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Abstract Burkholderia comprises more than 60 species

of environmental, clinical, and agro-biotechnological rel-

evance. Previous phylogenetic analyses of 16S rRNA,

recA, gyrB, rpoB, and acdS gene sequences as well as

genome sequence comparisons of different Burkholderia

species have revealed two major species clusters. In this

study, we undertook a multilocus sequence analysis of 77

type and reference strains of Burkholderia using atpD,

gltB, lepA, and recA genes in combination with the 16S

rRNA gene sequence and employed maximum likelihood

and neighbor-joining criteria to test this further. The phy-

logenetic analysis revealed, with high supporting values,

distinct lineages within the genus Burkholderia. The two

large groups were named A and B, whereas the B. rhi-

zoxinica/B. endofungorum, and B. andropogonis groups

consisted of two and one species, respectively. The group

A encompasses several plant-associated and saprophytic

bacterial species. The group B comprises the B. cepacia

complex (opportunistic human pathogens), the B. pseudo-

mallei subgroup, which includes both human and animal

pathogens, and an assemblage of plant pathogenic species.

The distinct lineages present in Burkholderia suggest that

each group might represent a different genus. However, it

will be necessary to analyze the full set of Burkholderia

species and explore whether enough phenotypic features

exist among the different clusters to propose that these

groups should be considered separate genera.

Abbreviations

MLSA Multilocus sequence analysis

BCC Burkholderia cepacia complex

ML Maximum likelihood

NJ Neighbor-joining

Introduction

The genus Burkholderia, a b-proteobacteria group, was

created to accommodate seven species from the Pseudo-

monas ribosomal RNA group II [51, 89]. Eventually, many

more species were described and included in this new

genus. Others were removed or reclassified, such as

Burkholderia pickettii (now Ralstonia pickettii) and

B. solanacearum (now Ralstonia solanacearum) [90], or

B. cocovenenans, which was a synonym of B. gladioli [17,

41] and B. vandii, a synonym of B. plantarii [17]. Cur-

rently, Burkholderia comprises more than 60 species,

which are distributed in diverse habitats. For example,

several species are important components of the rhizo-

sphere [22]. Others have been found in water, plant roots,

or legume nodules, or can be opportunistic pathogens

zon plants or humans [22, 77]. Among the pathogenic
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Burkholderia, B. mallei and B. pseudomallei are extremely

important because they are the etiologic agents of known

diseases such as glanders and melioidosis, respectively

[10, 87]. The Burkholderia cepacia complex (BCC; 17

species up to now) is another important group that includes

many opportunistic pathogens, which may be found in

patients with cystic fibrosis [38].

In 2001, two reports presented a totally different view of

Burkholderia. First, the genus was rich in nitrogen-fixing

species [28], and second, several nitrogen-fixing species

were found to nodulate legume plants [48]. This last fea-

ture was striking because previously legumes were thought

to be nodulated only by a-proteobacteria. Today, eight

Burkholderia species that elicit effective nodule formation

on legume roots have been reported and more are in the

pipeline awaiting description [37, 46]. Recently, strains

from B. fungorum were found to nodulate Phaseolus

vulgaris, although ineffectively [30].

As the number of described Burkholderia species has

increased, 16S rRNA sequence analyses have revealed two

sub-lineages within the genus [8, 37, 53, 54, 58]. These two

groups have been recovered with different phylogenetic

reconstruction methods using 16S rRNA sequences [52],

Multilocus sequence analysis (MLSA) with gyrB and rpoB

genes sequences [2] or seven housekeeping genes [63], or

recA gene sequences [73]. A phylogenetic analysis of the

acdS gene in Burkholderia species also revealed the same

two clusters [49]. One of these sub-lineages contains the

BCC opportunistic human pathogens, some environmental

species, the B. pseudomallei group, as well as plant path-

ogenic species, which have been also detected in human

infections [43, 60, 86]. The other sub-lineage comprises

soil, water, and plant-associated species, which thrive in

rhizospheres, live as endophytes, or nodulate legumes.

Many species are diazotrophs and so far, evidence for

pathogenicity is lacking, although a few reports exist of

single strains of B. xenovorans, B. tropica, and B. fungo-

rum that were isolated from animal or human clinical

samples [18, 24, 35]. Additionally, the phylogenetic anal-

ysis of 617 genes, from the Burkholderia core genome,

demonstrated that the BCC–B. pseudomallei–plant patho-

gen group was clearly separated from the cluster of envi-

ronmental species [69].

Not only MLSA but also Multilocus sequence typing

(MLST) have been used for epidemiologic and population

genetics studies, delineation of species, and assignment of

strains to defined bacterial species in Burkholderia [2, 40,

80, 82]. Different housekeeping genes have been useful for

this purpose and an MLST database exists for BCC

members (http://pubmlst.org/bcc/).

In view of these findings, we performed MLSA of a set

of Burkholderia species (77 Burkholderia type and refer-

ence species) using four housekeeping genes, atpD, gltB,

lepA, and recA, combined with the 16S rRNA gene

sequence, to explore the positioning of the Burkholderia

species in a phylogenetic analysis. In this report, we

present evidence that the genus Burkholderia is composed

of distinctly different phylogenetic lineages.

Materials and Methods

Bacterial Strains

A set of Burkholderia species was analyzed by MLSA.

Several species with sequenced genomes were also chosen

for the analysis. The set of Burkholderia species analyzed

included a total of 77 Burkholderia species, 51 type species

and 26 reference species. Additionally, type and reference

strains from Cupriavidus (3) and Ralstonia (4) species were

included. A list of strains used in this study is presented in

Additional file 1.

atpD, gltB, lepA, and recA Gene Sequencing

The housekeeping genes were randomly selected based on

the BCC MLST Database (http://pubmlst.org/bcc/). The

following set of primers was designed to obtain DNA

fragments in the range of 850–1,100 bp. These DNA

fragments were more than twice as long as the ones used in

MLST for the BCC because we wished to retrieve more

information for the phylogenetic analysis. For the ATP

synthase beta chain (atpD), the primers atpD-F2 (50-
CCACCAGCACAAGCCGCT-30) and atpD-R (50-ATCCG

CTCGTCGTCGGCG-30) were used. For the glutamate

synthase large subunit (gltB), the primers gltB-F (50-
CTGCGCTCGAAGATCAAGCAGGG-30) and gltB-R (50-
TGCGCACCGGCTGGATGAACG-30) were utilized. For

the GTP binding protein (lepA), the primers lepA-F2 (50-
TGGTTCGACAACTACGTCGG-30) and lepA-R (50-AT-

CAGCATGTCGACCTTCAC-30) were employed, and for

recombinase A (recA), BUR1 and BUR2 primers were

used [52]. The PCR was performed as described previously

[28]. The DNA fragments on each strand were sequenced

with the primers used in the initial PCR amplification by

Macrogen (www.macrogen.com). The housekeeping genes

from some Burkholderia species were retrieved from the

NCBI Genome Database (http://www.ncbi.nlm.nih.gov/

sites/entrez?db=genome). The accession numbers are pro-

vided in Additional file 1 and displayed on the phyloge-

netic trees.

Phylogenetic Inference

Data processing and phylogenetic analyses were performed

as described elsewhere [77]. In brief, nucleotide sequences
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of the housekeeping genes were translated and aligned

using Muscle 3.57 [25]. The resulting multiple-sequence

alignments of proteins were used as masks to generate the

corresponding nucleotide codon alignments using custom

Perl scripts. Individual alignments were concatenated using

ad hoc Perl scripts. Models of nucleotide substitution were

selected by the Akaike information criterion, using

MODELTEST3.7 [56, 57]. Among-site rate variation was

modeled by a gamma distribution, approximated with four

rate categories [91], with each category being represented

by its mean. ML trees were inferred for each dataset under

the models of nucleotide substitution selected by the

Akaike information criterion [57], using PhyML v3.0 [36].

Tree searches were initiated from a BioNJ seed tree,

retaining the best tree among those found with NNI and

TBR branch swapping. The robustness of the ML topolo-

gies was evaluated using a recently developed Shimodaira–

Hasegawa (SH)-like test [6] for branches implemented in

PhyML v3.0. In brief, the test assesses whether the branch

being studied provides a significant likelihood gain, in

comparison with the null hypothesis that involves col-

lapsing that particular branch, but leaving the rest of the

tree topology the same. The SH-like procedure was chosen

for assessing bipartition significance because the test is

nonparametric and much less liberal than the diverse

(parametric) approximate-likelihood ratio tests that are also

implemented in that program. The resulting SH-like

P values, therefore, indicate the probability that the cor-

responding split is significant. The ML phylogenetic trees

were visualized with the program MEGA version 5 [66].

The alignment dataset was also used for NJ analysis. The

NJ trees were constructed based on Tamura–Nei distances,

using 1,000 bootstrap replicates with the program MEGA

version 5.

Diazotrophy Test

The capacity to fix nitrogen by most Burkholderia species

was tested by acetylene reduction activity [28], by nifH

gene amplification [53, 55, 70], or by collecting informa-

tion from the literature.

Results and Discussion

Phylogenetic Inference of 16S rRNA Gene Sequences

All Burkholderia species were included in the analysis of

the 16S rRNA gene sequence by ML (Fig. 1). The phylo-

genetic analyses resulted in two large clusters; one (des-

ignated as group A) comprised the plant-associated and

saprophytic species. The second cluster (group B) con-

tained the BCC opportunistic human pathogens, the

B. pseudomallei group, and the plant pathogenic species.

Burkholderia andropogonis, B. rhizoxinica, and B. endo-

fungorum were placed at the edge of group A. A distance

analysis (using MEGA version 5) of the 16S rRNA

sequences from group A and B, B. rhizoxinica/B. endo-

fungorum and B. andropogonis was carried out. The

analysis showed a larger dissimilarity of 4 % between group

A and B. The intra-group 16S rRNA similarity values were

98.7 % among the species of the group B and 96.0 % for the

group A. Also, the 16S rRNA similarity value of B. andro-

pogonis with the different groups was \96: 95.5 % with

group B and 93.8 % with group A. Similarly, the B. endo-

fungorum/B. rhizoxinica group was 96.1 % identical to the

group B and 95.1 % to group A. The B. endofungorum/

B. rhizoxinica group was found to be 95.1 % similar to

B. andropogonis. This evidence clearly indicates that the

genus Burkholderia consists of different bacterial lineages.

Generally, values below *95 % 16S rRNA gene sequence

similarity indicate different genera [67].

Furthermore, the incongruent position of B. andropog-

onis was previously reported by Viallard et al. [84] based

on analysis of 16S rRNA gene. To investigate this species

in greater detail, fifteen 16S rRNA gene sequences from the

NCBI database belonging to different strains of B. andro-

pogonis were included in an NJ tree with the rest of the

Burkholderia species (data not shown). The analysis

showed that the B. andropogonis strains clustered outside

of groups A, B and B. endofungorum/B. rhizoxinica groups,

and distantly from Cupriavidus/Ralstonia species. The

phylogenetic position of this species and the 16S similarity

percentages among B. andropogonis and the other groups

suggest that this species might represent a new genus. This

may also be the case for B. endofungorum and B. rhizox-

inica, but these species were not analyzed further because

both species were described with only single strains.

The 16S sequence genes were also analyzed by NJ. The

analysis showed that the genus split in different lineages,

interestingly group A was further divided in two groups

and B. andropogonis was placed outside from all clusters

(Additional file 2).

Phylogenetic Inference of Individual and Concatenated

Housekeeping Genes

The set of Burkholderia species analyzed in this study was

selected from our in-house Burkholderia collection and

some of the other species were gathered from the LMG

culture collection (BCCM/LMG, Belgium). Whenever

possible, more than one strain from each Burkholderia

species was selected to perform robust species phylogeny

estimation by MLSA. A phylogenetic analysis of the

individual atpD, gltB, lepA, and recA sequences under

the ML criterion revealed two distinct lineages within the
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Group B

Group A

B. silvatlantica PPCR-2 (AY965243) 
B. silvatlantica SRCL-318 (AY965241)

B. silvatlantica SRMrh-20T**
B. silvatlantica PVA5**

B. heleia SA41T (AB495123)
B. ferrariae FeGl01T (DQ514537) 

B. mimosarum Br3454 (AY533860) 
B. mimosarum PAS44T (AY752958)

B. nodosa Br3461 (AM284970) 
B. nodosa Br3437 T (AM284971)

B. bannensis E25 T (AB561874)
B. tropica MTo-293 (AY128103) 

B. tropica Ppe8 T (AJ420332)
B. tropica BM16 (AF312214) 

B. unamae SCCu-23 (AY221957) 
B. unamae MTl-641T**
B. unamae MCo-762 (AY221955) 

B. oxyphila OX01 T (AB488693)
B. sacchari IPT101 T (AF263278)

B. tuberum STM678T** 
B. kururiensis M130 (AJ238360) 

B. kururiensis KP23T (AB024310) 
B. acidipaludis SA33 T (AB513180)

B. diazotrophica DPU-3T (EU287925)
B. sabiae Br3407T (AY773186)

B. terrae TAt-0769 (FJ478406) 
B. terrae TAt-0728 (FJ478404) 
B. terrae LMG 23368T (AB201285)

B. hospita LMG 20598T (AY040365)
B. caribensis MWAP64T (Y17009)

B. phymatum GR01 (FJ560957) 
B. phymatum STM815T (NC_010622)*

B. phenoliruptrix AC1100T (AY435213)
B. graminis C4D1MT (U96939)

B. megapolitana LMG 23650T (AM489502)
B. fungorum LMG 16225T (AF215705)

B. sediminicola LMG 24238T (EU035613)
B. xenovorans TCo-26 (EF139188)

B. xenovorans TCo-382 (EF139187) 
B.  xenovorans LB400T (U86373)

B. ginsengisoli LMG 24044T (AB201286)
B. bryophila LMG 23644T (AM489501)

B. caledonica LMG 19076T (AF215704)
B. terricola LMG 20594T (AY040362)

B. phytofirmans PsJNT (AY497470)
B. sartisoli LMG 24000T (AF061872)

B. phenazinium LMG 2247T (U96936)
B. symbiotica JPY345T (HM357233)

B. caryophylli ATCC 25418T (AF215704)
B. soli LMG 4076T (DQ465451)

B. glathei ATCC 29195T (Y17057)
B. zhejingensis OP-1T (HM802212)

B. sordidicola LMG 22029T (AF512826)
B. andropogonis LMG 2129T (X67037)

B. endofungorum HKI456T (AM420302)
B. rhizoxinica HKI454T (AJ938142)

B. cenocepacia HI2424 (NC_008542)*
B. cenocepacia AU1054 (NC_008060)*
B. seminalis LMG 24067T (AM 24031)

B. cenocepacia MC0-3 (NC_010508)*
B. ambifaria MC40-6 (NC_010551)*
B. anthina R4183 (AJ420880)
B. cepacia ATCC 25416T (AF097530)

B. metallica LMG 24068T (AM747632)
B. cenocepacia J2315 T (NC_011000)*
B. vietnamiensis G4 (NC_009256)*

B. vietnamiensis TVV75 T (AF097534)
B. latens LMG 24064 T (AM747628)

B. vietnamiensis MMi-302 
B. multivorans ATCC 17616 (NC_010804)*

B. ubonensis Bu (NZ_ABBE00000000)*
B. lata 383T (NC_007510)*

B. contaminans I29B (GQ397111)
B. arboris LMG 24066T (AM747630)

B. ambifaria IOP40-10 (NZ_ABLC00000000)*
B. diffusa LMG 24065T (AM747629)

B. ambifaria AMMDT (NC_008390)*
B. stabilis LMG 14294T (AF148554)
B. pyrrocinia LMG 14191T (AB021369)

B. glumae BGR1 (NC_012724)*
B. plantarii LMG 9035T (U96933)
B. gladioli LMG 2216T (X67038)

B. oklahomensis EO147 (NZ_ABBF00000000)*
B. pseudomallei K96243 (NC_006350)*
B. mallei SAVP1 (NC_008785)*
B. mallei NCTC 10247 (NC_009080)*
B. mallei ATCC 23344T (NC_006348)*
B. pseudomallei 668 (NC_009074)*
B. thailandensis E264T (NC_007651)*

Ralstonia pickettii 12D (NC_012856)*
R. pickettii12J (NC_010682)*
R. solanacearum UW551 (NZ_AAKL00000000)*

R. solanacearum GMI1000 (NC_003295)*
Cupriavidus metallidurans CH34 T  (NC_007973)*
C. necator H16 (NC_008313)*

C. necator JMP134 (NC_007347)*
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Fig. 1 Maximum likelihood

tree inferred from the 16S rRNA

gene, showing the phylogenetic

relationships among

Burkholderia species. The bar
represents the number of

expected substitutions per site

under the GTR ? G model. One
asterisk indicates sequences

obtained from the Genome

database at NCBI. Two asterisks
indicate sequences obtained

from an ongoing genomic

project. In parenthesis are

accession numbers at NCBI
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genus Burkholderia, the same groups A and B found in the

analysis of 16S rRNA gene. However, in the gltB and lepA

phylogenetic trees, group A was further split in two distinct

lineages (Additional file 3–6). The dataset was also ana-

lyzed under the NJ criterion (Additional files 7–10), again

showing two main groups in the atpD and lepA trees and

three clusters in the gltB and recA trees. Moreover, the

position of certain Burkholderia species was not clear.

Generally, B. andropogonis, B. soil, and B. rhizoxinica

were found to be not related to the two main groups.

A highly resolved ML species tree was estimated from

the five gene concatenated dataset (Fig. 2). Only those

strains having the full set of sequenced genes were inclu-

ded in this analysis. The results showed the two clusters,

which are designated as group A and B. However, B. soli,

B. rhizoxinica, B. kururiensis, and B. glathei were posi-

tioned outside these two main clusters, which indicates that

more strains from these species must be analyzed to define

their actual position in the phylogenetic trees. Burkholderia

andropogonis was not included in the concatenated tree

because the recA gene sequence was not successfully

amplified and hence not examined. The concatened dataset

analyzed by NJ showed three groups with group A further

split in two clusters (Additional file 11).

GC Content Analysis

Previously, Gyaneshwar et al. [37] reported that some of the

species included in the group A have a lower GC content

than the species in the pathogenic group B. We expanded

upon this analysis, and surveyed the literature and various

databases to learn the GC content of all the currently

described Burkholderia species (Additional file 12, 13). The

analysis of the GC content of the different groups showed a

substantial divergence between the group B (67.1 ± 1.0 %)

compared to the group A (62.9 ± 1.3 %), B. andropogonis

(59.0 %), and the B. rhizoxinica/B. endofungorum (60.7 %)

cluster. Evidently, the group B GC content is higher than

any of the other Burkholderia groups. Tindall et al. [67]

observed that, with some exceptions, GC content may be

fairly constant in a bacterial group. Taken together, this

observation strongly suggests that the groups observed in

Burkholderia consist of distinct bacterial lineages.

Diazotrophy Test

The ability to fix nitrogen is well known in B. vietnami-

ensis [31], the only member of the BCC within the group B

that has unequivocally been shown to perform this activity.

Starting in 2001 and continuing, the genus Burkholderia,

especially members of the group A, is rich in nitrogen-

fixing species [8, 28, 48, 53, 54, 58, 74]. Previously,

B. ferrariae, a member of the group A, was found to have a

nifH gene (GenBank:EF158799) [47] and the capacity of

this species to fix nitrogen was confirmed by acetylene

reduction activity (ARA) in the present study (Additional

file 1). However, Aizawa et al. [5] did not detect ARA

activity either in B. ferrariae or in B. acidipaludis or

B. bannensis, although a nifH sequence was detected by

PCR analysis. Thus it is still unknown whether the nif

operon is complete or whether these strains actually fix

nitrogen. One possibility to explain the difference in the

reports about B. ferrariae diazotrophy is that the growth

medium used to test ARA by Aizawa et al. [5] was not

optimal. We found that using different medium [28] we

could detect that B. ferrariae is a diazotroph. A similar

situation could exist for both B. acidipaludis and

B. bannensis. Other Burkholderia species not tested in this

study by MLSA are also diazotrophs; such as B. heleia,

B. symbiotica, and B. diazotrophica, the latter two species

are able to nodulate Mimosa spp. plants [3, 61, 62].

However, B. oxyphila, B. rhizoxinica, and B. endofungo-

rum have not been reported to be diazotrophs. Burkholde-

ria andropogonis was found to be ARA-minus in this

study. In conclusion, approximately half of the species

from the group A are able to fix nitrogen as either free-

living bacteria or in symbiotic associations.

Conclusions

The results presented in this report show that the genus

Burkholderia is composed of different lineages. A glimpse

of this observation was showed by Ussery et al. [69] where

56 Burkholderia genomes where analyzed in a phyloge-

netic study. Vandamme and Dawyndt [79] came to similar

conclusions using ML to examine 100,000 base positions

randomly extracted from single-copy core genes of the

available Burkholderia genomes released up to date.

As new Burkholderia species are continually being

described, the presence of different lineages will become

more obvious. However, to propose a split of the Burk-

holderia genus at this time may be premature. The pres-

ence of two and sometimes three main groups plus

B. andropogonis and B. endofungorum/B. rhizoxinica

shows that the genus is evolving over time such that dif-

ferent bacterial lineages are developing. To understand this

process better, the entire assemblage of species must be

thoroughly analyzed, which means that both phylogenetic

and physiological/biochemical traits need to be examined

as well.

One example is the pathogenicity shown by the species

of the group B compared to the species of the group

A. Preliminary experiments found no pathogenic activity

toward Caenorhabditis elegans or HeLa cells after testing

B. unamae, B. phytofirmans, B. tuberum, and two strains of

P. Estrada-de los Santos et al.: Phylogenetic Analysis of Burkholderia Species
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B. phytofirmans PsJNT

B. sediminicola LMG 24238T

B. phenazinium LMG 2247T

B. fungorum LMG 16225T

B. xenovorans TCo-26
B. xenovorans TCo-382

B. xenovorans LB400T

B. bryophila LMG 23644T

B. ginsengisoli LMG 24044T

B. terricola LMG 20594T

B. phenoliruptrix AC1100T

B. sordidicola LMG 22029T

B. graminis C4D1MT

B. caledonica LMG 19076T

B. sartisoli LMG 24000T

B. tuberum STM678T

B. terrae LMG 23368T

B. hospita LMG 20598T

B. caribensis MWAP64T

B. sabiae LMG 24235T

B. phymatum GR01
B. phymatum STM815T

B. megapolitana LMG 23650T

B. ferrariae FeGl01T
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B. silvatlantica (A. Angus and A.M. Hirsch, ms. in prep.).

In any case, differential phenotypic characteristics may not

be as relevant at the genus level as they are for the

description of new species because phenotypic traits may

be inconsistent when large populations are studied [85].

Nevertheless, it is critical to analyze the full set of Burk-

holderia species, including more strains from each species

as well as including extra housekeeping genes in the

analysis.
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(Centro de Ciencias Genómicas, Universidad Nacional Autónoma de
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