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Differential regulation of microtubule severing by APC underlies 
distinct patterns of projection neuron and interneuron migration

Tae-Yeon Eom1, Amelia Stanco2, Jiami Guo1, Gary Wilkins1, Danielle Deslauriers1, Jessica 
Yan1, Chase Monckton1, Josh Blair1, Eesim Oon1, Abby Perez1, Eduardo Salas1, Adrianna 
Oh1, Vladimir Ghukasyan1, William D. Snider1, John L. R. Rubenstein2, and E. S. Anton1,^

1UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of 
North Carolina School of Medicine, Chapel Hill, NC 27599

2Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of 
Developmental Neurobiology, University of California, San Francisco (UCSF), San Francisco, CA 
94158-2324, USA

Abstract

Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation 

of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, 

interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and 

routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that 

adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to 

facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of 

projection neurons. APC regulates the stability and activity of the MT severing protein p60-

katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for 

interneuron migration. These findings reveal how severing and restructuring of MTs facilitate 

distinct modes of neuronal migration necessary for laminar organization of neurons in the 

developing cerebral cortex.

Keywords

Cerebral cortical development; APC; Katanin; microtubules; interneuron; projection neuron; 
neuronal migration

Introduction

Appropriate neuronal placement, the basis for the emergence of neuronal connectome or 

wiring, is achieved through a process of coordinated pattern of neuronal migration enabling 
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distinct classes of neurons to navigate from their sites of birth to their final laminar and areal 

destinations in the cerebral cortex (Evsyukova et al., 2013; Kwan et al., 2012; Valiente and 

Marin, 2010; Rakic, 1972). The two major classes of cortical neurons, i.e., projection 

neurons (PN) and interneurons (IN), migrate in distinctly different ways (Evsyukova et al., 

2013; Valiente and Marin, 2010). Projection neurons, generated in the dorsal germinal 

zones, migrate to the cortical plate, using somal translocation during initial stages of 

corticogenesis and radial glial-guided migration at later embryonic stages. Interneurons, 

generated in the ganglionic eminence of the ventral telencephalon, migrate tangentially into 

the developing cerebral wall, prior to radially oriented migration into the cortical plate. 

Coordination of these diverse patterns of neuronal migration leads to the placement of 

appropriate numbers of distinct classes of projection neurons and interneurons within 

specific areas or layers of the developing cerebral cortex. Disruptions in neuronal migration, 

resulting from genetic mutations or environmental insults, alter the positioning and thus the 

connectivity and function of cortical neurons (Kwan et al., 2012; Valiente and Marin, 2010; 

Metin et al., 2008). Area specific and neuronal type specific defects in neuronal migration 

and the resultant changes in neuronal connectivity are thought to contribute to a wide 

spectrum of neurological disorders, including autism, schizophrenia, epilepsy, mental 

retardation, and gross malformations such as lissencephaly, schizencephaly, 

microencephaly, and macro/microgyria (Batista-Brito and Fishell, 2009; Manzini and 

Walsh, 2011; Valiente and Marin, 2010; Wynshaw-Boris et al., 2010; Yizhar et al., 2011). In 

spite of its importance, how the two major classes of cortical neurons molecularly modulate 

their distinct modes of migration within the developing cerebral cortex remains unclear.

Adenomatous Polyposis Coli (APC) serves an essential function in the formation of cerebral 

cortex (Yokota et al., 2009; Ivaniutsin et al., 2012). APC is a multi-domain protein that is 

known to complex with and modulate the activities of microtubules (MTs), intermediate 

filaments, actin, β-catenin, Axin, and cytoskeletal regulators, EB1, mDia1, Asef1, and 

IQGAP1 (Aoki and Taketo, 2007; Sakamoto et al., 2013; Preitner et al., 2014). Mutational 

analysis of APC indicates that β-catenin and MTs are the two major targets of APC activity 

(Aoki and Taketo, 2007; McCartney and Nathke, 2008; Wen et al., 2004). During 

corticogenesis, APC is necessary for the formation of polarized radial progenitors (Yokota et 

al., 2009). Polarized radial progenitors from the dorsal and ventral proliferative zones give 

rise to projection neurons and interneurons, respectively. As they migrate, both populations 

elongate an actively probing leading process, trailed by pre-somal swellings into which 

nucleus and cell soma translocate while the trailing process retracts (Evsyukova et al., 2013; 

Metin et al., 2008; Polleux et al., 2002). However, interneuronal movement is highly 

dynamic compared to that of projection neurons. They rapidly extend, retract, and modify 

branches, change the orientation of the leading processes, and move in multiple different 

directions within the developing cerebral wall as they navigate towards their target layer 

(Anderson et al., 1997; Godin et al., 2012). In contrast, radially migrating projection neurons 

tend to have a single unbranched leading process and constantly modulate (maintain/break) 

adhesive contacts with radial glial guides as they move. APC is hypothesized to play a 

significant role in the polarization, migration, and axon growth of neurons in vitro (Barth et 

al., 2008; Chen et al., 2011), but the in vivo evidence for these functions or whether APC 

differentially regulates the migration and development of distinct classes of cortical neurons 
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is unknown. Therefore, using interneuron or projection neuron-type specific inactivation of 

APC, we examined the roles of APC in the appropriate migration, placement, and 

differentiation of different classes of neurons in the cerebral cortex.

Here, we show surprisingly different roles for APC in interneuronal and projection neuron 

migration and identify a hitherto undefined mechanism underlying their characteristically 

different patterns of migration. APC modulates the stability of the MT severing enzyme 

p60-katanin differently in interneurons and projection neurons. APC-regulated MT severing, 

via p60-katanin, promotes branching intensive interneuron migration, whereas bipolar, glial-

guided radial migration of projection neurons is not affected by APC. Dynamic regulation of 

MT severing may therefore promote distinct patterns of cortical neuronal migration within 

the developing cerebral cortex.

Results

Conditional Ablation of APC in the Developing Interneurons and Projection Neurons

To examine the function of APC in interneuron and projection neuron migration and 

differentiation, APC was inactivated in newborn cortical neurons using an APC floxed allele 

line known to yield APC loss of function after Cre-mediated recombination (Hasegawa et 

al., 2002; Sansom et al., 2004; Shibata et al., 1997). Dlx5/6-Cre-IRES-EGFP (Dlx5/6-Cre) 

line that drives Cre and EGFP expression in interneurons generated from the ganglionic 

eminence (GE) (Stenman et al., 2003) or Nex-Cre line that induces recombination in 

newborn projection neurons generated from the dorsal radial progenitors (Goebbels et al., 

2006) were used for APC deletion. Both lines express Cre in respective neurons from around 

embryonic day 12 (Stenman et al., 2003; Goebbels et al., 2006; Higginbotham et al., 2012) 

and lead to neuron-type specific deletion of APC (Figure S1). In addition to Dlx5/6-Cre line, 

I12b-Cre (Potter et al., 2009) was also used to inactivate APC in developing interneurons.

Effect of APC Deletion in Developing Interneurons

The extent and pattern of migration of control and APC deficient interneurons were 

evaluated in embryonic day 14-P0 cerebral cortices. At E14.5, interneurons migrate in 

streams through the marginal zone (MZ), intermediate zone (IZ) and subventricular zone 

(SVZ). Significant reduction in the extent and patterns of interneuronal migration 

throughout the APC cKO cortex was evident at E14.5 (Figure. 1A–E). The extent of 

migration into the developing cerebral wall from the ganglionic eminence was reduced in 

APC cKO when compared with controls (Figure. 1C–E; compare neurons in areas indicated 

by asterisks in C and D). APC cKO neurons also display defective branching (Figure. 1F). 

The altered patterns of interneuronal migration in APC cKO persisted at E16.5, the height of 

interneuronal migration into the developing cerebral wall, and through P0 (Figure. 1G–L). 

Furthermore, similar changes in interneuronal migration in APC cKO were evident when 

migrating interneurons were labeled with multiple different interneuron-specific markers 

(GAD67, Dlx2, Lhx6, and Dlx5) (Figure. 1M–T). We next examined whether the reduction 

in cortical interneurons migrating in the cortex in APCLox/Lox;Dlx5/6-CIE mutants was due 

to changes in either interneuronal generation or survival. The number of proliferating 

progenitors (BrdU+ or PH3+) in the ventricular and subventricular zone of the ganglionic 
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eminence at different embryonic stages was not altered in APC cKO (Figure. S2A–H). We 

found no differences in the number of cleaved caspase 3+ apoptotic cells in the GE of 

control and mutant mice at different embryonic stages (Figure. S3I–N). The radial 

progenitor organization in APC cKO is similar to that of control (Figure. S2U–V). These 

observations suggest that the loss of APC in APCLox/Lox;Dlx5/6-CIE mutants does not affect 

the initial generation or survival of post mitotic interneurons in GE. No differences in brain 

weight between control and mutants were detected at E18 (control, 8.6±0.66mg; APC cKO, 

8.6±0.33mg). Average cortical thickness is also similar (control, 812.4±82.4μm; APC cKO, 

829±76.4μm). Measurement of GFP+ interneuron density in the striatum at E18 indicates no 

significant changes (APCLox/+; Dlx5/6-CIE=116±2/10Kμm2; APCLox/Lox; Dlx5/6-

CIE=111±8/10Kμm2), thus ruling out potential misrouting of interneurons into ventral 

telencephalon in APC cKO. However, we did notice an increase in apoptotic cells in the 

dorsal cortex (Figure. S2O–T), suggesting that some of the aberrantly migrating 

interneurons may undergo cell death in the cerebral wall. Collectively, these studies confirm 

that APC activity is essential for the directed migration of interneurons in the developing 

cerebral cortex.

Altered Patterns and Dynamics of Migration of APC Deficient Interneurons

To further evaluate the role of APC in the dynamics of interneuronal movement into the 

developing cerebral wall, we performed real-time imaging of interneuron migration in 

control and mutant embryonic cortices (E14.5). Control interneurons normally stream 

through the MZ and the SVZ/IZ in the cerebral wall and the leading processes of migrating 

interneurons were primarily oriented dorsally, toward the net direction of their movement. 

Radially turning interneurons were also apparent in the control cerebral wall (Movie S1). In 

contrast, fewer APC deficient interneurons migrated through the MZ and the migratory 

streams in the SVZ/IZ were diffusely organized and scattered in APC cKO brains (Movie 

S2). The leading processes of APC cKO interneurons migrating through the SVZ/IZ were 

often oriented toward the ventricular zone. A 2.1±0.03 fold decrease in the number of 

interneurons migrating radially toward the MZ is evident in APC cKO cortex (Movie S2). 

Furthermore, compared to controls, the rate of migration of APC deficient interneurons is 

significantly reduced (control, 45.9±1.7 μm/h [n=127 cells]; APC deficient interneurons, 

32.4±2.6 μm/h [n= 108 cells]; P<0.05, [Student’s t-test]). Further, APC null interneurons 

displayed longer leading processes (control, 50.97±1.9μm [n=30 cells]; APC deficient, 

61.99±2.38μm [n=31 cells]; P<0.001 [Student’s t-test]), extended increased number of 

branches (control, 1.53±0.078 [n=29 cells]; APC deficient, 2.34±0.08 [n=30 cells]; P<0.001 

[Student’s t-test]) at an accelerated rate (control, 1.57±0.1 branching events/100 min [n=30 

cells]; APC deficient, 1.97±0.1 branching splits/100 min [n=30 cells]; P<0.05 [Student’s t-

test]; Movies S1 and S2; Figure. 1F). Together, these real-time live imaging observations 

indicate that APC activity regulates the migration of interneurons in the developing cerebral 

cortex. Furthermore, the migration deficit was also evident in in vitro assays in which 

migration of isolated, individual post mitotic interneurons (control and APC deficient) was 

monitored (Figure. 1U–W). However, APC deficient interneurons are not impaired in their 

ability to respond to guidance cues (Figure S3).
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Altered Placement of APC Deficient Interneurons

To evaluate how disrupted migration may have affected the final placement of interneurons 

essential for normal cortical connectivity, we analyzed postnatal APCLox/Lox; I12b-Cre; Ai9 

mice (Madisen et al., 2010; Potter et al., 2009). APCLox/Lox; Dlx5/6-Cre mice have 

malformed lower jaw, preventing them from suckling and thus leading to early death soon 

after birth (On occasion, APCLox/Lox; Dlx5/6-Cre mice survive to P7 and show interneuron 

placement defects [Figure. 2A, B]). To circumvent this problem, we used APCLox/Lox; I12b-

Cre; Ai9 mice to analyze the effects of APC deletion in late postnatal brains. I12b-Cre was 

previously used to selectively inactivate genes in embryonic interneurons (Potter et al., 

2009) and Ai9 line enables the labeling of Cre recombined cells with tdTomato (Madisen et 

al., 2010). We analyzed the patterns of distribution of tdTomato+ interneurons in control and 

APC cKO somatosensory cortex (P30). tdTomato+ neurons in each of the cortical layers (I–

VI) were quantified. APC deletion led to significantly fewer interneurons across cortical 

layers, consistent with the migratory defect (Figure. 2C–F). Together, these results indicate 

that APC deletion impairs the migration and the resultant final placement of interneurons in 

the cerebral cortex.

The Effect of Conditional Ablation of APC in Developing Projection Neurons

To examine if APC function modulates projection neuron migration and connectivity, we 

generated APCLox/Lox; Nex-Cre; Tau-Lox-STOP-Lox-mGFP (Tau-mGFP) mice. Nex-Cre 

induces recombination in newborn projection neurons generated from the dorsal radial 

progenitors. Generation of mice with Nex-Cre specific inactivation of APC, which also 

contains the Tau-mGFP transgene, enabled us to inactivate APC in projection neurons and 

label these neurons’ processes with mGFP. We first analyzed changes in the patterns of 

radial neuronal migration of GFP+ APC-deficient neurons. Notably, at E14, 16, and P0, the 

extent of radial migration of projection neurons into the developing cortical plate was not 

affected by APC deletion (Figure 3). The morphology of the GFP+ projection neurons and 

their position within the dorsal cortex were similar in both controls and APC deficient mice 

(Figure. 3A–D). At P0, evaluation of the cortical laminar organization with antibodies to 

different layer specific markers, Cux-1 (Layers 2/3), Ctip-2 (layers 5/6) and Tbr-1 

(layer5/6), indicates that neuronal positioning and layer formation was not affected in APC 

deficient brains (Figure. 3E–H). APC deficient deeper and superficial layer destined 

neurons, birthdated with EdU (E13.5) and BrdU (E16.5), respectively, arrived at appropriate 

layers at P7 (Figure. S4). We also examined APC function on deeper layer projection neuron 

migration and placement, using APCLox/Lox; Nex-Cre; golli-τ-GFP mice in which APC 

deleted pioneer cortical projection neurons express golli promoter driven GFP (Jacobs et al., 

2007). Analysis of GFP+ neuronal positions in E16.5 cortex indicates that GFP+ projection 

neurons migrated normally in both control and APC cKO mice (Figure. S5A–D). Lastly, we 

also electroporated Cre expressing vectors into APCLox/Lox embryos and examined the 

pattern of radial migration of APC deficient neurons. Radial migration of Cre expressing 

APC deficient neurons was not affected (Figure S5G–K). Together, these observations 

suggest that APC activity is not necessary for the migration and positioning of cortical 

projection neurons.
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Once projection neurons reach their laminar destination, they establish functional 

connections by extending axons and dendrites. To examine if the mature patterns of 

connectivity of projection neurons emerge in the absence of APC, we examined major 

cortical projection neuron fiber tracts such as cortico-spinal, cortico-thalamic, and 

commissural projections (corpus callosum and anterior commisure) in the developing 

cerebral cortex (Figure. 3I–J). These fiber tracts in control and APC deficient brains were 

immunolabeled with anti-GFP and anti-cell adhesion molecule L1 or TAG1 antibodies. We 

found that the pattern of extension and the developmental progression of the major cortical 

fiber tracts (i.e., corticothalamic, cortico-spinal, and commissural projections) are not 

notably affected by deletion of APC in the APCLox/Lox; Nex-Cre; Tau-mGFP brains. In 

addition, we also observed no obvious difference in the developmental progression of GFP+ 

axonal extensions of deeper layer projection neurons in APCLox/Lox; Nex-Cre; golli-τ-GFP 

mice (Figure. S5E–F). Together, these observations suggest that APC activity alone is not 

sufficient for the post migratory growth or extension of cortical neuronal projections.

Mechanisms Underlying APC Effect in Interneurons: Altered Patterns of MT Severing in 
APC Deficient Interneurons

Our observation that the MT cytoskeletal regulator, APC, differentially modulates the 

migration of interneurons and projection neurons lead us to hypothesize that a selective 

influence of APC on interneuronal MT cytoskeleton remodeling may underlie its distinct 

role in interneuronal migration. In particular, MT severing facilitates rapid remodeling of 

MTs and cell morphology by seeding short MTs to newly forming cell processes (Baas et 

al., 2005; (McNally and Vale, 1993; Roll-Mecak and McNally, 2010; Sharp and Ross, 

2012). Since interneurons undergo rapid and frequent changes in cell shape and process 

growth during migration as compared to projection neurons, we investigated whether MT 

severing is affected in APC deficient interneurons. The MT network in APC deficient 

interneurons or projection neurons from the E14.5 cortices were labeled with anti-acetylated 

tubulin antibodies and the number of MT breaks per unit length was measured (Sudo and 

Baas, 2010) as an index of MT severing (Figure. 4A–I). Serial optical scans obtained with 

super resolution microscopy were used to definitively identify MT breaks. Increased MT 

severing was noticed in APC deficient interneurons when compared to the controls (Control: 

0.22±0.03 breaks/μm; APC cKO: 0.34±0.05 breaks/μm; P<0.05 [Student’s t-test]; Figure. 

4A–F, I). In contrast, APC deficient projection neurons did not show any significant changes 

in MT severing when compared to the controls (Control: 0.10±0.04 breaks/μm; APC cKO: 

0.12±0.03 breaks/μm; p=0.68 [Student’s t-test]; Figure. 4G–I). To ascertain the effect of 

APC deletion on MT severing in interneurons further, we assayed severing of MTs in vitro. 

Rhodamine-labeled tubulin was polymerized into MTs and extracts from control and APC 

deficient GE interneurons were tested for their effects on MT severing. Compared to control, 

APC deficient interneuron extracts enhanced MT severing, leading to an increase in short 

MT filaments (≤2 μm) in vitro (Figure S6A–F). Extracts from APC deficient projection 

neurons did not alter MT severing (Figure S6G–K). Together, these results suggest that 

depletion of APC promotes MT severing in interneurons, but not in projection neurons.

Eom et al. Page 6

Dev Cell. Author manuscript; available in PMC 2015 December 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



APC Regulates MT Severing Protein Activity in Interneurons

To identify the molecular basis of APC-regulated MT severing in interneurons as compared 

to projection neurons, we tested if the altered MT severing in APC deficient interneurons is 

due to changes in the levels of MT severing proteins, such as katanin, spastin, and fidgetin 

(McNally and Vale, 1993; Roll-Mecak and McNally, 2010; Sharp and Ross, 2012) known to 

be expressed in the developing cortex. Immunoblotting analysis was performed on extracts 

from GE and DC of APCLox/Lox; Dlx5/6-Cre and APCLox/Lox; Nex-Cre brains, respectively, 

and the relevant control brains. We found that APC deletion in interneurons significantly 

increased the levels of p60-katanin catalytic subunit by 23.3±1.4% in APC cKO (Figure. 4J–

K). No significant changes were detected in other MT severing molecules, spastin, fidgetin, 

and p80-katanin regulatory subunit (Figure. 4J). Immunolabeling of isolated interneurons 

with anti-p60-katanin antibodies also confirms the increase in p60-katanin levels in APC 

deficient interneurons (Figure. 4L–M). In contrast, APC deletion in projection neurons did 

not affect the levels of any of the severing proteins (Figure. 4J–K).

p60-katanin activity and degradation is regulated by phosphorylation and subsequent 

ubiquitination (Maddika and Chen, 2009). Phosphorylation of p60-katanin leads to 

ubiquitination and degradation. Therefore we investigated whether the increased level of 

p60-katanin in APC deficient interneurons is due to changes in p60-katanin 

phosphorylation-mediated ubiquitination. We found that the levels of phosphorylated p60-

katanin were significantly reduced (−30.9±4.4%; P<0.05 [Student’s t-test]) in APC deficient 

interneurons when compared to the controls (Figure. 4N–O). Consistent with changes in the 

levels of phosphorylated p60-katanin, the ubiquitin conjugation in p60-katanin was also 

significantly reduced in APC deficient interneurons (Figure. 4N–O). Additionally, 

cyclohexamide treatment of control and APC cKO interneurons show that APC deletion 

lead to more stable p60-katanin (Figure. 4P). Together, these results strongly suggest that 

APC may regulate MT severing in migrating interneurons by modulating p60-katanin 

stability and thus the level of active p60-katanin.

We also found that stabilizing microtubules with taxol did not affect p60-katanin levels in 

APC cKO, suggesting MT stability-independent contribution of katanin in APC cKO 

(Figure. S7A–B). Further, dynamic MTs are known to retain tyrosine side chains. Tubulin 

detyrosination is less prevalent at leading edges of APC cKO interneurons (Figure. S7C–G), 

consistent with enhanced branching dynamism noticed in mutants.

Knockdown of p60-katanin Rescues the Migratory Defect in APC Deficient Interneurons

To address whether the increased level of p60-katanin in APC deficient interneurons is 

responsible for the migration defect, we first tested whether reducing p60-katanin activity 

can rescue the migration defect seen in APC deficient interneurons. Validated p60-katanin 

specific shRNA plasmids were electroporated into the MGE of APCLox/+; Dlx5/6-Cre or 

APCLox/Lox; Dlx5/6-Cre E14.5 cortex and the pattern of migration of electroporated 

interneurons into the cortex was examined (Figure. 5A–H). Defects in both the extent and 

rate of migration in APC deficient interneurons were rescued by p60-katanin knockdown 

(Figure. 5G–H). p60-katanin knockdown also retarded the migration of control interneurons 

(Figure. 5A–B, I, J). We then analyzed the effect of p60-katanin over expression in wild-
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type interneurons. We focally electroporated control tdTomato or two p60-katanin 

constructs, wild-type and triple phospho-mutant (AAA mutant) of katanin (Maddika and 

Chen, 2009) tagged with tdTomato, into the MGE of wild-type E14.5 cortex and examined 

the extent of migration of electroporated interneurons into the cortex after 48 hours (Figure. 

5K–Q). AAA mutant of p60-katanin contains point mutations at amino acid (aa) 42 (S–>A), 

aa109 (S–>A), and aa133 (T–>A), thus preventing the phosphorylation-mediated 

ubiquitination and degradation. Compared to control interneurons, significantly fewer p60-

katanin over expressing interneurons entered the dorsal cortex (Figure. 5L, N, P). Further, 

p60-katanin over expressing interneurons exhibited increased number of branching (Figure. 

5R–S), similar to APC deficient interneurons. Together, these results suggest that increased 

levels of p60-katanin resulting from APC deletion in interneurons disrupt interneuron 

migration in the cerebral cortex. Appropriate balance of microtubule severing activity 

regulated by APC is necessary for interneuron migration. In contrast, katanin knockdown or 

over expression did not affect radial migration of projection neurons (Figure. 5T–W).

Deletion or Activation of β-catenin Does Not Affect APC Mediated Interneuron Migration

Aside from MTs, APC’s other major cellular target is β-catenin. To delineate whether APC 

modulated β-catenin signaling mediates any aspect of interneuron migration, we first tested 

the effect of loss or gain-of-function of β-catenin in interneuron migration. Towards this 

goal, we conditionally deleted β-catenin in interneurons (Ctnnb1Lox/Lox; Dlx5/6-Cre; Figure. 

6A–D) or constitutively activated β-catenin in interneurons (Ctnnb1LoxEx3/+; Dlx5/6-Cre; 

Figure. 6E). Ctnnb1LoxEx3/+; Dlx5/6-Cre mice die soon after birth because of malformed 

lower jaw. Notably, neither the deletion (Figure. 6F–G, J) nor induction (Figure. 6L–M, P) 

of β-catenin affected interneuron migration. We then deleted β-catenin in APC deficient 

interneurons (APC Lox/Lox; Ctnnb1Lox/Lox; Dlx5/6-Cre) to examine if β-catenin contributed 

to aberrant patterns of interneuron migration in APC mutants. β-catenin deletion did not 

rescue or increase the severity of the migration defect seen in APC deficient interneurons 

(Figure. 6H–I, K). Activating β-catenin expression in APC deficient interneurons 

(APC Lox/Lox; Ctnnb1LoxEx3/+; Dlx5/6-Cre) also did not rescue APC deficient phenotype 

(Figure. 6N–O, Q). Together, these results suggest that APC modulated β-catenin signaling 

does not play a role in interneuron migration.

APC2 and projection neuron migration

APC2, a second APC-like molecule in mammals is expressed in radially migrating neurons. 

To define the relative roles of APC and APC2 in projection neuron migration and 

connectivity, we generated compound APCLox/Lox; APC2−/−; Nex-Cre mutants (Figure 7). 

Using this mouse genetic model in which developing projection neurons are deficient in 

both APC and APC2, we first evaluated patterns of neuronal migration and the resultant 

laminar organization. Immunolabeling of E16.5 cerebral cortex with antibodies to layer 

specific markers, Cux1 (Layers 2/3), Ctip2 (layers 5/6), and Tbr1 (layer5/6), indicates that, 

as noticed earlier (Shintani et al., 2012), neuronal migration and laminar organization were 

severely impaired in APC2 null cortexes (Figure 7), but not in APC deficient cortex (Figure. 

7A–B, E–F). APC2 deficiency led to inversion of cortical layers and new neurons do not 

migrate past previously generated neurons as in control cortices (Figure. 7C–D, G–H). 

Importantly, APC/APC2 double null mice indicate that APC and APC2 do not exert any 
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synergistic effects on neuronal migration and APC2 is the critical APC isoform for radial 

migration and placement of projection neurons. To examine if APC2 affects MT severing 

activity, we examined MT severing enzyme levels in APC2 null and control brains. We 

found that APC2 deletion did not affect the expression of any of the MT severing enzymes 

(p-60 katanin, p80-katanin, spastin, and fidgetin [Figure. 7I]), suggesting that APC2 effect 

on radial migration does not involve regulation of MT severing activity.

Discussion

Neuron specific deletion of APC shows that APC inactivation specifically interrupts 

interneuron migration and their final placement, but not projection neuron migration, 

placement and connectivity. The effects of APC in interneurons depend on p60-katanin 

mediated MT severing, but not on the β-catenin pathway. These observations indicate that 

interneurons employ dynamic severing and restructuring of MTs as a mechanism to 

modulate MT stability and facilitate their distinct mode of migration in the developing 

cerebral cortex.

APC’s modulation of MT dynamics and β-catenin activity during interneuron migration

The two major downstream components of APC signaling are β-catenin pathway and MT 

cytoskeleton. APC is an integral component of the destruction complex that normally 

promotes β-catenin phosphorylation and proteosomal degradation. APC activity is also 

known to be critical for MT organization and stability. Our results demonstrate a hitherto 

uncharacterized contribution of APC to MT severing in cortical interneurons. Deletion of β-

catenin activity in APC mutant interneurons (APC Lox/Lox; Ctnnb1 Lox/Lox; Dlx5/6-Cre) did 

not alter the migration defect seen in APC deficient interneurons. Deletion of β-catenin 

alone in interneurons (Ctnnb1Lox/Lox; Dlx5/6-Cre) did not affect their migration (Figure 6). 

Further, conditional activation of β-catenin signaling in interneurons (Ctnnb1LoxEx3/+; 

Dlx5/6-Cre) also did not affect interneuron migration (Figure 6). Together, these results 

suggest that APC’s effect on interneuron migration does not depend on APC regulated β-

catenin signaling, but on MT dynamics.

APC mediated regulation of MT severing in interneurons

Notably, our results indicate that MT severing is compromised in APC deficient 

interneurons, thus affecting their morphology, migration, and final placement in the 

developing brain. Katanin, composed of a p60 subunit, an ATPase that disassembles and 

severs MTs to tubulin dimers, and a non-enzymatic p80 subunit that targets katanin to the 

centrosome (McNally and Vale, 1993), is essential for regulating MT length and 

reorientation (Roll-Mecak and McNally, 2010; Sharp and Ross, 2012; Lindeboom et al., 

2013). APC modulates MT stability and severing by regulating the activity of p60-katanin in 

interneurons, and thus enabling interneuronal MT networks to reorganize in a dynamic 

manner during migration. APC-regulated MT severing may enable interneurons to rapidly 

initiate and modify branches during migration.

MT severing by katanin in neurons depends on the level, phosphorylation status, and 

subcellular distribution of katanin. Phosphorylation of p60-katanin inhibits its MT severing 
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activity (Loughlin et al., 2011; Maddika and Chen, 2009; Roll-Mecak and McNally, 2010; 

Sharp and Ross, 2012). Modification of the MTs, such as acetylation and tau binding, also 

determines the regions on MT filaments targeted by Katanin (Sudo and Baas, 2010). In the 

absence of APC, p60-katanin levels increase as a result of decreased p60-katanin serine 

phosphorylation and degradation. APC deletion also decreases the binding affinity of tau to 

the MTs (data not shown), which in turn can promote the efficiency of katanin’s severing 

activity during MT reorganization in interneurons. Thus, enhanced MT severing activity in 

the absence of APC may have led to aberrant patterns of migration of interneurons. 

Collectively, our studies indicate that a balanced regulation of microtubule severing activity 

is necessary for appropriate interneuron migration. Deletion of APC disrupts this balance 

and thus migration.

Mechanisms underlying the differences in the regulation of MT severing in interneurons 
and projection neurons

Migrating interneurons exhibit a highly stereotyped movement with rapid morphological 

changes of their leading processes. In contrast, projection neurons move uni-directionally 

along radial glial guides while maintaining a major leading and trailing process. The 

different patterns of migration of interneurons and projection neurons suggest that 

interneurons may require distinct mechanisms for dynamic alterations in the MT scaffolding 

as compared to projection neurons, which rely more on cell-cell adhesion mechanisms to 

move along radial glial guides. Neuronal migration based on rapid branching and 

remodeling of processes may require a highly dynamic pool of MTs to facilitate this activity. 

MT severing in interneurons serves this goal. The nature of the pathway through which APC 

regulates MT severing enzyme activity and how the balance between APC’s direct 

regulation of MT stability and indirect regulation of severing is achieved are still open 

questions. APC does not bind katanin. APC deletion may decrease the binding affinity of 

MAPs such as tau to the MTs, which in turn can promote the efficiency of katanin’s MT 

severing activity. APC deletion may also alter the activity of kinases (e.g., DYRK2) and 

phosphatases (e.g., PP4c), which can then modulate the stability, phosphorylation, or 

distribution of p60-katanin (Roll-Mecak and McNally, 2010; Sharp and Ross, 2012). 

Further, activity of enzymes such as tubulin acetyl transferase (TAT) acetylates α-tubulin 

and stabilizes microtubules. Enhanced severing of MTs in APC mutants may have prevented 

the appropriate stabilization of MTs by TAT necessary for oriented migration (Szyk et al., 

2014) and led to more unstable MTs. APC’s direct role as an RNA-binding protein in 

specifying β2b-tubulin subcellular distribution and MT organization may also indirectly 

affect MT severing (Preitner et al., 2014). APC did not affect other MT severing enzymes, 

spastin and fidgetin. Further identification of other atypical regulators of MT severing (e.g., 

kinases or phosphatases that regulate serine phosphorylation of p60-katanin or tau) in the 

developing cortical neurons will help define the specific signaling pathways that 

differentiate MT dynamics in the developing projection neurons and interneurons. It will 

help identify the contributions of the dynamic interplay between MT severing and stability 

in the migration of these two types of neurons.
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APC’s role in projection neuron migration

Contrary to APC’s role in interneuron migration and placement, its relative contribution to 

radial neuronal migration of projection neurons is not significant. In contrast to earlier in 

vitro studies with undefined cortical neurons (Chen et al., 2011), our data show that the 

migration and laminar positioning of cortical projection neurons in vivo are not influenced 

by APC activity (Fig. 3). However, APC2, a second APC-like molecule in mammals, is 

highly expressed in cortical neurons throughout the brain (van Es et al., 1999; Shintani et al., 

2012). Migration and laminar defects in APC2-deficient brains (Figure 7; Shintani et al., 

2012) and the lack of synergistic effects between APC and APC 2 (Figure 7) suggest that 

APC2, not APC, is essential in the radially migrating projection neurons. APC2, however, 

lacks the C-terminal MT binding domain present in APC and its influence on MT 

cytoskeleton, including tubulin localization and expression (Preitner et al., 2014), remains to 

be defined. Further, phosphorylation of cofilin, an actin-depolymerizing protein, and the 

resultant stabilization of the actin filaments is required for proper radial migration of 

projection neurons (Bellenchi et al. 2007; Chai X et al. 2009). It is conceivable that glial-

guided radial migration of cortical neurons may rely on cytoskeletal mechanisms involving 

stabilization of the actin cytoskeleton, whereas tangential migration of INs may require rapid 

regulation of MT dynamics. In both cases, cytoskeletal regulators with severing activity on 

distinct cytoskeletal components are required.

Conclusions

Both interneurons and projection neurons migrate next to each other in the developing 

cerebral wall in distinctly different ways. How interneurons selectively convert extracellular 

signals in the cerebral wall to modulate MT severing via APC remains an open question. 

Importantly, what molecular triggers tweak the common cytoskeletal machinery in 

interneurons and projection neurons to achieve their distinctly different migratory behavior? 

Our studies demonstrate how interneurons employ MT severing as a means to achieve this 

goal. Recent studies indicate that MT severing enzyme family members KATNAL1 and 2 

(KATANIN p60 subunit A-like 1 and 2) are candidate genes for human 13q12.3 

microdeletion syndrome characterized by intellectual disability and autism spectrum 

disorders, respectively (Neale et al., 2012; Sanders et al., 2012; Bartholdi et al., 2014). 

Further understanding of the integration of dynamic intracellular mechanisms governing 

different types of neuronal migration will help decipher how the process of migration leads 

to the emergence of functional neuronal circuitry in the cerebral cortex. In addition, 

characterization of tubulin diversity and the dynamic interplay between MT stability and 

severing (Tischfield et al., 2011; Chen et al., 2013; Godin et al., 2012; Preitner et al., 2014) 

in interneurons and projection neurons will also help define how these two different types of 

cortical neurons build MT structures that subserve diverse patterns of cell migration.

Materials and Methods

Mice

Mice were cared for according to animal protocols approved by the University of North 

Carolina. APC was conditionally inactivated in interneurons or projection neurons by 
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mating mice carrying an APC allele flanked by loxP site (Shibata et al., 1997) with either 

Dlx5/6-Cre (Stenman et al., 2003) or Nex-Cre; Tau-Lox-STOP-Lox-mGFP (Goebbels et al., 

2006; Kramer et al., 2006) mice. Littermate APCLox/+; Dlx5/6-Cre or APCLox/+; Nex-Cre; 

Tau-Lox-STOP-Lox-mGFP mice served as controls. I12b-Cre; Ai9 (Potter et al., 2009; 

Madisen et al., 2010) was also used to inactivate APC in the GE. Ctnnb1Lox/Lox (Brault et 

al., 2001) and Ctnnb1LoxEx3/LoxEx3 (Zechner et al., 2003) mice were crossed with Dlx5/6-

Cre to inactivate or activate β-catenin signaling in interneurons, respectively. Golli-τ-GFP 

mice (Jacobs et al., 2007) were gift from Dr. A. Campagnoni (UCLA).

Immunohistochemistry, Immunoprecipitation and In Situ Hybridization

Cerebral cortical sections and cortical cells were immunolabeled as previously described 

(Witte et al., 2008; Yokota et al., 2009). The following primary antibodies were used: 

calretinin, Ctip2, GFP, mRFP (Abcam); BrdU (BD Biosciences); EdU (Invitrogen); cleaved 

caspase 3 (Cell Signaling); GABA, (Sigma-Aldrich); TAG1 (Iowa Hybridoma Bank); 

acetylated tubulin, active-β-catenin, L1, PH3, Tbr1 (Millipore); APC, Cux1, p60-katanin, 

p80-katanin (Santa Cruz). Appropriate Cy2, Cy3, or Alexa dye conjugated secondary 

antibodies (Jackson ImmunoResearch, Molecular Probes) were used to detect primary 

antibody binding. DRAQ5 (Alexis) or DAPI (Invitrogen) was used as nuclear counterstain. 

In situ hybridization labeling of embryonic control and APC cKO cerebral cortical sections 

was performed as described in McKinsey et al., 2013. The following cDNA probes were 

used: Dlx2, Dlx5, Lhx6, and Gad67 (McKinsey et al., 2013). Immunoprecipitation and 

immunoblot analyses of control and APC cKO cortex were performed as described in 

Yokota et al., 2009 and Higginbotham et al., 2012. See supplemental data for details.

Electroporation of Medial Ganglionic Eminence

MGE of E14. 5 embryos were electroporated with control shRNA, p60-katanin shRNA, 

wild-type p60-katanin, or triple phospho-mutant p60-katanin cDNA as outlined in 

Higginbotham et al., 2012 and Yokota et al., 2007. Wild-type and triple phospho-mutant 

p60-katanin cDNAs were generously gifted by Dr. Maddika Subba Reddy (CDFD, India). 

See supplemental data for details.

Live Imaging of Neuronal Migration in Cortical Slices

E14.5 cortices were removed from the embryos, embedded in 3 % low-melting-point 

agarose in complete Hank’s Balanced Salt Solution and coronally sectioned (250 μm) on a 

vibratome (Leica VT 1000S). Sections were then mounted on Millicell-CM membrane 

filters (Millipore), placed in glass-bottom FluoroDish chambers (World Precision 

Instruments, Inc.) and maintained in MEM/10 % fetal bovine serum (FBS) at 37 °C and 5 % 

CO2. GFP-expressing interneurons were repeatedly imaged using a Zeiss LSM780 inverted 

confocal microscope attached to a live cell incubation chamber. Zeiss LSM Image Browser 

or ImageJ Software was used for quantification of migration patterns (Yokota et al., 2009, 

Stanco et al., 2009, and Higginbotham et al., 2012). Also see supplemental methods.
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In Vitro Microtubule Severing Assay

Rhodamine-labeled MTs were generated as described in the manufacturer’s 

instructions(Cytoskeleton. Inc.) and used to test MT severing activity in control and APC 

deficient extracts. See supplemental data for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deletion of APC leads to interneuronal migration defects
(A–L) Developmental analysis of E14.5-P0 APCLox/Lox; Dlx5/6-Cre mutants illustrate 

disrupted patterns of interneuron migration in APC mutants. (A–B) In E14.5 coronal 

sections of cerebral cortex, asterisk marks migratory streams in the IZ/SVZ and arrow marks 

the migration front. Comparison of indicated areas in control and mutants illustrate the 

migratory defects in mutants. (C–E) In higher magnification images of the cerebral wall (C–

D), asterisks indicate streams of migrating interneurons. Significant changes in the 

migratory streams are evident in mutants (compare asterisks in C and D). (E) Quantification 

of interneuron distribution. E14.5 cerebral wall is divided into 10 equal bins and the number 

of GFP+ interneurons in each bin is measured. Compared to controls, APC mutants exhibit a 

significant decrease in the number of GFP+ interneurons migrating into the cerebral wall. 

Data shown are mean±SEM (n=7). (F) Camera lucida drawings of control and APC 

deficient interneurons illustrating branching defects in APC mutants. (G–L) interneuron 

defects in the cerebral wall persist at E16.5 (G, H), E18.5 (I, J), and P0 (K, L). (M–T) In situ 

hybridization labeling of control and APC cKO cortical (E14.5) sections with interneuronal 

markers showing similar migration defects. Interneurons are labeled with mRNA probes for 

GAD67 (M and N), Dlx2 (O and P), Lhx6 (Q and R), and Dlx5 (S and T). Arrows (M–T) 

mark the migration front. Compare green arrows (controls) to red arrows (mutants) to 

evaluate the deficit in the extent of migration. (U–W) Disrupted migration of APC deficient 

interneurons in vitro. (U–V) Dissociated, GFP+ interneurons from control (U) and APC cKO 

(V) were seeded on feeder layers of dorsal cortical cells and their movement was monitored. 

Time elapsed between observations are indicated in minutes and interneurons at each time 

point were pseudo colored in different colors. Green arrows in the merged image show the 
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trajectory of different interneurons during observation. (W) Quantification of migration rate. 

*, p<0.05 (Student’s t test). Number of cells/group: Control (25), APC cKO (27). GE, 

ganglionic eminence; D.CX, dorsal cortex; CP, cortical plate; IZ, intermediate zone; VZ, 

ventricular zone. Scale bar= 430 μm (A, B), 130 μm (C, D), 115 μm (F), 100 μm (G–J), 120 

μm (K, L), 357 μm (M–T), 30μm (V, W).
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Figure 2. APC deletion disrupts interneuronal placement
(A–B) Anti-GABA antibody labeling of APCLox/+; Dlx5/6-Cre (B) and APCLox/Lox; 

Dlx5/6-Cre (B) cortices indicates disrupted placement of INs in APCLox/Lox; Dlx5/6-Cre 

cortex. (C–D) tdTomato+ interneuron distribution in P30 APCLox/+; I12b-Cre; Ai9 (C) and 

APCLox/Lox; I12b-Cre; Ai9 (D) cortex. (E) Co-immunolabeling of tdTomato+ interneurons 

with pan- interneuron specific anti-GABA antibodies. Majority of tdTomato+ cells are 

GABA positive. (F) Quantification of changes in the distribution of tdTomato+ interneurons 

across the cortical layers. Sections are from somatosensory cortex and counterstained with 

DAPI (blue). Data shown are mean ± SEM; asterisk, significant when compared with 

controls at P<0.05 (Student’s t test). Scale bar= 157 μm (A–D), 20 μm (E).
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Figure 3. Deletion of APC does not affect Projection neuron migration, placement, and growth
(A–D) GFP-labeled E14.5 and E16.5 coronal sections from APCLox/+; Nex-Cre; Tau-mGFP 

(A and C) and APCLox/Lox; Nex-Cre; Tau-mGFP (B and D) mice illustrate similar patterns 

of migration of GFP+ projection neurons in control and mutant cortices. (E–H) P0 

somatosensory cortex of control (E and G) or APC mutant (F and H) mice was 

immunolabeled with antibodies to Cux1 (layers II–IV), Ctip2 (layer V), and Tbr1 (layer VI). 

Layer formation and neuronal positioning are not altered following APC deletion in 

projection neurons. (I–J) Coronal sections from E16.5 control (I) or APC mutant (J) cortex 

were immunolabeled for GFP (green), L1 (red), and TAG1 (purple). No defects in the 

patterns of axon growth of APC-deficient projection neurons are evident. Sections in A–F 

and I–J are counterstained with DRAQ5 (nuclei). CC-corpus callosum, IC-internal capsule, 

FI-fimbria, AC-anterior commisure. Scale bar= 116 μm (A and B), 606 μm (C and D), 51 

μm (E and F), 129 μm (G and H), 550 μm (I and J).
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Figure 4. Deletion of APC disrupts MT severing in developing interneurons
(A–H) MTs in E14.5 control and APC mutant interneurons (INs) and projection neurons 

(PNs) are immunolabeled with anti-acetylated tubulin antibodies and imaged using a super-

resolution microscope. (A–F) APC deficient INs have more breakpoints (arrow heads) than 

controls, indicating increased MT severing. (G–H) Such differences in MT severing is not 

evident between control (G) and APC deficient projection neurons (H). (I) Quantification of 

MT severing in control and APC mutant INs and PNs. Data shown are mean ± SEM; n=40 

cells from 4 brains per group; *, significant when compared with controls at p<0.05 

(Student’s t test). (J) Comparisons of MT severing protein levels in INs and PNs isolated 
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from the GE and D. Cx of respective control, APCLox/Lox; Dlx5/6-Cre, or APCLox/Lox; Nex-

Cre mice. Immunoblot analysis indicates increased p60-katanin in APC deficient INs 

(arrowhead), but not in PNs. No changes in other MT severing protein levels are evident. 

(K) Densitometric quantification of p60-katanin levels in control and APC mutants. Data 

shown are mean ± SEM; n=4 brains per group; *, p<0.05 (Student’s t test). (L–M) 

Immunolabeling of E14.5 interneurons from APCLox/+; Dlx5/6-Cre (L) and APCLox/Lox; 

Dlx5/6-Cre (M) GE shows increased expression of p60-katanin in APC deficient 

interneurons. (N) Serine phosphorylated and ubiquitylated-p60-katanin (arrowhead) are 

reduced in APC deficient INs. Immunoprecipitated p60-katanin are immunoblotted with 

anti-phosphoserine and anti-ubiquitin antibodies, respectively. (O) Densitometric 

quantification of phosphoserine-p60-katanin levels in control and APC mutants. Data shown 

are mean ± SEM; n=3 brains per group; *, p<0.05 (Student’s t test). (P) APC affects the 

stability of p60Katanin. Control and APC mutant interneurons were treated with 5μg/ml 

protein synthesis inhibitor cyclohexamide (CHX) for 3 and 6 hours. APC deletion led to 

increased stability of p60Katanin. C, control; M, mutant [APC deficient]; IN, interneuron-

specific; PN, projection neuron-specific; GE, ganglionic eminence; D.CX, dorsal cortex. 

Scale bar= 3.1 μm (A–D, G–H), 2.8 μm (E and F), 15 μm (L and M).
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Figure 5. p60-katanin mediates APC’s effects on interneuron migration
(A–D) Migration defects seen in APC deficient interneurons are rescued by knockdown of 

p60-katanin. E14.5 Control or APCLox/Lox; Dlx5/6-Cre MGE are focally electroporated with 

control or p60-katanin shRNAs. Extent of electroporated tdTomato+ interneuron migration 

into dorsal cortex is quantified after 48 hr. Arrowheads mark the migration front. (E–H) 

Higher magnification images of dorsal cortex (D. Cx) from A, B, C, and D respectively. 

Katanin knockdown retarded control interneuron entry into D. Cx. Fewer interneurons 

entered the mutant D. Cx (compare E and G) and this deficit is rescued by p60-Katanin 

knockdown (compare G and H). (I) Quantification of the distribution of electroporated 

interneurons indicates diminished migration of interneurons into dorsal cortex in APC 

mutants. p60-katanin shRNA rescues this defect. p60-katanin shRNA expression in control 
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cortices also retarded IN migration. Migration index are calculated as % of interneurons 

migrating in three equal sectors (1–3; A) along the dorso-ventral extent of the cerebral wall. 

Data shown are mean ± SEM; *, significant when compared with respective controls at 

p<0.05, (Student’s t test). Number of slices and brains: control shRNA (16, 14), p60-katanin 

shRNA+ control (12, 8), control shRNA+ mutant (8, 6), p60-katanin shRNA+ mutant (21, 

10). (J) p60-katanin shRNA rescues the defect in the rate of migration in APC deficient 

interneurons. Data shown are mean ± SEM; *, significant when compared with respective 

controls at p<0.05, (Student’s t test). Number of interneurons and brains: control shRNA 

(54, 4), p60-katanin shRNA+ control (63, 7), control shRNA+ mutant (23, 3), p60-katanin 

shRNA+ mutant (24, 3). (K–P) The effect of p60-katanin over expression on interneuron 

migration. pCAG-IRES-tdTomato, p60-katanin wild-type (p60KatWT)-tdTomato, or p60-

katanin AAA (p60KatAAA)-tdTomato were focally electroporated into the MGE of E14.5 

coronal slices. Electroporated control interneurons leave the MGE and migrate into the 

dorsal cortex (K). In contrast, interneurons expressing p60KatWT or p60KatAAA display 

diminished migration into the dorsal cortex (M, O). Arrowheads (K–O) mark the migration 

front. (L, N, P) Higher magnification images of dorsal cortex (D. Cx) from K, M, and N 

respectively. Fewer interneurons expressing p60KatWT or p60KatAAA entered the mutant 

D. Cx (compare L to N and P). (Q) Quantification of the effect of p60-katanin over 

expression on IN migration. Data shown are mean ± SEM; *, significant when compared 

with controls at p<0.05 (Student’s t test). Number of slices and brains: Control (6, 5), 

p60KatWT (8, 7), p60KatAAA (12, 9). (R) Higher magnification images of control and p60-

katanin over expressing interneurons. p60-katanin over expressing interneurons exhibit 

increased branching. (S) Quantification of the branching numbers in p60-katanin over 

expressing interneurons as compared to controls. Data shown are mean ± SEM; *, 

significant when compared with controls at p<0.05 (Student’s t test). Number of cells and 

brains: Control (116, 10) and p60Kat (105, 15). (T–W) The effect of p60-katanin 

knockdown or over expression on radial migration. (T–V) Control shRNA (T), p60-katanin 

shRNA (U), or p60-katanin wild-type (V) DNA were electroporated into E14.5 embryos. 

The maximum extent of radial migration of electroporated neurons into the developing 

cerebral wall (i.e., migration index) was measured at E17.5. Changes in katanin did not 

affect radial migration (W). Data shown are mean ± SEM (n=4 brains per group). CP, 

cortical plate; IZ, intermediate zone; VZ/SVZ, ventricular/subventricular zone. Scale bar= 

400 μm (A–D), 275 μm (E–H), 300μm (K, M, O), 200μm (L, N, P), 100μm (R), 120 μm (T–

V).
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Figure 6. Effect of β-catenin Signaling on Interneuron Migration
(A–D) Changes in β-catenin expression in GE after deletion of APC and/or β-catenin. 

Immunolabeling of E15.5 APCLox/+, Ctnnb1Lox/+, Dlx5/6-Cre (A); APCLox/Lox, Dlx5/6-Cre 

(B); Ctnnb1Lox/Lox, Dlx5/6-Cre (C); APCLox/Lox, Ctnnb1Lox/Lox, Dlx5/6-Cre (D) cortices 

with active β-catenin antibody illustrates that the levels of unphosphorylated β-catenin (red) 

expression in GE (asterisk). Compared to control (A), APC deletion alone leads to increased 

expression of β-catenin as expected (asterisk, B), whereas β-catenin deletion abolishes its 

expression (asterisk, C–D). (E) Induction of active β-catenin in GE. Immunoblot analysis 

indicates corresponding changes of β-catenin expression in E14.5 APCLox/+, Dlx5/6-Cre; 

APCLox/Lox; Dlx5/6-Cre; APCLox/+, Ctnnb1LoxExon3/+, Dlx5/6-Cre; and APCLox/Lox, 

Ctnnb1LoxExon3/+,Dlx5/6-Cre cortices. Lower molecular weight band (arrow) is 

unphosphorylated, active β-catenin, which is induced in Ctnnb1LoxExon3/+; Cre brains. Also 

note APC deletion upregulates β-catenin levels. (F–M) Deletion of β-catenin on its own or 

together with APC does not affect interneuron migration. Compared to controls (F), patterns 

of IN migration were not perturbed after deletion of β-catenin alone (G, J). Similarly, 

deletion of β-catenin in APC null interneurons (H–I, K) also did not affect the migration of 

APC deficient INs. (L–Q) Constitutive activation of β-catenin signaling in interneurons 

(Ctnnb1LoxEx3/+; Dlx5/6-Cre) on its own or in APC deficient interneurons (Ctnnb1LoxEx3/+; 

APCLox/Lox; Dlx5/6-Cre) also has no effect on interneuron migration. Compared to controls 

(L), induction of active β-catenin did not affect IN migration (M, P). Further, migration 

defect in APC deficient INs (N) was not rescued by induction of active β-catenin in APC 

null INs (O, Q). Panels F–I and L–O are from E15.5 and E14.5 cerebral wall, respectively. 

GFP+ interneuron distribution in the ventricular/subventricular zone (VZ/SVZ), intermediate 

zone (IZ), and cortical plate (CP) of the embryonic cerebral wall was quantified (J, K, P, Q). 

Data shown are mean±SEM (one-way ANOVA, Tukey-Kramer post hoc test, not significant 

[p>0.05]). Number of brains: 4 (APCLox/+, Ctnnb1Lox/+, Dlx5/6-Cre), 3 (APCLox/+, 

Ctnnb1Lox/Lox, Dlx5/6-Cre), 3 (APCLox/Lox, Dlx5/6-Cre), 3 (APCLox/Lox, Ctnnb1Lox/Lox, 

Dlx5/6-Cre), 5 (APCLox/+, Dlx5/6-Cre), 4 (APCLox/+, Ctnnb1LoxExon3/+, Dlx5/6-Cre), 3 

(APCLox/Lox, Dlx5/6-Cre), and 4 (APCLox/Lox, Ctnnb1LoxExon3/+, Dlx5/6-Cre). Scale bar= 

263 μm (A–D), 875 μm (F–I), 100 μm (J–M and O–R).
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Figure 7. APC2, but not APC1 is required for projection neuron migration and placement
(A–H) P0 somatosensory cortex of control Nex-Cre, APCLox/+, APC2+/− (A, E); Nex-Cre, 

APCLox/Lox, APC2+/− (B, F); Nex-Cre, APCLox/+, APC2−/− (C, G); and Nex-Cre, 

APCLox/Lox, APC2−/− (D, I) were immunolabled with antibodies to Cux1 (layers II-IV), 

Ctip2 (layer V/VI), and Tbr1 (layer VI). Neuronal migration and neuronal positioning are 

not altered following APC deletion in newborn projection neurons (A–B, E–F), but are 

compromised following APC2 deletion (C–D, G–H). Neuronal migration and laminar 

organization depends primarily on APC2, since no synergistic effect was noticed in APC/

APC2 double mutants (compare C and D, G and H). Sections (E–H) were nuclear 

counterstained with DAPI. (I) The effect of APC2 on MT severing proteins. Immunoblot 

analysis of MT severing protein levels in the GE and DC of wild type, heterozygous, and 

homozygous null APC2 mice. No changes in MT severing protein levels are evident in 
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APC2 null brains. β-actin was used as a loading control. Scale bar= 150μm. GE, ganglionic 

eminence; DC, dorsal cortex.
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