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Abstract

Background: This study develops machine learning (ML) algorithms that use preoperative-only 

features to predict discharge-to-nonhome-facility (DNHF) and length-of-stay (LOS) following 

complex head and neck surgeries.

Methods: Patients undergoing laryngectomy or composite tissue excision followed by free tissue 

transfer were extracted from the 2005–2017 NSQIP database.

Results: Among the 2786 included patients, DNHF and mean LOS were 421 (15.1%) and 

11.7±8.8 days. Four classification models for predicting DNHF with high specificities (range, 

0.80–0.84) were developed. The generalized linear and gradient boosting machine models 

performed best with receiver operating characteristic (ROC), accuracy, and negative predictive 

value (NPV) of 0.72–0.73, 0.75–0.76, and 0.88–0.89. Four regression models for predicting LOS 

in days were developed, where all performed similarly with mean-absolute-error and root-mean-

squared-errors of 3.95–3.98 and 5.14–5.16. Both models were developed into an encrypted web-

based interface: https://uci-ent.shinyapps.io/head-neck/.

Conclusion: Novel and proof-of-concept ML models to predict DNHF and LOS were developed 

and published as web-based interfaces.
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Introduction

Machine learning (ML) is an analytical application of artificial intelligence with the ability 

to “learn” from new information, without explicit directions or programming, for self-

improvement. In contrast to the majority of predictive models in clinical literature which are 
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associative and reliant on direct coefficient-outcome relationships, ML predictive models 

may potentially improve outcomes by executing complex, hidden, and non-linear 

computations.1 There has been an emerging interest in utilizing ML in the medical field for 

genomic2 or imaging classifications,3 as well as predicting disease prognosis4 and treatment 

complications.5 Most recently in the otolaryngology literature, authors have reported ML 

algorithms for detecting pharyngeal cancer,6 estimating head and neck (HN) squamous cell 

carcinoma prognosis,7 and predicting complications following HN microvascular free tissue 

transfer.8 To date, no study has used ML to predict post-operative length of stay (LOS) or 

discharge to nonhome facility (DNHF) following complex HN surgeries. Furthermore, 

although the majority of the clinical ML studies focus on common algorithmic models such 

as artificial neural network (ANN) and generalized linear model (GLM), there exist other 

complex ML models that may provide more superior predictive capabilities.9, 10

Our current understanding of important clinical prognosticators in HN surgeries have 

benefited immensely from traditional statistical models. However, with the complexity and 

interactivity of the vast number of pre-operative clinical variables, and the advent of large 

publicly available databases, investigators can now attempt developing sophisticated models 

that factor in many input data to predict an outcome. Type and complexity of ML models are 

dependent on the application and training dataset, and though it may sound counterintuitive, 

more complexity is not always better.11 An appropriately constructed and tested ML model 

can be a valuable tool in the HN field by identifying at-risk patients and helping providers 

appropriately pre-plan operations. In this manuscript, we will construct GLM, ANN, support 

vector machine (SVM), random forest (RF), and gradient boosting machine (GBM) models 

to predict LOS and DNHF, which are important outcome variables in the field of HN 

surgery. Notably, longer LOS can be associated with increased morbidity (e.g., infections)12 

and higher healthcare cost,13 and nonhome facility placement can associate with insurance 

difficulties and delayed discharge.14, 15 As such, this proof-of-concept study aims to 

construct different ML models that predict LOS and DNHF following complex HN 

surgeries, compare these algorithms’ performance to each other, and publish the best-

performing models as public web-based interfaces for the readership.

Materials and Methods

Patient Population

The 2005–2017 American College of Surgeons National Surgical Quality Improvement 

Program (ACS-NSQIP) database, which collects 30-day morbidity and mortality 

information for various operations, was retrospectively reviewed for data collection. Given 

the de-identified and publicly available nature of this database, this study was exempted 

from Institutional Review Board approval. Complex head and neck surgeries were defined as 

laryngectomy or composite tissue excision followed by free tissue transfer, modeled after a 

recent NSQIP study by Lebo and colleagues.16 The following current procedural 

terminology (CPT) codes were used to collect patients undergoing laryngectomy: 31360, 

31365, 31368, 31390, and 31395. For the other group of patients, inclusion criteria required 

two linked surgeries: 1) head and neck mucosal or composite resection with CPTs including 

21034, 21044, 21045, 21047, 31230, 31225, 40814, 40816, 41116, 41120, 41130, 41135, 
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41140, 41145, 42120, 41150, 41153, 41155,42845, 42894, and 2) free tissue transfer with 

CPTs including 15756 15757, 15758, 20955, 20956, 20962, 20969, and 20970.

Covariates and Accounting for Missing Values

The detailed description of the NSQIP variables are found in the user guide for the 2017 

ACS-NSQIP Participant Use Data File. The American Society of Anesthesiologists (ASA) 

score which measures pre-operative comorbidities and overall health was binarized as low 

(class 1–2) and high (class 3–4) ASA class. DNHF included skilled care or unskilled facility, 

rehabilitation center, or separate acute care center. Furthermore, LOS was defined as days 

from operation to discharge. The NSQIP data, similar to other national databases, suffers 

from a considerable amount of missing values. As such, input variables with more than 25% 

missing values (e.g., albumin and prothrombin time levels) were excluded from this study. 

Due to the importance of properly handling missing data, we used the missForest package in 

the R statistical programming language,17 which imputed missing values in a manner less 

prone to bias compared to alternative methods of handling missing values.18 To determine 

which factors would be included for DNHF or LOS models, univariate analysis (e.g., chi-

square, independent t-test, and Pearson correlation) was performed to evaluate the 

association between the pre-operative input and outcome variable, and those with P value 

<0.2 or deemed clinically important were included.

Predictive Modeling and Statistical Analysis

The dataset was randomly stratified into a training and testing set using an 80:20 ratio 

separately for the DNHF and LOS models. The training sets were used to train the 

algorithms, and free parameters were adjusted according to results from the training set’s 

cross-validation. Hyperparametric optimization was achieved using random search methods.
19 Our classification models were configured to output probabilities for each prediction, with 

predictions above a given probability (the “threshold”) classified as positive outcomes.20 

Class imbalance (when one outcome label is significantly less prevalent than another 

outcome label) was addressed using weighed distance function, which is arguably more 

effective than commonly used over- or under-sampling methods.21 After optimizing the 

classification models for the receiver operating characteristic area under the curve (ROC-

AUC), the classification thresholds were adjusted to target specificities of approximately 

80%. Models were evaluated via internal validation, where each model was trained on the 

training partition and predictions on the test set were evaluated using multiple performance 

metrics. The reported performance metrics are based on averages of twenty trials to control 

for bias introduced by randomness in the models. All statistical analyses, including ML 

development/testing and figure generation, were performed using R version 3.6.3 (The R 

Foundation for Statistical Computing, Vienna, Austria) via RStudio version 1.1.463 

(RStudio, Boston, MA).

The two models had slightly different cohorts depending on exclusion criteria: For DNHF 

classification models, patients with unknown discharge information were excluded (N=386), 

and for LOS regression models, patients with unknown or >30-day discharge were excluded 

(N=119). A total of four classification models were trained and tested to predict DNHF: 

GLM, ANN, RF, and GBM. Since DNHF was a binary outcome variable, the performance 
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of these models was assessed using sensitivity, specificity, ROC-AUC, positive predictive 

value (PPV), negative predictive value (NPV), and accuracy. Four regression models were 

trained and tested for predicting days of post-operative LOS: GLM, ANN, RF, and GBM. 

Since LOS was treated as a continuous outcome variable, the performance of the regression 

models was assessed using mean absolute error (MAE), mean squared error (MSE), root 

mean squared error (RMSE), and root mean squared logarithmic error (RMSLE). To 

evaluate how the regression models performed according to the extent of LOS, patients were 

divided into quartiles and the relative prediction performances (assessed by RMSE) were 

compared accordingly.

Results

Patient Characteristics

A total of 2,786 patients were extracted for further analysis, 750 (26.9%) of which were 

female and 1870 (67.1%) were white. Mean age, body mass index (BMI), and operation 

time were 62.1 ± 11.7 years, 25.3 ± 6.3, and 485.5 ± 196.6 minutes, respectively.

Discharge to Nonhome Facility

A total of 2,400 patients were included for these classification models, which included 421 

(15.1%) DNHF patients. Variables included for DNHF predictive models were age, BMI, 

gender, race, procedure type, diabetes, smoking, dyspnea, functional status, ventilator 

dependency, history of chronic obstructive pulmonary disease or congestive heart failure, 

hypertension, ASA class, chronic steroid use, emergency or elective surgery, pre-operative 

sepsis or transfusion, history of wound infection, and pre-operative sodium, BUN, 

creatinine, WBC, HCT, and platelet levels (Table 1). Four models were constructed to 

predict DNHF, and their performance on the testing set are demonstrated in Table 2. Overall, 

with the optimized specificity of approximately 0.80–0.84 for all models, accuracy and 

sensitivity ranged between 0.73–0.76 and 0.39–0.53, respectively. GLM and GBM had the 

highest ROC’s of 0.72–0.73 (Figure 1). Since the algorithms’ designated classification 

thresholds are directly related to the resulting sensitivity and specificity, the associations 

between these two metrics and the thresholds are depicted in Figure 2. This demonstrates 

that although the majority of our reported metrics were dependent on the optimization of 

~0.80 specificity, adjusting the threshold to a value corresponding to lower specificity may 

raise the sensitivity; for instance, in the GBM model we developed, a balance of both 

sensitivity and specificity at around 0.65 could be achieved simply by using a lower 

classification threshold (Figure 2B).

Length of Stay

A total of 2,667 patients were included for the regression-based (continuous) LOS predictive 

models, with a mean LOS following complex HN surgeries of 10.4 ± 5.5 days. The input 

variables included age (P<0.01), BMI (P=0.02), gender (P=0.52), race (P<0.01), procedure 

type (P=0.08), elective surgery (P<0.01), diabetes (P=0.05), smoking (P=0.02), dyspnea 

(P=0.01), hypertension (P=0.08), dependency functional status(P<0.01), history of 

congestive heart failure (P=0.05), disseminated cancer (P<0.01), history of wound infection 

(P=0.02), pre-operative sepsis (P=0.09) or transfusion (P=0.10), ASA class (P=0.06), and 
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pre-operative sodium (P<0.01), WBC (P<0.01), and HCT (P<0.01), with the P values 

representing their association with LOS on independent t-test (for categorical variables such 

as gender) or correlation analysis (for continuous variables such as age). Four models were 

constructed to predict LOS, and their performance on the testing set are demonstrated in 

Table 3. The performances of these models were compared according to different extents of 

LOS, demonstrating that these models predicted LOS better when the actual LOS was >8 

days (Figure 3). For both DNHF and LOS GLM models, the average contribution of each 

feature in the prediction of the outcomes were calculated over 20 iterations, and those with 

the largest contributions are demonstrated in Table 4.

Predictive Modeling Interface

The best-performing algorithms for predicting DNHF and LOS were developed into an 

encrypted web-based interface which can be accessed at https://uci-ent.shinyapps.io/head-

neck/.

Discussion

Discharge destination and prolonged hospitalization are important post-operative outcomes 

in complex surgeries including head and neck operations. Although ML models to predict 

these in neurological or orthopedic surgeries have been developed using the NSQIP 

database,9, 22–25 there is a paucity of similar investigations in the otolaryngology literature. 

To our knowledge, this is the first manuscript that develops proof-of-concept ML algorithms 

to pre-operatively predict DNHF and LOS following complex HN surgeries, and among the 

minority of studies to publish the developed ML models as a public interface for simulation 

and further examination by the readership. Such predictive models can identify patients at 

risk of DNHF or prolonged LOS, so their pre-, peri-, and post-operative planning can be 

evaluated with caution.

Although Panwar et al.26 and White et al.,27 have previously used traditional statistics to 

investigate LOS and DNHF outcomes in NSQIP’s HN patients, this study’s novelty lies in 

its ML approach (both classification and regression models) and publishing these as publicly 

available web-based interfaces where new input data can produce real-time predictions. 

Despite their limitations, these ML models can serve as proof-of-concept applications that 

can be improved with future multi-institutional investigations. Additionally, this manuscript 

further suggests factors that may heavily contribute to the studied outcomes as summarized 

in Table 4, including pre-operative transfusion, dependent functional status, and history of 

congestive heart failure, wound infection, smoking, or diabetes. The published web-based 

model interfaces are not FDA-approved or ready for real-life clinical decision-making, but 

they serve as important proof-of-concept demonstrations of how this field of research can 

hypothetically provide practical clinical value in the future.

Utilizing the NSQIP dataset and only pre-operative features, our DNHF classification 

models demonstrated that GLM and GBM models performed well with ROC-AUC of 0.72 

and 0.73, followed by ANN and RF models with AUC-ROC of 0.67 and 0.66, respectively. 

These models were classified to optimize specificity to approximately 0.80, resulting in high 

NPVs ranging 0.86–0.89. Moreover, we successfully built four regression ML models that 
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performed similarly in predicting LOS (in days) with MAE and RMSE of 3.9–4.0 and 5.1–

5.2, respectively. The models were trained using k-fold cross-validation.28 Although the 

present results lack external validation, we have published both models via an encrypted 

open-access interface for the readership as a means of potential future external validation. 

The different performance of our predictive models compared to other ML publications9, 22 

may stem from several reasons11: 1) feature selection and the algorithm’s attributed weight 

of each input variable; 2) finding optimal free parameter values used for feature 

transformation and class-based prediction; 3) balancing the trade-off between model 

complexity and generalizability to novel cases without overfitting;29 and finally 4) the 

inherit associative strengths of the features in predicting the outcome of interest. To achieve 

optimal predictive performance, it is imperative that multiple models and parametric 

configurations be developed and that a robust training method (such as k-fold cross-

validation) be utilized to minimize the risk of overfitting. Further, it is worth emphasizing 

that the performance and validity of a ML model depends on the nature of the dataset and 

the degree of underlying direct or hidden relationships between the features and outcome.
30–32

All of the developed models were supervised ML constructs. GLM algorithms which use 

traditional regression mathematical models have been most frequently utilized for 

constructing predictive models in the medical literature.33 Based on statistical learning 

theory introduced by Vapnik,34 ANNs are gross neuron-by-neuron simulations of the human 

brain with finite numbers of layers, nodes, interconnections, and weighted variables.35 RF is 

a type of decision tree algorithm where different data sample bootstraps are utilized for 

creating each tree, where the number of trees and model predictors positively correlate.36 

Another form of decision tree model is GBM, which fits weak learner decision tress to a 

regression model,37 with the advantage of being highly adaptable and interpretable.38 The 

fact that GLM and GBM models were the most ideal in predicting DNHF in this cohort 

suggests that model performance is not always correlated with its complexity, but also 

heavily dependent on the dataset and nature of input-output relationships. Although previous 

papers in orthopedic and cardiology literature have developed classification models for LOS 

prediction (e.g., short vs. long LOS),39, 40 our proof-of-concept regression model with 

numeric outputs for LOS (in days) was more novel to the literature, paving path for future 

studies to develop such algorithms.

As we demonstrated in Figure 2, adjusting the classification threshold values determines the 

balance between sensitivity and specificity of the predicted binary outcomes, which is an 

important theme when considering the model’s practicality and intended application. Of 

note, changing the threshold does not change the underlying model; rather, the model 

outputs a probability for each prediction, after which the threshold is applied such that 

probabilities above the threshold will be classified as positive (e.g., DNHF). Our DNHF 

results prioritizing specificity over sensitivity expressed a preference for having high 

confidence in positive predictions, as opposed to preferring to detect a greater proportion of 

positive outcomes (which would be prone to more false alarms). It is also important to 

emphasize the time-point at which the model is intended to be utilized. Our designed pre-
operative models precluded the use of intra- and post-operative variables which could have 

strong associations with the outcome. This distinction is further demonstrated in a study 
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predicting readmission following spine surgery, where the aggregate ML models’ ROC 

decreased from 0.81 to 0.58 when only including pre-operative characteristics.41 When 

constructing a ML model, it is crucial to consider the applicability of such a model. If, for 

example, a model intended to predict surgical outcomes for pre-operative planning includes 

intra- or post-operative variables, the model may fail to provide any practical benefit.

Although the developed models utilized variables which underwent one round of inclusion/

exclusion analysis (per Table 1) before being incorporated in the algorithms, a few variables 

could theoretically be removed without significantly changing the performances. One way to 

address this is to investigate which variables had the least amount of weight for a given 

model’s outcome predictions (e.g., Table 4) and remove variables in a stepwise manner. 

Although we will continue improving the published models and their online interfaces by 

continuously adding subjects and re-examining which variables continue to have 

insignificant effects, the current interface at its proof-of-concept stage could benefit from 

including all the possibly contributing variables. One reason for avoiding over-simplification 

of variable numbers at this proof-of-concept stage is so the readership can also investigate 

the influence of each variable in real time. For instance, data of a hypothetical patient could 

be entered in the algorithm, then certain variables (e.g., pre-operative BUN or dyspnea) 

could be changed to see if/how the outcome probability changes. This is especially an 

advantage of machine learning over traditional statistical models due to the former’s ability 

to deduct potentially complex, non-linear, and hidden relationship with each variable in 

regard to others (e.g., if dyspnea has a higher association with a certain outcome depending 

on the patient’s age, BMI, and ASA combination).

Discussing the limitations of this study will be important for future progress of this field. 

First, this study utilized retrospective data from a de-identified national database, which is 

prone to missing values, miscoding, or inherent biases. Although using the missForest R 

package is a rigorous technique for missing value imputation,18 this approach of running a 

ML model on a partially ML-generated dataset can introduce some systemic bias. Second, 

the database did not include some important clinical or socioeconomic variables which may 

associate with DNHF or LOS. Although this limits the scope of the models, we believe that 

the presented models can serve as proof-of-concept applications warranting future large-

scale studies using more comprehensive datasets. Also, we chose not to include intra- and 

post-operative variables (e.g., operation time, transfusion, post-operative complications, etc.) 

even though they may strongly associate with DNHF or LOS. For instance, LOS itself can 

associate with DNHF.42 This was because our models were intended to guide clinicians at a 

pre-operative standpoint to provide a window of opportunity for appropriate planning or 

arrangements for risk adjustment. While such models cannot serve as decision-making 

bodies, they may serve as supplementary tools in screening for patients with relatively 

higher probabilities of DNHF or prolonged LOS, thus providing opportunities for early 

planning and risk management. Although an aforementioned study41 did not surpass a 60% 

ROC-AUC using pre-operative-only characteristics compared to an 81% ROC-AUC when 

also incorporating post-operative characteristics, our proof-of-concept study demonstrated 

that a pre-operative-only study (which is more practical and valuable as argued) can reach an 

acceptable (>70% ROC-AUC) success rate. This warrants future investigations to similarly 

build machine learning models while considering model timeline and practicality (e.g., 
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providing opportunities for clinical actions or precautions) and cautiously start incorporating 

variables from different timelines. Future studies should also investigate other national 

databases (e.g., National Cancer Database, Surveillance Epidemiology and End Results 

Database) or multi-institutional cohorts which can potentially provide many more pre-

operative or long-term post-operative variables useful for building these models. As such, 

following this proof-of-concept study, our next phase of investigations will utilize data with 

more available variables including those shown to influence treatment decision-making and 

outcomes such as various socioeconomics43–45 and staging/grading information.46–48 

Institutional studies could also factor in important features not captured by national 

databases but nevertheless influential towards treatment outcomes such as family support, 

physician discussions, physician peri/post-operative protocols and wound care, 

tracheostomies/gastrostomies, employment, and type and location of the treatment facility, 

among others. Third, although this study contains internal validation by partitioning of the 

cohort into training and testing sets, there was no external validation which would require 

testing outside patients. To address this, we have published our algorithms via an encrypted 

online interface and encourage clinicians to test hypothetical situations. Fourth, patients 

undergoing laryngectomy or composite tissue excision followed by free tissue transfer were 

combined similar to a previous study regarding complex head and neck surgery patients.16 

Following this proof-of-concept investigation, future studies using multi-institutional cohorts 

or other national databases will allow utilization of more homogenous surgical cohorts with 

adequate reliability and number of subjects and variables. Finally, while our models were 

carefully tuned to maximize predictive performance, they were limited by the extent of 

inherent relationships between the features and outcomes. Despite these limitations, 

developing such assisting tools that may predict DNHF or prolonged LOS with high 

specificity has the potential to allow clinicians to identify at-risk patients and adjust pre- and 

post-operative planning accordingly. Future research may evaluate our published predictive 

models on external data sets or improve upon them by utilizing more comprehensive data 

sets or integrating institutional data with otolaryngology-specific features.

Conclusion

In this proof-of-concept manuscript, ML algorithms were developed to predict DNHF and 

LOS following complex head and neck surgeries, and the best-performing models were 

published as an encrypted public interface for the readership (https://uci-ent.shinyapps.io/

head-neck/). Our best performing classification model in predicting DNHF was GLM, while 

all four regression models, namely GLM, ANN, RF, and GBM, performed comparably for 

predicting LOS. The discussion of features and threshold determinations, rigor of ML 

training and validation, and tradeoffs between sensitivity-specificity or complexity-

generalizability are important ML topics that warrant continuous investigations.
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Figure 1. 
Receiver operating characteristic of the GLM, ANN, RF, and GBM models that used pre-

operative features to predict DNHF (AUC range=0.66–0.73)
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Figure 2. 
The trade-off relationship between sensitivity and specificity of the constructed models, 

directly dependent on the designated classification threshold of a given model, are 

demonstrated for (A) GLM, (B) ANN, (C) RF, and (D) GBM models.
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Figure 3. 
Comparing RMSE of the regression models stratified based on LOS quartiles: 1–6 days 

(N=105), 7–8 days (N=154), 9–12 days (N=131), and 13–30 days (N=144). The 

stratification is according to the actual LOS, and the bars represent the root mean squared 

error of the respective predicted LOS.
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Table 1.

Variables included in the machine learning models predicting DNHF, compared via univariate analysis (chi-

square or independent t-test).

Pre-Operative Feature Discharge to Home (N=1978) Discharge to Nonhome Facility (N=421) P Value

Age (mean ± SD) 60.7 ± 11.4 67.7 ± 11.3 <0.001

BMI (mean ± SD) 25.6 ± 6.3 24.5 ± 5.8 <0.001

Gender: Female 536 (27.1) 126 (29.9) 0.236

Procedure: Laryngectomy 1108 (56.0) 242 (57.5) 0.575

Diabetes 265 (13.4) 66 (15.7) 0.217

Smoking 819 (41.4) 163 (38.7) 0.312

Dyspnea 250 (12.6) 98 (23.3) <0.001

Functional status: Dependent 36 (1.8) 46 (10.9) <0.001

Ventilator dependent 9 (0.5) 6 (1.4) 0.022

History of COPD 213 (10.8) 81 (19.2) <0.001

History of CHF 18 (0.9) 11 (2.6) 0.004

History of wound infection 52 (2.6) 21 (5.0) 0.010

Hypertension 925 (46.8) 241 (57.2) <0.001

ASA class: High 1651 (83.5) 389 (92.4) <0.001

Chronic steroid use 75 (3.8) 30 (7.1) 0.002

Emergency surgery 15 (0.8) 5 (1.2) 0.378

Elective surgery 1836 (92.8) 352 (83.6) <0.001

Systemic sepsis 31 (1.6) 19 (4.5) <0.001

Pre-operative transfusion 11 (0.6) 6 (1.4) 0.053

Pre-operative sodium (mean ± SD) 138.4 ± 3.7 137.7 ± 4.0 0.001

Pre-operative BUN (mean ± SD) 15.9 ± 9.0 17.6 ± 9.9 0.002

Pre-operative creatinine (mean ± SD) 0.90 ± 0.53 0.86 ± 0.36 0.114

Pre-operative WBC (mean ± SD) 8.0 ± 3.0 8.5 ± 3.5 0.003

Pre-operative HCT (mean ± SD) 38.7 ± 5.2 36.8 ± 5.3 <0.001

Pre-operative platelets (mean ± SD) 265.7 ± 96.6 279.7 ± 98.4 0.008

Values in parenthesis are percentages.

DNHF: discharge to nonhome facility; SD: standard deviation; BMI: body mass index; COPD: chronic obstructive pulmonary disease; CHF: 
congestive heart failure; ASA: American Society of Anesthesiologists; BUN: blood urea nitrogen; WBC: white blood cells; HCT: hematocrit.
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Table 2.

Performance of different classification machine learning models predictive of DNHF.

Model Accuracy Sensitivity Specificity AUC-ROC PPV NPV

GLM 0.7542 0.5294 0.8025 0.7253 0.3659 0.8880

ANN 0.7316 0.4200 0.7986 0.6719 0.3419 0.8735

RF 0.7603 0.3894 0.8401 0.6639 0.3451 0.8648

GBM 0.7623 0.4712 0.8249 0.7281 0.3666 0.8788

DNHF: discharge to nonhome facility; GLM: generalized linear model; ANN: artificial neural network; RF: random forest; GBM: gradient 
boosting machine; AUC-ROC: area under the curve of receiver operating characteristic; PPV: positive predictive value; NPV: negative predictive 
value.
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Table 3.

Performance of different regression machine learning models predictive of LOS in days.

Regression Model MAE MSE RMSE RMSLE

GLM 3.9559 26.5832 5.1559 0.4545

ANN 3.9456 26.5878 5.1563 0.4536

RF 3.9770 26.4624 5.1442 0.4590

GBM 3.9783 26.6121 5.1587 0.4610

LOS: length of stay; GLM: generalized linear model; ANN: artificial neural network; RF: random forest; GBM: gradient boosting machine; MAE: 
mean absolute error; MSE: mean squared error; RMSE: root mean squared error; RMSLE: root mean square logarithmic error.
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Table 4.

Logistic regression weights of model features with the most contribution.

DNHF Model LOS Model

Variable Odds ratio Variable Odds ratio

Functional status 4.66 Pre-operative transfusion 9.86

Pre-operative transfusion 3.01 Elective surgery 6.45

Ventilator dependent 2.29 Procedure type: resection 6.04

History of CHF 2.06 Disseminated cancer 3.63

History of wound infection 2.04 History of CHF 3.65

Pre-operative creatinine 1.98 Functional status 2.71

Elective surgery 1.74 Chronic smoking 2.30

Procedure type: resection 1.63 Systemic sepsis 1.74

ASA class 1.40 Diabetes 1.62

Dyspnea 1.40 Race 1.57

Chronic steroid use 1.35 ASA class 1.26

COPD 1.34 History of wound infection 1.20

Race 1.22 Pre-operative sodium 1.13

DNHF: discharge to nonhome facility; LOS: length of stay; CHF: congestive heart failure; ASA: American Society of Anesthesiologists; COPD: 
chronic obstructive pulmonary disease.

Odds ratios signify the contribution of these variables and not necessarily the direction of the association.
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