
Lawrence Berkeley National Laboratory
LBL Publications

Title

Understanding and reducing the uncertainties of land surface energy flux partitioning 
within CMIP6 land models

Permalink

https://escholarship.org/uc/item/39h4c3b9

Authors

Yuan, Kunxiaojia
Zhu, Qing
Riley, William J
et al.

Publication Date

2022-05-01

DOI

10.1016/j.agrformet.2022.108920
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39h4c3b9
https://escholarship.org/uc/item/39h4c3b9#author
https://escholarship.org
http://www.cdlib.org/


Agricultural and Forest Meteorology 319 (2022) 108920

Available online 6 April 2022
0168-1923/Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Understanding and reducing the uncertainties of land surface energy flux 
partitioning within CMIP6 land models 
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A B S T R A C T   

Land surfaces dissipate energy through latent (LE) and sensible (H) heat fluxes that modulate atmospheric 
temperature and humidity, which in return affect land surface vegetation and soil processes. Within this two-way 
land-atmosphere coupling, surface energy partitioning (LE versus H) plays a central role in connecting the land 
and atmosphere states and fluxes. However, considerably large uncertainties still exist in earth system land 
models, i.e. the phase 6 of the Coupled Model Intercomparison Project (CMIP6). Further, the underlying controls 
from climate and biological factors on surface energy partitioning over different biome types are not well un-
derstood. In this study, we combined machine learning (ML) and causal inference models to investigate and 
reduce the uncertainties (i.e., parametric, structural, and forcing uncertainties) of CMIP6 simulated evaporative 
fraction (defined as LE / (LE + H)) across 64 FLUXNET sites that cover five major biomes. We found that CMIP6 
model ensembles overestimated evaporative fraction with considerable spread at deciduous broadleaf forest, 
evergreen needleleaf forest, and savanna sites. Accounting for the biases from all related surface climate and 
biological driving variables, the CMIP6 model simulated EF could be largely improved (e.g., R between model 
and observed EF improved from 0.47 to 0.66), with leaf area index, vapor pressure deficit, and precipitation 
dominated the model improvement. Furthermore, ML-based parameterization generally showed a promising 
opportunity to further reduce model biases (e.g., R improved from 0.66 to 0.80) in spite of the limited 
improvement at evergreen broadleaf forest sites where model bias may be dominated by structural imperfection. 
This study provided an effective framework to understand and reduce model uncertainties in simulating land 
surface energy flux partitioning and, more importantly, highlighted the need of effective model structure 
improvement for the next generation earth system land model development.   

1. Introduction 

The land surface and atmosphere are closely coupled through the 
water, carbon, and energy cycles (Gentine et al., 2019; Santanello Jr 
et al., 2013), and the coupling is important in both current (Betts, 2009; 
Ferguson et al., 2012; Koster et al., 2004) and future climate (Dirmeyer 
et al., 2012; Seneviratne et al., 2006). Land surface latent heat and 
evapotranspiration fluxes (i.e., transpiration, inland water and soil 
evaporation, and canopy interception evaporation) modulate atmo-
spheric temperature and moisture content, which in turn affect soil 
processes and vegetation growth through controls on aerodynamic 
resistance, soil conditions, and plant stomatal status (Feldman et al., 
2019; Lian et al., 2018; Lombardozzi et al., 2015; Williams and Torn, 
2015; Yuan et al., 2021). Biases of land surface-atmospheric water and 

energy partitioning can lead to biases in simulations of air temperature 
(Teuling et al., 2010; Ukkola et al., 2018), precipitation (Berg et al., 
2013; Kaye L Brubaker et al., 1993; Schär et al., 1999), and land surface 
water, energy, and carbon fluxes (Cai et al., 2019; Williams and Torn, 
2015; Zhu et al., 2016). Therefore, the Evaporative Fraction (EF, the 
ratio of latent heat (LE) flux to the sum of latent and sensible heat (H) 
fluxes), which defines how the land surface partitions net radiation into 
LE versus H (Feldman et al., 2019), is valuable when analyzing 
land-atmosphere coupling (Feldman et al., 2019; Ford et al., 2014; 
Koster et al., 2009). 

Earth system land models have been used to estimate land surface 
energy partitioning and patterns of land-atmosphere coupling (Koster 
et al., 2002, 2006; Liu et al., 2019), albeit with acknowledged biases and 
uncertainties in the analyzed land models (e.g., from the Coupled Model 
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Intercomparison Project phase 5 (CMIP5) (Li et al., 2018; Ukkola et al., 
2018; Williams et al., 2016)). To this end, significant efforts have been 
focused on evaluating and parameterizing the land models with, e.g., 
FLUXNET observations to reduce model-observation discrepancies (Cai 
et al., 2019; Chen et al., 2010; Lian et al., 2018; Zhu et al., 2016; Zhu and 
Zhuang, 2015). For example, Cai et al. (2019) improved representation 
of deforestation induced evapotranspiration changes through optimi-
zation of stomatal resistance and soil water parameters. However, 
traditional land model parameterization required either a large number 
of ensemble simulations or developing a complex data-assimilation 
framework (Zhu and Zhuang, 2014). 

Besides model parameters, the uncertainties of simulated land sur-
face energy partitioning could stem from climate and biological drivers, 
which have not been fully investigated for the-state-of-the-art Coupled 
Model Intercomparison Project phase 6 (CMIP6) models, in spite of the 
fact that impacts of climate drivers could largely affect the model 
simulated land surface water and energy fluxes (Lawrence et al., 2019; 
Liu et al., 2015; Yuan et al., 2021). 

In addition, functional structures (e.g., cause-effect relationships) 
may also contribute to uncertainties in surface energy partitioning 
(Williams and Torn, 2015). It is challenging to harmonize dominant 
controllers of modeled versus observed EF patterns at large scale (Tang 
et al., 2018; Yuan et al., 2021). For example, most studies have 
emphasized the importance of soil moisture (Dirmeyer, 2011; Feldman 
et al., 2019; Ford et al., 2014), while some studies showed much 
stronger controls from vegetation-related factors (i.e., leaf area index) 
and much weaker correlation between EF and soil states (Tang et al., 
2018; Williams et al., 2016; Williams and Torn, 2015). These in-
consistencies may result from spatially-variable EF responses to envi-
ronmental or biological factors (Dirmeyer, 2011) and nonlinearity of the 
emergent functional structures (Williams and Torn, 2015), which are 
difficult to detect with commonly-applied linear-correlation-based 
methods. 

Furthermore, confounding effects caused by the interactions among 
the land-atmosphere-vegetation variables may lead to interferences in 
understanding the emergent functional structures between EF and 
driving variables (Brubaker, 1995; Zeng et al., 2002). For example, the 
correlation between vegetation-related factors (e.g., leaf area index, or 
gross primary productivity) to EF can be confounded by soil moisture 
(Hoek van Dijke et al., 2020; Koster et al., 2004), and seasonal covari-
ation may not correspond to a causal relationship as part of the 
covariation may be attributed to the same seasonal patterns caused by 
the common drivers (Nelson et al., 2020). 

Therefore, a comprehensive evaluation of the (1) parametric, (2) 
climate forcing, and (3) functional structure uncertainties of modeled EF 

in state-of-the-art land models is urgently needed, particularly in the 
context of predicting current and future land-atmosphere coupling. The 
objectives of this analysis are: (1) evaluating modeled EF from twelve 
CMIP6 models at 64 FLUXNET eddy covariance sites covering five major 
biome types; (2) using machine learning based surrogate models to 
understand and reduce biases from drivers and model parameterization; 
(3) applying a nonlinear causality inference model to inform the func-
tional structure biases within CMIP6 models. 

2. Methodology 

2.1. Observation and model datasets 

The observation dataset used in this study is from the FLUXNET 2015 
Tier 1 (Pastorello et al., 2020). Here, we focused on five biome types: 
Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF), 
Evergreen Needleleaf Forest (ENF), Grassland (GRA), and Savanna 
(SAV). A total of 64 sites with at least five years of observations for each 
site were selected (Fig. 1; detailed site descriptions in Table S1). Among 
the 64 sites, 12 sites were DBF, 5 sites were EBF, 25 sites were ENF, 14 
sites were GRA, and 8 sites were SAV. The observed monthly Latent heat 
(LE) and sensible heat (H) fluxes were used to calculate EF as 
LE/(LE+H). Here, the energy fluxes were corrected through an energy 
balance closure correction factor, calculated as (Net Radiation-Ground 
Heat)/(H+LE) (Pastorello et al., 2020). Details of energy balance 
closure adjustment can be seen in Pastorello et al. (2020). This method 
has been widely used in eddy covariance flux data, although there is no 
general agreement on which approach is the most suitable one for en-
ergy balance correction (Mauder et al., 2018; Pastorello et al., 2020). We 
also included other associated and available observations (from FLUX-
NET dataset) in our analysis, including gross primary productivity 
(GPP), air temperature (TA), downwelling shortwave radiation (R), 
precipitation (Prcp), vapor pressure deficit (VPD), and soil moisture 
(SWC). Since leaf area index (LAI) has been identified as an important 
driver of land-atmosphere coupling in previous studies (Hoek van Dijke 
et al., 2020; Williams and Torn, 2015), we included LAI, derived from 
the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite 
data product MCD15A3H (Myneni et al., 2015), as a potential driver. All 
aforementioned variables have been reported as potential important 
drivers for land-atmosphere coupling (Blyth et al., 2019; Feldman et al., 
2019; Williams and Torn, 2015; Yuan et al., 2021). 

The historical CMIP6 simulations of monthly LE and H and relevant 
driving factors were obtained from the CMIP6 archive (https://esgf- 
node.llnl.gov/projects/cmip6/). Twelve models (AWI-ESM-1-1-LR, EC- 
Earth3-Veg, NorESM2-LM, NorESM2-MM, SAM0-UNICON, CanESM5, 

Fig. 1. Location and biome types of selected sites: Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF), Evergreen Needleleaf Forest (ENF), 
Grassland (GRA), and Savanna (SAV). 
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CESM2, CESM2-WACCM, IPSL-CM6A-LR, CMCC-CM2-SR5, GISS-E2-1- 
G, and GISS-E2-1-H) were selected based on the availability of the 
diagnostic variables required for this study. Detailed information of 
CMIP6 models used, including corresponding development institutions, 
land surface model components and references, is listed in Table S2. For 
the drivers, LAI, GPP, T, R, Prcp, and SWC can be directly obtained from 
CMIP6 archives. The monthly VPD was calculated as the difference 
between the modelled lower-atmosphere saturated vapor pressure and 
the actual vapor pressure using monthly temperature, surface pressure, 
and relative humidity (Zhao and Running, 2010). All the CMIP6 outputs 
were unified to a spatial resolution of 1◦ × 1◦ using bi-linear 
interpolation. 

2.2. Surrogate machine learning model 

Analyzing the biases from parametric uncertainty and drivers re-
quires data-driven reconstructions of physical models (Lian et al., 2018). 
In this study, we surrogated each CMIP6 model using an artificial neural 
network (ANN) (Park et al., 2019; Verrelst et al., 2016) with EF as the 
target variable. ANN-based surrogate models were trained using each 
CMIP6 model simulations to best reproduce the model behaviors (Fer 
et al., 2018; Zhu et al., 2021). This approach has been widely used in 
earth system science (Reichstein et al., 2019). For each CMIP6 model, 
we established five ANN-surrogate models, corresponding to the five 
biome types (Fig. 1). Each ANN model consisted of three hidden layers 
with 50, 40, and 5 neurons in each layer; with a hyperbolic tangent 
non-linear activation function (Li et al., 2020; Zamanlooy and Mirhas-
sani, 2013). The surrogate models were first trained with 90% randomly 
sampled CMIP6 data and validated against the rest 10% of data (Li et al., 
2020; Lian et al., 2018). When the surrogate models reasonably fitted 
the relationships in the original CMIP6 models, the parametric and 
functional structural biases of original CMIP6 models were also 
embedded in the surrogate models. After obtaining the surrogate models 
and calibrating driver biases, we fine-tuned each model using observa-
tions, and the performance differences before and after the fine-tuning 
were used to characterize the benefit of model parameterization 
(Reichstein et al., 2019; Zhu et al., 2021). 

2.3. Functional structure uncertainty analysis 

To quantify model functional structure with model outputs, we 
define the model structure as an “emergent functional relationship” 
between driving variables and EF. Such relationships can be estimated 
using a causal inference model (Runge et al., 2019a; Yuan et al., 2021). 
We used the transfer entropy approach to detect causal controls from 
climate and biological factors on EF (Schreiber, 2000; Yuan et al., 2021). 
Transfer entropy, based on Shannon information entropy (Shannon, 
1949), measures the amount of information transferred from a source 
variable to a target variable by excluding shared information between 
confounders and the target variable. For example, the control from 
source variables (x) to target variable (y; EF in this case) could be 
measured by information entropy reduction in the EF when knowing the 
history of x and excluding effects from confounders (z) (Ruddell and 
Kumar, 2009): 

T(x→y) =
∑

yt ,z,x
[l]
t

p
(
yt, z, x[l]t

)
log2

p
(

yt

⃒
⃒
⃒

(
z, x[l]t

))

p(yt|z)
(1)  

where l is the corresponding time lag of source variable x, and z is the set 
of confounders for y. In theory, all potential confounders should be 
considered in Eq. (1). However, in practice, too many confounders will 
cause high dimensionality and statistical instability issues (Runge et al., 
2019a; Yuan et al., 2021). To minimize the interferences from important 
confounders as well as to avoid high dimensionality, we adaptively 
considered the strongest confounder of EF through the PCMCI 

framework (Runge et al., 2019b). 
We applied the causal inference method to the five land cover types, 

with time series length of each type longer than 500 data points. Causal 
relationship inferred by transfer entropy with such series length was 
suggested to be generally stable according to Ruddell and Kumar (2009). 
In addition, we tested the statistical significance of the calculated 
transfer entropy through shuffled surrogate method (Kantz and Schür-
mann, 1996). In this approach, we first randomly shuffled source and 
target time series (100 times) to destroy temporal correlations. Then, the 
shuffled surrogate transfer entropy Ts(xs→ys) was computed for 100 
times. Finally, a one-tailed significance test was applied to determine the 
95% confidence level of the transfer entropy (Ruddell and Kumar, 
2009). For our causality inference analysis, we detrended the data by 
removing long-term averaged seasonality, and analyzed the resulting 
anomalies (Ruddell and Kumar, 2009; Yuan et al., 2021). 

3. Results 

3.1. Biases in CMIP6 simulated surface energy partitioning 

We first compared the simulated evaporative fraction (EF) of twelve 
CMIP6 models with those derived from the observations across 64 
FLUXNET sites. Considerable spread existed in modeled monthly EF 
(relative differences of observed and modeled EF ranged up to 31%), and 
models of CMIP6 generally overestimated EF especially when the 
observed EF values were relatively small (Fig. 2a). Across different 
biome types, simulated EF values were significantly (passing one-tailed 
t-tests with P-value<0.05) higher than those of observations for ENF and 
DBF. The median of simulated EF values in SAV and EBF were also larger 
than observations (Fig. 2b), even though the differences were not sig-
nificant (P-value>0.05). For GRA, the differences between observed and 
simulated EF values were not significant (P-value>0.05). Since EF is the 
ratio of latent heat (LE) to total heat (LE+H) fluxes, we compared the 
simulated LE and H with observations. For each biome types, models 
consistently significantly (P-value<0.05) overestimated LE (Fig. 2c), 
while the simulated H values were significantly (P-value<0.05) lower 

Fig. 2. (a) The site-observed EF values versus the multi-model ensemble mean 
EF values. Error bars represent site mean and standard deviation. Distribution 
comparison of the site-observed values versus modeled values over different 
biome types for (b) evaporative fraction (EF), (c) latent heat (LE), and (d) 
sensible heat H. 
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than observations in ENF and DBF, and significantly (P-value<0.05) 
higher than observations in GRA (Fig. 2d). Generally, models over-
estimated LE, and EF. The overestimated EF could reduce air tempera-
ture through stronger evaporative cooling effects (Ukkola et al., 2018), 
leading to biases in evapotranspiration, and even precipitation pro-
jections in models (Ukkola et al., 2018; Williams and Torn, 2015). To 
reduce the biases in CMIP6 simulated EF, a deeper understanding of how 
different sources of biases caused the EF biases is needed. Next, we 
systematically explored the sources of EF biases from model input 
drivers, parameterization, and model functional structures for each 
biome type, considering different land-atmosphere coupling processes 
across different biome types (Hoek van Dijke et al., 2020). 

3.2. Biases from driving variables 

To investigate whether biases in drivers significantly caused the 
overall biases in the modeled EF values, we first developed ANN- 
surrogated models (Methods), and then replaced the drivers of each 
model with observations and compared the performance differences 
before and after changes of drivers. Overall, the ANN-surrogated models 
reproduced EF values of CMIP6 models reasonably well, explaining 
92%-99% of the variance across five biome types (Fig. 3a). Furthermore, 
by replacing the CMIP6 simulated climate and biological drivers (e.g., 
TA, GPP) with FLUXNET and MODIS observations, the CMIP6 modeled 
EF was significantly improved (Fig. 3b, c). For example, the Pearson 
correlation coefficient (R) between simulated and observed EF values 
increased from 0.47 (Fig. 3b, P-value<0.05) to 0.66 (Fig. 3c, P-val-
ue<0.05) by reducing the uncertainties originating from all climate and 
biological drivers. Among the drivers, LAI, VPD, and Prcp were the most 
important three variables in terms of reducing driver caused 

uncertainties. 
The mean absolute error (MAE) at GRA, SAV, and ENF sites were 

significantly reduced (passing one-tailed t-tests with P-value<0.05), 
while EBF and DBF showed no significant changes (P-value>0.05) 
(Fig. 3d). Similarly, R of GRA, SAV, and DBF showed significant 
improvement while EBF and ENF showed limited changes (not signifi-
cant, P-value>0.05) (Fig. 3e). The results suggested that generally, 
correcting the biases of drivers in the CMIP6 models can improve 
simulated land-atmospheric coupling, especially over GRA and SAV. 
However, the improvement was limited for EBF. Therefore, investiga-
tion of other types of biases (e.g., model structure and parameterization) 
are needed to further improve model performance. 

3.3. Quantifying functional structural biases 

The transfer entropy approach was applied to detect relationships 
between driving variables and EF. We found that GPP had the strongest 
control on EF in DBF, GRA, and SAV (Fig. 4a, d, e). This result suggested 
the important role of stomatal controls on ecosystem water loss through 
evapotranspiration, which is supported by independent analysis on crop 
biome, grass, and deciduous forest (Williams et al., 2016; Williams and 
Torn, 2015). Previous studies argued that the observed relationship 
between GPP and EF might be confounded by the effects from other 
climate drivers, such as water availability (Koster et al., 2014) or LAI 
(Tang et al., 2018; Williams et al., 2016). However, in this study, we 
confirmed the existence of strong controls from GPP by excluding the 
other dominant confounding effect. Our results showed that the causal 
controls from LAI are statistically significant, but the strength is much 
weaker than from GPP, especially in DBF, GRA, and SAV systems 
(Fig. 4a, d, e). Although both LAI and GPP were commonly used as 

Fig. 3. (a) Explained variance of ANN-surrogate models over five land cover types. (b) Scatterplot of raw CMIP6 EF versus observed EF values. (c) Scatterplot of 
observed EF versus ANN-modelled EF, but with input drivers replaced by FLUXNET and satellite observations. Performance differences before and after driver 
calibration in term of (d) mean absolute error (MAE) and (e) Pearson correlation coefficient (R). 
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proxies of stomatal conductance (Williams and Torn, 2015), GPP and 
transpiration should be more coupled through direct stomatal control of 
CO2 uptake and water loss (Jenerette et al., 2009; Law et al., 2002) than 
from LAI. Consistently, our results demonstrated that GPP more strongly 
represents EF variations than LAI. For DBF and GRA, most models 
underestimated the importance of GPP, and overestimated the impor-
tance of water-related variables (i.e., SWC or P) (Fig. 4a and d). For SAV, 
around half of the models identified the importance of GPP, and the 
remainder overestimated the impacts from VPD or R (Fig. 4e). 

For the ENF sites, R showed a strong relationship with EF in obser-
vations, mainly because of the energy limitation over those higher 
latitude ENF sites (Blyth et al., 2019). However, a majority of the models 
underestimated the control from R on EF over ENF (Fig. 4c). The 
water-related factors (SWC or P) also showed important controls on EF 
in ENF biomes, as confirmed by He et al. (2016) and Hwang et al. 
(2008). In SAV ecosystems, SWC also played an important role 
(although weaker than GPP) in regulating EF, which may be due to 

water limitations (Feldman et al., 2019). All the CMIP6 models under-
estimated the SWC controls on EF in SAV (Fig. 4e). 

For the EBF, observations showed the main control from SWC on EF, 
while all the models underestimated the impacts from SWC, and most of 
them represented GPP as the main driver (Fig. 4b). The structural biases 
in models may be partly caused by the large biases in GPP simulated by 
CMIP6 models, and such inaccurate simulation of vegetation carbon 
turnover in EBF has been highlighted in previous studies (Li et al., 2016; 
Li et al., 2012; Saleska et al., 2003). In this study, large biases and even 
opposite seasonal cycle (compared with observations) in simulated GPP 
were also found in EBF sites (such as BR-Sa3 and GF-Guy; Fig. S1), which 
directly contribute to the large biases in EBF. In terms of the relationship 
between SWC and EF, whether water-related variables played dominant 
roles on land surface-atmosphere coupling in EBF still remains contro-
versial in the literature (Baker et al., 2019; Cox et al., 2004; Hoek van 
Dijke et al., 2020; Lee et al., 2013; Padrón et al., 2017; Saleska et al., 
2007). For example, part of the results from models and observations 

Fig. 4. Controls from climate and biological drivers on EF in FLUXNET observations and CMIP6 models for (a) DBF, (b) EBF, (c) ENF, (d) GRA, and (e) SAV.  
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suggested decreased extent and canopy productivity of EBF because of 
prominent water limitation (Cox et al., 2004, 2000; Lee et al., 2013), 
while other results have shown greening-up in EBF despite drought or 
water-limitation (Huete et al., 2006; Saleska et al., 2007). Part of the 
reason for the inconsistency may be due to differences in used datasets 
and methods (Baker et al., 2019), while part of the reason may be related 
to the spatiotemporally heterogenous responses of EF on changes of 
climate and biological conditions even for the same biome type (Baker 
et al., 2019; Blyth et al., 2019) (further discussion can be seen in Section 
4.1). 

To quantitatively evaluate the differences in model versus observed 
functional structures, we calculated the cosine similarity (ranges from 
0 to 1; (Ye, 2011) to measure structural similarity between models and 
observations (Fig. 5). A higher value (darker grid) means that the model 
functional structure is more similar with that of the observation, and 
vice versa. We found that the similarity metrics varied significantly 
across different biome types. In general, models showed relatively 
higher similarity with observations in ENF and GRA (the multi-model 
average of cosine similarity is 0.74 and 0.73 respectively), while 
models showed lowest similarity in EBF (the multi-model average of 
cosine similarity is 0.31). Compared with EBF, although some biome 
systems (such as GRA and SAV) showed relatively better results in terms 
of mean cosine similarity, large discrepancies among models existed 
(cosine similarity ranges from 0.26 to 0.95; Fig. 5) and several models 
still remained low similarity with observed casual structures (Fig. 5). 
Model structure differences may be caused by parameterization (Cai 
et al., 2019; Cuntz et al., 2016) (same physical processes but with 
different parameter settings) and real structural uncertainty (Wu et al., 
2020) (different representation of physical processes). 

3.4. Confronting structural biases with parameterization biases 

In order to isolate the parameterization biases from real functional 
structure biases, we tuned the surrogate ANN models using observations 
(EF and associated driving variables) and evaluated the model perfor-
mance improvement. We found that the Pearson correlation coefficient 
(R) between simulated and observed EF values increased from 0.66 
(Fig. 3c, P-value<0.05) to 0.80 (Fig. 6a, P-value<0.05) by parameter 
tuning. For ENF, DBF, and GRA, the performance was significantly 
(passing one-tailed t-tests with P-value<0.05) improved in terms of 
MAEs and R through the tuning. While for SAV and EBF, the MAEs were 
not significantly (P-value>0.05) reduced through parametric tuning, 
and the R of EBF was significantly (P-value<0.05) lower than that of 
SAV, implying limited potential benefit of parameterization at EBF sites. 
Consistently, our causal inference results also showed the lowest struc-
tural similarity between models and observations over EBF (Fig. 5), 

which limited the effectiveness of the model tuning. 

4. Discussions 

4.1. Varied dominant controllers on surface energy partitioning 

It is widely acknowledged that in moisture-limited regions, water- 
related variables tend to have stronger controls on land surface energy 
flux partitioning, while in energy-limited areas, radiation tends to be the 
dominate driver (Teuling et al., 2009; Wang and Dickinson, 2012). For 
the sites with the same biome type, wetness conditions can vary across 
different regions (Baker et al., 2019; Hoek van Dijke et al., 2020), which 
may largely influence the relationship between water-related variables 
and land surface energy flux partitioning (Baker et al., 2019). For 
example, for EBF in northwest South America, precipitation is often 
sufficient throughout the year (Baker et al., 2019), while for EBF in the 
eastern and southern parts of South America, precipitation is much less 
(Baker et al., 2019; Goulden et al., 2004), and precipitation variations in 
water-limited EBF forests can contribute substantially to 
land-atmosphere coupling (Baker et al., 2019). Our results showed 
strong controls from SWC on EF in EBF (Fig. 4b), which may be attrib-
uted to the relatively drier conditions (Table S3) in studied EBF sites. 

Similarly, in ENF, spatiotemporal variations of wetness conditions 
can also significantly modulate the ratio among different evapotrans-
piration components (i.e., canopy interception, inland water and soil 
evaporation, and transpiration) and Bowen ratio (Eltahir, 1998), thus 
affecting dynamics of land surface energy flux partitioning (Blyth et al., 
2019; Raz-Yaseef et al., 2012). Even in water-sufficient ENF systems, 
strong correlations between precipitation and evapotranspiration were 
found where interception was nearly as large as transpiration and pre-
cipitation variations showed stronger correlation with interception 
(Blyth et al., 2019). Our results also showed strong controls from 
water-related variables (i.e., precipitation) on EF in ENF (Fig. 4c), which 
were consistent with Blyth et al. (2019), and also confirmed by CMIP6 
models (Fig. 4c). 

Our results showed dominant controls from GPP on EF in DBF, GRA, 
and SAV (Fig. 4a, d and e), suggesting the important role of vegetations 
on land-surface energy flux partitioning over these land cover types. 
Stomatal controls of vegetation directly affect plant transpiration 
(Bonan, 2008; Seneviratne et al., 2010), which can lead to a strong 
relationship between GPP (which can be regarded as a proxy of stomatal 
controls) and EF (Gitelson et al., 2014; Jiang and Ryu, 2016; Mu et al., 
2007). For example, Williams et al. (2016) found that the correlation 
between vegetation activities and EF was around 2~3 times stronger 
than that from SWC in DBF, GRA, and crop during both relatively drier 
and wetter periods. During dry periods, vegetation may access soil 

Fig. 5. Cosine similarity of model structure compared with observations. Higher values mean more similar causal structures with that of observed ones.  
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moisture from deeper root zone to support transpiration and photo-
synthesis, with EF not necessarily decreased (Williams et al., 2016); 
while during wet periods, stomatal conductance may still be curtailed 
with EF not necessarily increased due to limitation of other unfavorable 
conditions (e.g., temperature, light, and nutrients) for photosynthesis 
(Williams et al., 2016). Those results revealed the complexity of multi-
factorial influenced processes in land-surface energy flux partitioning 
(Lawrence et al., 2007; Williams et al., 2016; Yuan et al., 2021). 

In summary, our results showed the important roles of water-related 
variable on land-atmosphere coupling in EBF, ENF, and SAV systems, 
and dominant controls from GPP on EF in DBF, GRA, and SAV systems. 
However, given the limited number of sites (especially for EBF with only 
5 sites), and large spatial heterogeneity of LAI and wetness conditions 
across different sites (Hoek van Dijke et al., 2020), we highlight the need 
to further explore the causal processes in each biome type when more 
sites and longer observational periods with sufficient drought occur-
rence are available. 

4.2. Similar model performance with the same land component 

Models with shared land components generally showed similar 
model biases after driver and parameterization calibration over the five 
biome types. Among the twelve CMIP6 models we analyzed, four models 
(CESM2, CESM2-WACCM, NorESM2-LM, and NorESM2-MM) shared the 
same land component (CLM5, Table S2). To analyze model structural 
and performance differences with the same land component, we also 
included the land-hist simulation of CESM2, which had the same land 
component (CLM5) but used observational reanalysis datasets (i.e., 
CRUNCEP) as meteorological forcings. We found that, compared to all 
ESM models, the EF errors of those models with the same land surface 
component were narrowed to a relatively smaller range after correcting 
their biases in drivers and parameterizations (Fig. S2a). Further, models 
showed similar performance in different biome types (relatively higher 
R values in DBF, GRA, and SAV; relatively lower R values in EBF and 
ENF; Fig. S2b). Those results suggested that models with the same land 
component after driver and parameter calibration, tended to have 
similar magnitude of errors, which may originate from imperfect 
structural representations. In addition, we compared causal network 
similarity between models with the same land components and between 
models with different land components using cosine similarity (a higher 
value represents higher similarity) (Ye, 2011). We found that models 
with the same land component (coupled CESM2, CESM2-WACCM, 
NorESM2-LM, NorESM2-MM, and CESM2-land-hist) showed signifi-
cantly (p-value<0.05) higher similarity among their causal networks 
compared to those with different land components (Figs. S3 and S4). 
Such causal network similarity patterns highlighted the capability of the 
causal inference method to identify model structural interdependencies 
with shared components (Nowack et al., 2020). 

4.3. Implications for model development and analysis 

EF has been shown to be tightly linked to the characteristics of clouds 
(Findell and Eltahir, 2003; Schär et al., 1999), air temperature (Teuling 
et al., 2010; Ukkola et al., 2018), and precipitation (Berg et al., 2013; 
Brubaker et al., 1993; Schär et al., 1999). Biases of EF representation can 
result in biases of land surface energy flux (latent heat and sensible heat) 
partitioning (Williams et al., 2016; Yuan et al., 2021), and further result 
in biases in climate and weather (e.g., air temperature and precipitation) 
predictions (Cheruy et al., 2014; Merrifield and Xie, 2016; Williams 
et al., 2016; Williams and Torn, 2015). Substantial efforts have been 
invested to parameterize models and reduce model-data discrepancies 
(Cai et al., 2019; Chen et al., 2010; Decharme, 2007; Meier et al., 2018; 
Zhu et al., 2016). However, how different types of biases (parametric, 
driver, and structural biases) affect model performance, has not been 
fully investigated (Eyring et al., 2019; Yuan et al., 2021), especially for 
the state-of-the-art CMIP6 models. This study separated influences from 
each bias source in model performance and explored effectiveness of 
correcting each bias. 

We showed that correcting climate and biological drivers and tuning 
model parameters are efficient ways to improve model performance in 
simulating land-atmospheric coupling, especially for GRA, SAV, ENF, 
and DBF biomes. Models showed limited performance changes through 
tuning over EBF, which may be attributed to structural imperfections. 
We therefore highlight the need for more observational benchmarks and 
model structure development for the EBF biome in the next generation 
of earth system land models. We also highlight the potential model 
biases of leaf stomata conductance controls on surface energy parti-
tioning, especially for the DBF, GRA, and SAV, the water-related controls 
(e.g., precipitation partitioning, soil-related parameters and processes) 
for ENF and EBF, and the radiation controls (radiation transfer) in ENF. 

5. Conclusion 

In this study, we analyzed the biases of evaporative fraction (EF) 
modeled by the state-of-the-art CMIP6 models. We quantitatively esti-
mated the effect of driving variables, parametrization, and structural 
biases on model performance through ANN-based surrogate model and 
causal inference. We found that most CMIP6 models overestimated land 
surface latent heat flux (LE) and evaporative fraction (LE/(LE+H)) 
across multiple biome types. Accounting drivers’ (e.g., temperature, 
GPP) uncertainties could significantly improve model performance 
compared with FLUXNET observations. Further improvement through 
model tuning towards observations was generally effective, except at 
evergreen broadleaf forest sites that may be dominated by model 
structure imperfection. The causal inference results showed that GPP 
controlled EF at deciduous broadleaf forest, grassland, and savannah 
ecosystems. While water-related factors (e.g., precipitation, SWC) 

Fig. 6. (a) Scatterplot of EF values of surrogate models with observed drivers and calibrated parameters versus observed EF values. Performance differences before 
and after driver and parameter calibration in term of (b) mean absolute error (MAE) and (c) Pearson correlation coefficient (R). 

K. Yuan et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 319 (2022) 108920

8

showed strong impacts on EF at evergreen needleleaf forest, evergreen 
broadleaf forest, and savannah ecosystems. And ENF was greatly 
controlled by solar radiation. This study provided a generic framework 
to analyze and reduce CMIP6 model biases and highlighted the need for 
model structure improvements associated with land-atmosphere water 
and energy fluxes especially at evergreen broadleaf forest ecosystem. 
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