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Biologic Drivers and Cellular Origins of Meningioma 

Abrar Choudhury 

ABSTRACT 

Meningiomas arising from the meningothelial lining of the central nervous system 

are the most common primary intracranial tumors, and a significant cause of neurologic 

morbidity and mortality. There are no effective medical therapies for meningioma patients, 

and new treatments have been encumbered by limited understanding of meningioma 

biology. DNA methylation profiling provides robust classification of brain tumors, but has 

not informed new treatments for patients. 

Here we use DNA methylation profiling on 565 meningiomas, controlled for 

confounding artifacts from copy number variants and integrated with genetic, 

transcriptomic, biochemical, and single-cell approaches, to show meningiomas are 

comprised of 3 groups with distinct clinical outcomes, biological drivers, and therapeutic 

vulnerabilities. Merlin-intact meningiomas have the best outcomes and are distinguished 

by NF2/Merlin regulation of glucocorticoid signaling and apoptosis. Immune-enriched 

meningiomas have intermediate outcomes and are distinguished by immune infiltration, 

HLA expression, and lymphatic vessels. Hypermitotic meningiomas have the worst 

outcomes and are distinguished by convergent genetic mechanisms misactivating the cell 

cycle. Translating these findings, we show cell cycle inhibitors block Immune-enriched 

and Hypermitotic meningioma growth in cell culture, organoids, xenografts, and patients. 

To extend the relevance of our findings, we use single-cell RNA sequencing of 8 

human meningiomas, 3 canine meningiomas, and 1 human hemangiopericytoma to 

identify Notch3+ perivascular cells as a potential cell of origin for meningeal tumors. This 
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perivascular cell population is conserved across meningeal tumors in both humans and 

canines and across normal meningeal tissue in both humans and mice. These findings 

set the stage for developing new mouse models of meningioma, which will accelerate and 

enhance our ability to study meningioma biology, such as interrogating the pathways and 

phenotypes identified from DNA methylation groups. Moreover, new mouse models will 

also allow us to study meningiomas in the context of the immune system and test the 

efficacy of drugs in a more physiologic setting. Our results establish a framework for 

understanding meningioma biology, provide the basis for new meningioma treatments, 

and lay the foundation for future meningioma studies. 
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Chapter 1: Introduction 

 

Meningiomas, tumors which arise from the meningothelial lining of the central 

nervous system, are the most common primary intracranial tumors and account for one-

third of all primary central nervous tumors1. Elderly age and female sex are some of the 

strongest risk factors for meningiomas, which are a significant cause of neurologic 

morbidity and mortality2. Histologic comparisons of meningiomas with healthy 

meningothelial tissue have revealed similarities between tumor cells and arachnoid cap 

cells, suggesting these as possible meningioma progenitor cells3. The World Health 

Organization (WHO) uses mitotic activity and adverse histopathological features to 

classify meningiomas into three grades, which correlate with clinical outcome2. High-

grade meningiomas (WHO grade 2 and 3) account for 25-30% of diagnosed cases4. The 

WHO also stratifies meningiomas into 15 subtypes based on histologic features, and 

although some of these subtypes correlate with WHO grade, the clinical relevance of the 

majority of subtypes remains unknown2. 

Surgery and radiation are the mainstays of meningioma treatment and can 

effectively treat most low-grade meningiomas (WHO grade 1). While low-grade 

meningiomas are typically benign and do not recur post-treatment, the majority of high-

grade tumors recur, at which point there are no effective systemic or molecular therapies 

for these meningioma patients5–7. Substantial controversy exists concerning how 

aggressively to treat WHO grade 2 meningiomas and manage their risk of recurrence8. 

Recent studies have suggested that MIB1 labeling index, a marker of cell proliferation, 

can predict the risk of recurrence in patients with WHO grade 2 meningiomas and identify 

patients requiring more aggressive treatment regimens9. However, the use of MIB1 
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labeling index has yet to be widely adopted. Moreover, even with appropriately aggressive 

treatment, high-grade meningiomas often recur, and treatment options beyond surgery 

and radiation to mitigate this recurrence are nonexistent. The development of such new 

treatments has been encumbered by a limited understanding of the basic biology of 

meningiomas. 

To elucidate meningioma biology, DNA sequencing has been performed on 

thousands of meningiomas. These studies have identified NF2, a gene located on 

chromosome 22, as the most commonly mutated gene, with mutations present in 60% of 

sporadic meningiomas10. NF2 loss of function mutations vary significantly, ranging from 

point substitutions to monosomy 22, the most common chromosomal alteration in 

meningioma11. Further, germline NF2 mutations are associated with neurofibromatosis 

type 212, a highly penetrant clinical syndrome associated with multiple meningiomas, and 

other tumors affecting the central and peripheral nervous system13. The protein product 

of NF2, Merlin, has been shown to inhibit cell growth by mediating contact inhibition in 

vitro in epithelial cells, although these observations have not been replicated in 

meningioma cells14. Merlin’s homology to ERM family proteins originally implicated it as 

a scaffolding protein, linking transmembrane receptors to intracellular effectors15,16. 

However, more recent structural studies indicate that Merlin, unlike other scaffolding 

proteins, adopts a closed conformation regardless of whether it is active or inactive17,18. 

Thus, Merlin’s role in tumorigenesis broadly and meningioma specifically remains poorly 

understood. 

Several other recurrent mutations have been identified in meningiomas, including 

mutations in TRAF7, KLF4, AKT1, SMO, POLR2A, and TERT19–21. However, each 
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individual gene is mutated in only a tiny fraction of meningiomas19, raising questions as 

to whether these genes and pathways are relevant to the biology underlying the majority 

of meningiomas. Descriptive analyses have revealed that these genes are typically 

mutated in meningiomas lacking NF2 mutations. Notably, TRAF7, AKT1, and KLF4 

mutations are found in specific WHO histologic subtypes and SMO mutations are often 

identified in olfactory groove meningiomas19. While these correlative findings suggest 

non-NF2 mutations may drive meningioma histopathology and location, no studies have 

shown causal biologic mechanisms linking these mutations to any of the aforementioned 

phenotypes. 

Given the limitations of DNA mutational analysis in understanding meningioma 

biology, several other approaches to investigating meningiomas have been undertaken. 

One of these is DNA methylation profiling, which provides robust classification and 

differentiation across brain tumor types22. However, attempts to use DNA methylation 

profiling to identify biologically meaningful subgroups within meningiomas have been 

variable and unfruitful. Prior studies have reported between 2 and 6 meningioma 

methylation groups, and reanalysis of previously published data have prompted 

disagreements on the number of clusters suggested by the data23–27. Many of these DNA 

methylation groups have overlapping patient outcomes, calling into question the clinical 

relevance of these groups. One study attempted to mitigate this by merging two different 

DNA methylation subgroups based on similar clinical outcomes23. However, these 

analyses obscure methylation-based biologic differences between groups. Moreover, no 

DNA methylation studies of meningiomas have accounted for artifacts from copy number 

variants, which are highly prevalent in meningioma28,29. While biologic differences may 
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underlie some of the group classifications of these prior studies and some of the studies 

hypothesize about the importance of specific genes or copy number alterations, none of 

them provide experimental evidence to justify any speculative differences. Therefore, 

fundamental questions remain concerning the relevance and role of DNA methylation 

grouping in elucidating meningioma biology. 

Beyond DNA-based analyses, various other small-scale studies of meningioma 

have been performed using transcriptomics, epigenomics, and proteomics as orthogonal 

means to study meningioma biology. RNA sequencing of meningiomas across WHO 

grades confirmed the importance of cell proliferation mechanisms in predicting tumor 

growth and recurrence, specifically identifying FOXM1 as a key regulator of the cell cycle 

in high-grade meningiomas26. An unbiased analysis of meningioma transcriptomes found 

a group of aggressive meningiomas which activate the cell cycle via loss of function 

inactivation of the DREAM complex30. Unfortunately, neither FOXM1 nor the DREAM 

complex are viable pharmaceutical targets. In contrast, an epigenetic analysis of 

enhancers and superenhancers in meningiomas revealed DUSP1, a dual specificity 

phosphatase upregulated in aggressive meningiomas, as a viable druggable target31. 

Finally, proteomic analyses of meningiomas suggest that larger and more aggressive 

meningiomas dysregulate mRNA processing, although the specific pathways involved are 

not understood32. While promising, each of these findings require validation in larger 

datasets and integration into a cohesive framework. The limitations of WHO grading and 

prior DNA methylation groupings of meningiomas suggest that new analyses of 

transcriptomics, epigenetics, and proteomics in the context of biologically distinct and 
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validated groups of meningiomas may provide valuable insights into meningioma biology 

that can be used to generate new treatment options. 
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Chapter 2: Meningioma DNA methylation grouping reveals biologic drivers and 

therapeutic vulnerabilities 

 

Introduction 

Meningiomas arising from the meningothelial lining of the central nervous system 

are the most common primary intracranial tumors, and a significant cause of neurologic 

morbidity and mortality1. There are no effective medical therapies for meningioma 

patients2,3, and new treatments have been encumbered by limited understanding of 

meningioma biology. DNA methylation profiling provides robust classification of brain 

tumors4, but has not informed new treatments for patients.  

 

Meningiomas are comprised of 3 DNA methylation groups 

To identify biologic drivers and therapeutic vulnerabilities underlying meningiomas, 

DNA methylation profiling was performed on 565 meningiomas from patients with 

comprehensive clinical follow-up who were treated at 2 independent institutions from 

1991 to 2019 (Table 2.1). Consistent with typical meningioma outcomes, local freedom 

from recurrence (LFFR) and overall survival (OS) were worse with higher World Health 

Organization (WHO) grade, recurrent presentation, or subtotal resection (Fig. S2.1). 

Meningiomas were stratified into a 200-sample discovery cohort from the University of 

California San Francisco (median follow-up 6.3 years), and a consecutive 365-sample 

validation cohort from The University of Hong Kong (median follow-up 5.3 years) (Table 

2.1). Prior meningioma DNA methylation studies variably reported 2 to 6 groups of 

tumors5–9, often with overlapping clinical outcomes5, and questions remain regarding the 

biologic significance of meningioma DNA methylation grouping. Moreover, meningiomas 
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have an abundance of genomic copy number variants (CNVs)8,10 (Fig. 2.1a), and prior 

studies neither accounted for confounding artifacts from CNVs11, nor provided 

mechanistic or functional validation of the groups reported. Thus, opportunities exist to 

determine if DNA methylation profiles encode biologic information informing new 

treatments for meningioma patients, particularly through bioinformatic techniques 

clarifying DNA methylation groups in the context of CNVs, and mechanistic and functional 

studies to define biologic drivers. 

Unsupervised hierarchical clustering of DNA methylation profiles, controlled for 

artifacts from CNVs using the SeSAMe preprocessing pipeline11, revealed 3 meningioma 

DNA methylation groups in the discovery cohort (Fig. 2.1b). K-means consensus 

clustering validated 3 groups as the optimal number in the discovery and validation 

cohorts (Fig. S2.2a). A multi-class support vector machine classifier was constructed to 

assign meningiomas from the validation cohort into DNA methylation groups (Fig. 2.2b). 

Kaplan-Meier analyses showed DNA methylation groups were distinguished by 

differences in LFFR and OS (Fig. 2.1c and S2.3a), and correlated with WHO grade, sex, 

prior radiotherapy, and location (Fig. 2.1d and S2.3b). Nevertheless, DNA methylation 

groups were independently prognostic for LFFR on Kaplan-Meier analysis across WHO 

grades (Fig. S2.3c, d), and on multivariable regression (Fig. 2.1e and S2.3e).  

Meningioma DNA methylation groups had CNVs affecting up to 80% of tumor 

genomes (Fig. S2.4a, b), but CNV profiles were independent from DNA methylation 

groups (Fig. 2.4c). Reanalysis using the minfi preprocessing pipeline12, which does not 

control for CNV artifacts, reassigned 21% of meningiomas across poorly distinguished 

DNA methylation groups with overlapping clinical outcomes (Fig. S2.5). Thus, controlling 
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for CNV artifacts improves meningioma DNA methylation grouping and discrimination of 

meningioma outcomes. 

 

Merlin drives meningioma apoptosis 

Meningiomas are common in patients with neurofibromatosis type 2, a complex 

autosomal syndrome caused by loss of NF2 on chromosome 22q, which encodes the 

tumor suppressor Merlin13. NF2 is also the most recurrently mutated gene in sporadic and 

radiation-induced meningiomas14–18. Defining CNVs from DNA methylation profiles 

revealed NF2 losses in 86% of syndromic (n=18) and radiation-induced meningiomas 

(n=34), which were predominantly found in DNA methylation groups with intermediate or 

poor outcomes (96%). Only 17% of meningiomas in the DNA methylation group with the 

best outcomes had NF2 copy number losses (Fig. 2.2a), and RNA sequencing of 200 

meningiomas from the discovery cohort confirmed higher NF2 expression in this group 

compared to others (Fig. 2.2b). The combined distribution of NF2 CNVs and somatic 

short variants from DNA amplicon sequencing of 65 meningiomas showed 89% of tumors 

in the DNA methylation group with the best outcomes encoded at least 1 wildtype copy 

of NF2 (Fig. S2.6a and Table 2.2). Moreover, a comparison of meningiomas with loss of 

at least 1 copy of NF2 revealed Merlin was only expressed in the DNA methylation group 

with the best outcomes (Fig. 2.2c). 

NF2 variants are mutually exclusive from TRAF7 somatic short variants in 

meningiomas14,16,19, and TRAF7 variants were enriched in Merlin-intact meningiomas 

compared to other DNA methylation groups (Table 2.3). Many Merlin-intact meningiomas 

did not encode TRAF7 variants (79%), suggesting the DNA methylation group with the 
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best outcomes may not be unified by a single genetic driver. Indeed, meningioma 

histologic subtypes associated with AKT1E17K variants were also enriched in Merlin-intact 

meningiomas compared to tumors from other DNA methylation groups20 (Table 2.3). 

Further, analysis of matched exome sequencing and DNA methylation profiling on 53 

meningiomas revealed no solitary TRAF7, AKT1, KLF4, or other somatic short variants 

associated with favorable outcomes5,16,20,21 in DNA methylation groups with intermediate 

or poor outcomes (Table 2.4). 

Merlin has myriad tumor suppressor functions in schwannoma cells22–24, but Merlin 

tumor suppressor functions in meningiomas are incompletely understood. M10G and 

IOMM-Lee meningioma cells express Merlin25,26, and Merlin suppression increased 

meningioma cell proliferation (Fig. S2.6b-f). To identify gene expression programs 

underlying Merlin tumor suppressor functions in meningioma cells, RNA sequencing was 

performed on triplicate M10G cultures stably expressing the CRISPR interference 

(CRISPRi) components dCas9-KRAB27,28 and either non-targeting control sgRNA 

(sgNTC), sgRNA suppressing NF2 (sgNF2), or sgNF2 with NF2 rescue (Fig. S2.6c). 

Differential expression and ontology analyses revealed Merlin induced pro-apoptotic 

interferon regulatory factor (IRF) pathways previously unassociated with either Merlin or 

meningiomas (Fig. S2.6g, h and Table 2.5). Merlin suppression also blocked IRF target 

gene expression in MSC1 cells25 (Fig. S2.6i, j), whose DNA methylation profiles classified 

with Merlin-intact meningiomas. Thus, to determine if Merlin regulates meningioma cell 

apoptosis, MSC1, M10GdCas9-KRAB, and IOMM-Lee cultures were treated with the 

chemotherapy actinomycin D, revealing Merlin suppression reduced apoptosis (Fig. 2.2d 

and S2.6k-m). To define the relevance of this mechanism in vivo, CH-157MN 
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meningioma cells, which do not express Merlin29, were grown as xenografts harboring an 

inducible Merlin construct. Merlin rescue in CH-157MN xenografts increased apoptosis in 

response to ionizing radiation compared to meningiomas lacking Merlin (Fig. 2.2e and 

S2.6n) 

Merlin regulates protein degradation to control schwannoma cell proliferation24, but 

Merlin suppression did not alter IRF stability or subcellular localization in meningioma 

cells (Fig. S2.6o). To elucidate if Merlin regulates IRF activity to control meningioma 

apoptosis, Merlin constructs encoding APEX tags were expressed in meningioma cells 

for proximity-labeling proteomic mass spectrometry30 (Table 2.6). ARHGAP35, a DNA 

binding factor that inhibits glucocorticoid receptor expression31,32, was detected in 

proximity to wild-type Merlin, but not MerlinL46R, a missense variant associated with 

neurofibromatosis type 224 (Fig. S2.6p). Glucocorticoid signaling inhibits IRF activity to 

prevent apoptosis33,34, and immunoprecipitation of Merlin from meningioma cells 

validated Merlin interaction with ARHGAP35 (Fig. 2.2f). IRF proteins were not detected 

in proximity to MerlinAPEX constructs (Table 2.6), or in Merlin immunoprecipitates (Fig. 

S2.6q), suggesting Merlin indirectly regulates IRF activity via ARHGAP35. In support of 

this hypothesis, NF2 suppression in meningioma cells induced glucocorticoid receptor 

expression, which was inhibited by NF2 rescue (Fig. 2.2g). Further, glucocorticoid 

receptor suppression in meningioma cells lacking NF2 rescued meningioma cell 

apoptosis (Fig. 2.2h and S2.6r), and glucocorticoid receptor expression was increased 

in human meningiomas with loss of NF2 compared to euploid tumors (Fig. 2.2i). In sum, 

these data shed light on a novel pro-apoptotic tumor suppressor function of Merlin via 

regulation of glucocorticoid signaling in meningiomas (Fig. 2.2j). 
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Meningioma immune enrichment is associated with HLA expression and lymphatic 

vessels 

Meningiomas in the DNA methylation group with intermediate outcomes had fewer 

CNVs than other groups (Fig. S2.4a, b), and clustered with non-tumor DNA methylation 

profiles from meningioma patients (Fig. S2.7a), suggesting bulk bioinformatic analyses 

of meningiomas in this group may be influenced by non-tumor cells in the meningioma 

microenvironment. In support of this hypothesis, meningioma DNA methylation probe 

clusters identified generic intercellular mechanisms regulating tissue development and 

homeostasis that were not organized into specific or cohesive biochemical mechanisms 

(Fig. 2.1b and Table 2.7). SeSAMe cell-type deconvolution of DNA methylation profiles 

showed immune cell enrichment in the meningioma DNA methylation group with 

intermediate outcomes compared to other groups (Fig. 2.3a). xCell RNA sequencing 

deconvolution and PAMES tumor purity analysis validated these findings35,36 (Fig. S2.7b-

e). Further, differential expression and gene ontology analyses showed enrichment of 

immune genes in the meningioma DNA methylation group with intermediate outcomes 

(Fig. S2.7f and Table 2.8), and immunohistochemistry revealed T cell enrichment 

compared to tumors from other groups (Fig. 2.3b).  

To define meningioma cell types, single-cell RNA sequencing was performed on 

57,114 cells from 8 meningioma samples representing each DNA methylation group (Fig. 

2.3c and S2.8). Reduced dimensionality clusters of meningioma and non-meningioma 

cells were distinguished by chromosome 22q loss using CONICSmat37 (Fig. S2.9a). Non-

meningioma cell clusters with intact chromosome 22q were classified by expression of 

immune, neural, or vascular marker genes (Fig. S2.9b, c and Table 2.9). Meningioma 
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cell clusters with chromosome 22q loss were distinguished by differentially expressed 

cellular pathways (Fig. S2.8c, S2.9b, S2.9c and Table 2.9). Single-cell transcriptomes 

revealed more immune cells in Immune-enriched meningiomas compared to tumors from 

other groups (Fig. 2.3d). Further, analysis of DNA methylation profiles on 86 spatially 

distinct samples from 13 meningiomas revealed 92% of samples classified in 

concordance with the consensus DNA methylation group of each tumor25 (Fig. S2.10a). 

Thus, meningioma DNA methylation grouping is not confounded by intratumor 

heterogeneity or sampling bias, suggesting coordinated genetic mechanisms may 

underlie meningioma immune infiltration. 

HLA loss on chromosome 6p can decrease immune infiltration in cancer38, and 

88% of losses at the HLA locus were found in non-Immune-enriched meningiomas (Fig. 

2.3e). Controlling for DNA methylation artifacts from CNVs was essential for this finding, 

as SeSAMe masked 48.4% of β values across 206 CpG probes associated with HLA 

genes in meningiomas, and analysis of matched whole exome sequencing and DNA 

methylation profiling revealed no instances of HLA loss of heterozygosity in Immune-

enriched meningiomas8 (Fig. S2.10b). HLA loss correlated with decreased HLA 

expression in meningiomas (Fig. S2.10c), and Immune-enriched meningiomas had 

increased HLA expression compared to tumors from other DNA methylation groups (Fig. 

S2.10d). Single-cell transcriptomes confirmed increased HLA expression in Immune-

enriched meningioma cells compared to meningioma cells from other groups (Fig. 2.3f), 

suggesting HLA differences across DNA methylation groups were not confounded by 

non-tumor cells.  
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To identify additional mechanisms underlying Immune-enriched meningiomas, 

reference transcriptomic signatures of meningioma single-cell clusters were used to 

estimate proportions of meningioma cell types across DNA methylation groups. 

Meningioma cells expressing extracellular matrix remodeling genes were enriched in 

Immune-enriched meningiomas compared to tumors from other DNA methylation groups 

(Fig. 2.3g), and changes in the extracellular matrix can create a permissive 

microenvironment for lymphatic vessel formation39–42. Meningeal lymphatics near dural 

venous sinuses are necessary for central nervous system immune surveillance43–47, but 

associations between lymphatic vessels and meningiomas have not been previously 

reported. Preoperative magnetic resonance imaging showed meningiomas from multiple 

DNA methylation groups were likely to involve dural venous sinuses (Fig. S2.10e, f), 

suggesting meningioma location might be necessary but not sufficient for immune 

infiltration. Compared to tumors from other DNA methylation groups, Immune-enriched 

meningiomas had hypomethylation and increased expression of meningeal lymphatic 

genes such as LYVE1, CCL21, and CD3E46,48–50 (Fig. 2.3h and S2.10g, h). 

Immunofluorescence confirmed lymphatic enrichment in Immune-enriched meningiomas 

compared to tumors from other groups (Fig. 2.3i), and also in CH-157MN xenografts (Fig. 

S2.10i), whose DNA methylation profiles classified with Immune-enriched meningiomas. 

Thus, HLA expression and lymphatic vessels distinguish a novel DNA methylation group 

of Immune-enriched meningiomas. 
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Convergent genetic mechanisms misactivate the cell cycle in meningioma 

High-grade meningiomas are defined by brisk cell proliferation leading to local 

recurrence and death in 50-90% of patients51,52. Cell proliferation was highest in the 

meningioma DNA methylation group with the worst outcomes (Fig. 2.4a), but 

deconvolution using single-cell reference transcriptomic signatures revealed similar 

proportions of cycling G2M phase meningioma cells in both Immune-enriched and 

Hypermitotic meningiomas (Fig. 2.4b). Thus, meningioma cell proliferation cannot explain 

the biologic differences among DNA methylation groups.  RNA sequencing, gene 

ontology analysis, and immunohistochemistry showed FOXM1 and the FOXM1 

transcriptional program were enriched in Hypermitotic meningiomas compared to tumors 

from other groups (Fig. 2.4c, S2.11a, and Table 2.8), and correlated with meningioma 

cell proliferation (Fig. S2.11b, c). FOXM1 drives meningioma cell proliferation and is a 

biomarker for meningioma recurrence, and putative FOXM1 target genes are accessible 

in the chromatin of meningioma DNA methylation groups with adverse clinical 

outcomes8,9,53,54. However, many FOXM1 targets are also induced by other cell cycle 

regulators, such as E2F155, and the FOXM1 gene expression program in meningiomas 

is incompletely understood.  

To determine if the FOXM1 gene expression program was specifically misactivated 

in Hypermitotic meningiomas, FOXM1 and E2F1 target genes was studied across 

meningioma DNA methylation groups. FOXM1 targets nonoverlapping with E2F1 targets 

were enriched in Hypermitotic meningiomas compared to tumors from other groups (Fig. 

S2.11d), but E2F1 targets nonoverlapping with FOXM1 targets did not distinguish 

meningioma DNA methylation groups (Fig. S2.12). To elucidate the function of FOXM1 
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target genes in meningiomas, differentially expressed genes with FOXM1 binding motifs 

were analyzed across 25 meningiomas with matched RNA sequencing, H3K27ac ChIP 

sequencing, and DNA methylation profiling56. FOXM1 targets regulated the cell cycle, 

tumor metabolism, and the DNA damage response (Fig. S2.13a), suggesting FOXM1 

may underlie meningioma resistance to cytotoxic therapies. In support of this hypothesis, 

FOXM1 protein increased in response to meningioma cell apoptosis (Fig. S2.13b), and 

over-expression of FOXM1 increased meningioma cell resistance (Fig. S2.13c, d). 

Differential expression of enhancers and super-enhancers revealed Hypermitotic 

meningiomas were dominated by epigenetic mechanisms and transcription factors, such 

as FOXM1, that are impractical pharmacologic targets (Fig. S2.14). Further, druggable 

somatic short variants in meningiomas are rare, and are not associated with adverse 

clinical outcomes10,13–17,19,20,53,57–60, with infrequent exceptions61–64. There were more 

CNVs in Hypermitotic meningiomas compared to other DNA methylation groups (Fig. 

S2.4a, b), and chromosome instability drives cancer evolution and response to therapy65–

67. Thus, CNVs contributing to cell cycle misactivation may harbor therapeutic 

vulnerabilities that could inform new treatments for meningioma patients.  

Loss of the endogenous CDK4/6 inhibitor CDKN2A/B on chromosome 9p is 

associated with worse outcomes in brain tumors68, including meningiomas64. CNVs 

deleting the CDKN2A/B locus were enriched in Hypermitotic meningiomas (62%), and 

were associated with worse LFFR (Fig. 2.4d and S2.15a). CDKN2A/B methylation is an 

alternate mechanism of cell cycle misactivation in cancer69,70, and CDKN2A/B was 

hypermethylated in Hypermitotic meningiomas compared to other groups (Fig. 2.4e). 

Stable suppression of CDKN2A or CDKN2B increased M10GdCas9-KRAB cell proliferation 
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(Fig. S2.15b, c), and re-classified M10GdCas9-KRAB DNA methylation profiles from Immune-

enriched to Hypermitotic (Fig. 2.4f). Nevertheless, many Hypermitotic meningiomas 

retained CDKN2A/B (85%) (Fig. 2.4d), unsupervised hierarchical clustering of 

meningioma transcriptomes was unable to distinguish DNA methylation groups (Fig. 

S2.16), and the FOXM1 transcriptional program was not enriched in all Hypermitotic 

meningiomas (Fig. S2.11d). Thus, multiple mechanisms may drive the meningioma DNA 

methylation group with the worst clinical outcomes.  

To identify additional mechanisms driving Hypermitotic meningiomas, enriched 

transcription factor binding motifs were intersected with H3K27ac ChIP sequencing 

troughs, revealing the poorly understood transcription factor USF1 may be bound to the 

CDK6 promoter in meningiomas (Fig. S2.17a and Table 2.10). CNVs amplifying the 

USF1 locus on chromosome 1q were enriched in Hypermitotic meningiomas (88%), and 

were associated with worse LFFR (Fig. 2.4g and S2.17b). Moreover, USF1 bound and 

activated the CDK6 promoter in meningioma cells (Fig. 2.4h, i and S2.17c, d), and over-

expression of USF1 increased meningioma cell proliferation (Fig. 4j and S2.17e). Thus, 

convergent genetic mechanisms misactivate the cell cycle in meningiomas. 

 

Clinical translation of meningioma DNA methylation groups 

Merlin regulation of glucocorticoid signaling drives meningioma apoptosis (Fig. 

2.2j), and Merlin-intact meningiomas have the best clinical outcomes with current 

therapies (Fig. 2.5a). Immune-enriched and Hypermitotic meningiomas have adverse 

outcomes (Fig. 2.5a), exist along a continuum of cell cycle misactivation (Fig. 2.4a, b), 

and are resistant to cytotoxic therapies due to loss of Merlin (Fig. 2.2j) or misactivation of 



21 
 

FOXM1 (Fig. S2.13). The conjunction of mechanisms driving cytotoxic resistance or cell 

cycle misactivation suggests cytostatic cell cycle inhibitors may be effective treatments 

for meningiomas with adverse outcomes. To test this, the clinical CDK4/6 inhibitors 

abemaciclib, palbociclib, and ribociclib were studied in cell culture, organoids, and 

xenografts using Immune-enriched and Hypermitotic meningioma cells (Fig. 2.5a). 

CDK4/6 inhibitors blocked clonogenic growth of meningioma cells (Fig. S2.18a), but 

suppression of CDKN2A or CDKN2B, or over-expression of USF1, increased the efficacy 

of treatment (Fig. S2.18b, c). To test this therapeutic strategy in the context of a tumor 

microenvironment, meningioma cells were co-cultured with cerebral organoids comprised 

of pre-differentiated human pluripotent stem-cell derived astrocytes. This model 

recapitulates intratumor heterogeneity in meningioma cells25, and intratumor 

heterogeneity drives cancer resistance to therapy71. Nevertheless, CDK4/6 inhibition 

attenuated meningioma cell growth in organoid co-culture (Fig. S2.18d). To define the 

pharmacodynamics and efficacy of this strategy for meningiomas in vivo, CH-157MN 

xenografts were treated with CDK4/6 inhibitors, which decreased RB phosphorylation 

(Fig. S2.18e), inhibited cell proliferation (Fig. S2.18f), attenuated xenograft growth (Fig. 

2.5b), and prolonged survival (Fig. 2.5c).  

These data provide preclinical rationale to treat patients with Immune-enriched or 

Hypermitotic meningiomas with cell cycle inhibitors, which achieve therapeutic doses in 

human meningiomas72. In support of our preclinical investigations, we have observed 

encouraging early results with compassionate use of CDK4/6 inhibitors in patients with 

meningiomas that were resistant to surgery and radiotherapy (Fig. 2.5d and S2.19). 

Clinical trials to establish the efficacy of this and other molecular therapies for 



22 
 

meningiomas will require rigorous patient selection and biologic stratification. In 

anticipation, we developed nomograms demonstrating DNA methylation groups provide 

superior discrimination of meningioma outcomes compared to CNVs or clinical variables73 

(Fig. 2.5e and S20).  

 

Discussion 

DNA methylation profiling is a powerful tool for biologic discovery, but clinical 

adoption of this technique has been encumbered by a lack of medical indications. The 

data presented here demonstrate an urgent need for clinical DNA methylation profiling to 

stratify meningioma patients for molecular therapies. Integrating genetic, epigenetic, 

transcriptomic, biochemical, and single-cell approaches, we find meningiomas are 

comprised of 3 DNA methylation groups with distinct clinical outcomes and biological 

drivers (Fig. 2.5a). We validate our results using mechanistic and functional studies in 

cells, organoids, xenografts, and patients to elucidate novel mechanisms underlying the 

most common primary intracranial tumor.  

Controlling for DNA methylation artifacts from CNVs was essential for these 

discoveries. Meningioma DNA methylation analysis uncontrolled for CNV artifacts failed 

to identify robust groups (Fig. S2.5b), or groups with nonoverlapping differences in clinical 

outcomes, NF2 loss, immune enrichment, and cell proliferation (Fig. S2.5c, S21). 

Quantifying the signal-to-noise ratio (SNR) of NF2 loss across 3 meningioma DNA 

methylation groups, we found an SNR of 5.57 for SeSAMe groups compared to 2.25 for 

minfi groups. Although DNA methylation analysis uncontrolled for CNV artifacts provides 

robust classification across brain tumor types4, meningiomas have significant 
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chromosome instability (Fig. 2.1a and S2.4a, b), and meningioma DNA methylation 

groups uncontrolled for CNV artifacts are variable across institutions and have uncertain 

biologic drivers5–9. We show controlling for DNA methylation artifacts from CNVs is 

necessary to identify robust groups of meningiomas with unifying biologic drivers. Our 

bioinformatic approach, integrated with mechanistic and functional studies, represents a 

significant conceptual advance for meningiomas, and may reveal biologic drivers and 

therapeutic vulnerabilities in other cancers with chromosome instability. 

Effective treatments for meningioma patients have not changed in more than half 

a century, but new therapies are under investigation2. Our mechanistic and functional 

studies validate the first biomarker-based treatment for meningiomas with adverse clinical 

outcomes. We also find T cells in the meningioma microenvironment display multiple 

markers of immune exhaustion74 (Fig. S2.22), suggesting immune checkpoint inhibition 

may be ineffective for meningiomas as monotherapy. These data also shed light on why 

meningioma immune infiltration does not correlate with better clinical outcomes, as it does 

in other cancers75. Thus, we encourage careful consideration of meningioma DNA 

methylation groups in the context of mechanistic and functional studies, and WHO grade, 

when stratifying meningioma patients for new treatments. Indeed, DNA methylation 

grouping does not obviate the importance of meningioma grading (Fig. S2.3e). These 

complementary systems provide independent information about meningioma outcomes 

(Fig. 2.1e), but unlike WHO grade, the meningioma DNA methylation groups we report 

reveal novel biologic drivers and therapeutic vulnerabilities informing new treatments for 

meningioma patients. 
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Methods 

Meningiomas and clinical data 

This study was approved by the UCSF Institutional Review Board (IRB #17-22324, 

#17-23196, and #18-24633). Meningioma samples for the discovery cohort were selected 

from the UCSF Brain Tumor Center Biorepository and Pathology Core in 2017, with an 

emphasis on high-grade meningiomas and low-grade meningiomas with long clinical 

follow-up. All WHO grade 2 and grade 3 meningiomas with available frozen samples were 

included. For WHO grade 1 meningiomas, frozen samples in the tissue bank were cross-

referenced for clinical follow-up data from a retrospective institutional meningioma clinical 

outcomes database (IRB #13-12587), and all cases with available frozen tissue and 

clinical follow-up greater than 10 years (n=40) were included. To achieve a discovery 

cohort of 200 cases, additional WHO grade 1 meningiomas with available frozen tissue 

and the longest possible clinical follow-up (albeit less than 10 years, n=47) were included. 

The electronic medical record was reviewed for all patients in late 2018, and paper charts 

were reviewed in early 2019 for patients treated prior to the advent of the electronic 

medical record. All available clinical pathology material was reviewed for diagnostic 

accuracy by a board-certified neuropathologist (D.A.S.). WHO grading was performed 

using contemporary criteria outlined in the most recent edition of the WHO classification 

of tumors of the central nervous system76. Cases for which other tumors remained in the 

differential diagnosis (such as schwannoma or solitary fibrous 
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tumor/hemangiopericytoma) were excluded. The validation cohort was comprised of 365 

consecutive meningiomas from patients who were treated at The University of Hong Kong 

(HKU) from 2000 (the year of the most recent WHO update in meningioma classification) 

to 2019 that had frozen tissue suitable for DNA methylation profiling. The medical record 

was reviewed for all patients in late 2019. For the discovery and validation cohorts, 

meningioma recurrence was defined as new radiographic tumor on magnetic resonance 

imaging after gross total resection, or enlargement/progression/growth of residual tumor 

on magnetic resonance imaging after subtotal resection. All magnetic resonance imaging 

studies in the discovery cohort were reviewed for accuracy by a board-certified radiologist 

with a Certificate of Added Qualification in Neuroradiology (J.E.V-M.). 

 

Nucleic acid extraction 

Frozen meningiomas were mechanically lysed using a TissueLyser II (QIAGEN) 

according to the manufacturer’s instructions. DNA and RNA were extracted from lysed 

tissue using the AllPrep DNA/RNA/miRNA Universal Kit (#80224, QIAGEN). DNA and 

RNA quality were initially assessed using a NanoDrop One (Thermo Fisher Scientific). 

DNA samples with 260/280 values less than 1.8 or 260/230 values less than 1.6 were 

cleaned using ethanol precipitation and re-assessed. RNA samples with 260/280 values 

less than 1.8 or 260/230 values less than 1.6 were cleaned using the RNA Cleanup 

protocol from the RNeasy Mini Kit (#74106, QIAGEN). RNA samples were analyzed on a 

Bioanalyzer 2100 using the RNA 6000 Nano Kit (#5067-1511, Agilent Technologies). 

Only meningioma samples with high-quality DNA (260/280 greater than 1.8 and 260/230 

greater than 1.6) and high-quality RNA (RIN greater than 8) were used for DNA 
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methylation profiling and RNA sequencing. After quality control, the discovery cohort was 

comprised of 200 meningiomas from patients who were treated at UCSF from 1991 to 

2016 (median clinical follow-up 6.3 years), and the validation cohort was comprised of 

365 consecutive meningiomas from patients who were treated at HKU from 2000 to 2019 

(median clinical follow-up 5.3 years). 

 

DNA methylation profiling and analysis 

Genomic DNA was processed on the Illumina Methylation EPIC Beadchip (#WG-

317-1003, Illumina) according to manufacturer’s instructions at the Molecular Genomics 

Core at the University of Southern California. Downstream analysis was performed in R 

version 3.5.3 with SeSAMe11.  

Probes were filtered and analyzed using the standard SeSAMe preprocessing 

pipeline, including normal-exponential out-of-band background correction, nonlinear dye 

bias correction, p-value with out-of-band array hybridization masking, and β value 

calculation (β = methylated/[methylated+unmethylated]). A total of 272,041 probes were 

masked in at least one sample by the SeSAMe preprocessing pipeline, and 593,877 were 

retained for subsequent analysis. 

Pre-processing and β value calculation were repeated using the minfi R package 

for comparison12, using functional normalization77. Probes were filtered based on the 

following criteria: (i) removal of probes containing common single nucleotide 

polymorphisms (SNPs) within the targeted CpG sites or on an adjacent base pair 

(n=30,435), (ii) removal of probes targeting the X and Y chromosomes (n=19,298), (iii) 

removal of cross-reactive probes previously reported in the literature78 (n=39,605), and 
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(iv) removal of probes with a detection p>0.05 in any samples (n=12,572). A total of 

763,949 probes were retained for analysis after minfi pre-processing, representing 31.4% 

more probes than were included for analysis using the SeSAMe preprocessing pipeline.  

Principal component analysis on the β values from both pre-processing pipelines 

was performed in R using the base command ‘prcomp’ with the parameters ‘center = 

TRUE, scale. = FALSE’. Variable probes were identified from the first 3 principal 

components, and the top 700 probes from each principal component (2,100 total probes) 

were selected for analysis by ranking the absolute gene loading score values within 

principal components. Duplicate probes were removed, and the probes with the lowest 

gene loading scores were culled until 2,000 variable probes remained, which were used 

for unsupervised hierarchical clustering (Pearson correlation distance, Ward’s method). 

Sampling distributions of DNA methylation group proportions were generated via 

bootstrapping. In brief, the population size of the discovery cohort was sampled with 

replacement 100 times, and the proportion of meningiomas in each DNA methylation 

group was calculated for each sampling. K-means consensus clustering was performed 

to determine the optimal number of clusters using the ConsensusClusterPlus R 

package79, subsampling 1000 times per cluster number and using all 2,000 probes and 

80% of samples per subsample. SeSAMe consensus clustering clearly identified 3 robust 

clusters as the optimal number, while minfi consensus clustering was unable to 

discriminate between 3 and 4 clusters. Even within 3 groups, minfi re-assigned 21% of 

meningiomas to different DNA methylation groups compared to the SeSAMe 

preprocessing pipeline. To quantify differences in SeSAMe and mini preprocessing 

pipelines, we calculate a signal-to-noise ratio (SNR) using NF2 copy number status 
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across meningioma DNA methylation groups. For the SNR calculation in the 3 SeSAMe 

meningioma DNA methylation groups, signal = (NF2 intact in Merlin-intact meningiomas) 

+ (NF2 loss in non-Merlin-intact meningiomas) and noise = (NF2 loss in Merlin-intact 

meningiomas) + (NF2 intact in non-Merlin-intact meningiomas). In the 3 minfi meningioma 

DNA methylation groups, we calculated a SNR three times, assuming each group was 

Merlin-intact in turn, and the most favorable minifi SNR was reported, which remained 

worse than the SNR for SeSAMe meningioma DNA methylation groups. 

A methylation profile multi-class support vector machine (SVM) classifier was 

generated using the caret R package. In brief, a linear kernel SVM was constructed using 

training data comprising 75% of randomly selected samples from the discovery cohort 

(n=200) with 10-fold cross validation. 2,000 probes from each pre-processing pipeline 

were used as variables. As a sanity check, the remaining 25% of samples from the 

validation cohort were used to test the model, which performed with 97.9% accuracy 

when classifying samples into 3 SeSAMe groups (95% CI 89.2-99.9%, p<2.2x10-16). 

Classifiers for 3, 4, 5, or 6 minfi groups performed with 91.8% (95% CI 80.4%-97.7%, 

p=4.69x10-9), 91.8% (95% CI 80.4%-97.7%, p=9.58x10-16), 93.8% (95% CI 82.8%-98.7%, 

p=2.98x10-16), and 93.6% (95% CI 82.5%-98.7%, p<2.2x10-16) accuracy, respectively.  

DNA methylation profiles from representative meningiomas and meningioma cell 

lines were compared in reduced dimensionality space using the Rtsne R package. A 

matrix of the samples and their β values for the 2,000 variable probes were used as input 

and the ‘Rtsne’ command was run with the parameters ‘pca=F, normalize=F, 

perplexity=3.’  
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Leukocyte percentage within the tumor samples was calculated from DNA 

methylation using the ‘estimateLeukocyte’ command within the SeSAMe R package11. In 

brief, the intensity of DNA methylation probes uniquely hyper- or hypo-methylated in 

leukocytes were used to estimate the leukocyte percentage. Tumor purity was estimated 

from DNA methylation profiles using the PAMES R package36. To generate cross-platform 

comparable DNA methylation profiles on meningiomas and normal tissue samples from 

meningioma patients (muscle or fat), β values of adjacent CpG sites were combined and 

the sites were reduced to genomic regions, with a minimum of 3 CpG sites per region. 

Methylation status of genomic regions was used to compute the Area Under the Curve 

(AUC) to define the segregation between tumor and normal samples. Hypermethylated 

and hypomethylated genomic regions with the top 10 AUCs (20 regions in total) were 

selected for tumor purity estimation. These regions were completely methylated or 

unmethylated in normal tissue samples, but were partially methylated in meningiomas. 

The median of partial methylation across these regions in meningiomas was used to 

estimate tumor purity. 

 

Copy number analysis 

CNV profiles from methylation data were generated as previously described with 

the ‘cnSegmentation’ command within the SeSAMe R package4, using the 

‘EPIC.5.normal’ dataset from the sesameData package as a copy-number-normal 

control. CNV intensity value distributions were manually inspected for local minima and 

maxima, and nadirs separating copy number losses, gains, and neutral events were 

identified. Based on this analysis, segments with mean intensity values less than -0.1 
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were defined as copy number losses, segments with mean intensity values greater than 

0.15 were defined as copy number gains, and segments with intensity values between -

0.1 and 0.15 were defined as neutral copy number events. The percentage of the genome 

with copy number variation was determined by calculating the average number of 

segments per sample with mean intensity values less than -0.1 or greater than 0.15, 

weighted by segment length.  

CNV profiles across meningioma DNA methylation groups were generated by 

sampling DNA methylation profiles every 30,000 genomic base pairs and determining the 

percentage of segments containing the sampled location that were lost or gained. Specific 

gene loci (NF2, HLA, CDKN2A/B, and USF1) were determined to be lost or gained if the 

entire locus was contained in a segment with mean intensity values less than -0.1 or 

greater than 0.15, respectively.  

Chromosome arm-level CNVs were identified by calculating the percentage of 

each chromosomal arm containing segments with mean intensity values less than -0.1 or 

greater than 0.15. Chromosome arms with at least 80% of their length meeting these 

criteria were considered losses or gains of the chromosomal arm, respectively. This 

analysis excluded sex chromosomes and the p arms of acrocentric chromosomes, which 

had insufficient methylation probes for robust CNV quantification (13p, 14p, 15p, 21p, and 

22p). To validate this approach, chromosomal losses and gains from DNA methylation 

profiles were compared to those from whole-exome sequencing of 25 previously 

described meningiomas overlapping with the discovery cohort8, and to CNVs from de 

novo Clinical Laboratory Improvement Amendments (CLIA)-certified exome sequencing 

of 10 spatially distinct meningioma samples25,80 (3 Merlin-intact, 15 Immune-enriched, 
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and 17 Hypermitotic meningiomas). To define CNVs from previously described 

meningioma whole exome sequences and from de novo CLIA-certified exome 

sequences, reads were aligned with the Burrows-Wheeler Aligner (BWA)81, deduplicated 

using the Genome Analysis Toolkit (GATK)82,83, and large-scale copy number alterations 

were called using CNVkit84. In support of our approach, CNVs were 99.12% concordant 

across research and clinical bioinformatic platforms using DNA methylation and exome 

sequences technologies. 

Co-occurrence of chromosomal arm CNVs were visualized as an undirected 

weighted graph where nodes represented the frequency of CNV co-occurrences, and 

edges represented the frequency of co-occurrence between CNV pairs. The size of each 

node was linearly proportional to the sum of total co-occurrences with other CNVs, while 

the thickness of each edge was linearly proportional to the frequency of the co-occurrence 

pair with a frequency cutoff ≥5 for display. The igraph R package was used for graph 

visualization.  

The interdependence of CNVs and meningioma DNA methylation groups was 

analyzed by identifying pairs of meningiomas with identical CNV profiles, and 

subsequently comparing the DNA methylation profile between meningioma pairs. This 

approach revealed 37% of meningioma pairs with identical CNVs were assigned to 

different DNA methylation groups, demonstrating meningioma CNV profiles were 

independent from meningioma DNA methylation groups. 
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RNA sequencing and analysis 

Library preparation was performed using the TruSeq RNA Library Prep Kit v2 

(#RS-122-2001, Illumina) and 50 bp single-end reads were sequenced on an Illumina 

HiSeq 4000 to a mean of 42 million reads per sample at the UCSF IHG Genomics Core. 

Quality control of FASTQ files was performed with FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed with 

Trimmomatic to remove Illumina adapter sequences85, leading and trailing bases with 

quality scores below 20, and any bases that did not have an average quality score of 20 

within a sliding window of 4 bases. Any reads shorter than 36 bases after trimming were 

removed. Reads were mapped to the human reference genome GRCh3886 using 

HISAT287 version 2.1.0 with default parameters. For downstream expression analysis, 

exon level count data were extracted from the mapped HISAT2 output using 

featureCounts88. 

Differential expression analysis was performed in R version 3.5.3 with DESeq289, 

using the ‘apeglm’ parameter90 to calculate log fold changes and setting a false discovery 

rate of 0.05. Differentially expressed genes were identified as those with log fold changes 

greater than 1 and an adjusted p-value less than 0.05. Gene ontology analysis of 

differentially expressed genes was performed using Enrichr, and combined scores 

displayed represent z-score weighted p-values, which lack error bars91,92. Cell types 

within samples were deconvoluted using xCell with transcripts per million values35. In 

brief, the strength of gene expression patterns unique to different cell types were used to 

estimate the proportion of cell types within each meningioma. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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The variance stabilizing transformation of the RNA sequencing counts were used 

to calculate variances for each gene across the 200 meningioma samples. The 2,000 

most variable genes were used for unsupervised hierarchical clustering (Pearson 

correlation distance, Ward’s method), which did not reveal any clear clusters of genes or 

meningiomas. Moreover, transcriptome clustering failed to recapitulate DNA methylation 

groups. FOXM1 and E2F1 transcription factor targets were identified from the ChIP-X 

Enrichment Analysis (CHEA) dataset within the Harmonizome93.  

 

Somatic short variant sequencing and analysis 

A custom amplicon DNA sequencing panel was designed with 100% coverage of 

all coding exons of NF2. Genomic DNA was processed using this panel and the 

CleanPlex Target Enrichment and Library Preparation kit, following manufacturer’s 

instructions (#PGD364, Paragon Genomics). Library quality was assessed on a 

TapeStation 4200 using the High Sensitivity D1000 Kit (#5067-5584, Agilent 

Technologies). 150 bp paired-end reads were sequenced on an Illumina MiSeq v2 Micro 

at the UCSF Center for Advanced Technology. Quality control of FASTQ files was 

performed with FASTQC94. Reads were mapped to the NF2 locus using Bowtie295. 

Somatic short variants (point mutations and small indels) were identified using the 

Genome Analysis Toolkit (GATK)96. The mapped Bowtie2 output was processed with 

recalibration of base confidence scores, and processed reads were used as input for 

HaplotypeCaller82 with the parameters ‘-ERC none’ and  ‘--max-reads-per-alignment-start 

0’ to identify somatic variants. Somatic short variants were filtered for a minimum total 

depth of 100 reads. Filtered variants were annotated using SnpEff97,98, and all but one 
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NF2 somatic short variant identified across DNA methylation groups were predicted to 

have ‘HIGH’ variant impact. 

Single nucleotide variants in TRAF7 were identified from the RNA sequencing data 

by following the Genome Analysis Toolkit’s (GATK)96 “RNAseq short variant discovery” 

Best Practices Workflow. In brief, the mapped HISAT output was processed by de-

duplication and recalibration of base confidence scores. Processed reads were used as 

input for HaplotypeCaller82 with the parameters ‘--dont-use-soft-clipped-bases true’ and  

‘-stand-call-conf 20’ to identify somatic short variants. The ‘VariantFiltration’ command 

within GATK was used to further filter the identified variants with the parameters ‘-window 

35 -cluster 3 --filter-name “FS” -filter “FS > 30.0” --filter-name “QD” -filter “QD < 2.0”.’ 

Filtered variants were annotated using SnpEff97,98. The same pipeline was attempted to 

identify somatic short variants in PIK3CA, SMARCB1, SMO, KLF4, POLR2A, NF2, and 

AKT1.  Low coverage (average FPKM<10 across samples) excluded PIK3CA, AKT1, and 

NF2 from further analysis. The small number of mutations (<10) detected in SMARCB1, 

KLF4, and POLR2A could not be distinguished from background error rates in RNA-

sequencing. Finally, mutations identified in SMO were unlikely to be activating 

mutations21, and were discordant from prior studies14, likely to be spurious findings. Thus, 

only single nucleotide variants in TRAF7 were reported. 

To generalize our analysis of meningioma short somatic variants across DNA 

methylation groups, 53 meningiomas with matched exome sequencing and DNA 

methylation profiling were analyzed for recurrent variants enriched in meningiomas5,16,53. 

Samples included 43 previously described meningioma whole exomes8,56, 25 of which 

overlapped with the discovery cohort, and 10 spatially distinct meningioma samples 
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analyzed de novo using CLIA-certified exome sequencing of 500 genes, including all 

recurrently mutated genes reported in meningiomas, such as TRAF7, AKT1, SMO, KLF4, 

CDKN2A/B, TERT, SMARCB1, BAP1, SUFU, TP53, PTEN, MYC, PBRM1, and 

PIK3CA25,80 (6 Merlin-intact, 21 Immune-enriched, and 26 Hypermitotic meningiomas). 

Short somatic variants were defined as previously described8,56,80. In brief, whole exome 

sequences were aligned with the Burrows-Wheeler Aligner (BWA)81 and analyzed using 

Picard tools and the Genome Analysis Toolkit (GATK), following GATK Best Practices96. 

 

Immunoblotting, subcellular fractionation, and immunoprecipitation 

Immunoblot cell line samples were prepared by lysis in radioimmunoprecipitation 

assay (RIPA) buffer containing Complete-Mini EDTA-free protease inhibitor 

(#11836170001, Sigma-Aldrich) and PhosSTOP phosphatase inhibitor (#04906837001, 

Sigma-Aldrich), followed by boiling i Laemmli reducing buffer. Immunoblot meningioma 

samples were first mechanically lysed using a TissueLyser II (QIAGEN) according to the 

manufacturer’s instructions then processed identically to cell line samples. Samples were 

separated on 4-15% gradient TGX precast gels (#4561086, Bio-Rad), and transferred 

onto nitrocellulose membranes (#1620094, Biorad). Membranes were blocked in 5% 

TBST-milk, incubated in primary antibody, washed, and incubated in secondary 

antibodies. Membranes were subjected to immunoblot analysis using Pierce ECL 

(#32209, Thermo Fischer Scientific) or SuperSignal West Femto (#34095, Thermo 

Fischer Scientific) substrates. Primary antibodies were used against Merlin (#ab88957, 

Abcam), GAPDH (#MA515738, Thermo Fischer Scientific), Caspase-7 (#9492, Cell 

Signaling), IRF8 (#5628S, Cell Signaling), Tubulin (#T5168, Sigma), HH3 (#702023, 
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Thermo Fischer Scientific), FLAG (#F1804, Sigma), ARHGAP35 (#2860S, Cell 

Signaling), FOXM1 (#sc-376471, Santa Cruz), CDK6 (#3136S, Cell Signaling), RB 

(#9309S, Cell Signaling), pRB-S780 (#8180P, Cell Signaling), and pRB-S807/811 

(#8516P, Cell Signaling).  

Subcellular fractionation kits were purchased from Thermo Fischer Scientific 

(#78833) and used according to manufacturer’s instructions. In brief, M10G cells were 

seeded into 10cm plates, and trypsinised and lysed in Cytoplasmic Extraction Reagent I 

containing protease and phosphatase inhibitors after 2 days of growth. Lysis solution was 

incubated on ice for 10 minutes before addition of Cytoplasmic Extraction Reagent II and 

incubation for 1 minute. Cytoplasmic fractions were isolated via centrifugation for 5 

minutes, 21,000x g, 4C. The Nuclear pellet was resuspended in Nuclear Extraction 

Reagent containing protease and phosphatase inhibitors followed by incubation on ice 

for 40 minutes with intermittent vortexing. Finally, the nuclear fraction was isolated by 

centrifugation for 5 minutes, 21,000 x g, 4C. Protein concentration was measured using 

Bradford Reagent (#5000205, Biorad), samples were normalized, and processed for 

immunoblotting or immunoprecipitation. 

For whole cell lysate immunoprecipitation, samples were lysed in ice-cold Jies 

buffer (100mM NaCl2, 20mM Tris HCl (pH7.5), 5mM MgCl2, 0.5% NP40, protease and 

phosphatase inhibitors) before centrifugation at 4C for 5 minutes, 21,000 x g. Protein 

concentration was measured using Bradford reagent and equal protein from each sample 

was loaded onto pre-washed FLAG M2 beads (#M8823, Sigma-Aldrich) before incubation 

at 4C, overnight with gentle rotation. The following day, proteins was eluted from the 
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beads with Laemmli buffer and boiled for 5 minutes. Immunoblotting revealed IRF8 in 

cytoplasmic and nuclear fractions, and ARHGAP35 in cytoplasmic fractions. 

 

Cell culture and organoids 

HEK293T, BenMen99, IOMM-Lee26, and CH157-MN29 cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) (#11960069, Life Technologies), 

supplemented with 10% fetal bovine serum (FBS) (#16141, Life Technologies), 1X 

GlutaMAX (#35050-061, Thermo Fischer Scientific), and 1X Penicillin/Streptomycin 

(#15140122, Life Technologies). DI-98 and DI-134 cells56 and cultured in DMEM 

supplemented with 7% FBS and 1X Penicillin/Streptomycin. M10G cells25 were cultured 

in a 1:1 ratio of DMEM/F12 media (#10565, Life Technologies) and Neurobasal media 

(#21103, Life Technologies), supplemented with 5% FBS, B-27 supplement without 

vitamin A (#12587, Life Technologies), N-2 supplement (#17502, Life Technologies), 1X 

GlutaMAX (#35050, Life Technologies), 1mM NEAA (#11140, Life Technologies), 

100U/mL Anti-Anti (#15240, Life Technologies), 20 ng/mL EGF (#AF-100-15, Peprotech), 

and 20 ng/mL FGF (#AF-100-18B, Peprotech). MSC1 cells were cultured in the same 

conditions as M10G cells, but supplemented with 15% FBS25. Human cerebral organoids 

were created from astrocytes induced from pluripotent human stem cells and co-cultured 

with meningioma cells as previously described25. 

Colorimetric proliferation assays were performed using the CellTiter 96 Non-

Radioactive Cell Proliferation Assay (#G4100, Promega), according to manufacturer’s 

instructions. For clonogenic assays, 150 cells were seeded in triplicate in 6 well plates. 

Cells were treated with either vehicle or drug both 1 and 6 days after seeding. After 10 
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total days of growth, cells were fixed in methanol for 30 minutes and stained with 0.01% 

crystal violet (C6158, Sigma-Aldrich) for 1 hour. Plates were rinsed with water three times, 

allowed to air dry, and imaged on a Zeiss Stemi 508 stereo microscope. Colony area was 

quantified by measuring total image intensity using ImageJ, with normalization to 

background intensity. Apoptosis assays were performed by treating cells with actinomycin 

D (#11421, Caymen Chemicals) 0.5 μg/ml for 24 hours.  

 

CRISPRi gene suppression 

Lentiviral particles containing pMH0001100 (UCOE-SFFV-dCas9-BFP-KRAB, 

#85969, Addgene) were produced by transfecting HEK293T cells with standard 

packaging vectors using the TransIT-Lenti Transfection Reagent (#6605, Mirus). M10G 

cells were stably transduced with lentiviral particles to generate M10GdCas9-KRAB cells. 

Successfully transduced cells were isolated through selection of BFP positive cells using 

fluorescence activated cell sorting on a Sony SH800. 

Single-guide RNA (sgRNA) protospacer sequences were individually cloned into 

the pCRISPRia-v2 vector101 (#84832, Addgene), between the BstXI and BlpI sites, by 

ligation. Each vector was verified by Sanger sequencing of the protospacer. Protospacer 

sequences were sgNTC (GTGCACCCGGCTAGGACCGG), sgNF2 

(GGACTCCGCGCGCCTCTCAG), sgUSF1 (GAGATACCTAGGCCGGGAGA), 

sgCDKN2A (GTGGCCAGCCAGTCAGCCGA), sgCDKN2B 

(GACTCTGCCAGAGCGAGGCG). Lentivirus was generated as described above for 

each sgRNA expression vector. M10GdCas9-KRAB cells were independently transduced with 
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lentivirus from each sgRNA expression vector, and selected to purity using 20 μg/mL 

puromycin over 7 days. 

 

shRNA gene suppression 

Lentiviral particles containing pLKO.1 shRNA targeting control (RHS6848, 

Dharmacon) or NF2 (RHS3979-201768826 or RHS3979-201768830) were generated by 

transfecting HEK293T cells with standard packaging vectors (psPAX2 and pMD2.9) and 

shRNA plasmids using TransIT-Lenti Transfection Reagent. After 48 hours of virus 

production, viral particles were sterilized through a 0.45 M filter and added to 

meningioma cells with polybrene 10 g/ml (TR-1003, MerkMillipore). A polyclonal 

population of shRNA positive cells was selected using puromycin 2 g/ml.    

 

siRNA gene suppression 

Small interfering RNA (siRNA) targeting the glucocorticoid receptor, NR3C1 (#J-

003424-10-0002), or control (#D-001810-01-05), were purchased from Dharmacon. 

siRNA transfection was performed using Lipofectamine RNAiMax reagent (#13778, 

Thermo Fischer Scientific). In brief, 2 cocktails containing either siRNA (25 nM) or 

Lipofectamine RNAiMax (3 l) in 150 l OptiMEM were made per transfection. Cocktails 

were incubated for 5 minutes prior to combination of the 2 solutions, followed by incubated 

for an additional 10 minutes before adding to cells for 15 hours. The siRNA transfection 

was repeated after 48 hours and expanded. Cells were harvested 92 hours after first 

siRNA transfection. 
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RNA extraction, cDNA synthesis, and quantitative reverse transcriptase PCR 

RNA was extracted from cultured cells using the RNeasy Mini Kit (#74106, 

QIAGEN) according to manufacturer’s instructions. cDNA was synthesized from 

extracted RNA using the iScript cDNA Synthesis Kit (#1708891, Bio-Rad). Real-time 

qPCR was performed using PowerUp SYBR Green Master Mix (#A25918, Thermo Fisher 

Scientific) on a QuantStudio 6 Flex Real Time PCR system (Life Technologies). Real-

time QPCR primer sequences were GAPDH-F (5’-GTCTCCTCTGACTTCAACAGCG-3’), 

GAPDH-R (5’-ACCACCCTGTTGCTGTAGCCAA-3’), CDKN2A-F (5’-

ATGGAGCCTTCGGCTGACT-3’), CDKN2A-R (5’-GTAACTATTCGGTGCGTTGGG-3’), 

CDKN2B-F (5’-ACGGAGTCAACCGTTTCGGGAG-3’), CDKN2B-R (5’-

GGTCGGGTGAGAGTGGCAGG-3’), USF1-F (5’-CTGCTGTTGTTACTACCCAGG-3’), 

USF1-R (5’-TCTGACTTCGGGGAATAAGGG-3’), CDK6-F (5’-

TCTTCATTCACACCGAGTAGTGC-3’), CDK6-R (5’-TGAGGTTAGAGCCATCTGGAAA-

3’), NR3C1-F (5’-ATAGCTCTGTTCCAGACTCAACT-3’), and NR3C1-R (5’-

TCCTGAAACCTGGTATTGCCT-3’). Real-time qPCR data were analyzed using the ΔΔCt 

method relative to GAPDH expression. 

 

Immunofluorescence 

Immunofluorescence of primary meningioma cells was performed on glass 

coverslips. Cells were fixed in 4% paraformaldehyde (#15710, Electron Microscopy 

Sciences), blocked in 2.5% BSA (#BP1600, Fischer Scientific) and 0.1% Triton X-100 

(#X100, Sigma) in Phosphate Buffered Saline (PBS) for 30 min at room temperature 

(#14190, Gibco), and labeled with Ki-67 (#ab15580, Abcam) primary antibodies at room 
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temperature for 1 h. Cells were labeled with Alexa Fluor secondary antibodies and either 

Hoechst 33342 (#H3570, Thermo Fisher Scientific) or DAPI (#D3571, Thermo Fisher 

Scientific) to mark DNA for 1 h at room temperature, and were mounted in ProLong 

Diamond Antifade Mountant (#P36970, Thermo Fisher Scientific). For apoptosis assays, 

cells were washed in Annexin V binding buffer, stained with Annexin V for 15 min 

(#550911, BD Bioscience), washed, labeled with DAPI to mark DNA for 1 h at room 

temperature, and mounted in ProLong Diamond Antifade Mountant.  

Immunofluorescence of human and xenograft meningiomas for lymphatic vessels 

was performed on 10 μm cryosections of frozen tissue embedded in OCT Compound 

(Thermo Fisher Scientific). Slides with tissue were fixed in cold acetone for 10 min, air 

dried, washed in PBS, permeabilized with 0.3% Triton-X 100 in PBS, and washed again 

in PBS. Sections were blocked (2% BSA, 1% donkey serum, and 0.1% Triton-X 100 in 

PBS) for 30 min. Sections were labeled with either LYVE-1 (#ab14917, Abcam) or PROX-

1 (#AF2727, R&D Systems) primary antibodies at room temperature for 1 h. Slides were 

subsequently labeled with Alexa Fluor secondary antibodies and Hoechst 33342 to mark 

DNA for 1 h at room temperature, and were mounted in ProLong Diamond Antifade 

Mountant. 

Dual immunofluorescence of human meningiomas for FOXM1 and Ki-67 was 

performed on 5 μm formalin-fixed, paraffin-embedded (FFPE) human meningioma 

sections. Following antigen retrieval using CC1 for 32 min (#950-124, Roche 

Diagnostics), sections were incubated and detected sequentially with rabbit monoclonal 

Ki-67 (#30-9, Roche Diagnostics) and rabbit monoclonal FOXM1 primary antibodies 
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(#EPR17379, Abcam). Each primary antibody incubation was 32 min and single stained 

controls were used to verify specificity.  

 

Mice 

This study was approved by the UCSF Institutional Animal Care and Use 

Committee (AN174769-03A), and all experiments complied with relevant ethical 

regulations. Xenograft experiments were performed by implanting 3 million CH-157MN 

cells into the flank of 5-6-week-old NU/NU mice (Harlan Sprague Dawley Inc.). To induce 

Merlin expression in meningiomas in vivo, mice harboring CH-157MN cells encoding 

pLV.APEX2-Merlin were treated with doxycycline 200 μg/ml or 1 mg/ml (#D9891, Sigma) 

14 days post implantation.  After 7 days of treatment, 2 Gy of ionizing radiation per day 

was delivered using a Precision X-RAD 320 Cabinet Irradiation, with normal operating 

settings, on each of 2 successive days. Tumors were collected 24 hours after the second 

dose of ionizing radiation for immunoblotting and immunohistochemistry. For preclinical 

pharmacologic experiments, animals in the treatment arm were gavaged with 100 μg/g 

abemaciclib in 0.5% methylcellulose vehicle daily starting 12 days after injection, until 

protocol-defined endpoints. For Kaplan-Meier survival analysis, events were recorded 

when tumors reached the protocol-defined size of 2000 mm3. 

 

Histology and immunohistochemistry 

Deparaffinization and rehydration of 5 µm FFPE human and mouse meningioma 

tissue sections and hematoxylin and eosin staining were performed using standard 

procedures. Immunostaining was performed on an automated Ventana Discovery Ultra 
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staining system. Immunohistochemistry was performed on 5µm FFPE meningioma 

xenograft sections using rabbit monoclonal Ki-67 (#30-9, Roche Diagnostics) with primary 

antibody incubation for 16 min following CC1 antigen retrieval for 8 min, or rabbit 

monoclonal cleaved Caspase-3 (#5A1E, Cell Signaling) with primary antibody incubation 

for 32 min at 37°C following CC1 antigen retrieval for 8 min. 

CD3 immunoreactivity (#A0452, Agilent Technologies) for each tumor was 

categorized qualitatively. Tumors were scored CD3 positive if multiple aggregates of 

CD3-positive lymphocytes were identified, and were otherwise scored as CD3 negative. 

FOXM1 labeling index was quantified based on the total amount of nuclei with strong 

immunoreactivity for FOXM1 within a 200x field. Ki-67 labeling index was quantified 

based on the total amount of nuclei with strong immunoreactivity for Ki-67 within a 200x 

field. The labeling index for both FOXM1 and Ki-67 was averaged across 2 200x fields 

for each meningioma. 

 

Microscopy 

Fluorescence microscopy was performed on a LSM 800 confocal laser scanning 

microscope with a PlanApo 20X air objective (Zeiss). Images were processed and 

quantified from representative regions of each tumor or coverslip using ImageJ. Histologic 

and immunohistochemical features were evaluated using light microscopy on an BX43 

microscope with standard objectives (Olympus). Images were obtained and analyzed 

using the Olympus cellSens Standard Imaging Software package.  
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APEX proteomic proximity-labeling mass spectrometry and analysis 

M10G cells encoding pLV.APEX2-Merlin wild type and L46R-mutant constructs 

were seeded onto 5 x 15 cm plates. For APEX labelling, cells were treated with 0.5 uM 

Biotin-phenol (#BT1015, Berry & Associates) and returned to 37C, 5% CO2 for 30 

minutes. After 24 hours, Merlin protein expression was induced with 0.1g/ml 

doxycycline. Biotin treated cells were subject to free radical formation by adding media 

containing 1mM H2O2 to cells for exactly 30 seconds, on ice. Immediately, H2O2 media 

was aspirated and the reaction was quenched (10mM Sodium Ascorbate, 1mM Azide, 

5mM Trolox), and cells were pelleted.  

To prepare cell pellets for biotin/streptavidin precipitation, samples were lysed in 

Urea buffer (8M urea, 0.1M Ammonium Bicarbonate pH8, 150mM NaCl, protease 

inhibitors and phosphatase inhibitors), sonicated for 1 minute followed by alkylation of 

free cysteines (10mM iodoacetamide). Trypsin digest (#V5073, Promega) was performed 

at 37C for 20 hours with gentle rotation. Digested proteins were desalted through a 100mg 

Sep-Pak C18 vacuum cartridge (#WAT023590, Waters) and lyophilized in a speed vac. 

Lyophilised proteins were dissolved in IAP buffer (50 mM MOPS, 10 mM HNa2PO4, 50 

mM NaCl, pH 7.5), sonicated for 30 minutes in a 4C water bath and centrifuged to  clear 

insoluble material. For biotin/streptavidin precipitation, 20 l of washed anti-biotin beads 

(#ICP0615, Immunechem Pharmaceuticals) were incubated with each protein sample (2 

hours, 4C, gentle rotation), beads were washed and eluted in 0.15% trifluoroacetic acid, 

desalted on nest tips, and lyophilized prior to mass spectrometry.  

Samples were resuspended in 4% formic acid, 4% acetonitrile solution, 

and separated by an reversed-phase gradient over a nanoflow column (360 m O.D. x 
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75 m I.D.) packed with 15 cm of 1.7 m BEH C18 particles (#186002350, Waters). The 

HPLC buffers were 0.1% formic acid and 100% acetonitrile on 0.1% formic acid for buffer 

A and B respectively. The gradient was operated at 300 nL/min from 5 to 25% buffer B 

over 36 min, followed by a 25%-36%B over 42 min, a column wash at 95% B, with a total 

acquisition time of 90 min. Eluting peptides were analyzed in on a Orbitrap Fusion Lumos 

Tribrid Mass Spectrometer system (Thermo Fischer Scientific) equipped with a n1200 

Easy-nLC 1200 high-pressure liquid chromatography system (Thermo Fischer Scientific). 

A data-dependent acquisition method was used with following parameters: 1 second 

cycle time, MS1 acquisition in the orbitrap with 350-1350 m/z range at 240K resolution 

and a 50 milisecond maximum injection time, MS2 analysis was performed with HCD 

fragmentation in the ion trap with 32% normalized collision energy, 200-1200 m/z scan 

range, 18 milisecond maximum injection time, centroid format, and a rapid scan rate. Data 

was search against the human proteome database (canonical sequences downloaded 

from Uniprot 10/22/2020) using the default parameters in MaxQuant102,103 (version 

1.6.12.0), with the exception that match-between-runs was enabled (0.7 min time window) 

and a variable modification (361.14601 Da) representing the addition of biotin phenol to 

tyrosine residues was included. 

 

HLA loss of heterozygosity analysis 

Whole exome capture and read sequencing were performed as previously 

described on 25 meningiomas overlapping with the discovery cohort (9 Immune-enriched, 

16 non-Immune-enriched) with matched normal tissue controls8. Paired-end sequence 

data were aligned using the Burrows-Wheeler Aligner to the reference human genome 
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build hg1981. Duplicate removal, base quality recalibration, and multiple-sequence 

realignment were performed using Picard suite and Genome Analysis Toolkit82,83. Exome 

HLA Class I genotyping was performed using Polysolver and SOAP-HLA104,105. 

 

Single cell isolation and RNA sequencing 

Fresh human meningioma (n=8) and dura (n=2) samples were acquired from the 

operating room and transported to the laboratory in PBS at 4°C. Tissue samples were 

minced with sterile #10 scalpels (#4-410, Integra LifeSciences) and incubated at 37°C in 

a Collagenase Type 7 solution (#LS005332, Worthington) until digested (30-60 minutes). 

Collagenase was used at a concentration of 0.1 mg/mL for tumor and brain-tumor 

interface samples, and at a concentration of 0.2 mg/mL for dura samples. Samples were 

incubated in Trypsin-EDTA 0.25% (#25200056, Thermo Fisher Scientific) at 37°C for 5 

minutes, and in 1X RBC lysis buffer (#00-4300-54, eBioscience) at room temperature for 

10 minutes. Finally, samples were sequentially filtered through 70 µM and 40 µM cell 

strainers (#352350 and #352340, Corning) to generate single-cell suspensions. 

Single cell suspensions were processed for single cell RNA sequencing using a 

10X Chromium controller, and libraries were generated using the Chromium Single Cell 

3’ Library & Gel Bead Kit v3 on a 10X Chromium controller using the manufacturer 

recommended default protocol and settings (#1000121, 10X Genomics), at a target cell 

recovery of 5,000 cells per sample. Libraries were sequenced on an Illumina NovaSeq 

6000, targeting >50,000 reads/cell, at the UCSF Center for Advanced Technology. 
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Single cell RNA sequencing analysis 

Library demultiplexing, read alignment to the GRCh38 human reference genome, 

identification of empty droplets, and UMI quantification was performed using CellRanger 

version 3.0.2 (https://github/com/10xGenomics/cellranger). Cells with greater than 500 

unique genes, less than 10,000 unique genes, and less than 20% of reads attributed to 

mitochondrial transcripts were retained. Single cell UMI count data were preprocessed in 

R version 3.6.1 with the Seurat106,107 package version 3.0.1 using the sctransform108 

workflow, with scaling based on regression of UMI count and percentage of reads 

attributed to mitochondrial genes per cell. Dimensionality reduction was performed using 

principal component analysis, and principal components were corrected for batch effects 

using Harmony109. Uniform Manifold Approximation and Projection (UMAP) was 

performed on the reduction data with a minimum distance metric of 0.2 and Louvain 

clustering was performed using a resolution of 0.4. Marker identification and differential 

gene expression was performed in Seurat using a minimum fraction of detection of 0.75 

and a minimum log-fold change of 0.5. 

The presence or absence of CNVs in individual cells was assessed using 

CONICSmat37. Briefly, a two-component Gaussian mixture model was fit to the average 

expression values of genes on chromosome 22q across all cells assessed. CNVs were 

assessed in cells from tumor samples with copy-number loss of chromosome 22q at a 

bulk level as determined by DNA methylation, and for cells from copy-neutral normal dura 

samples. The command ‘plotAll’ from the CONICSmat R package was run with the 

parameters ‘repetitions=100, postProb=0.75’. Cells with a posterior probability less than 

0.15 were identified as tumor, while cells with a posterior probability greater than 0.85 

https://github/com/10xGenomics/cellranger
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were identified as normal. Clusters with greater than 80% of cells with intact chromosome 

22q were determined to be non-meningioma cell clusters. Standard immune, neural, and 

vascular markers in the top 50 differentially expressed genes of the non-meningioma cell 

clusters were used to classify non-tumor clusters. Cell cycle phases of individual cells 

were assigned with the standard ‘CellCycleScoring’ function in Seurat. In brief, using 

previously described single-cell cell cycle marker genes110, average expression levels 

were calculated for each cell using G2M and S phase marker genes, respectively. If both 

average expression levels were less than 0, cells were classified as G1 phase. Otherwise, 

they were classified as either G2M or S phase, depending on which average expression 

was greater. Meningioma cell clusters were labeled based on cell cycle phases of cells 

and gene programs were identified by inspection of the top 50 differentially expressed 

genes. Gene ontology and pathway analyses with Enrichr and literature searches via 

Pubmed of differentially expressed genes helped identify upregulated pathways in 

meningioma cell clusters. 

Reference transcriptomic signatures of single-cell clusters were generated using 

CIBERSORTx111. CIBERSORTx was run on a counts per million (CPM) matrix of all 

genes and 300 randomly sampled cells per cluster with a minimum expression fraction of 

0.1 and default settings for all other parameters. Bulk RNA-seq expression of 

meningiomas was deconvolved with CIBERSORTx using CPM expression of genes 

across bulk samples and with the generated single-cell transcriptomic signatures. 
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Magnetic resonance imaging analysis 

All patients in the discovery cohort underwent preoperative magnetic resonance 

imaging (MRI) on clinical scanners at either 1.5 or 3.0 Tesla field strength. MRI protocols 

varied across the study period, but all patients included for image analysis (n=169) had 

T1 pre- and post-intravenous gadolinium contrast agent administration sequences, T2-

weighted spin echo sequences, and T2-weighted fluid attenuated inversion recovery 

(FLAIR) sequences. Post-contrast T1 images evaluated in this study were high-resolution 

3D, allowing for multiplanar reconstruction. Evaluation of meningioma proximity to dural 

venous sinuses was performed qualitatively by a board-certified radiologist with a 

Certificate of Added Qualification in Neuroradiology (J.E.V-M.) on post-contrast T1 

images. Meningiomas were classified as involving a dural venous sinus if they abutted a 

dural reflection or invaded the sinus. 

 

Gene over-expression 

For transient over-expression of FOXM1 or USF1, M10G cells were transfected 

with pCMV6-FOXM1 (#RC202246, Origene) or pCMV6-USF1 (#RC204915, Origene) 

plasmids at a ratio of 1 μg of DNA to 2 μl of FuGENE transfection reagent (#E2311, 

Promega). Cells were harvested 48 hours after transfection for RNA extraction. For stable 

over-expression, USF1 was cloned from pCMV6-USF1 into the pLVX-IRES-puro vector 

using restriction digest and ligation. Lentivirus was generated and introduced onto CH-

157MN cells and stable polyclonal cell lines were generated using antibiotic selection as 

described above. 
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ChIP sequencing and enhancer/super-enhancer analysis 

H3K27ac ChIP sequencing data were derived from 25 previously reported 

meningiomas56 (3 Merlin-intact, 7 Immune-enriched, and 15 Hypermitotic). Enhancer and 

super enhancer analyses were performed as previously described56. Briefly, FASTQ 

reads were trimmed to remove low quality reads and adaptors with TrimGalore and 

uniquely mapped reads were aligned to the human reference genome hg19/GRCh37 with 

the Burrows-Wheeler Aligner81. SAMtools was used to sort and index BAMs, and PCR 

duplicates were removed with PicardTools. Peaks were called using MACS2 with the 

default log2 fold change enrichment of 2 compared to input and a p-value cutoff of 10-5. 

Consensus peaksets and normalized H3K27ac densities were generating using the 

DiffBinds R package. Peaks present in at least 2 tumor samples were used to generate 

a consensus peakset and overlapping peaks were merged. Peaks on chromosomes X or 

Y and peaks intersecting ENCODE blacklisted regions v1 on haplotype chromosomes 

were excluded from analysis. Bigwig tracks were generated using DeepTools (v3.1.2) 

with RPKM normalization and were visualized using Integrative Genomics Viewer 

software. Super-enhancers were called using ROSE with default parameters112,113. Gene 

set enrichment networks were generated using ClueGO and visualized in 

Cytoscape114,115. Prediction of FOXM1-regulated genes was performed by first identifying 

FOXM1 binding motif sites using Homer to scan across the genome for the known FOXM1 

motif. These sites were intersected with H3K27ac peaks in the consensus meningioma 

peakset, annotated to the nearest gene using Homer, and intersected with genes 

positively and significantly (FDR<0.05) correlated with FOXM1 expression as well as 
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genes upregulated in the Hypermitotic meningiomas compared to tumors from other DNA 

methylation groups (FDR<0.05). 

 

ChIP quantitative reverse transcriptase PCR 

ChIP qPCR was performed using the EZ-Magna ChIP A/G Chromatin 

Immunoprecipitation Kit (#17-10086, Millipore), according to manufacturer’s instructions. 

Briefly, cells were fixed in 1% formaldehyde and sonicated to fragment sizes of 200-800 

bp. Samples were incubated overnight with 10 μg USF1 antibody (#ab180717, Abcam) 

or IgG antibody bound to protein A and protein G magnetic beads. After antibody 

incubation, samples were washed once each with high salt, low salt, lithium chloride and 

TE buffers. Samples were de-crosslinked by incubation at 65°C for 4 hours, followed by 

incubation at 95°C for 10 minutes, and purified using a PCR purification kit (#K3100-01, 

Invitrogen). qPCR was performed using PowerUp SYBR Green Master Mix (#A25918, 

Thermo Fisher Scientific). QPCR primer sequences targeting gene promoters were NC1-

F (5’-AAAAGCAGCCCATCTCTGTG-3’), NC1-R (5’-TGGGAGACAGAGCAAGACTC-3’), 

NC2-F (5’-TTCTAACTTGGCTCGGGCATC-3’), NC2-R (5’-

TCGCCTAACCTCTTCAGCTTC-3’), CDK6-F (5’-TTGTCTTTCGGCTCGCTGTC-3’), and 

CDK6-R (5’-AATCCTCAGGCCCAGAAAGG-3’). 

 

Patients 

Patients were treated with Abemaciclib 100 mg per os twice daily. Treatment was 

held in the setting myelosuppression (absolute neutrophil count less than 1.5), and 

treatment-associated diarrhea was managed with over-the-counter medications. 
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Meningioma volumes on serial magnetic resonance imaging studies were determined 

using MIM (MIM Software Inc), and the electronic medical record for all patients was 

reviewed in early 2021.  

 

Nomograms 

Prognostic models for LFFR were generated using multivariable Cox regression 

via the survival R package. The proportional hazards assumption was confirmed by visual 

inspection of the Schoenfeld residuals and the Schoenfeld global test116. Variables 

included in the final model were selected by a two-step process, first by a univariable Cox 

regression threshold of p≤0.05, followed by selection of features with greatest variable 

importance as estimated by the Breiman permutation method using concordance as the 

model metric117. The top 7 features were selected to allow for at least 10 events per 

variable in the final model. This process was repeated for creation of the DNA methylation 

group model and the CNV group model. Models were compared using the bootstrapped 

time-dependent delta-AUC and delta-Brier-score for LFFR at 5 years118. The survAUC R 

package was used to calculate time-dependent AUC and Brier-scores. Nomograms 

based on the final Cox models were visualized using the ‘nomogram’ function of the rms 

R package. Within nomograms, each variable contributes points (top row) to the total 

score, which estimates the probably of 5-year LFFR (bottom 2 rows)73. Cox model 

calibration of 5-year LFFR was estimated using the ‘calibrate’ function of the rms R 

package with default settings, utilizing Kaplan-Meier estimates, bootstrapping, and with 

an average group size of 50 subjects per calibration level. Unless otherwise specified, all 

bootstrap procedures were performed with 500 iterations. Recursive partitioning analysis 
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of CNV and methylation groups was performed using the rpart R package, with a 

minimum of 30 observations per split attempt and minimum of 15 observations per 

terminal leaf. The optimal complexity parameter was determined by 5-fold cross-

validation, with selection of the most parsimonious model defined as the model with 

fewest splits and no more than one standard-error above the error of the best model119. 

Finally, interactive web nomogram graphical user interfaces were created using the 

DynNom R package.  

 

Statistics 

All experiments were performed with at least 3 biologic replicates. Experimental 

replicates are indicated in each panel or figure legend. Unless specified otherwise, lines 

represent means, and error bars represent standard error of the means. Results were 

compared using log-rank tests, Student’s t tests, ANOVA, and Chi-squared tests, which 

are indicated in all figure legends. Statistical significance is shown by *p0.05, **p0.01, 

or ***p0.0001.  
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Figure 2.1 Meningiomas are comprised of 3 DNA methylation groups with distinct clinical outcomes. 

a, Co-occurrence of chromosomal gains and losses in meningiomas (n=565). Circle size represents the 
frequency of copy number variant (CNV) co-occurrences. Line thickness represents the number of co-
occurrences between CNVs. b, Unsupervised hierarchical clustering of meningiomas from the discovery 
cohort (n=200) using 2,000 differentially methylated DNA probes. c, Kaplan-Meier curves for meningioma 
local freedom from recurrence from the discovery and validation cohorts (n=565) across DNA methylation 
groups (Log-rank test). d, Meningioma WHO grades (n=565) across DNA methylation groups (Chi-squared 
test). e, Multivariable regression hazard ratio (HR) forest plots for local freedom from recurrence using 
meningioma clinical variables and DNA methylation groups (n=565, Cox proportional hazards model). 
Boxes represent means, and error bars represent 95% confidence intervals (CI). 
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Figure 2.2 NF2/Merlin drives meningioma apoptosis. 

a, Meningioma DNA methylation analysis of chromosome segment copy number loss containing the NF2 
locus across DNA methylation groups (n=565, Chi-squared test). b, Meningioma NF2 transcripts per million 
(TPM) expression (n=200) across DNA methylation groups (ANOVA). c, Immunoblot for Merlin or GAPDH 
in 3 meningiomas with loss of at least one copy of the NF2 locus from each meningioma DNA methylation 
group. d, Confocal microscopy and quantification of Annexin V in M10GdCas9-KRAB cells stably expressing a 
non-targeting control single-guide RNA (sgNTC) or a single-guide RNA suppressing NF2 (sgNF2) after 24 

hours of actinomycin D or vehicle control treatment. DNA is marked with DAPI. Scale bar 10 M (ANOVA). 
e, Immunoblot for FLAG, cleaved Caspase-7 (cCaspase-7), or GAPDH from CH-157MN xenografts stably 
expressing doxycycline-inducible Merlin encoding a FLAG tag (NF2-FLAG) in NU/NU mice after 7 days of 
doxycycline or vehicle treatment, and 24 hours after 4 Gy ionizing radiation or control treatment. f, 
Immunoblot for ARHGAP35 or FLAG after FLAG immunoprecipitation from CH-157MN cells stably 
expressing Merlin encoding a FLAG tag (NF2FLAG). EV, empty vector. g, QPCR for NF2 or NR3C1 in 
M10GdCas9-KRAB cells stably expressing sgNTC, sgNF2, or sgNF2 with NF2 rescue (sgNF2+NF2HA). h, 
Quantification of Annexin V confocal microscopy in IOMM-Lee cells stably expressing a short-hairpin RNA 
suppressing NF2 (sgNF2-2) and transiently expressing a non-targeting control siRNA (siNTC) or siRNAs 
suppressing NR3C1 (siNR3C1). Cells were treated as in d (ANOVA). i, NR3C1 TPM expression in euploid 
meningiomas (n=52) or meningiomas with loss of NF2 as the only CNV (n=28) (Student’s t test).  j, Model 
of Merlin pro-apoptotic tumor suppressor function in meningioma cells. Lines represent means, and error 

bars represent standard error of the means. ***p0.0001 (Student’s t test). 
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Figure 2.3 Meningioma immune enrichment is associated with HLA expression and meningeal lymphatics. 

a, Meningioma DNA methylation estimation of leukocyte fractions (n=565) across DNA methylation groups 
(ANOVA). b, Representative images of CD3 immunohistochemistry across meningioma DNA methylation 

groups (n=87, p<0.0001, Chi-squared test). Scale bar 100 M. c, UMAP of single-cell RNA sequencing 
transcriptomes of 57,114 cells from 8 human meningioma samples and 2 human dura samples, colored by 
assignments from Louvain clustering. d, Single-cell RNA sequencing quantification of immune, stroma, and 
meningioma cells in Immune-enriched (n=5) and non-Immune-enriched (n=3) meningioma samples (Chi-
squared test). e, Meningioma DNA methylation analysis of chromosome segment copy number loss 
containing the HLA locus across DNA methylation groups (n=565, Chi-squared test). f, Single-cell RNA 
sequencing relative expression of HLA genes in meningioma cells across Immune-enriched (n=5) and non-
Immune-enriched (n=3) meningioma samples. Circle size denotes percentage of cells. Circle shading 
denotes average expression. g, Fraction of meningioma samples (n=200) classified as extracellular matrix 
(ECM) remodeling meningioma cells across DNA methylation groups, based on single-cell reference 
transcriptomes from c. h, Meningioma DNA methylation (n=565) of LYVE-1 (cg26455970) and transcripts 
per million (TPM) expression (n=200) of LYVE-1 across DNA methylation groups (ANOVA). i, 
Representative images of meningioma LYVE1 and PROX1 confocal immunofluorescence microscopy 

across DNA methylation groups (n=12). DNA is marked with Hoechst 33342. Scale bars 10 M. Lines 
represent means, and error bars represent standard error of the means. 
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Figure 2.4 Convergent genetic mechanisms misactivate the cell cycle in meningioma. 

a, Ki-67 labeling index from meningioma clinical pathology reports (n=206) across DNA methylation groups 
(ANOVA). b, Fraction of meningioma samples (n=200) classified as Cycling G2M phase meningioma cells 
across DNA methylation groups, based on single-cell reference transcriptomes. c, Representative images 
of meningioma Ki-67 and FOXM1 immunohistochemistry (n=92) across meningioma DNA methylation 

groups. Scale bar 10 M. d, Meningioma DNA methylation analysis of chromosome segment copy number 
loss containing the CDKN2A/B locus across DNA methylation groups (n=565, Chi-squared test). e, 
Meningioma DNA methylation (n=565) of CDKN2A (cg26349275) or CDKN2B (cg08390209) across DNA 
methylation groups (ANOVA). f, tSNE plot of meningioma and meningioma cell line DNA methylation 
profiles. Meningiomas are comprised of 4 representative samples from each DNA methylation group. Cell 
line samples are comprised of triplicate M10GdCas9-KRAB cultures stably expressing a non-targeting control 
single-guide RNA (sgNTC) or single-guide RNAs suppressing NF2 (sgNF2), CDKN2A (sgCDKN2A), or 
CDKN2B (sgCDKN2B). Differences in DNA methylation groups are captured in the tSNE1 axis, and a 
positive shift from Immune-enriched meningiomas to Hypermitotic meningiomas mimics the shift from 
M10GdCas9-KRAB-sgNTC and M10GdCas9-KRAB-sgNF2 cells to M10GdCas9-KRAB-sgCDKN2A and M10GdCas9-KRAB-
sgCDKN2B cells. Differences between tumors and cell lines are captured in the tSNE2 axis. g, Meningioma 
DNA methylation analysis of chromosomal segment copy number loss containing the USF1 locus across 
DNA methylation groups (n=565, Chi-squared test). h, USF1 ChIP-QPCR in DI98 meningioma cells for the 
CDK6 promoter compared to negative control primers targeting a gene desert (NC1) or a gene not predicted 
to be bound by USF1 (NC2) from ChIP sequencing (Student’s t test). i, QPCR for CDK6 in M10GdCas9-KRAB 
cells expressing sgNTC or a single-guide RNA suppressing USF1 (sgUSF1), or M10G cells over-
expressing USF1 or empty vector (EV) (Student’s t test). j, Relative colony area of CH-157MN cells stably 
over-expressing USF1 or EV after 10 days of clonogenic growth (Student’s t test). Lines represent means, 

and error bars represent standard error of the means. *p0.05, **p0.01. 
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Figure 2.5 Clinical translation of meningioma DNA methylation groups. 

a, Genetic, cellular, and clinical features across meningioma DNA methylation groups. DNA methylation 
profiling was performed on 9 meningioma cell lines to define reagents to study meningioma DNA 
methylation groups. b, Subcutaneous CH-157MN xenograft measurements in NU/NU mice treated with 

abemaciclib (100 g/g) by daily oral gavage with versus control. Lines represent means, and error bars 

represent standard error of the means. *p0.05, **p0.01 (Student’s t tests). c, Kaplan-Meier curve for CH-
157MN xenograft overall survival in NU/NU mice treated as in b (Log-rank test). d, Magnetic resonance 
imaging and molecular features of a representative human meningioma (left) that was resistant to cytotoxic 
therapies but responded to cytostatic cell cycle inhibition (right). e, Nomogram for meningioma local 
freedom from recurrence (LFFR, n=201) integrating clinical features and DNA methylation groups. 
Variables contribute points (top row), which estimate the probably of 5-year LFFR (bottom rows)73 
(https://william-c-chen.shinyapps.io/RaleighLab_MethylationSubgroupNomogram/). 
  

https://william-c-chen.shinyapps.io/RaleighLab_MethylationSubgroupNomogram/
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Figure S2.1 Clinical outcomes across meningioma DNA methylation discovery and validation cohorts. 

a, Kaplan-Meier curves for meningioma local freedom from recurrence (n=565) across clinical contexts 
(Log-rank tests). b, Kaplan-Meier curves for meningioma overall survival (n=565) across clinical contexts 
(Log-rank tests). 
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Figure S2.2 DNA methylation analysis using SeSAMe to control for CNV artifacts identifies 3 robust groups 
of meningiomas. 

a, K-means consensus clustering of meningioma DNA methylation profiles from the discovery (n=200, 
UCSF) and validation (n=365, HKU) cohorts. b, Sampling distributions of DNA methylation group fractions 
from the discovery cohort, with the observed DNA methylation group fractions from the validation cohort 
denoted in grey. Lines represent means, and error bars represent standard deviations. The observed 
fractions of each DNA methylation group from the validation cohort fall within the sampling distributions 
from the discovery cohort, but Immune-enriched and Hypermitotic meningioma fractions from the validation 
cohort fall outside of the first standard deviation of sampling in the discovery cohort. These differences can 
be attributed to the enrichment of high grade meningiomas and worse outcomes in the discovery cohort 
compared to the validation cohort (Extended Data Table 1). 
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Figure S2.3 Clinical correlations across meningioma DNA methylation groups. 

a, Kaplan-Meier curve for overall survival (n=565) across meningioma DNA methylation groups (Log-rank 
test). b, Meningioma clinical features (n=565) across DNA methylation groups (Chi-squared tests). GTR, 
gross total resection. STR, subtotal resection. c, d, Kaplan-Meier curves for meningioma local freedom 
from recurrence (n=565) across WHO grades and DNA methylation groups (Log-rank tests). e, 
Multivariable regression hazard ratio (HR) forest plots for overall survival using meningioma clinical 
variables and DNA methylation groups (n=565, Cox proportional hazards model). Age per year older than 
the median. Boxes represent means, and error bars represent 95% confidence intervals (CI).   
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Figure S2.4 CNVs across meningioma DNA methylation groups. 

a, Frequency of copy number losses (red) and gains (green) across meningioma DNA methylation groups. 
b, Meningioma genomes (n=565) with copy number variations (CNVs) across DNA methylation groups 
(ANOVA). Lines represent means, and error bars represent standard error of the means. c, Analysis of 
meningioma pairs with overlapping CNVs reveals 37% of meningiomas with identical CNVs are assigned 
to different DNA methylation groups, demonstrating meningioma CNV profiles are independent from 
meningioma DNA methylation groups. 
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Figure S2.5 Meningioma DNA methylation grouping using SeSAMe to control for CNV artifacts is superior 
to approaches that are biased by CNV artifacts. 

a, Unsupervised hierarchical clustering of meningiomas from the discovery cohort (n=200) using 2,000 
differentially methylated DNA probes from the minfi pre-processing pipeline, which does not control for CNV 
artifacts. SeSAME meningioma DNA methylation groups (21% altered by minfi) are shown beneath the 
vertical dendrogram. b, K-means consensus clustering of meningiomas from the discovery and validation 
cohorts (n=565) using differentially methylated DNA probes and β values from SeSAMe or minfi. SeSAMe 
consensus clustering clearly identifies 3 groups as the optimal number, but minfi consensus clustering is 
unable to discriminate between 3 and 4 clusters. c, Kaplan-Meier curves for meningioma local freedom 
from recurrence (n=565) across minfi DNA methylation groups fails to identify a grouping scheme with non-
redundant differences in clinical outcomes, in contrast to SeSAMe DNA methylation groups (Fig. 1c) (Log-
rank tests). 
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Figure S2.6 Mechanisms of NF2/Merlin tumor suppression in meningioma cells. 

a, Meningioma NF2 copy number loss and targeted sequencing of somatic short variants (SSV, n=65) 
across DNA methylation groups (Chi-squared test). b, QPCR for NF2 in M10GdCas9-KRAB cells expressing a 
non-targeting control single-guide RNA (sgNTC) or a single-guide RNA suppressing NF2 (sgNF2) 
(Student’s t test). c, Immunoblot for Merlin or GAPDH in M10GdCas9-KRAB cells expressing sgNTC, sgNF2, 
or sgNF2 with NF2 rescue (sgNF2+NF2HA). d, Confocal immunofluorescence microscopy and quantification 

of Ki-67 in M10GdCas9-KRAB cells from b. DNA is marked with Hoechst 33342. Scale bar 10 M (Student’s t 
test). e, QPCR for NF2 in IOMM-Lee cells stably expressing a non-targeting control shRNA (shNTC) or 
shRNAs suppressing NF2 (shNF2-1 or shNF2-2) (ANOVA). f, MTT cell proliferation of IOMM-Lee cells from 

e, normalized to shNTC at 120 hours. *p0.05, **p0.01 (ANOVA). g, Volcano plots of relative gene 
expression from RNA sequencing of M10GdCas9-KRAB cells in c. Interferon-regulated genes (including IFIT2, 
validated in j) are marked in red. h, Gene ontology analysis of differentially expressed genes from RNA 
sequencing of M10GdCas9-KRAB cells in g. i, QPCR for NF2 in MSC1 cells stably expressing shNTC, shNF2-
1, or shNF2-2 (ANOVA).  j, QPCR for the IRF target gene IFIT2 in MSC1 cells from i. k, Confocal 
microscopy and quantification of Annexin V in IOMM-Lee cells from e treated with actinomycin D or vehicle 

control for 24 hours. DNA is marked with DAPI. Scale bar 10 M (ANOVA). l, Immunoblot for Merlin, 
Caspase-7, cleaved Caspase-7 (cCaspase-7), or GAPDH in IOMM-Lee cells from k. m, Quantification of 
Annexin V confocal microscopy in MSC1 cells stably expressing sgNTC or sgNF2-2. Cells were treated as 
in k (ANOVA). n, Representative images of cleaved Caspase-3 (cCaspase-3) immunohistochemistry from 
CH-157MN xenografts stably expressing doxycycline-inducible Merlin encoding a FLAG tag (NF2-FLAG) 
in NU/NU mice after 7 days of doxycycline or vehicle treatment, and 24 hours after 4 Gy ionizing radiation 

or control treatment. Scale bar 100 M. o, Immunoblot for Merlin, IRF8, Tubulin, or Histone H3 (HH3) in 
cytoplasmic or nuclear fractions of M10GdCas9-KRAB cells from b. p, Normalized proteomic proximity-labeling 
mass spectrometry from M10G cells stably expressing Merlin constructs with APEX tags. q, Immunoblot 
for IRF8 or FLAG after FLAG immunoprecipitation from M10G cells stably expressing Merlin encoding a 
FLAG tag (NF2FLAG). EV, empty vector. r, QPCR for the glucocorticoid receptor (NR3C1) in IOMM-Lee cells 
expressing a non-targeting control siRNA (siNTC) or siRNAs suppressing NR3C1 (siNR3C1) (Student’s t 
test). Lines represent means, and error bars represent standard error of the means.  
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Figure S2.7 Genomic and cellular characteristics of Immune-enriched meningiomas. 

a, Unsupervised hierarchical clustering of meningiomas (n=200) and normal tissue samples (muscle or fat) 
from meningioma patients (n=27) using 2,000 differentially methylated DNA probes. b, Meningioma RNA 
sequencing xCell immune score (n=200) across DNA methylation groups (ANOVA). c, Meningioma RNA 
sequencing xCell scores (n=200) across DNA methylation groups for microenvironment and stroma (left), 
and individual immune cell types (right). d, Correlation of DNA methylation leukocyte fraction (SeSAMe) 
and RNA sequencing immune score (xCell) (n=200) across DNA methylation groups. e, Meningioma DNA 
methylation tumor purity (n=565) across DNA methylation groups (ANOVA). f, Volcano plots of meningioma 
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differential gene expression (n=200) across DNA methylation groups iteratively comparing one group 
versus the others, with gene ontology transcription factor (TF) perturbation analysis of differentially enriched 
(red) or suppressed (blue) genes. Lines represent means, and error bars represent standard error of the 
means. 
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Figure S2.8 Meningioma single-cell RNA sequencing. 

a, Cells in reduced dimensionality clusters from each sample analyzed using single-cell RNA sequencing. 
DNA methylation groups and chromosome 22q status of meningioma samples are annotated. b, UMAP of 
single-cell RNA sequencing transcriptomes of 57,114 cells from 8 human meningioma samples and 2 
human dura samples, colored by sample of origin. c, UMAP of single-cell RNA sequencing transcriptomes 
from b, colored by cell cycle phase, as assigned by the ‘CellCycleScoring’ function in the Seurat R package. 
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Figure S2.9 Meningioma single-cell transcriptome cell types. 

a, Percentage of cells with loss of chromosome 22q (whole arm) in reduced dimensionality clusters 
identified using CONICSmat. Cells from meningioma samples with loss of chromosome 22q and from dura 
samples with intact chromosome 22q were used for this analysis. b, Heatmap of differentially expressed 
genes across reduced dimensionality clusters, downsampled to 100 cells per cluster. c, Violin plots of 
marker gene expression across reduced dimensionality clusters. Lines represent means, and dotted lines 
represent quartiles. 
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Figure S2.10 Mechanisms of meningioma immune infiltration. 

a, Meningioma DNA methylation tumor purity of 86 spatially-distinct samples from 13 meningiomas, 
nonoverlapping with the meningiomas from the discovery or validation cohorts, colored by DNA methylation 
group. b, Percentage of meningiomas with HLA loss of heterozygosity from whole-exome sequencing of 
non-Immune-enriched (n=11) and Immune-enriched (n=5) meningiomas (and paired normal samples) 
overlapping with the discovery cohort. c, Meningioma RNA sequencing (n=200) relative expression of HLA 
genes according to HLA status. The expression of each gene in each row is normalized to the condition 
with greater expression (HLA intact or HLA loss). d, Meningioma RNA sequencing (n=200) relative 
expression of HLA genes across DNA methylation groups. HLA gene expression is normalized to the 
highest expressed gene across the 7 HLA genes shown. e, f, Meningioma location on preoperative 
magnetic resonance imaging (n=169) across DNA methylation groups (Chi-squared test). Representative 
magnetic resonance image shown. g, Meningioma DNA methylation (n=565) of CCL21 (cg27443224) and 
transcripts per million (TPM) expression (n=200) of CCL21 across DNA methylation groups (ANOVA). h, 
Meningioma DNA methylation (n=565) of CD3E (cg08956138) and transcripts per million (TPM) expression 
(n=200) of CD3E across DNA methylation groups (ANOVA). i, Representative image of LYVE1 and PROX1 
confocal immunofluorescence microscopy in CH157-MN xenografts in NU/NU mice (n=3). DNA is marked 

with Hoechst 33342. Scale bars 10 M. Lines represent means, and error bars represent standard error of 
the means. 
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Figure S2.11 Meningioma DNA methylation groups are distinguished by FOXM1 and FOXM1 target gene 
expression. 

a, Gene ontology analysis of differentially expressed genes in Hypermitotic meningiomas compared to 
tumors from other DNA methylation groups. ChEA, ChIP-X Enrichment Analysis. b, Correlated 
quantification of meningioma Ki-67 and FOXM1 immunohistochemistry (n=92) across meningioma DNA 
methylation groups. c, Representative image of meningioma Ki-67 and FOXM1 confocal 

immunofluorescence microscopy. DNA is marked with DAPI. Scale bar 10 M. d, Heatmap of relative 
expression of FOXM1 target genes, nonoverlapping with E2F1 target genes, across meningioma DNA 
methylation groups (n=200). FOXM1 and E2F1 transcription factor targets were identified from the ChIP-X 
Enrichment Analysis (CHEA) dataset within the Harmonizome. SeSAME meningioma DNA methylation 
groups are shown beneath the vertical dendrogram. 
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Figure S2.12 Meningioma DNA methylation groups are not distinguished by E2F1 target gene expression. 

a, Heatmap of relative expression of E2F1 target genes, nonoverlapping with FOXM1 target genes, across 
meningioma DNA methylation groups (n=200). FOXM1 and E2F1 transcription factor targets were identified 
from the ChIP-X Enrichment Analysis (CHEA) dataset within the Harmonizome. SeSAME meningioma DNA 
methylation groups are shown beneath the vertical dendrogram. 
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Figure S2.13 FOXM1 target gene functions in meningiomas and meningioma cells. 

a, Predicted network of FOXM1-regulated pathways in Hypermitotic meningiomas based on H3K27ac ChIP 
sequencing of 25 meningiomas with matched RNA sequencing and DNA methylation profiling (15 
Hypermitotic, 10 non-Hypermitotic)7. b, Immunoblot for Merlin, FOXM1, or GAPDH in IOMM-Lee 
meningioma cells stably expressing a non-targeting ontrol shRNA (shNTC) or shRNAs suppressing NF2 
(shNF2-1 or shNF2-2), after treatment with actinomycin D or vehicle control for 24 hours. c, QPCR for 

FOXM1 in M10G meningioma cells over-expressing FOXM1 or empty vector (EV). *p0.0001 (Student’s t 
test). d, Quantification of Annexin V confocal microscopy in M10G cells over-expressing FOXM1 or EV after 
treatment with actinomycin D or vehicle control for 24 hours (ANOVA). Lines represent means, and error 
bars represent standard error of the means. 
 
  
 



75 
 

 
Figure S2.14 The enhancer landscape across meningioma DNA methylation groups. 

a, Volcano plots of relative meningioma enhancer availability (n=25) across DNA methylation groups (top) 
from H3K27ac ChIP sequencing, and gene ontology analyses (bottom), of differentially enriched (red) or 
suppressed (blue) enhancers. ChEA, ChIP-X Enrichment Analysis. b, Volcano plots of meningioma relative 
super-enhancer expression (n=25) across DNA methylation groups (top), and gene ontology analyses 
(bottom), of differentially enriched (red) or suppressed (blue) super-enhancers. c, Meningioma transcripts 
per million (TPM) expression (n=200) of representative genes driving enhancer and super-enhancer 
ontologies from a and b across DNA methylation groups. Lines represent means, and error bars represent 
standard error of the means (ANOVA). 
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Figure S2.15 Loss of CDKN2A/B drives meningioma recurrence and meningioma cell proliferation. 

a, Kaplan-Meier curve for meningioma local freedom from recurrence stratified by CDKN2A/B copy number 
status (n=565, Log-rank test). The number of samples with CDKN2A/B loss (n=37) prevented stratification 
across DNA methylation groups. b, QPCR for CDKN2A or CDKN2B in M10GdCas9-KRAB cells expressing a 
non-targeting control single-guide RNA (sgNTC), a single-guide RNA suppressing the p16INK4A isoform of 
CDKN2A (sgCDKN2A), or a single-guide RNA suppressing CDKN2B (sgCDKN2B) (Student’s t test). c, 
Relative colony area of M10GdCas9-KRAB cells expressing sgNTC, sgCDKN2A, or sgCDKN2B after 10 days 
of clonogenic growth (Student’s t test). Lines represent means, and error bars represent standard error of 

the means. *p0.05. 
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Figure S2.16 Meningioma DNA methylation groups are not distinguished by transcriptomes. 

a, Unsupervised hierarchical clustering of meningiomas (n=200) using 2,000 differentially expressed genes. 
SeSAME meningioma DNA methylation groups are shown beneath the vertical dendrogram, and relative 
RNA-sequencing gene expression is visualized in the heatmap. 
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Figure S2.17 USF1 binds and activates the CDK6 promoter to drive meningioma recurrence and 
meningioma cell proliferation. 

a, H3K27ac ChIP sequencing tracks of the CDK6 locus in meningiomas (n=25) compared to normal neural 
cell and tissue samples (ChIP Atlas). b, Kaplan-Meier curve for meningioma local freedom from recurrence 
stratified by USF1 copy number status (n=565, Log-rank test). The number of samples with USF1 gain 
(n=42) prevented stratification across DNA methylation groups. c, ChIP-QPCR after USF1 pulldown in 
DI134 meningioma cells for the CDK6 promoter (Student’s t test) compared to negative control primers 
targeting a gene desert (NC1) or a gene not predicted to be bound by USF1 (NC2) from ChIP sequencing 
(Extended Data Table 10). d, QPCR for USF1 in M10GdCas9-KRAB cells expressing sgNTC or a single-guide 
RNA suppressing USF1 (sgUSF1), or M10G cells over-expressing USF1 or empty vector (EV) (Student’s t 
test). e, QPCR for USF1 in CH-157MN cells stably over-expressing USF1 or EV (Student’s t test). Lines 

represent means, and error bars represent standard error of the means.  *p0.05, **p0.01, ***p0.0001. 
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Figure S2.18 Cell cycle inhibition blocks meningioma growth in cells, organoids, and xenografts. 

a, Relative colony area of M10G, BenMen, CH-157MN, or IOMM-Lee meningioma cells after 10 days of 
clonogenic growth and treatment with abemaciclib, ribociclib, or palbociclib. b, Relative colony area of 
M10GdCas9-KRAB cells expressing sgNTC, sgCDKN2A, or sgCDKN2B after 10 days of clonogenic growth and 
treatment with abemaciclib (Student’s t test). Data are normalized to growth with vehicle treatment of each 
cell lines. c, Relative colony area of CH-157MN cells stably over-expressing USF or empty vector (EV) after 
10 days of clonogenic growth and treatment with abemaciclib (Student’s t test). Data are normalized to 
growth with vehicle treatment of each cell lines. d, Quantification of BenMen peri-organoid intensity after 
10 days of growth and treatment with abemaciclib or vehicle control (ANOVA). Representative images of 

meningioma (red) and organoid (green) cells are shown. Scale bar 100 M. e, Representative immunoblots 
from CH-157MN xenografts in NU/NU mice (left) harvested at intervals after a single treatment of 

abemaciclib (100 g/g) via oral gavage (right). f, Representative images of CH-157MN xenograft Ki-67 
immunohistochemistry after a daily treatment of abemaciclib or control. Scale bar 1 mm. Lines represent 

means, and error bars represent standard error of the means. **p0.01. 
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Figure S2.19 Cell cycle inhibition blocks meningioma growth in patients. 

a, b, Magnetic resonance imaging and molecular features of meningiomas (left) that were resistant to 
cytotoxic therapies but responded to cytostatic cell cycle inhibition (right).
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Figure S2.20 Prognostic models for meningioma recurrence. 

a, Comparison of observed and predicted 5-year local freedom from recurrence (LFFR) from a model 
incorporating clinical features and DNA methylation groups (Fig. 5e). Blue asterisks on the calibration curve 
denote the bootstrap optimism-corrected estimated probabilities. Lines represent means, and error bars 
represent standard error of the means. b, Recursive partitioning analysis of meningiomas (n=565) by CNVs 
reveals 3 CNV groups. c, Comparison of observed and predicted 5-year LFFR from a model incorporating 
clinical features and CNV groups (left, n=201), used to generate a nomogram for meningioma LFFR (right, 
https://william-c-chen.shinyapps.io/RaleighLab_CNVSubgroupNomogram/). Variables contribute points 
(top row), which estimate the probably of 5-year LFFR (bottom rows).  d, Meningioma DNA methylation 
groups and WHO grades (n=565) across CNV groups (Chi-squared tests). e, Kaplan-Meier curves for 
meningioma local freedom from recurrence and overall survival (n=565) comparing DNA methylation and 
CNV groups. f, Comparison of observed and predicted 5-year LFFR from a model incorporating clinical 
features (left, n=201), used to generate a nomogram for meningioma LFFR (right, https://william-c-
chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/).  

  

https://william-c-chen.shinyapps.io/RaleighLab_CNVSubgroupNomogram/
https://william-c-chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/
https://william-c-chen.shinyapps.io/RaleighLab_ClinicalVariablesNomogram/
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Figure S2.21 Meningioma DNA methylation analysis uncontrolled for CNV artifacts cannot identify a 
grouping scheme uniquely distinguished by NF2 status, immune enrichment, and proliferation. 

a, Meningioma DNA methylation analysis of copy number loss at the NF2 locus (n=565) across different 
numbers of DNA methylation groups determined by the minfi pre-processing pipeline (Chi-squared test). b, 
Meningioma DNA methylation estimation of leukocyte fraction (n=565) across different numbers of DNA 
methylation groups determined by the minfi pre-processing pipeline (ANOVA). c, Ki-67 labeling index from 
meningioma clinical pathology reports (n=206) across different numbers of DNA methylation groups 
determined by the minfi pre-processing pipeline (ANOVA). Regardless of the number of groups, 
meningioma DNA methylation analysis uncontrolled for CNV artifacts cannot identifying a grouping scheme 
with non-redundant differences in clinical outcomes (Extended Data Fig. 5c), NF2 loss, immune enrichment, 
and cell proliferation. Lines represent means, and error bars represent standard error of the means. 
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Figure S2.22 Meningioma intratumor T cells express markers of immune exhaustion. 

a, Meningioma transcripts per million (TPM) expression of TIGIT, LAG3, HAVCR2, or PDCD1 (n=200) T 
cell exhaustion markers across DNA methylation groups. Lines represent means, and error bars represent 
standard error of the means (ANOVA). b, Single-cell RNA sequencing relative expression of immune 
exhaustion genes in T cells across Immune-enriched (n=5) and non-Immune-enriched (n=3) meningioma 
samples. Circle size denotes percentage of cells. Circle shading denotes average expression.  
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Chapter 3: Characterization of Notch3+ perivascular cells in meningioma 

 

Introduction 

Background 

 Reductionist laboratory model systems are critical for investigating mechanisms of 

tumor initiation and growth, as well as for preclinical testing of new therapies. Ideally, 

cancer models are able to recapitulate the histopathology, genetics and tumor 

microenvironment of human diseases, and can be broadly divided into in vitro and in vivo 

categories. In vitro models consist of cell lines grown in conditioned media outside of an 

organism. In contrast, in vivo models rely on tumor growth in animals to approximate 

human pathophysiology. While in vitro models often fail to recapitulate intratumor 

heterogeneity and cancer cell interactions with the immune system, they are typically 

easier to manipulate and test in a high-throughput fashion compared to in vivo systems. 

Numerous in vitro and in vivo models have been developed to study meningioma biology, 

but many of these models have significant limitations, leaving an unmet need in our ability 

to study and understand meningioma. 

Cell Culture 

 Cell lines are populations of cells that can, ideally, divide and be maintained 

indefinitely when cultured in vitro. Many human meningioma cell lines have been derived 

from resected patient tumors, and some of the more prevalent meningioma cell systems 

are listed in Table 3.1. NF2 status is particularly important in models of meningioma 

because NF2 loss is the most common genetic alteration in meningioma1 and is thought 

to be fundamental for meningioma oncogenesis. Meningioma cell lines have been derived 

from a variety of tumors, ranging in location, patient gender, patient age and NF2 status. 
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Yet the available meningioma cell lines remain small in number, are incompletely 

characterized and can be difficult to culture. The most commonly used and cited amongst 

these is Ben-Men-1, a cell line derived from a benign Grade I meningioma that was 

subsequently immortalized through hTERT transduction2. 

 In addition to specific problems, such as lack of characterization or unverified 

immortality of  many specific meningioma cell lines, all suffer from limitations that are 

intrinsic to in vitro systems, such as (i) 2D cell culture conditions that are very different 

from the tumor microenvironment and 3D growth of meningiomas in vivo; (ii) the process 

of culturing cell lines selects for cells that may not be relevant in patient tumors; (iii) 

fundamental changes in cell physiology due to immortalization; and (iv) the potential for 

new genetic alterations not seen in original tumors. Thus, while many cell lines for 

meningioma exist, their shortcomings prevent us from fully and holistically understanding 

all aspects of meningioma biology with these models. 

 Recent advances in cell culture technology provide a new potential avenue for 

more accurate models of meningioma. Organoids are miniature version of organs grown 

in vitro, but in 3D culture, that can mimic human physiology. Indeed, many advances have 

been made in the development of brain organoids in the recent past3,4. Co-cultures of 

brain organoids with cells from glioblastomas, another common intracranial tumor, have 

been successfully used to model glioblastoma growth and response to therapy5. While 

no papers to date have published organoid co-culture models with meningioma cells, the 

successful use of this framework for other intracranial tumors lends credence to the idea 

that organoid models are a potential path forward in the future development of in vitro 

meningioma models that more faithfully recapitulate in vivo biology. 
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Mouse Models 

 In vivo mouse models of cancer are more costly and less expedient than cell 

culture systems, but they typically overcome many of the limitations of in vitro models. 

Moreover, preclinical in vivo testing is a necessary component of drug development and 

translation into clinical trials. Thus, establishing mouse models that recapitulate human 

meningioma is essential for understanding meningioma biology and improving treatments 

for meningioma patients. 

Genetically Engineered Mouse Models 

 Genetically engineered mouse models (GEMMs) of cancer are mice that are 

genetically altered to overexpress or lack specific genes that either induce or inhibit tumor 

growth, respectively. For tumors with clear genetic causes that can be recapitulated in 

murine systems, GEMMs are incredibly powerful because they often closely mimic de 

novo tumor initiation, growth and progression in the context of immunocompetent 

mammalian physiology with a controlled genetic background. Thus, GEMMs are a 

popular choice for studying many types of cancer, but they have two major drawbacks. 

First, tumor latency can be long and variable. Depending on the necessary genetic 

changes, the timing of tumor growth in GEMMs can be inconsistent and the percentage 

of mice that develop tumors can be small. Thus, it can be difficult to perform large-scale, 

reproducible, robust experiments with GEMMs. Second, differences between human and 

mouse genetics and physiology can vary widely depending on the gene and tissue of 

interest. While most human genes are conserved and have orthologs in mice, many do 

not. Moreover, the regulation and function even of conserved genes can vary 

unpredictably across species. 
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 Given the frequency of NF2 inactivation in human meningioma, all approaches to 

generate GEMMs for meningioma involve inactivation of Nf2. Nf2 is critical for 

development of the extraembryonic ectoderm in mice; thus, mice with homozygous 

germline deletion of Nf2 die early in embryonic development6. Heterozygous germline 

deletion of NF2 in humans defines neurofibromatosis type 2, a clinical syndrome 

associated with a spectrum of tumorous growths, including bilateral vestibular 

schwannomas, multiple meningiomas and ependymomas7,8. However, mice with 

heterozygous germline deletion of Nf2 develop osteosarcomas instead of schwannomas 

or meningiomas9, suggesting that mice use and regulate Nf2 differently than humans. 

 Consistent with syndromic tumors arising from germline deletion of NF2, somatic 

loss of NF2 in the human meninges is also associated with sporadic meningiomas. To 

localize the effects of Nf2 loss to the meninges of mice, laboratory scientists have 

generated a GEMM, known as Nf2fl/fl, with special genetic sequences (loxP) flanking the 

Nf2 gene 10. In normal cells, loxP sequences have no effect on the gene that they flank. 

However, in cells that express Cre, a protein that targets and recombines DNA flanked 

by loxP sites, all genetic material in between loxP sites is deleted, which in the case of 

Nf2fl/fl, means the Nf2 gene. In order to express Cre in the meninges of the mice and 

induce tumor formation, adenovirus Cre-recombinase is injected into the cerebrospinal 

fluid (CSF) of Nf2fl/fl mice. After intrathecal injection, Nf2fl/fl mice develop meningioma-like 

growths that mimic the histopathology of the most common subtype of meningioma in 

humans10. Unfortunately, only 30% of Nf2fl/fl animals develop these tumors, and the vast 

majority are benign, which makes survival comparisons and studies difficult. Moreover, 

perhaps owing to the location of the intrathecal adenovirus Cre-recombinase injection, 
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many Nf2fl/fl mice develop spinal meningiomas, resulting in spinal cord compression, 

which is incredibly rare in humans. 

 Introducing a heterozygous p53 mutation in the Nf2fl/fl mice increases meningioma 

burden and decreases survival. However, the lack of TP53 alterations in human 

meningiomas calls into question the physiological relevance of meningioma models 

lacking p53. In contrast, the CDKN2AB locus is more frequently altered in human 

meningiomas (although less than NF2). Loss of Cdkn2ab in addition to Nf2 in the 

meninges of mice via intrathecal adenovirus Cre-recombinase injection results in a 

majority of mice growing high-grade meningiomas11. While this GEMM represents a 

significant step forward in modeling meningioma, many of the mice develop non-

meningioma tumors, such as osteomas, liver tumors and subcutaneous sarcomas, 

revealing non-specific effects of the genetic alterations and adenovirus Cre-recombinase 

injection. 

 Another method to specifically target the meninges cells of mice has been to 

identify markers of those cells. In particular, prostaglandin D2 synthase (PDGS) is a 

marker of arachnoid cells in the meninges12, and Nf2 inactivation in mouse cells 

expressing Pdgs results in meningeal overgrowth, suggesting PDGS expression may 

identify a potential cell of origin for mouse meningioma13. However, meningeal tumors are 

only seen in 38% of Pdgs-Cre Nf2fl/fl mice, and the histology of tumors that do develop is 

more consistent with meningeal hyperplasia than oncogenesis. Beyond NF2 alterations, 

the platelet-derived growth factor (PDGF) pathway is often upregulated in human 

meningiomas14. Thus, to increase the tumorigenicity of the Pdgs-Cre Nf2fl/fl GEMM, PDGF 

is concurrently overexpressed in addition to Nf2 inactivation in Pdgs-positive mouse 
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arachnoid cells. While these mice grow more meningiomas than Nf2 inactivation alone, 

the mice also grow as many gliomas, suggesting non-meningioma-specific effects of the 

genetic alterations15. Thus, Pdgs-positive cells in mice can give rise to meningioma-like 

phenotypes when specific genes are altered, but the specificity of these phenotypes and 

their generalizability to human meningioma remain incompletely defined. 

Patient-Derived Xenograft Models 

 Patient-derived xenograft (PDX) models provide an alternative way to study human 

disease in mice when mouse genetics differ significantly from human genetics or if a 

disease is not genetically defined. PDX models rely on engrafting of patient-derived tumor 

cells into immunocompromised mice, thus allowing human tumor cells to grow in a much 

more physiologic environment than in vitro cell culture. While the tumor microenvironment 

is incompletely recapitulated in PDX models due to the lack of immune cells, the use of 

actual human tumor cells makes this an attractive model for preclinical testing of novel 

therapeutic agents. Engraftments can be heterotopic (i.e. at a different site on the mouse 

than the human) or orthotopic (i.e. the same site). While orthotopic engraftments are 

generally thought to be more physiologically relevant, difficulty in accessing tumor growth 

at certain orthotopic sites, such as the skull base where many meningiomas grow, can 

affect reproducibility of engraftments and make it difficult to track tumor growth. 

 PDX models have been attempted for meningioma since 1945, when human 

meningiomas were injected into the eyes of guinea pigs, an immune-privileged site16. 

Heterotopic mouse PDX models of meningioma, where resected patient tumors are 

engrafted into the subcutaneous flank of immunocompromised mice, were first reported 

in the 1970s17,18. Recent characterizations of meningioma PDX models find that the 
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engrafted cells retain the chromosomal, genetic and histologic features of parental 

tumors19. However, patient tumors are not readily accessible for a vast majority of 

researchers and there can be substantial heterogeneity between patients. Thus, most 

recent efforts in generating PDX models for meningioma involve orthotopic injection of 

human meningioma cell lines into mice. Most commonly, Ben-Men-1 and IOMM-Lee cells 

(Table 3.1) are used in orthotopic systems, but the growth of tumors in mice is slow and 

varies substantially among and within research groups, likely due to the technical skill 

required for replicable orthotopic brain injections. Another drawback of the PDX model is 

that engrafted cells sometimes exhibit ventricular invasion and leptomeningeal invasion, 

which are incredibly rare findings in human meningioma patients20. 

Chemically Induced Mouse Models 

 ENU, a potent carcinogen and DNA alkylating agent, has been used to induce 

mutations and tumors in model organisms since its discovery in 195121. Cancer models 

using ENU, which induces random mutations throughout the genome, have become less 

common as it becomes easier to make more targeted genetic alterations in mice. 

Nevertheless, ENU mutagenesis of mice heterozygous for p16 and p19 induces 

meningioma growth22. However, the genetic landscape of these tumors has never been 

characterized; thus, basic questions such as the Nf2 status of the tumors remain 

unanswered. The median age of diagnosis for meningiomas is 66 years old and they are 

vanishingly rare in children23, suggesting that randomly acquired mutations over time play 

a role in meningioma’s pathogenesis and progression. Thus, future models could take 

advantage of this chemical mutagenesis system and combine it with a GEMM that is 

genetically susceptible to meningioma, such mice with heterozygous deletion of Nf2 in 
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the meninges. Combining knowledge about the genetics (frequency of Nf2 alterations) 

and natural history (accumulation of random mutations over time) of meningioma may be 

the next step in the development of new mouse models. 

Preclinical Studies 

 In addition to shedding light on the fundamental biology of meningioma, an optimal 

use of meningioma mouse models is as a first line of validation for novel therapeutics. 

Unfortunately, none of the available mouse meningioma models discussed have been 

successfully used for preclinical trials. Despite the increasing prevalence of orthotopic 

PDX models, all preclinical studies thus far have been performed in PDX models where 

meningioma cell lines were heterotopically injected into the flank of the mouse. Preclinical 

studies conducted in meningioma PDX models include the use of antiprogesterone RU-

3848624, FAS inhibitor GSK219406925, celecoxib26, and the combination of hydroxyurea 

and verapamil27. Despite initially promising results in vivo, a lack of reproducibility or poor 

rates of response precluded any of these drugs from clinical translation. 

 Substantial work has been done to establish easy-to-manipulate models that 

recapitulate the genetics, histology and progression of meningioma. Unfortunately, many 

of the models established thus far have considerable drawbacks and fail to encapsulate 

essential components of human meningioma. The lack of tractable model systems 

hinders our ability to study the biology and mechanisms underlying meningioma. 

Fortunately, advances in cell culture technology and imaging of xenografts will allow for 

improvement of our current models towards something physiologically more accurate. 

Organoid co-culture models combine the scalability of cell culture with the physiologically 

accurate microenvironment of in vivo animal models. Moreover, recent multi-modal 
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sequencing efforts have given new insight into the molecular mechanisms and drivers of 

meningioma28,29. Combining new knowledge with new techniques will be crucial for 

developing robust models of meningioma. 

 

Meningiomas harbor Notch3+ perivascular cells 

 To understand how the different cell types underlying meningioma drive 

tumorigenesis, we analyzed 40,918 cells from 8 meningioma samples from the 

meningioma cell clusters identified by the single-cell RNA sequencing performed in 

Chapter 2 (Fig. 3.1a). While the majority of cells demonstrated chromosome 22q loss, 

we identified a distinct cluster of perivascular cells where only half the cells had 

chromosome 22q loss (Fig. S2.9a). Chromosome 22q includes NF2, whose loss is the 

most common and penetrant chromosomal alteration in meningioma and a driver of 

meningiomagenesis1,7,30. Therefore, we hypothesized that this cell population might 

represent meningioma progenitors in an early stage of tumorigenesis. A comparison of 

perivascular cells from meningiomas with perivascular cells from normal meningeal 

samples confirmed that all normal meningeal cells were copy-neutral at chromosome 22q, 

compared with two-thirds of meningioma tumor cells (Fig. 3.1b). Setting this population 

of cells as the starting point for pseudotime trajectory analysis demonstrated a 

transcriptomic progression that encompassed all other meningioma cell clusters (Fig. 

3.1c). 

 NOTCH3, a Notch pathway receptor and mural cell marker31, and CD90, a cancer 

stem cell marker32–34, were differentially expressed in the perivascular cell population 

compared to all other cell populations (Fig. 3.1d). Gene ontology analysis of differentially 
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expressed genes in this population also revealed enrichment of several stem cell and 

dedifferentiation pathways (Fig. S3.1a). Notably, NOTCH3 expression, but not that of 

other Notch receptors, marked this population of cells (Fig. S3.1b). Therefore, we 

hypothesized that NOTCH3 expression specifically identifies a dedifferentiated progenitor 

population within meningiomas. To characterize NOTCH3-expressing cells in 

meningiomas, we performed immunohistochemistry and immunofluorescence, which 

localized NOTCH3 to the perivascular niche in WHO Grade 1 and 2 meningiomas. Similar 

but more diffuse staining was observed in WHO Grade 3 meningiomas (Fig. 3.1e-g and 

S3.2). Co-staining with endothelial markers, such as SMA and vWF, confirmed that 

NOTCH3 specifically marks perivascular, but not endothelial cells, in meningiomas (Fig. 

S3.3-S3.8). To transcriptomically confirm these differences across WHO grades, 

reference transcriptomic signatures of meningioma single-cell clusters were used to 

estimate proportions of meningioma cell types from bulk RNA-sequencing of 200 

meningiomas. This analysis confirmed an enrichment of Notch3+ perivascular cells in 

WHO Grade 3 meningiomas (Fig. 3.1h). As expansion of dedifferentiated and stem cell-

like populations in other cancers correlates with worse outcomes35, these results may 

partially explain the worse clinical outcomes of WHO Grade 3 meningiomas. 

 

Notch3+ perivascular cells are conserved across vertebrate meningeal tumors 

 To confirm the relevance of this perivascular population across vertebrate 

meningeal tumors, we performed single-cell RNA sequencing of 54,607 cells from 3 

canine meningiomas and 2 canine meningeal samples (Fig. 3.2a and S3.9). Cell cluster 

identities from our human meningioma data (Fig. 2.3c) were projected onto the canine 
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samples based on the transcriptional correlation and expression of marker genes 

conserved across species (Fig. 3.2b). In addition to a perivascular population that 

clustered separately from the meningioma cells, many cells transcriptionally similar to 

perivascular cells were present within canine meningioma cell clusters (Fig. 3.2c). These 

data suggest that normal canine perivascular cells share transcriptional features with a 

subset of canine meningioma cells, consistent with our findings in human meningiomas. 

 Hemangiopericytomas, another human meningeal tumor type, are rare and often 

indistinguishable from meningiomas by radiographic imaging (Fig. 3.2d). Unlike 

meningiomas, which are most commonly characterized by loss of NF21, 

hemangiopericytomas are characterized by the NAB2-STAT6 fusion36. To analyze the 

cell types underlying hemangiopericytomas, we performed single-cell RNA sequencing 

of 7,046 cells from 1 human hemangiopericytoma sample. Cell cluster identities from our 

human meningioma data were projected onto the hemangiopericytoma sample based on 

transcriptional correlation and expression of marker genes (Fig. 3.2e). As in human 

meningiomas, we found a small population of perivascular cells expressing NOTCH3 

which clustered in proximity to hemangiopericytoma tumor cells in reduced dimensionality 

space (Fig. 3.2f). Immunofluorescence further confirmed NOTCH3 expression in the 

perivascular niche within hemangiopericytomas (Fig. 3.2g). These data demonstrate that 

multiple meningeal tumors across vertebrate species demonstrate the presence of a 

perivascular niche that may harbor dedifferentiated tumor progenitor cells. 
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Notch3+ perivascular cells are conserved across vertebrate meningeal 

development and homeostasis 

 As we hypothesized that Notch3+ perivascular cells might represent a 

dedifferentiated progenitor population within meningeal tumors, we sought to understand 

the role of this population in vertebrate development and homeostasis. 

Immunofluorescence of human embryos at gestational week 17 localized NOTCH3 

expression to perivascular cells during normal human development (Fig. 3.3a). Both 

immunohistochemistry and immunofluorescence also showed that NOTCH3 marked 

perivascular cells in adult human meninges (Fig. 3.3b, c). To identify this population of 

cells in other vertebrates, we generated a Notch3-CreERT2 ROSAmT/mG mouse. In these 

transgenic mice, Cre becomes active upon tamoxifen administration and induces 

recombination of the mT/mG locus to express eGFP instead of tdTomato (Fig. 3.3d). Both 

in utero and postnatal recombination of the mT/mG locus revealed that Notch3 

localization specific to perivascular cells (Fig. 3.3e, f). In contrast, Pdgs-cre, which has 

been used to generate prior meningioma mouse models13, non-specifically marked cells 

within the mouse meninges and was not specifically expressed in any human meningioma 

single-cell clusters (Fig. S3.10a, b). Taken together, these data suggest that Notch3 

expressing cells may be specific cells of origin for meningiomas across several 

vertebrates. 

 

Discussion 

 Current meningioma mouse models are non-specific and often inadequate to study 

meningioma biology or develop new therapies. By identifying a potential meningioma 
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progenitor population that is conserved across vertebrate species, we hope to spur the 

development of new, more representative models of meningioma. We hypothesize that 

loss of NF2 in Notch3+ cells represents the first step in meningiomagenesis. While other 

genetic or epigenetic perturbations may also be necessary for tumorigenesis and this 

hypothesis does not account for all meningiomas, some of which retain an intact NF2 

locus, this framework fundamentally shifts how meningeal tumors are understood. The 

conservation of a perivascular population across multiple meningeal tumors suggests that 

different genetic perturbations to this same population, such as NF2 loss versus NAB2-

STAT6 fusion, may result in the formation of different types of meningeal tumors, such 

meningioma and hemangiopericytoma. With this framework, new mouse models of 

meningeal tumors can be developed, a crucial step in studying these tumors in a more 

physiologic system, understanding their underlying biology, and developing new 

treatments. 
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Methods 

Single cell RNA sequencing 

 Fresh human and canine meningioma and dura samples and the fresh 

hemangiopericytoma sample were acquired from the operating room and transported to 

the laboratory in PBS at 4°C. Tissue samples were processed as previously described in 

the Methods section of Chapter 2. Single cell suspensions were processed for single cell 

RNA sequencing using a 10X Chromium controller, and libraries were generated using 

the Chromium Single Cell 3’ Library & Gel Bead Kit v3 on a 10X Chromium controller 

using the manufacturer recommended default protocol and settings (#1000121, 10X 

Genomics). Libraries were sequenced on an Illumina NovaSeq 6000, targeting >50,000 

reads/cell, at the UCSF Center for Advanced Technology. 

 Single cell RNA sequencing analysis was performed using CellRanger version 

3.02, R version 3.6.1, and Seurat37,38 version 3.0.1, as previously described in the 

Methods section of Chapter 2. Canine meningioma samples were aligned to the 

canFam3.1 canine reference genome39. Uniform Manifold Approximation and Projection 

(UMAP) was performed on the data with a minimum distance metric of 0.3 and Louvain 

clustering was performed using a resolution of 0.1. The human hemangiopericytoma 

sample was aligned to the GRCh38 human reference genome. UMAP was performed on 

the data with a minimum distance metric of 0.2 and Louvain clustering was performed 

using a resolution of 0.5. 

 Cell cluster identities from the human meningioma single-cell dataset were 

projected onto the canine meningioma and human hemangiopericytoma datasets using 

the ‘FindTransferAnchors’ and ‘TransferData’ functions in Seurat. The first 30 reduced 
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dimensions were used and the ‘normalization.method’ was set to ‘SCT.’ Bulk RNA-seq 

expression of meningiomas was deconvolved using reference transcriptomic signatures 

of single-cell clusters with CIBERSORTx40 as previously described in the Methods section 

of Chapter 2. 

 

Immunofluorescence 

 Human gestational week 17 brains were cut into ~1.5 cm coronal or sagittal blocks, 

fixed in 4% paraformaldehyde for 2 days, and then cryoprotected in a 30% sucrose 

solution. Blocks were cut into 30-micron sections on a cryostat, mounted on glass slides 

for immunohistochemistry, and stored at -80°C. Frozen slides were gradually equilibrated 

to room temperature, moved from -80°C to 4°C the night prior to staining and then to the 

lab bench for 2 hours before beginning the immunostaining protocol. Slides were washed 

once with PBS for 5 minutes, then once with TBS for 5 minutes before blocking with TBS+ 

(goat serum, BSA, albumin, glycine, and Triton-X 100 in TBS) for 1 hour. Primary antibody 

stainings were performed overnight at room temperature in TBS+. Primary antibodies 

used were NOTCH3 (1:200, #MABC594, Millipore Sigma), CD34 (1:200, #AF7227, R&D), 

and PDGFRβ (1:200, #AF385, R&D). The following day, three TBS washes were 

performed before incubating with secondary antibodies in TBS+ for 2 hours. After three 

additional TBS washes, DAPI was added and the slides were mounted. 

 

Microscopy 

 Fluorescence microscopy was performed on a LSM 800 confocal laser scanning 

microscope with a PlanApo 20X air objective (Zeiss). Images were processed and 



113 
 

quantified from representative regions of each tumor or coverslip using ImageJ. Histologic 

and immunohistochemical features were evaluated using light microscopy on an BX43 

microscope with standard objectives (Olympus). Images were obtained and analyzed 

using the Olympus cellSens Standard Imaging Software package. 

 

Mice 

 This study was approved by the UCSF Institutional Animal Care and Use 

Committee (AN174769-03A), and all experiments complied with relevant ethical 

regulations. The Notch3tm1.1(cre/ERT2)Sat (Notch3-CreERT2) mice were obtained from the 

Sweet-Cordero Lab at UCSF. The Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo (ROSAmT/mG) 

mice were obtained from The Jackson Laboratory. These mice were intercrossed to 

generate Notch3-CreERT2 ROSAmT/mG mice. Recombination of the mT/mG locus in these 

mice was induced via intraperitoneal injection of 75 mg/kg of tamoxifen (#T5648, Sigma-

Aldrich), dissolved in corn oil. For in utero recombination, pregnant ROSAmT/mG dams 

were injected with tamoxifen once at E16.5. For postnatal recombination, Notch3-CreERT2 

ROSAmT/mG mice were injected daily 5 times with tamoxifen and euthanized 7 days after 

the fifth injection. 

 Mouse skullcaps were removed as previously described41 after perfusion with 

PBS. Skullcaps were fixed in 4% paraformaldehyde (#15710, Electron Microscopy 

Sciences) overnight at 4°C, washed with PBS, and stored in PBS with 0.02% sodium 

azide. Meninges were dissected from the skullcaps as previously described41 and 

mounted in ProLong Diamond Antifade Mountant with DAPI (#P36966, Thermo Fischer 

Scientific).  



114 
 

 

Figure 3.1 Meningiomas harbor Notch3+ perivascular cells 

a, UMAP of single-cell RNA sequencing transcriptomes of 40,918 cells from meningioma cell clusters of 8 
human meningioma samples and 2 human dura samples, colored by assignments from Louvain clustering. 
b, Percentage of cells with loss of chromosome 22q (whole arm) in Notch3+ perivascular cells, split by 
tissue type of origin. Cells from meningioma samples with loss of chromosome 22q and from dura samples 
with intact chromosome 22q were used for this analysis. c, Pseudotime analysis of single-cell 
transcriptomes from a, with the perivascular cell cluster set as the starting point. d, Gene expression of 
NOTCH3 and CD90 in meningioma single cells in reduced dimensionality space. e, Representative images 
of WHO grade 1 meningioma NOTCH3 and SMA confocal immunofluorescence microscopy. DNA is 
marked with Hoechst 33342. Scale bar 10 μM. f, Representative images of WHO grade 2 meningioma 
NOTCH3 and SMA confocal immunofluorescence microscopy. DNA is marked with Hoechst 33342. Scale 
bar 10 μM. g, Representative images of WHO grade 3 meningioma NOTCH3 and SMA confocal 
immunofluorescence microscopy. DNA is marked with Hoechst 33342. Scale bar 10 μM. h, Fraction of 
meningioma samples (n=200) classified as Notch3+ perivascular meningioma cells across WHO grade, 
based on single-cell reference transcriptomes from a. 
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Figure 3.2 Notch3+ perivascular cells are conserved across vertebrate meningeal development and 
homeostasis 

a, Magnetic resonance imaging of canine meningiomas processed for single-cell sequencing. b, UMAP of 
single-cell RNA sequencing transcriptomes of 54,607 cells from 3 canine meningioma samples and 2 
canine dura samples, colored by cell identities projected from our human meningioma single-cell dataset. 
c, UMAP from b with only cells projected to have the perivascular identity colored. d, Magnetic resonance 
imaging of a hemangiopericytoma processed for single-cell sequencing (above) and a meningioma (below). 
e, UMAP of single-cell RNA sequencing transcriptomes of 7,046 cells from 1 human hemangiopericytoma 
sample, colored by cell identities projected from our human meningioma single-cell dataset. f, UMAP from 
e with only cells projected to have the perivascular identity colored. g, Representative images of 
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hemangiopericytoma NOTCH3 and SMA confocal immunofluorescence microscopy. DNA is marked with 
Hoechst 33342. Scale bar 10 μM. 
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Figure 3.3 Notch3+ perivascular cells are conserved across vertebrate meningeal tumors 

a, Representative images of human gestational week 17 brain tissue NOTCH3, PDGFRβ, and CD34 
confocal immunofluorescence microscopy. DNA is marked with Hoechst 33342. Scale bar 10 μM. b, 
Representative images of NOTCH3 immunohistochemistry in adult human meninges. Scale bar 100 μM. 
c, Representative images of adult human meninges NOTCH3 and SMA confocal immunofluorescence 
microscopy. DNA is marked with Hoechst 33342. Scale bar 10 μM. d, Schema of in utero and postnatal 
recombination strategies in the Notch3-CreERT2 ROSAmT/mG mouse. Tamoxifen (TAM) injection timepoints 
are marked with green arrows. Euthanasia timepoints are marked in red. e, Representative images of 
Notch3-CreERT2 ROSAmT/mG mouse meninges confocal immunofluorescence microscopy after in utero 
(above) and postnatal (below) recombination. DNA is marked with DAPI. Scale bar 10 μM. 
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Figure S3.1 Meningioma Notch3+ perivascular cell ontologies and Notch receptor expression 

a, Gene ontology analysis of differentially expressed genes in the perivascular cell single-cell cluster 
compared to other single-cell clusters. TF, transcription factor; ChEA, ChIP-X Enrichment Analysis. b, Gene 
expression of Notch1, Notch2, and Notch4 in meningioma single cells in reduced dimensionality space. 

  



119 
 

 

Figure S3.2 Meningioma Notch3 expression 

Representative images of meningioma NOTCH3 immunohistochemistry in WHO Grade 1 (a), 2 (b), and 3 

(c) meningiomas. Scale bar 10 μM. 
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Figure S3.3 Notch3 and pericyte expression in WHO grade 1 meningiomas 

a, Gene expression of SMA, PDGFRB, vWF, and CD34 in meningioma single cells in reduced 

dimensionality space. b, Representative images of WHO grade 1 meningioma NOTCH3 and SMA confocal 

immunofluorescence microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M.  
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Figure S3.4 Notch3 and pericyte expression in WHO grade 2 meningiomas 

Representative images of WHO grade 2 meningioma NOTCH3 and SMA confocal immunofluorescence 

microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M. 
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Figure S3.5 Notch3 and pericyte expression in WHO grade 3 meningiomas 

Representative images of WHO grade 3 meningioma NOTCH3 and SMA confocal immunofluorescence 

microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M. 
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Figure S3.6 Notch3 and endothelial cell expression in WHO grade 1 meningiomas 

Representative images of WHO grade 1 meningioma NOTCH3 and vWF confocal immunofluorescence 

microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M.  
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Figure S3.7 Notch3 and endothelial cell expression in WHO grade 2 meningiomas 

Representative images of WHO grade 2 meningioma NOTCH3 and vWF confocal immunofluorescence 

microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M.  
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Figure S3.8 Notch3 and endothelial cell expression in WHO grade 3 meningiomas 

Representative images of WHO grade 3 meningioma NOTCH3 and vWF confocal immunofluorescence 

microscopy. DNA is marked with Hoechst 33342. Scale bars 10 M.  
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Figure S3.9 Canine meningioma single-cell RNA sequencing 

a, Hematoxylin and eosin histologic staining of 3 canine meningiomas analyzed with single-cell sequencing. 
b, Uniform manifold approximation and projection of single-cell RNA sequencing transcriptomes from 3 
canine meningioma samples and 2 canine dura samples, split by patient of origin. 
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Figure S3.10 Meningeal Pdgs expression is non-specific and meningioma cells expressing PDGS do not 
represent a starting point in tumor evolution 

a, Representative images of confocal immunofluorescence microscopy of Pdgs-cre ROSAmT/mG mice at P7, 
P30, and P90. b, Gene expression of PDGS in human meningioma single cells in reduced dimensionality 
space. 
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Table 3.1 Common meningioma cell lines and their characteristics. 

Cell line WHO Grade Location Gender Age NF2 status Reference 

Ben-Men-1 I Optical canal Female 47 Lost (Püttmann 
et al., 2005) 

HBL-52 I Parietal falx Female 68 Intact (Akat et al., 
2008) 

IOMM-Lee III Intraosseous Male 61 Intact (Lee, 1990) 

CH157-MN Unknown Unknown Female 41 Lost (Tsai et al., 
1995) 

KT21-MG1 Unknown Unknown Female 47 Lost (Tanaka et 
al., 1989) 
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