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Abstract: The main objective of this work was to evaluate the application of individual and ensem-
ble machine learning models to classify malignant and benign breast masses using features from
two-dimensional (2D) correlated spectroscopy spectra extracted from five-dimensional echo-planar
correlated spectroscopic imaging (5D EP-COSI) and diffusion-weighted imaging (DWI). Twenty-
four different metabolite and lipid ratios with respect to diagonal fat peaks (1.4 ppm, 5.4 ppm) from
2D spectra, and water and fat peaks (4.7 ppm, 1.4 ppm) from one-dimensional non-water-suppressed
(NWS) spectra were used as the features. Additionally, water fraction, fat fraction and water-to-fat
ratios from NWS spectra and apparent diffusion coefficients (ADC) from DWI were included. The
nine most important features were identified using recursive feature elimination, sequential forward
selection and correlation analysis. XGBoost (AUC: 93.0%, Accuracy: 85.7%, F1-score: 88.9%, Precision:
88.2%, Sensitivity: 90.4%, Specificity: 84.6%) and GradientBoost (AUC: 94.3%, Accuracy: 89.3%,
F1-score: 90.7%, Precision: 87.9%, Sensitivity: 94.2%, Specificity: 83.4%) were the best-performing
models. Conventional biomarkers like choline, myo-Inositol, and glycine were statistically signif-
icant predictors. Key features contributing to the classification were ADC, 2D diagonal peaks at
0.9 ppm, 2.1 ppm, 3.5 ppm, and 5.4 ppm, cross peaks between 1.4 and 0.9 ppm, 4.3 and 4.1 ppm,
2.3 and 1.6 ppm, and the triglyceryl–fat cross peak. The results highlight the contribution of the
2D spectral peaks to the model, and they demonstrate the potential of 5D EP-COSI for early breast
cancer detection.

Keywords: correlated spectroscopic imaging; diffusion weighted imaging; machine learning; breast
cancer; choline; myo-inositol; glycine; water; lipids

1. Introduction

Breast cancer is one of the most prevalent cancers in females and one of the leading
causes of cancer death worldwide [1,2]. Early detection and accurate characterization of
breast malignancies are crucial factors in breast cancer management and positive treatment
outcomes [3–12]. Differentiation of benign from malignant breast lesions can aid clini-
cians in determining appropriate therapeutic plans. While histopathological examination
of breast tissues extracted by biopsy is often required to confirm a suspicious lesion, a
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mammogram continues to be the gold standard for the detection of breast cancer, but
this approach has a high false positive rate [13]. Multi-parametric MRI (mp-MRI), which
includes dynamic contrast-enhanced MRI (DCE-MRI), T2-weighted MRI and diffusion-
weighted imaging (DWI) may allow differentiation between benign and malignant breast
lesions that present highly overlapping enhancement patterns. However, despite the po-
tential to eliminate unnecessary biopsies and follow-up examinations of benign tumors,
mp-MRI-based breast tumor differentiation still has increased false positive findings.

Cell density, organization, membrane integrity and cellular metabolism of breast
tissues undergo changes in the presence of cancer. Magnetic resonance spectroscopic
imaging (MRSI) is capable of detecting the changes in concentrations of various metabo-
lites and lipids in the tissue that are altered due to cancer-related changes in cellular
metabolism [14–23]. High cell density and altered tissue structure due to cancer also lead
to restricted motion of water molecules in the tissue, which can be measured by the appar-
ent diffusion coefficient (ADC) on DWI [12,24–31]. DCE-MRI, one of the most sensitive
diagnostic techniques, highlights the areas of increased blood flow and blood volume in
the breast tissues due to cancer with the help of a contrast agent [5–7,12,32–35].

Even though the sensitivity of mp-MRI methods can be affected by various factors
like tumor size and aggressiveness, these methods are often reported to have relatively
high sensitivity (in the range of 88–100% for DCE-MRI, 85–95% for DWI and 80% for
MRSI) [9,12,36–39]. Reported specificity, on the other hand, is relatively low (69–74% for
DCE-MRI, 75–82% for DWI and 74% for MRSI), restricting the capability for classification
of benign and malignant lesions [37–40]. While single-voxel spectroscopy has a reported
64–82% sensitivity and 85–91% specificity [41], the multi-voxel technique of MRSI can
cover a larger area of the breast with a relatively higher spatial resolution. Advanced
MRSI techniques like five-dimensional (5D) echo-planar correlated spectroscopic imaging
(EP-COSI) can record two-dimensional (2D) correlated spectroscopy (COSY) from multiple
regions in three-dimensional (3D) space [42]. Achieving high specificity is also challenging
in MRSI due to overlapping patterns of the measures between benign and malignant lesions.

One option to potentially improve the specificity while retaining the benefits of the
non-invasive nature of these imaging modalities is to use machine learning (ML) models
to identify subtle or complex differences in the multi-model data that differentiate benign
and malignant lesions [43,44]. Development and validation of machine learning models
have seen impressive growth in the last decade due to their high accuracy and flexibility
in handling a wide range of data types and features [45]. While individual machine learn-
ing models may perform well, a meta-approach that combines individual models named
ensemble learning could generate even more generalizable models that can reduce individ-
ual base learner’s variance or bias [46]. In particular, advanced ensemble models like the
gradient-boosted tree-based algorithm that combines multiple weak learners (decision trees)
are shown to be capable of detecting key features of the multi-modal, multi-parametric
imaging information for applications such as tissue/cancer grade classification [47–50].

Multiple studies have recently shown that the features extracted from DCE-MRI and
DWI of breast tissues used in ML models are capable of predicting tumor grades and
classifying benign and malignant breast lesions [48–50]. However, metabolite and lipid
information from MRSI data has not been used in this context so far. Therefore, a major goal
of this work was to evaluate the application of different machine learning models, including
ensemble learning techniques, for the classification of benign and malignant breast lesions
based on the 5D EP-COSI data along with the corresponding ADC information from
DWI data.

2. Materials and Methods
2.1. Subjects and Data Acquisition

The dataset consisted of 5D EP-COSI and DWI data from twenty-three subjects with
malignant breast masses (mean age 53 [range: 33–71] years and seventeen benign breast
masses (mean age 37 [range: 19–60] years). All scans were acquired on a Siemens 3T



Metabolites 2023, 13, 835 3 of 17

Skyra scanner (Siemens Healthineer, Erlangen, Germany). Consent was obtained from
all volunteers included in the study according to the on-site institutional review board
guidelines. The 5D EP-COSI data was acquired using FOV = 160 × 160 × 120 mm3,
matrix size = 16 × 16 × 8, TR/TE = 1500/35 ms, 64 t1 points and 512 t2 points with
a spectral width of 1250 Hz and 1190 Hz along F1 and F2, respectively. A non-water-
suppressed (NWS) 1D MRSI scan with one t1 point was acquired for eddy current phase
correction and for combining signals from multiple receiver coils [51]. The data was non-
uniformly undersampled (NUS) along two spatial ky-kz and the spectral t1 dimensions with
a total acceleration factor of 8, and was reconstructed using a Group Sparsity (GS)-based
compressed sensing technique [52,53].

The DWI acquisition protocol included the following: Two-dimensional spin-echo
echo-planar imaging (EPI) sequence (TR/TE of 3800/93 ms; data matrix, 192 × 192; signal
average, 3; slice thickness, 3 mm; and distance factor, 20%) in the axial plane. Diffusion sen-
sitizing gradients (DSG) in three orthogonal directions with b values of 50 and 800 s/mm2

were applied. The ADC maps were created automatically by the in-line scanner software
using the trace-weighted images with b values of 50 and 800 s/mm2.

2.2. Pre-Processing

Tumor-containing slices in the DWI were selected and the boundaries of the lesion
were marked by a radiologist. ADC values were then extracted from this delineated region
of interest (ROI). The MRSI data were interpolated by a factor of 2 and the slices containing
the tumor were identified similarly to DWI. Spectroscopic voxels within the delineated
region were extracted and the metabolite and lipid ratios were quantified in these voxels as
described in [42]. All variables were standardized with z-score normalization (zero mean
and unit standard deviation) and voxels containing outlier measurements were removed.
For the variables that followed a normal distribution, outliers were identified as three
standard deviations away from the mean. For other variables, previously reported ranges
of metabolite and lipid ratios were used as a guideline for outliers [42].

2.3. Feature Extraction

Ten to twelve voxels from multiple slices were selected for each MRSI dataset, resulting
in 241 malignant voxels and 195 benign voxels after removing outliers. The Apparent
Diffusion Coefficient value was calculated for each dataset and assigned to voxels under
the respective dataset.

A total of 99 features were available for the study. These were derived from both DWI
and MRSI data as follows:

DWI : 1 feature (ADC).

1D MRSI
: 3 features, includes water fraction (water/(water + fat)), fat fraction (fat/(water +
fat)) and water-to-fat ratio (water/fat).

2D MRSI

: 95 features which are the ratios of 24 metabolite and lipid peaks with respect to 4
different reference peaks. Reference peaks include methylene fat, olefinic fat and
water at 1.4 ppm, 5.4 ppm and 4.7 ppm from the 1D spectrum, and the methylene
fat diagonal peak at 1.4 ppm from 2D spectrum. These constitute to 96 features,
out of which the ratio of 2D Methylene Fat diagonal peak (FAT14) with itself is
excluded resulting in 95 features.

These features were then narrowed down using statistical tests and feature selec-
tion algorithms. The full list of metabolites and lipids including choline (Cho), myo-
Inositol + glycine (mI + Gly), unsaturated fatty acid and triglyceryl fat cross-peaks identi-
fied in the 2D correlated spectroscopy (COSY) and 1D NWS spectra are shown in Table 1.
A representative 2D COSY spectrum with labeled metabolite and lipid diagonal and cross
peaks along with the corresponding ADC map is shown in Figure 1.
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Table 1. Metabolites and lipids identified in the 2D COSY and 1D NWS spectra of breast tissue.

2D COSY 1D NWS

Diagonal Peaks Cross-Peaks

Peak Label
Locations
(F2) ppmPeak Label Locations (F2,

F1) ppm Peak Label Locations
(F2, F1) ppm

Methyl Fat
(FMETD) (0.9, 0.9) CP1 (0.9, 1.4) Methylene Fat

(FAT14_1d) 1.4

Methylene Fat
(FAT14) (1.4, 1.4) CP2 (1.4, 0.9) Water (WAT_1d) 4.7

Methylene Fat
(FAT21) (2.1, 2.1) CP3 (1.6, 2.3) Olefinic Fat

(UFD54_1d) 5.4

Methylene Fat
(FAT23) (2.3, 2.3) CP4 (2.3, 1.6)

Methylene Fat
(FAT29) (2.9, 2.9) CP5 (1.4, 2.1)

Choline (Cho) (3.2, 3.2) CP6 (2.1, 1.4)

myo-Inositol +
Glycine (mI + Gly) (3.5, 3.5) CP7 (4.1, 4.3)

Methylene
Glycerol Backbone

(MGB41)
(4.1, 4.1) CP8 (4.3, 4.1)

Methylene
Glycerol Backbone

(MGB43)
(4.3, 4.3)

Unsaturated
fatty acid cross

peak, right
lower

(UFR_lower)

(2.1, 5.4)

Water (WAT) (4.7, 4.7)

Unsaturated
fatty acid cross
peak, left lower

(UFL_lower)

(2.9, 5.4)

Olefinic Fat
(UFD54) (5.4, 5.4)

Triglyceryl fat
cross peak

lower,
(TGF_lower)

(4.2, 5.3)

Unsaturated
fatty acid cross

peak, right
upper

(UFR_upper)

(5.4, 2.1)

Unsaturated
fatty acid cross

peak, left
upper

(UFL_upper)

(5.4, 2.9)

Triglyceryl fat
cross peak

upper
(TGF_upper)

(5.3, 4.2)
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Figure 1. A representative 2D COSY spectrum and ADC map. Localizer image for 5D EP-COSI
acquisition is shown on the top left panel. White box represents the placement of the volume
of interest. An extracted COSY spectrum and 1D NWS spectrum are shown on the right side.
Bottom-left panel shows the corresponding ADC map for the same subject with the region of lesion
marked in green. These metabolite, lipid ratios and ADC values were inputted into the feature pool,
which was then narrowed down using statistical tests, recursive feature elimination and sequential
forward selection.

2.4. Feature Selection

Since there were multiple voxels from the same dataset, some of the statistics were
shared between them, especially the adjacent voxels. To avoid data leakage due to the
assignments of adjacent voxels to both the training set and testing set, the entire dataset
was stratified split into the training and testing sets based on the list of subjects, rather
than the voxels. This ensured that the subjects from which the voxels in the training set
were derived did not overlap with those of the testing set, and the class distributions were
roughly the same in both sets. With a roughly 80–20% train-test split ratio, the training set
contained 350 voxels (161 benign and 189 malignant) from 32 datasets, while the test sets
contained 86 voxels (14 benign and 18 malignant) from the remaining 8 datasets (3 benign
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and 5 malignant). This ensured that the samples in the training and testing set were
independent, which in turn avoided overestimation of model performance due to data
leakage so that the model will be generalizable to new data.

One of the main considerations for the feature selection method was the handling of
high-dimensional data with a relatively limited sample size. A statistical significance test
was used to narrow down the variable space before running the feature selection algorithms.
Only the significant features which were capable of distinguishing benign and malignant
classes were selected. Normality and homogeneity of variance of the features were checked
using Quantile–Quantile (Q–Q) plots of the data and Levene’s tests. Based on that, either a t-
test or Mann–Whitney U (MWU) test was used for a statistical significance of p-value < 0.01.
For the next level of analysis, we considered some of the machine learning model-based
feature selection algorithms like sequential feature selection (SFE) and recursive feature
elimination (RFE) [54]. SFS and RFE with cross-validation were selected based on the
model performance considering all the significant features identified in the statistical test.
However, both RFE and SFS have a drawback in that they do not exclude redundant
features. This was addressed using a correlation analysis to remove moderate to strong
correlated redundant features based on a Spearman’s rank correlation coefficient threshold
of ±0.6. A correlation p-value < 0.05 was used to check for the statistical significance of
the observed correlation between different features. Redundant features with statistically
significant high correlation were removed from the feature list.

2.5. Machine Learning Algorithms

The open-source machine learning library for Python, ‘scikit-learn’ was used for im-
plementing different supervised learning algorithms for classification [55], which included
support vector machine (SVM), Decision Tree, Logistic Regression, Naive Bayes, and K-
nearest neighbors (KNN) as well as ensemble learning techniques including Adaptive
Boosting (AdaBoost), GradientBoost, Extreme Gradient Boost (XGBoost), Light Gradient
Boost, Categorical Boost (CatBoost), RandomForest, and Decision Tree-based bagging clas-
sifiers [56–58]. In bagging, the training data was divided into different subsets by random
sampling with replacement and multiple models were trained on these different subsets. It
then combined the prediction of each of the models by averaging. Boosting, on the other
hand, used multiple base learners like decision trees in a sequential manner where the
successive learner corrected for the error in prediction by the previous one.

2.6. Cross-Validation and Parameter Tuning

Grouped K-Folds cross-validation method was used in both feature selection and
hyperparameter tuning to return stratified folds with non-overlapping groups that are
representative of the class distributions of the dataset. The entire dataset was divided into
five non-overlapping folds based on datasets using the Stratified Group 5-Fold method
(implemented with the StratifiedGroupKFold method) during the 5-Fold Cross-Validation
stage. In each iteration, one of the five folds (20% of the data) was held out to be the testing
set, and the remaining folds served as the training set. The cross-validated score was then
the average accuracy score across the five folds. The train set was z-score standardized
and the test set was standardized with the train set’s statistics. The models were optimized
using the cross-validated Grid Search method. Grid search was used by first defining the
possible values of hyperparameters in the ML models, and then finding the combination of
these parameters that optimize the classification accuracy by exhaustive search.
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2.7. Evaluation Metrics

The classification performance of the different machine learning models in the testing
stage was compared based on the scores of (a) accuracy (ratio of correct predictions to
total number of predictions), (b) area under the receiver operating characteristic (ROC)
curve (c) precision (True positives/(True positives + False positives)), (d) sensitivity (True
positives/(True positives + False negatives)), (e) specificity (True negatives/(True negatives
+ False positives)) and (f) F1 score (2 × ((precision × sensitivity)/(precision + sensitivity))).

2.8. Statistical Analysis

Statistical tests were performed to compare the performance of the machine learning
models. One-way Analysis of Variance (ANOVA) test (in RStudio (version 4.1.1)) was used
for this comparison, based on the evaluation metrics for a statistical significance level of
p-value < 0.05. Tukey’s HSD (honestly significant difference) post hoc test was used for
pair-wise analysis of these models.

2.9. Feature Importance and Model Comparison

Average feature importance was determined by repeating the cross-validation 100 times
using the best-performing ensemble models. Then, one-feature models were trained using
each of the top features separately to compare the relative classification capability of the
individual features. A linear combination of the one-feature models using linear SVM and
logistic regression was also studied to show the relative advantage of more complex ML
models, like the ensemble models. Five-fold cross-validation was repeated 20 times and
the scores were averaged from these 100 repetitions.

3. Results
3.1. Feature Selection and Comparison

Based on the results of the MWU test comparing the benign and malignant classes,
the feature set was narrowed down to 86 that were statistically significant at p-value ≤ 0.01.
Nine out of these eighty-six features were identified as the most important by RFE, SFS and
correlation analysis. These included ADC and ratios of CP8, FAT21, CP2, FMETD, mI + Gly,
CP4, TGFRupper and UFD54 with respect to the diagonal FAT14 peak. The boxplots of
these most significant features are shown in Figure 2a for both malignant and benign classes.
The larger interquartile range (IQR) of ADC and CP8/FAT14 indicated a larger spread of
these features. TGFRupper/FAT14 and UFD54/FAT14, on the other hand, showed the least
variability for the malignant class, while CP4/FAT14 showed the least variability for the
benign class. The values were z-score normalized. Figure 2b shows the correlation heatmap
of these features. Since the feature selection process also included correlation analysis-based
exclusion of redundant features, the heatmap showed a correlation coefficient less than 0.6
and greater than −0.06 between any pair of features.

3.2. Comparison of Models

Comparative performance of linear SVM, Decision Tree, DT-based bagging classifier,
RandomForest, AdaBoost, GradientBoost, XGBoost and CatBoost are shown in Figures 3–5.
These models were the best performing out of all the models considered in terms of
their accuracy scores. Figure 3 shows the AUC, F1 score, accuracy, precision, sensitivity
and specificity of these eight classifiers in the testing stage repeated 100 times with ran-
domized dataset split and model initializations, and Figure 4 shows these scores in the
cross-validation stage repeated 50 times using the entire dataset. The respective box plots
show the median and IQR of these metrics, along with outliers. Their corresponding mean
and standard deviation are listed in Table 2 and the ROC curves of these different models
are shown in Figure 5.
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Table 2. Mean and standard deviation of AUC, accuracy, F1 Score, precision, specificity and sensitivity
scores of different machine learning models. Highest value is each column is shown in bold.

Model AUC (%) Accuracy (%) F1 score (%) Precision (%) Sensitivity (%) Specificity (%)

AdaBoost 92.77 ± 9.02 86.43 ± 12.43 88.10 ± 11.20 84.48 ± 13.96 92.79 ± 10.22 79.17 ± 19.93

CatBoost 93.09 ± 10.56 87.08 ± 12.15 88.23 ± 11.08 87.90 ± 14.98 89.84 ± 11.05 83.44 ± 20.71

DT-based
Bagging 92.20 ± 9.67 87.30 ± 11.95 88.63 ± 10.86 87.74 ± 14.72 90.49 ± 9.55 83.35 ± 19.94

Decision Tree 82.82 ± 10.50 82.31 ± 8.80 84.75 ± 7.23 83.76 ± 14.19 87.58 ± 7.00 75.32 ± 21.03

GradientBoost 94.28 ± 9.44 89.33 ± 13.43 90.65 ± 12.21 87.90 ± 14.98 94.22 ± 10.53 83.44 ± 20.71

Linear SVM 90.24 ± 7.81 81.21 ± 12.42 83.31 ± 11.48 81.05 ± 14.35 86.18 ± 9.32 75.24 ± 17.93

RandomForest 93.40 ± 9.59 86.39 ± 12.17 87.78 ± 11.01 87.51 ± 15.50 89.31 ± 10.08 82.76 ± 21.50

XGBoost 93.50 ± 8.11 87.78 ± 12.46 88.90 ± 11.61 88.16 ± 14.77 90.36 ± 10.32 84.56 ± 19.11

While GradientBoost was the model with the highest AUC, accuracy, sensitivity and F1
scores, XGBoost had the maximum precision and specificity as shown in Table 2. However,
the results of Tukey’s HSD post hoc test following the ANOVA with p-values adjusted for
multiple comparisons showed that the differences between the ensemble models XGboost,
GradientBoost, CatBoost AdaBoost, Decision Tree based bagging and RandomForest were
not statistically significant in terms of Accuracy, AUC, Precision, Sensitivity, Specificity
and F1 scores for the significance at p-value ≤ 0.05. However, significant differences were
observed between the ensemble models and base models like linear SVM and Decision
Tree. The ROC curve in Figure 5 also shows a better performance for the ensemble models
as compared to the base models, linear SVM and Decision Tree, which is also consistent
with the cross-validation scores of other performance metrics shown in Figure 4.
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3.3. Feature Importance and Linear Combination Models

Average feature importance, measured by repeating the cross-validation 100 times
using the ensemble models, is shown in Figure 6. Single-feature models were trained and a
linear combination of these one-feature classifiers was performed using SVM and logistic
regression. Bar charts in Figures 7 and 8 show the average cross-validation accuracy of
logistic regression and linear SVM, repeated over 100 iterations. Horizontal axis shows
different feature combinations used. Features 1 to 9 are ADC and ratios of CP8, FAT21, CP2,
FMETD, mI + Gly, CP4, TGFRupper and UFD54 with respect to the diagonal FAT14 peak.
Error bars represent standard deviation. The vertical axis indicates the average accuracy
score. The average accuracy of these linear models was reduced when more than the top
six features were used, indicating overfitting.
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Figure 8. Bar chart showing the average cross-validation accuracy of linear SVM repeated over
100 iterations. Horizontal axis shows different feature combinations used. Features 1 to 9 are ADC
and ratios of CP8, FAT21, CP2, FMETD, mI + Gly, CP4, TGFRupper and UFD54 with respect to
diagonal FAT14 peak. The error bars indicate standard deviation.

4. Discussion

This study showed the feasibility of using metabolite ratios from 5D EP-COSI and
ADC values from the DWI data of breast cancer patients to train machine learning models
for classifying benign and malignant lesions. While earlier studies have attempted lesion
characterization using features extracted from the DWI and DCE-MRI data, these models
did not use the quantitative measures of metabolite and lipid features which can be obtained
with an MRSI examination [48–50]. Although variations in water and fat levels can become
ambiguous in glandular regions, especially in benign and healthy tissues, various lipid and
metabolite ratios are reported to have statistically significant differences between benign
and malignant lesions [42]. Building on this fact, our study pursued a detailed analysis of
lesion characterization using 5D EP-COSI features in a machine-learning framework.

The ensemble models were found to perform better than the individual models. This
is expected since they combine the strengths of multiple individual models [45]. In fact,
the ensemble models can use multiple base models to learn different aspects of the data
and hence learn more complex relationships between the variables. They are also more
robust to outliers and are also expected to reduce overfitting since they can compensate
for the prediction errors of individual models. XGBoost, GradientBoost, RandomForest,
AdaBoost and CatBoost were found to be the best-performing ensemble models in this
study with 92% to 95% AUC, 86% to 90% accuracy, 87% to 89% F1 scores, 84% to 89%
precision, 89% to 95% sensitivity and 79% to 85% specificity. While the highest sensitivity
of 94.2% was achieved with GradientBoost, the highest specificity of 84.6% was achieved
using XGBoost, which is higher than the reported performance metrics of DWI or MRSI
without the application of machine learning techniques [37–40].

While the feature importance scores slightly varied among the top-performing models,
ADC was ranked first on average over 100 iterations using different ensemble models.
Four out of the top nine features were the ratios of cross-peaks, which are specific to the
2D COSY technique. The remaining four main features were the ratios of diagonal lipid
peaks. It is interesting to note that the ratios of lipid cross peaks ranked higher than some
of the conventional biomarkers like Cho and mI + Gly ratios for classifying benign and
malignant lesions in the ML framework. While both Cho and mI + Gly ratios were in the
list of statistically significant variables in the MWU tests, only mI + Gly ratio was selected
in the top nine features. This is mainly due to the high correlation between the two features.
Therefore, Cho may also be used in place of mI + Gly, or a combination of the two could be
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used as a single feature to achieve a similar classification performance. The same argument
exists for some of the lipid peaks as well, for example, different fat peaks in the range of 1
to 2 ppm could be highly correlated, especially with large linewidths and quantitation by
peak integration.

ADC and CP8/FAT14 had the highest average feature importance scores. Linear SVM
and logistic regression favored ADC more than other features. This could be because the
linear classification models like linear SVM and logistic regression favored a more linear
relationship between ADC and the target classes. Linear combination of the one-feature
models showed a maximum average accuracy less than that of ensemble models and was
found to be dropping with the increased number of features. Possible reasons include the
complex relationship of the features and reduced ratio of data points to features. Other
possible factors like redundancy and relevancy of the individual features are less likely
to be the cause since the correlated features were not included and these features were
known to be relevant to breast cancer-related changes in cellular metabolism and tissue
structure. This indicates that a better classification would require advanced models capable
of learning non-linear relationships like the ensemble machine learning models studied in
this work and can also benefit from more data points.

The number of datasets is one of the limitations of this study. Even though we have
multiple voxels from the same dataset giving metabolite and lipid ratios, it is important
to split the data based on the actual number of subjects rather than the voxels. It would
be tempting to consider the individual voxels as separate data when splitting the data
into training and testing sets. However, this approach could lead to severe data leakage,
since multiple voxels from the same subject can have similar statistics, especially when
interpolation is used to increase the number of voxels. Otherwise, if the lesion spans
multiple voxels in the spectroscopic data, the relatively low resolution and partial volume
effects can potentially cause slightly overlapping information between the neighboring
voxels. Therefore, if the train-test split is performed based on the voxels rather than
individual subjects, it is reasonable to assume that during the training stage, the model
would already see some of the statistics present in the testing data. This will artificially
increase the score of test and validation performance metrics but will not be generalizable
to a new subject.

Even though these ML models should be generalizable to the MRSI/DWI data from
different scanners and sites, it may be considered as another limitation of this study since
there could be subtle/complex variations in the datasets from different scanners and sites
so that the list of most important features could differ. A future study with a larger sample
size, ideally from different scanners and sites, can further validate the results presented in
this work.

Since the focus of this study was to analyze the performance of ML models with
features from the 5D EP-COSI data, we have not considered some of the image-based
features potentially available from DWI. For example, it has been recently shown that the
features based on continuous-time random-walk (CTRW) and intravoxel incoherent motion
(IVIM) models from DWI using multiple b-values can classify benign and malignant breast
lesions using ensemble ML models [48]. More radiomics features from DWI as well as
other modalities like DCE-MRI can be used in a future study to potentially further improve
the model performance.

5. Conclusions

In this pilot validation of the multi-dimensional (5D EP-COSI) data for the characteri-
zation of breast tissues, we have shown that ML-based classification models can be trained
using spectroscopic features in conjunction with ADC values from DWI to classify benign
and malignant lesions. Multiple diagonal and cross-peaks from 2D COSY spectra were
identified as important features, further asserting the advantage of 2D COSY spectra as
compared to features derived from 1D spectra. GradientBoost, CatBoost, RandomForest
AdaBoost and XGBoost were the best performing models with 92% to 95% AUC, 86% to
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90% accuracy, 87% to 89% F1 scores, 84% to 89% precision, 89% to 95% sensitivity and 79%
to 85% specificity.
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