator caspases through dimerization mediated by adaptor 

proteins [8]. On the other hand, the intrinsic pathway of apoptosis can be triggered 

by damage induced by heat shock, radiation, hypoxia, or exposure to cytotoxic 
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drugs. In addition to these stimuli, this pathway can also be induced when there is a 

lack of pro-survival factors such as nutrients or hormones [10]. The intrinsic 

apoptotic death is dependent on the permeabilization of the mitochondrial outer 

membrane [11]. Once the outer membrane is permeabilized, proteins found between 

the inner and outer membranes of the mitochondria are released. These proteins 

include cytochrome C, Smac/DIABLO, and endonuclease G. Once in the cytosol, 

these proteins trigger the execution of cell death by inducing apoptosome formation 

[12]. The apoptosome consists of cytochrome c and Apaf-1 (apoptotic protease 

activating factor 1). Once formed, it will activate initiator caspase-9 to trigger the 

activation of executioner caspases (3, 7, and 6) [58]. Both pathways of apoptosis are 

regulated by a family of proteins called inhibitor of apoptosis proteins (IAP). IAPs 

bind to both executioner and initiator caspases, preventing apoptosis from occurring 

[9]. 

 

Drosophila apoptosis 

Many features of the regulation and execution of apoptosis are highly 

conserved in Drosophila melanogaster, making it a good model organism to study 

apoptosis (Figure1). Drosophila contain all of the canonical apoptosome proteins, 

including orthologs of caspase 9, Apaf-1, and cytochrome c. The caspases in 

Drosophila that are required for normal somatic apoptosis are the initiator caspase 

Dronc and the executioner caspases DrICE and Dcp-1. To negatively regulate 

apoptosis, the drosophila inhibitor of apoptosis protein, Diap1, is expressed and 

inhibits the activation of the caspase cascade by binding to caspase proteins. When 
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a cell receives an apoptotic stimulus, the pro-apoptotic proteins Reaper, Hid, and 

Grim, which function similarly as DIABLO/Smac, trigger the ubiquitin mediated 

degradation of Diap1. The degradation of Diap1 releases Dronc from inhibition, 

allowing it to proteolytically cleave and activate DrICE and Dcp-1, triggering the 

induction of apoptosis [13]. 

 

Biochemical markers of apoptosis 

In Drosophila, deletion of the reaper, hid, and grim genes results in the 

blocking of apoptosis [14]. Apoptosis can be induced through the expression of the 

reaper, hid, and grim [15]. In particular, the reaper gene is transcriptionally activated 

in response to many different types of pro-apoptotic signals. These signals include 

steroid hormones, irradiation, developmental signals, and a variety of cellular 

stresses or injury [15-18]. Reaper, hid, and grim all contain an N-terminal peptide 

motif, IAP binding motif (IBM), which is required for IAP binding and cell killing [19]. 

Proteins with IBM domains, such as Smac/DIABLO and Omi/HtrA2, have also been 

discovered in mammals. Like in Drosophila, these IBM proteins bind to IAP, 

inhibiting them and allowing for apoptosis. However, unlike in Drosophila, the known 

mammalian IBM proteins are ubiquitously expressed in the mitochondria and are 

only released into the cytosol upon the onset of apoptosis [20]. 

 

Figure 1: Molecular mechanisms of apoptosis are conserved in mammals and fruit 

flies. Figure taken from Molecular mechanisms of caspase regulation during 

apoptosis [61]. 
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Role of apoptosis in development and disease 

Proper regulation of apoptosis is critical in development and tissue 

homeostasis. Uncontrolled or excessive apoptosis can lead to degenerative disease 

such as Alzheimer's, whereas lack of cell death is a hallmark of various cancers [21]. 

Understanding apoptosis in the context of diseases is important, as it gives insight 

into how diseases can be treated. The control of cell number in a mature organism is 

through the net result of cell proliferation and cell death signals. If a cell does not 

receive the appropriate signals, cell accumulation results from a failure to undergo 

apoptosis. Cancer is characterized by a lack of apoptosis; cancerous cells develop 

methods of ignoring the cellular signals regulating their growth, allowing them to be 

more proliferative than normal. The downregulation of caspase-9 was commonly 

found in patients with stage II colorectal cancer and it correlated with poor patient 

outcomes [22]. Another study found that in samples of breast, ovarian, and cervical 
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tumors, there was an overall low level of caspase-3 mRNA. These findings suggest 

that loss of caspase-3 activity contributes to breast cancer cell survival [23]. In 

addition to its effect in cancer survival, it is necessary to understand the role of 

apoptosis because there is increasing evidence of cellular survival from caspase 

activation. 

 

2. Evidence of survival from caspase  

Although most instances of caspase activation result in cell death, caspases 

also have nonapoptotic roles in controlling cell migration, proliferation, differentiation, 

and cell shape.  Spermatogenesis is a well studied instance in development where 

the cell survives caspase activation. The final stage of spermatid differentiation 

requires the removal of a bulk of the cytoplasm. This requires the activation of 

caspases and most notably, caspase inhibitors prevent the removal of the 

cytoplasm, blocked sperm maturation, and results in sterile males [24].  

In addition to having nonapoptotic roles, in some instances, caspase 

activation is required for regeneration of tissues. Several animal tissues such as 

Drosophila larval imaginal discs, Xenopus tadpole tails, and zebrafish hearts have 

the ability to regenerate when damaged. When these tissues are damaged, 

apoptosis is a necessary step to induce regenerative proliferation [26,27]. Upon 

healing, the size and shape of the final tissue often match those of uninjured tissue 

due to compensatory proliferation. Without apoptosis, the cell proliferation regulators 

in Drosophila, Wingless and Decapentaplegic, are ectopically expressed and the 

tissue size is much larger than normal [28]. 
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Conventionally it is thought that once caspases are activated, cell death is 

inevitable. However, there has been increasing evidence that cells can undergo 

caspase activation and exhibit other hallmarks of apoptosis and yet survive. In 

several instances, using various different sublethal insults to cells, survival from 

activation of caspase has been reported. Liu et al. showed that mammalian cells 

exposed to ionizing radiation are able to survive with persistent caspase-3 activation, 

promoting genetic instability and oncogenic transformation [29]. In addition, cell 

survival following executioner caspase cleavage has also been reported in neurons 

overexpressing Tau [42]. Ichim et al. demonstrated that a minority of mitochondria 

can undergo MOMP and trigger the activation of caspase without killing the cell [30]. 

Annexin V positive cells (a molecular hallmark of apoptosis) were found to survive 

transient myocardial ischemia in mice [59]. Cells that survived treatment with the 

death ligands TRAIL and FasL were found to have DNA damage [31]. These studies 

utilized sublethal insults to cells, however survival from the brink of apoptosis has 

been observed after transient exposure to potentially lethal doses of stimulants. 

 

Anastasis 

In 2012, several cell lines were observed to survive caspase activation 

following transient exposure to a lethal dose of an apoptotic stimulus. Once the 

apoptotic stimulus was washed away, a significant population of cells survived and 

proliferated, even after displaying traditional hallmarks of apoptosis, such as 

activation of caspase-3, the cleavage of its downstream target PARP1, mitochondrial 

fragmentation, and nuclear condensation. This phenomenon was named “anastasis” 
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[32]. Anastasis was observed to occur in several different cell lines including HeLa, 

NIH 3T3, macrophages, and primary mouse fibroblasts. In addition to occurring in 

different cell lines, this phenomenon has been observed in several different 

apoptotic inducers such as ethanol, DMSO, and staurosporine. It was reported that a 

small fraction of cells undergo an oncogenic transformation. It is hypothesized that 

anastasis may serve as a mechanism to preserve cells that are difficult to replace 

such as neurons and cardiomyocytes. On the other hand, anastasis could be a 

mechanism cancer cells use to evade death. 

In order to understand the role of anastasis in the normal development of an 

animal, Ding, Sun et al. studied the process in Drosophila. Anastasis was observed 

in Drosophila through a reporter expression system called CasExpress, which marks 

the cells that survive caspase activation with fluorescent proteins. The system 

showed widespread survival from caspase activity. It was shown that in every 

animal, some cells activated caspase during their normal development without 

evidence of apoptosis, while in other tissues, expression was sporadic both spatially 

and temporally and overlapped with developmental apoptosis [33]. In adult flies, 

reporter expression was present in most tissues, but the precise pattern varied 

between individuals, suggesting that cells in a population vary in their sensitivity to 

apoptosis. 

 

CasExpress system 

Cells that have undergone anastasis look morphologically similar to cells that 

have not undergone anastasis. The CasExpress system utilizes the GAL4-UAS 
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system to temporarily and permanently mark cells that have undergone caspase 

activation (Figure 2). In CasExpress flies, a caspase-inducible Gal4 transcription 

factor was expressed under the control of an ubiquitin promoter to allow for the 

detection of caspase activation in as many cell types as possible. To keep Gal4 

inactive in cells without caspase-3 activity, it was tethered to the plasma membrane 

by fusing it to mCD8, a transmembrane glycoprotein. To make the protein caspase-

inducible, a caspase-3 binding and cleavage domain (DQVD) from the Drosophila 

Inhibitor of Apoptosis Protein 1 (DIAP1) was inserted in between the CD8 and Gal4. 

These sensor flies were then crossed to G-Trace flies, a fly line that expresses RFP 

and GFP under the control of UAS, as Gal4 responsive enhancer. G-Trace flies 

contain three transgenes: UAS-RFP, UAS-FLP, which encodes a yeast recombinase 

enzyme, and ubi-FRT-STOP-FRT-GFP, where FRT is a FLP Recombination Target 

sequence. By crossing the DQVD sensor flies to G-Trace flies, cells that have 

survived transient caspase activation will be marked with transient RFP expression 

and permanent GFP expression. Subsequently, their progeny will also have GFP 

[33]. 

The activity of CasExpress can be by temperature sensitive Gal80 (Gal80ts). 

Gal80 binds to Gal4 and inhibits the activity of Gal4 and the transcription of 

downstream genes. The activity of Gal80ts is controlled by temperature. At 18C, the 

Gal80 activity is the highest, and Gal4 is suppressed. At 30C, Gal80 is degraded 

and Gal4 activity is restored. 
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Figure 2: Schematic of CasExpress. Figure taken from CasExpress reveals 

widespread and diverse patterns of cell survival of caspase-3 activation during 

development in vivo [33]. 

 

 

3. The wing disc as a model for regeneration  

One set of tissues where anastasis was found to occur was the imaginal discs 

[33]. The imaginal discs in Drosophila larvae will develop into various adult 

structures, including the wings, legs, eyes, and antennae. The imaginal discs have 

long been used as a model for regeneration studies due to their capacity to replace 

lost tissue when damaged. In particular, the wing disc model for studying 

regeneration has been well characterized, with early experiments involving 

fragmentation of the imaginal discs and culture in host animals [38]. 

A series of experiments done by Ernst Hadorn and his colleagues from 1940-

1970 laid the groundwork for the current understanding of regeneration in Drosophila 

imaginal discs. Disc fragments were implanted into third instar larvae prior to 

pupation. While little regeneration was observed when implanting disc fragments into 

older larvae, some regeneration was observed following implantation of disc 

fragments into younger larvae [40]. Later, it was demonstrated that imaginal discs 

will regenerate under physiological conditions when leg and wing imaginal discs 

were bisected by applying pressure to the disc through the cuticle [41]. However, 
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physically removing sections of the discs is not a viable method to ablate a large 

number of wing discs at once. 

Later, genetic ablation was used in regeneration studies. Gal4/Gal80ts/UAS 

system was used to express a pro-apoptotic genes in a defined region at a specific 

developmental stage to ablate part of the wing discs. [34]. Cell death carried out by 

the expression of the pro-apoptotic gene reaper occurs rapidly within 10-24 hours of 

ablation [35]. The cellular debris from the apoptotic cells move basally, allowing 

wound healing to occur [36]. This system allows for the physical fragmentation of 

many wing discs at once by shifting temperature and for the recovery of the discs in 

situ. 
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Chapter II. The role of anastasis in tissue regeneration 

Introduction 

Caspase-3 cleavage activates apoptosis, however cell survival after 

incubation with a lethal stimulus has been found to occur under certain 

circumstances. The survival of caspase-3 activation was named “anastasis” and a 

system to mark cells that survive it was created in Drosophila. Widespread survival 

of caspase-3 activity was found during development and stress induced apoptosis. It 

is currently unknown what is the purpose of this process. One potential use for 

anastasis is to save cells under stress, so it would be beneficial to investigate if 

anastasis occurs during tissue regeneration. 

The wing imaginal discs have long been used as a model for regeneration 

studies due to their capacity to replace lost tissue when damaged. The discs can 

replace large portions of lost tissue and dying cells. Even a loss of up to 60% of the 

cells in the wing disc can be compensated [39]. Cell loss in response to stress and 

damage can induce additional divisions of cells adjacent to the apoptotic cells and 

the additional proliferation results in adult wings of normal size. This is called 

compensatory proliferation and it has been observed after cell death induced by 

irradiation and genetic ablation in the Drosophila wing disc. Apoptotic cells release 

mitogenic signals to surrounding cells to promote tissue repair and compensatory 

proliferation. Initiator caspases have also been reported as required for 

compensatory proliferation in surrounding cells. 

To test if anastasis occurs in ablated wing discs, we ablated part of the wing 

discs of CasExpress flies by expressing pro-apoptotic gene reaper (rpr) in the spalt-
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expressing domain (Figure 3). The wing disc is composed of one layer of columnar 

epithelial cells and a squamous epithelium. The wing disc consists of the pouch, 

which will develop to the adult wing blade, the hinge, and the notum region. The 

spalt domain is a part of the pouch area (figure). Because CasExpress is controlled 

by Gal4-UAS, here we use LexA/LexO to express rpr. The lexA-lexO system works 

in the same way as the GAL4-UAS system, with lexA as the transcription factor and 

lexO as the operator for the gene of interest [53]. The LexA used in this study is a 

fusion protein contains the DNA binding domain of LexA and the regulatory domain 

of Gal4, so its activity can be regulated by Gal80ts. Using this system, we induce 

apoptosis in part of the wing disc at the mid-third instar, then detect the activity of 

CasExpress.  

 

Figure 3: Morphology of a wing disc. The pouch domain is what develops into the 

adult wing of the fruitfly. 

 

 

Methods and Materials 
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Fly strains 

DQVD-Gal4/CyOGFP; lexO-rpr 

G-trace/CyOGFP; salE/Pv-lexA tubGal80ts/TM6B 

DQVD-Gal4/G-trace; lexO-rpr/salE/Pv-lexA tubGal80ts 

DQVD-Gal4/UAS-rpr; lexO-rpr/salE/Pv-lexA tubGal80ts 

DQVD-Gal4/+; lexO-rpr/salE/Pv-lexA tubGal80ts 

DQVD UAS-Flp UAS-RFP/lexO-lacZFRTSTOPFRTGFP; salE/PVlexAtubGal80ts/lexO-

rpr 

 

Induction of apoptosis in wing discs 

DQVD-Gal4/CyOGFP; lexO-rpr female flies were crossed to G-trace/CyOGFP; 

salE/Pv-lexA tubGal80ts/TM6B male flies and put into an 18°C incubator. After 3 days, 

the flies were transferred to embryo collection plates and embryos were collected 

every 4h at 25°C. After 4h of embryo collection, plates were transferred back to 

18°C. After 2 days at 18°C, larvae were picked from the plate and 50 larvae were 

placed in each vial to avoid competition for nutrients. After 8 days at 18°C, the vials 

were transferred to a 29°C incubator, where 29°C is the permissive temperature for 

reaper expression, for 0, 8, 16, 24, or 48 hours to allow for reaper overexpression. 

DQVD-Gal4/G-trace; lexO-rpr/salE/Pv-lexA tubGal80ts larvae were then either 

dissected for their wing discs shortly afterwards or allowed to recover for 24 or 48 

hours at 18°C and then dissected. 

Immunostaining (imaging and quantification) 
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Larvae were sorted for size, TM6B and wild type. Wild type sized larvae were kept 

and then sorted for fluorescence under a Zeiss Axiozoom. RFP positive and GFP 

negative larvae were dissected in PBS. The larvae were inverted and fixed with 

400ul of 4% PFA, washed twice with PBS, and incubated in 400ul of 0.2% PBST 

and 1ul Hoechst while covered with foil. Wing discs were dissected and mounted 

with 20ul of Vectashield. 

Slides were imaged using a Zeiss LSM780 Confocal. 

The ratio of RFP and GFP positive cells was measured using a macro in ImageJ. 

Adult wing quantification 

Adults flies were frozen at -20°C for at least 2 hours. Prior to dissection, flies were 

brought to room temperature. After equilibrating flies to the room temperature, flies 

were submerged in 500ul 100% ethanol to dehydrate them. Wings were dissected in 

the ethanol and then placed on a microscope slide to dry.  

The wings were mounted with 15ul of 80% glycerol. After placing the coverslip on, a 

weight was placed onto the coverslip and left overnight to flatten. 

The wings were imaged with a Zeiss Axiozoom at 30x magnification and the area of 

the wings was measured using ImageJ. 

 

Results 

Effect of reaper overexpression on CasExpress. 

The hallmarks of apoptosis used to determine whether cell death had 

occurred were nuclear shrinkage that was visualized by staining with Hoechst and 
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activation of the biosensor. There was very little biosensor activation in the 0 hour 

time point and also very little cell death without ablation (Figure 4).  

 

Figure 4: CasExpress and G-trace; salE/PVlexAtubGal80ts wing discs after 24 hours at 

29°C and stained with Hoechst show very little CasExpress or condensed nuclei. 

 

At 8 hours, there was very little CasExpress activation (Figure 5B). However, 

there was very obvious cell death, indicated by the nuclear shrinkage (Figure 5B’). 

As expected, as the amount of time allowed for reaper overexpression was 

increased, the number of dead cells and cells that were CasExpress positive also 

increased. Starting from 16 hours, the disc pouch became more folded as the dead 

cells drop off towards the basal layer (Figure 5C-D”). Most of the GFP at this time 

point colocalized with the condensed nuclei, suggesting that CasExpress is activated 

and then the cells die. At the 24 hour induction time point, RFP and GFP colocalized 

in the same cell and a majority of the cells that are only GFP positive had condensed 
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nuclei (Figure 5E-F”). Also, at 24 hours, a majority of the cells in the spalt region are 

dead. At 48 hours of ablation, there is massive cell death and a lot of folding in the 

pouch region (Figure 5G-H”).  

Dead cells are extruded from the apical to the basal layer of the wing disc, 

resulting in the accumulation of dead cells in the basal layer. Therefore, to determine 

the ratio of GFP and RFP positive cells and quantify CasExpress expression, only 

the Z-stack images with less than 15% dead cells were counted. With the inclusion 

of this restriction, the same general trend of the ratio of GFP and RFP increasing as 

the length of induction increases was observed (Figure 5J,J’). 

 

Figure 5: CasExpress activation from reaper expression for various time points. (A) 

Experimental design. (B-H’) Confocal images of DQVD-Gal4/G-trace; lexO-

rpr/salE/Pv-lexA tubGal80ts showing DAPI, RFP, and GFP expression in wing discs of 

flies incubated at 29°C for various time points. (I,I’) Ratio of RFP and GFP positive 

cells for B-H time points includes every Z stack. (J,J’) Ratio of RFP and GFP positive 

cells for B-H time points excluding Z stacks with >15% condensed nuclei. 
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To determine whether the GFP positive cells would eventually recover, larvae were 

moved back to 18°C for either 24 or 48 hours. For the samples that were allowed to 

recover, there was the expected decrease in RFP and an increase in GFP 

expression. After 24 hours of recovery from 16 hours of ablation, more than half of 

the GFP positive cells had normal sized nuclei (Figure 6A,A’). Furthermore, after 48 
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hours of recovery after 24 and 48 hours of ablation, there was a still some RFP 

expression, which was unusual, given that RFP would typically be gone at this point 

in the wild type (Figure 7C,C’ and 8A,A’). A possibility for this explanation is that 

since the cells experience a prolonged caspase exposure, more RFP accumulated 

in the cells. 

 

Figure 6: CasExpress activation from reaper expression for 16 hours and recovery 

for 24 or 48 hours. (A-D’) Confocal images of DQVD-Gal4/G-trace; lexO-rpr/salE/Pv-

lexA tubGal80ts showing DAPI, RFP, and GFP expression in wing discs of flies 

incubated at 29°C for 16 hours and recovery after 24 or 48 hours at 18°C. (E,E’) 

Ratio of RFP and GFP positive cells, includes every Z stack. (F,F’) Ratio of RFP and 

GFP positive cells, excluding Z stacks with >15% condensed nuclei. 
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Figure 7: CasExpress activation from reaper expression for 24 hours and recovery 

for 24 or 48 hours. (A-D’) Confocal images of DQVD-Gal4/G-trace; lexO-rpr/salE/Pv-

lexA tubGal80ts showing DAPI, RFP, and GFP expression in wing discs of flies 

incubated at 29°C for 24 hours and recovery after 24 or 48 hours at 18°C. (E,E’) 

Ratio of RFP and GFP positive cells, includes every Z stack. (F,F’) Ratio of RFP and 

GFP positive cells, excluding Z stacks with >15% condensed nuclei. 
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Figure 8: CasExpress activation from reaper expression for 48 hours and recovery 

for 48 hours. (A-B’) Confocal images of DQVD-Gal4/G-trace; lexO-rpr/salE/Pv-lexA 

tubGal80ts showing DAPI, RFP, and GFP expression in wing discs of flies incubated 

at 29°C for 48 hours and recovery after 48 hours at 18°C. (C,C’) Ratio of RFP and 

GFP positive cells, includes every Z stack. (D,D’) Ratio of RFP and GFP positive 

cells, excluding Z stacks with >15% condensed nuclei. 
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Stress induced anastasis is nonautonomous 

Since we observed CasExpress positive cells after rpr expression, we 

wondered if the cells that turn on the sensor are the cells that express rpr. To mark 

the rpr-expressing cells, lacZ was co-expressed together with rpr in the spalt 

domain. This way, all rpr-expressing cells expressed lacZ. Larvae with the following 

genotype were collected: 

DQVD UAS-Flp UAS-RFP/lexO-lacZFRTSTOPFRTGFP; salE/PVlexAtubGal80ts/lexO-

rpr 

and checked whether lacZ expression overlapped with GFP and/or RFP positive 

cells.  

If stress induced anastasis is autonomous, there should be overlap between lacZ 

expression and reaper expression in the spalt domain. However, if there are 

CasExpress positive cells that do not stain positive for lacZ, this means that stress 

induced anastasis is nonautonomous and that the CasExpress cells migrated in 

towards the spalt domain to compensate for the dying cells. 

 

Figure 9: Stress induced anastasis is non autonomous. (A) Entire spalt region of 

wing disc stained with β-Galactosidase antibody and Hoechst. (B) Overlap of 

CasExpress GFP and β-Galactosidase. (C) Fragmented nuclei stained with Hoechst 

corresponds to cell outlined in (A) and (B). 
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As shown in figure 9, some cells were both CasExpress positive and lacz 

positive, but most of these cells had shrunken nuclei, indicating that these cells were 

dead. Most of the CasExpress positive living cells were not lacZ positive, suggesting 

stress-induced anastasis is nonautonomous. The living CasExpress positive cells 

localized in the spalt domain, although they did not express lacZ and rpr, suggesting 

these cells originated from outside the spalt domain and migrated to the spalt 

domain to compensate for the loss of cells.  

 

Anastatic cells do not contribute to regeneration after ablation by reaper 

overexpression in the wing disc. 

It is of interest to determine whether anastatic cells have a physiological 

function in regenerating tissue. To determine whether anastasis contributes to 
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regeneration after genetic ablation, we took advantage of the fact that CasExpress is 

a caspase-inducible Gal4. In addition to overexpressing rpr under salPE-lexA to 

induce apoptosis in wing discs, a UAS-rpr was expressed under CasExpress to kill 

all cells that experienced caspase-3 activation (Figure 10). Wing disc ablation and 

killing of possibly anastatic cells was induced by transferring larvae from 18°C to 

29°C.  

 

Figure 10: Overexpression of reaper using the CasExpress and lexA systems. 

 

As shown in figure 11, 24h induction at 29°C strongly reduced the number of 

CasExpress positive cells. 48h induction at 29°C killed almost all of the CasExpress 

positive cells.  
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Figure 11: Overexpression of reaper strongly reduces the number of CasExpress 

positive cells. (A,A’) DQVD-Gal4/G-trace; salE/Pv-lexAtubGal80ts dissected after 8 

days at 18°C and 24h at 29°C. (B,B’) DQVD-Gal4/G-trace; salE/Pv-

lexAtubGal80ts/lexO-rpr dissected after 8 days at 18°C and 24h at 29°C.  

 

 

To test the requirement of anastasis in regeneration, after 24 hours of induction of 

the transgene, larvae were shifted back to 18°C until they became adults. Wing 

sizes were measured to evaluate regeneration capacity. The crosses:  

1) DQVD-Gal4; lexO-rpr/TM6B (Female) X UAS-rpr/If; salE/Pv-lexA 

tubGal80ts/TM6B (Male) 

2) DQVD-Gal4; lexO-rpr/TM6B (Female) X salE/Pv-lexA tubGal80ts/TM6C (Male)  
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There was no statistically significant difference between the control groups and 

the UAS-rpr flies. This suggests that the population of anastatic cells in the spalt 

region did not have an effect on regeneration. However, there was a large variation 

in wing size in the UAS-rpr female flies.  

 

Figure 12: Adult wings after 24 hours of reaper overexpression at 29°C. (A) Female 

flies. (B) Male flies. 

 

Future directions 

There is evidence [52] that cells in the hinge region migrate into the spalt 

region to compensate for the ablation of cells in the pouch region. To determine 

whether cells that experienced caspase-3 activation migrated from the hinge into the 

spalt region to make up for the dead cells and whether caspase-3 activity is required 

for migration, we can use p35 expression to block caspase in the hinge region using 

a hinge specific driver. If cells in the pouch region are unable to turn on the 

biosensor, this means the CasExpress cells in the pouch originated from the hinge 
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region. If the discs can still regenerate, that means the migration does not require 

caspase-3 activity. If the discs fail to regenerate, that means the migration requires 

caspase-3 activity. 

The observation of anatasis in stressed wing discs raises an interesting 

question. Wing discs are a fast proliferating tissue. Previous studies showed when 

wing discs are damaged, damaged cells are removed from the epithelium and 

surrounding healthy cells overproliferate to compensate for the loss. Then why do 

cells with caspase-3 activity try to survive? One possibility is that anastasis is an 

intrinsic self salvage program that can be activated in response to all lethal stress, 

no matter whether it is necessary or not. Then, the other possibility is when 

apoptosis is induced in a large group of cells, the tissue tries to save some of them 

to serve as a basis for faster regeneration. To test which one is true, we can induce 

cell death in a very small region and see if anastasis still occurs.  

Although there was not a significant difference in the size of the wings when 

anastasis is inhibited, there was a large variation in wing size for the UAS-rpr flies. 

There is the possibility that this variation affects their ability to fly. The ability to fly 

can be tested using a flight assay. This can be done by placing a plastic sheet 

coated with tangle trap inside a large tube and dropping flies down the tube. The 

flies will reorient themselves and fly upwards, eventually landing on the side of the 

tube. The higher the flies land is an indication of how well they fly [60]. 
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Chapter III: Search for genes involved in regulation of anastasis 

 

Introduction 

One interesting question about anastasis is which genes regulate anastasis. 

Drosophila are a powerful genetic tool and our previous results showed that the 

CasExpress sensor can detect anastasis in wing discs during development and 

under stress. Therefore, we used CasExpress to test the requirement of some 

candidate genes in the regulation of anastasis.  

Our previous results in mammalian cells showed similarity between cells 

undergoing anastasis and wound healing. And our results in Chapter II also showed 

that anastasis occurs in response to tissue damage. Thus, the first set of candidates 

are genes known to function in wound healing and regeneration.  

The genes that were screened were Hemipterous (hepr75), Myc, Snail (Sco), 

STAT92E, Wingless (wg), and Yorkie (yki). Yorkie (yki) is an oncogene and the 

downstream transcription factor of the Hippo pathway. Yki is upregulated in cells 

surrounding the wound and is required for regeneration [51]. Myc has a role in 

regenerative proliferation, as ablation of the wing disc with the proapoptotic gene 

eiger results in the upregulation of Myc [35]. Sco is mutant allele of Snail, which has 

been found to control proliferation in Drosophila follicle stem cells in females. 

Disruption of Snail resulted in follicle stem cells with compromised proliferation, while 

overexpression of Snail resulted in an increase in proliferation and lifespan [56]. 

Wingless (wg) is required in regeneration, without it, fragmented imaginal discs fail 

to transdetermine and regenerate missing structures. However, when provided with 
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exogenous Wg, fragments are able to regenerate the missing structures [62]. 

STAT92 is in the JAK/STAT pathway and it has been observed that STAT is 

upregulated in cells that have an intrinsic resistance to apoptosis after irradiation. 

Through lineage tracing, it was shown that apoptosis resistant cells will lose their 

identity and migrate to areas of the wing disc that have suffered abundant cell death. 

This suggests that there is a subpopulation of cells that are more resistant to cell 

death and following damage, are required to help regenerate the tissue [55].  

Hemipterous (hep) is a jun kinase kinase. Hepr75 mutants disrupt the JNK pathway, 

resulting in impaired wound healing [54]. 

 

Methods 

Fly genetics 

Since the biosensor utilizes the UAS-Gal4 system, it was not possible to use UAS-

RNAi lines to screen for whether a gene has an effect or role in anastasis. However, 

there were some mutant lines for these genes available. These seven lines were 

screened: Hepr75, Mycp0, Sco, STAT92, WgI12, and ykiB5.  

Strains: 

DQVD/G-trace  

DQVD/G-trace; eSTAT92E/STAT92E06343  

DQVD sco/G-trace  

DQVD ykiB5/G-trace  

hepr75/Y; DQVD/G-trace  

MycPO/Y; DQVD/G-trace  
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wg I12 DQVD/G-trace 

 

Immunostaining and imaging 

Larvae were sorted for fluorescence under a Zeiss Axiozoom. CasExpress positive 

larvae were dissected in PBS. Male hepr75 and MycPO larvae were selected. The 

larvae were inverted and fixed with 400ul of 4% PFA, washed twice with PBS, and 

incubated in 400ul of 0.2% PBST and 1ul Hoechst while covered with foil. Wing 

discs were dissected and mounted with 20ul of Vectashield. 

Slides were imaged using a Zeiss LSM780 Confocal. 

 

Quantification 

The ratio of RFP and GFP positive cells was measured using a macro in ImageJ. 
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Results  

Table 1: Quantification of RFP+ cells percentage and GFP+ cells percentage in 

wing discs with wound healing mutant genotypes. 

 

Genotype Average 

RFP/DNA 

Standard 

Deviation 

RFP/DNA 

Average 

GFP/DNA 

Standard 

Deviation 

GFP/DNA 

DQVD/G-trace 0.030165 0.013282 0.648638 0.150516 

DQVD/G-trace; 

eSTAT92E/STAT92E06343 

0.028736 0.026164 0.505009 0.067702 

DQVD ykiB5/G-trace 0.051155 0.029805 0.532317 0.095844 

DQVD sco/G-trace 0.059620 0.040926 0.573612 0.099734 

wg I12 DQVD/G-trace  0.126561 0.073705 0.624464 0.059537 

MycPO/Y; DQVD/G-trace 0.034323 0.018118 0.249674 0.093284 

hepr75/Y; DQVD/G-trace 0.044872 0.025349 0.477853 0.110417 

 

Figure 13: Confocal images of wound healing mutants expressing CasExpress 

showing DAPI, RFP, and GFP expression in wing discs. (A) DQVD/G-trace (B) 

DQVD/G-trace; eSTAT92E/STAT92E06343 (C) DQVD ykiB5/G-trace (D) DQVD sco/G-
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trace (E) wg I12 DQVD/G-trace (F) MycPO/Y; DQVD/G-trace (G) hepr75/Y; DQVD/G-

trace. 

 

Wg, yki, and sco mutants had higher RFP expression, indicating that these 

mutants were most likely more susceptible to caspase activation than just the 

CasExpress control. However, since their GFP expression was about the same as 

the CasExpress control, indicating about the same percentage of cells survive. While 
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the Myc mutants had approximately the same percentage of RFP positive cells as 

the CasExpress control, they had a lower percentage of GFP positive cells. This 

most likely means that the cells without Myc were unable to recover as well from 

caspase activation. 

 

Figure 14: Ratio of CasExpress positive cells in wound healing mutants. (A) Ratio of 

RFP positive cells. (B) Ratio of GFP positive cells. 

 

 

 

 

Conclusions  

Our results suggest that anastasis occurs in response to tissue ablation in 

wing discs. While the effect of inhibiting anastasis was not evident in a measurable 

difference in wing size, this does not mean that anastasis has no effect on 
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regeneration and compensatory proliferation. The effect of anastasis on 

regeneration could manifest in the fly’s ability to fly or anastasis may be more 

important in postmitotic cells, such as mature cardiac myocytes or neurons. The 

initial screen of genes involved in the regeneration and compensatory proliferation 

pathways resulted in uncovering several genes that have an effect on the activation 

of CasExpress. The identification of genes that are essential to anastasis will lead to 

a better understanding of the pathways underlying anastasis. 
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