
UCSF
UC San Francisco Previously Published Works

Title
Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective 
From the International Transporter Consortium

Permalink
https://escholarship.org/uc/item/39j1d4xh

Journal
Clinical Pharmacology & Therapeutics, 104(5)

ISSN
0009-9236

Authors
Yee, Sook Wah
Brackman, Deanna J
Ennis, Elizabeth A
et al.

Publication Date
2018-11-01

DOI
10.1002/cpt.1098
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39j1d4xh
https://escholarship.org/uc/item/39j1d4xh#author
https://escholarship.org
http://www.cdlib.org/


Influence of Transporter Polymorphisms on Drug Disposition 
and Response: A Perspective from the International Transporter 
Consortium

Sook Wah Yee1, Deanna J Brackman1, Elizabeth A. Ennis1, Yuichi Sugiyama2, Landry K. 
Kamdem3, Rebecca Blanchard4, Aleksandra Galetin5, Lei Zhang6, and Kathleen M. 
Giacomini1,7,*

1.Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, 
University of California, San Francisco, CA, USA

2.Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, 
Yokohama, Japan

3.Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, 
Arkansas, USA

4.CRISPR Therapeutics, 610 Main St, Cambridge, MA 02139, USA

5.Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of 
Manchester, UK

6.Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and 
Research, Food and Drug Administration, Silver Spring, Maryland, USA

7.Institute of Human Genetics, University of California San Francisco, San Francisco, California, 
USA

Abstract

Advances in genomic technologies have led to a wealth of information identifying genetic 

polymorphisms in membrane transporters, specifically how these polymorphisms affect drug 

disposition and response. This review describes the current perspective of the International 

Transporter Consortium (ITC) on clinically important polymorphisms in membrane transporters. 

ITC suggests that in addition to previously recommended polymorphisms in ABCG2 (BCRP) and 

SLCO1B1 (OATP1B1), polymorphisms in the emerging transporter, SLC22A1 (OCT1), be 

considered during drug development. Collectively, polymorphisms in these transporters are 

important determinants of interindividual differences in the levels, toxicities, and response to many 

drugs.
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Introduction

Historically, pharmacogenetic research has involved candidate gene studies focused largely 

on associations between common polymorphisms in drug metabolizing enzymes (e.g., 

CYP2D6 and CYP2C19) and drug disposition (mostly), toxicity (sometimes) and/or efficacy 

(rarely). Enormous technological advances in sequencing and genotyping have ushered in a 

new era in human genetics and pharmacogenetics research. Genomewide genotyping and 

sequencing approaches are widely being used to discover variants in any gene that underlie 

various phenotypes. As a result, both common and rare variants in many genes, including 

membrane transporter genes, have been identified as major determinants of variation in drug 

disposition, response and toxicity. In this State of the Art Review, we describe the current 

knowledge of genetic polymorphisms and their effects on drug response in two major 

superfamilies of transporters: the Solute Carrier Superfamily (SLC) and the ATP-Binding 

Cassette superfamily (ABC). In particular, we focus on transporters that have been 

recognized by the International Transporter Consortium (ITC)1 and regulatory authorities as 

important determinants of drug disposition and drug-drug interactions (DDI) (see Table 1). 

In a previous publication from the ITC, we highlighted associations between common 

polymorphisms in two transporters, BCRP (ABCG2) and OATP1B1 (SLCO1B1), and 

variation in therapeutic drug response, drug toxicity or drug disposition, and recommended 

that polymorphisms in these two transporters be considered during drug development2. 

Since that review, studies have continued to be published demonstrating significant 

associations between various pharmacogenomics traits and polymorphisms in ABCG2 and 

SLCO1B1. In addition, a number of recent studies have demonstrated that genetic variants in 

the Organic Cation Transporter 1 (OCT1, SLC22A1) are associated with the disposition 

and/or effects of a number of prescription drugs3–5. It is now not uncommon for regulatory 

agencies to expect data regarding the pharmacogenetic impact of genetic variation in these 

transporters in relevant drug development programs. Therefore, this review summarizes 

associations between polymorphisms in ABCG2, SLCO1B1 and SLC22A1 and 

pharmacogenomic phenotypes, focusing on clinical evidence and implications (Figure 1). In 

addition, associations between genetic variants in other transporters and clinical drug 

phenotypes are described with some emphasis on transporters that are known to mediate 

clinical DDIs (Figure 1). Notably, the review focuses on germline (heritable) variants, and 

does not include mutations that may arise in somatic cells such as tumors. Following our 

summaries of clinical associations of germline variants in transporters, we describe 

functional genomic studies of heritable transporter polymorphisms. The review ends with a 

description of recent discoveries in transporter polymorphisms, which have been made using 

genomewide association (GWA) and massively parallel sequencing approaches. Comments 

on the use of pharmacogenomics data to support modeling and simulation as well as future 

directions are included.
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1. Highly Important Transporter Polymorphisms in ABCG2 (BCRP), 

SLCO1B1 (OATP1B1) and SLC22A1 (OCT1)

In the previous ITC publication, polymorphisms in ABCG2 and SLCO1B1 were considered 

highly significant because they met the following strict criteria: (i) At least one genomewide 

significant association (p<5×10−8) between a polymorphism in the transporter and a 

pharmacologic trait for one or more drugs. The trait could reflect drug disposition, 

therapeutic response or drug toxicity; (ii) Significant associations in multiple candidate gene 

studies with pharmacologic traits; and (iii) In vitro evidence that the polymorphism(s) 

exhibited functionally important effects on transporter activity or expression levels. In this 

review, these criteria again support the selection of functionally significant polymorphisms 

in ABCG2 and SLCO1B1. In this updated publication, we considered transporters in which 

compelling evidence for an association with a drug response phenotype existed in multiple 

candidate gene studies (without GWA evidence). OCT1 (SLC22A1) represented a 

transporter that met this criterion. In particular, many candidate gene studies indicate an 

important role for polymorphisms in OCT1 as modulators of drug disposition and response 

(Figure 1). In addition, although none of the SLC22A1 polymorphisms have been associated 

with a pharmacogenomics trait in GWAS, SLC22A1 polymorphisms have been associated 

with levels of endogenous metabolites, and other traits in several GWAS (see GWAS 

Catalog).

Highly Important Polymorphisms in ABCG2 and SLCO1B1:

Since publication of the previous manuscript2, new reports continue to validate associations 

between pharmacologic traits and polymorphisms in ABCG2 and SLCO1B1. To date, a total 

of eight GWAS have reported genomewide level significant associations (p<5×10−8) 

between polymorphisms in ABCG2 and SLCO1B1 and drug disposition or response (Table 

S1). Significant associations have been described for drugs used in the treatment of lipid 

disorders (statins), gout (allopurinol), cancer (methotrexate) and cardiovascular disorders 

(ticagrelor). Among the eight GWAS, four are related to drug disposition and four are 

related to therapeutic or adverse drug response. All of the drugs were known substrates of 

the transporters with the exception of allopurinol. Allopurinol was discovered to be a 

substrate of ABCG2, through functional studies motivated by GWAS finding6. Future 

studies are required to replicate the associations between SLCO1B1 genetic polymorphisms 

and the active ticagrelor metabolite, AR-C124910XX, and to determine whether the 

metabolite is also a substrate of OATP1B17. In general, the nonsynonymous polymorphism 

in SLCO1B1 (rs4149056) which results in an amino acid substitution (Val174Ala) is of most 

interest, and has been either directly associated with the pharmacologic trait or is in linkage 

disequilibrium with another variant that has been associated with the trait (Table S1). For 

ABCG2, multiple polymorphisms have been associated with various traits, though typically, 

the missense polymorphism rs2231142, resulting in a substitution of lysine for glutamine 

(Q141K) is in linkage disequilibrium with the associated polymorphisms (Table S1). 

Collectively, the studies summarized in Table S1 continue to support the ITC 

recommendation that genetic polymorphisms in SLCO1B1 and ABCG2 should be 

monitored during drug development. It is worth mentioning that the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) has included polymorphisms in 
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SLCO1B1 and ABCG2 as important determinants of drug disposition and response (https://

cpicpgx.org/genes-drugs/). Among the gene/drug pairs, CPIC has published extensive 

evidence from the literature to support simvastatin dosing based on SLCO1B1 genotype 

(https://cpicpgx.org/guidelines/guideline-for-simvastatin-and-slco1b1/).

Highly Important Polymorphisms in SLC22A1:

During the third workshop of the ITC, SLC22A1 was discussed as being increasingly 

important in drug development due to a high level of evidence from a number of clinical 

pharmacogenomic studies (Table S2). In this issue, Zamek-Gliszczynski et al. and Chu et al. 

respectively highlight the importance of SLC22A1 as an emerging transporter and provide 

also information on endogenous biomarkers associated with its polymorphisms. In 

particular, these studies reported significant associations between SLC22A1 polymorphisms 

and drug disposition, response and toxicity. SLC22A1 is abundantly expressed in the liver, 

and found on the sinusoidal membrane of hepatocytes. Polymorphisms in the transporter 

have been well-characterized in in vitro uptake studies, and many polymorphisms lead to 

functional changes in protein expression and transport activity (Table S3). Importantly, a 

number of clinical studies have been published describing significant associations between 

SLC22A1 polymorphisms and drug pharmacokinetics and pharmacodynamics effects (Table 

S2). Many of these associations have focused on the anti-diabetic drug, metformin, and 

include metformin disposition8–11, response12,13 and adverse effects14,15. However, studies 

of the effects of SLC22A1 polymorphisms on metformin pharmacokinetics and 

pharmacodynamics have been inconsistent. For example, while significant associations of 

non-synonymous SLC22A1 polymorphisms with metformin plasma concentrations were 

observed in several pharmacogenomics studies 8–11,16, other studies failed to observe such 

effects in either healthy subjects or patients with type 2 diabetes17–19. Recently, using 11C-

metformin positron emission tomography (PET)/computed tomography (CT), Sundelin et al. 

showed that individuals who are carriers of the OCT1 reduced function variants, Met420Del 

and Arg61Cys, have decreased concentrations of metformin in the liver without changes in 

systemic plasma levels compared with individuals with reference SLC22A110. Together 

these studies suggest that hepatic distribution of metformin is decreased in carriers of 

SLC22A1 reduced function variants and that plasma levels of metformin do not reflect 

hepatic exposure. These findings are in contrast to minor changes in the liver exposure and 

pharmacodynamics of statins in the case of SLCO1B1 polymorphisms20. Renal clearance is 

also a significant contributor to metformin elimination unlike statins where hepatic 

elimination is the predominant route. Therefore, metformin liver and plasma exposure will 

be affected by multiple mechanisms and consequences of reduced uptake into liver on 

systemic plasma levels would not be similar to statins21 (also see Guo et al, Advancing 

Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and 

PBPK Modeling Approaches, this Clin Pharmacol Ther issue).

Associations between SLC22A1 polymorphisms and drug levels or response to prescription 

drugs other than metformin have been described (Table S2). These studies have 

demonstrated significant associations between reduced function non-synonymous variants of 

SLC22A1 and the anti-migraine drug, sumatriptan22, the opiate analgesic drugs or their 

metabolites, morphine4 and O-desmethyltramadol23, and the anti-nausea drug, ondansetron5. 
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In these studies, volunteers were classified based on the number of active SLC22A1 alleles 

that they harbor, e.g., zero, one or two active alleles (Table S2). Some studies identified 

significant correlations between systemic plasma levels of drug and genetic polymorphisms 

in SLC22A1. For example, the exposure to fenoterol, a β2-adrenergic receptor agonist used 

in the treatment of asthma, was inversely correlated with the number of active SLC22A1 
alleles24, i.e. higher levels of fenoterol were associated with zero active alleles of SLC22A1. 

In addition, drug exposure was correlated with effect, that is, individuals with less active 

SLC22A1 alleles and higher systemic concentrations had a greater increase in heart rate, an 

adverse effect of β2-adrenergic receptor agonists24. Studies with SLC22A1 polymorphisms 

have used a different study design than studies focused on polymorphisms of ABCG2 and 

SLCO1B1. In particular, reduced function polymorphisms are combined for SLC22A1 and 

the number of active alleles is associated with a pharmacologic trait4,9,23, whereas for 

SLCO1B1 and ABCG2, most studies have focused on associations between a single 

polymorphism and a pharmacologic trait.

Similar to ABCG2 and SLCO1B1, the studies of SLC22A1 polymorphisms have important 

implications for evaluation of potential DDI risk. For example, a perpetrator drug that 

inhibits OCT1 at clinically relevant concentrations may phenocopy the effect of the 

SLC22A1 reduced function polymorphisms. For example, an OCT1 inhibitor may increase 

fenoterol levels resulting in increased heart rate effects of the drug. To our knowledge, to 

date no approved drugs have been found to inhibit OCT1 clinically (see Zamek-Gliszczynski 

et al. in this issue).

Collectively, review of the available data in the literature suggests that in addition to ABCG2 
and SLCO1B1, polymorphisms in SLC22A1 be considered during drug development, 

particularly for drugs, which are OCT1 substrates. We suggest that drug developers consider 

conducting pharmacogenomic studies for new drugs that are substrates of OCT1, especially 

for drugs that have narrow therapeutic indices. Further, we suggest that the non-synonymous 

SNPs in SLC22A1, Arg61Cys, Cys88Arg, Gly401Ser, Met420del, and Gly465Arg, are 

given the highest priorities and that the data analysis may consider individuals with 0, 1 or 2 

of any of these non-synonymous SNPs of SLC22A1, similar to published studies4,9,23 (Table 

S2). The allele frequencies in the ethnic population should be considered in the design of the 

study (see Table S3 for allele frequencies of non-synonymous OCT1 SNPs in various ethnic 

groups). In some ethnic groups, allele frequencies of reduced function polymorphisms are 

very low, and therefore, carriers of these alleles are uncommon, making pharmacogenomic 

studies exceedingly difficult. Pharmacogenomic studies need to focus on ethnic groups that 

have higher allele frequencies of reduced function polymorphisms of OCT1 such as 

individuals of European or Hispanic ancestry (Table 2).

2. Polymorphisms in Other Drug Transporters with Less Evidence

In addition to SLCO1B1, SLC22A1 and ABCG2, other important membrane drug 

transporters recommended by the FDA, PMDA and EMA drug-drug interaction guidance/

guidelines for study during drug development include SLC22A2 (OCT2), SLC22A6 
(OAT1), SLC22A8 (OAT3), SLCO1B3 (OATP1B3), SLC47A1 (MATE1), SLC47A2 
(MATE2K) and ABCB1 (P-gp) (see Table 1 for the list of URLs to regulatory guidances and 
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guidelines mentioned in this review). Below we briefly summarize candidate gene studies of 

these transporters. Table 2 gives an overview of the key polymorphisms highlighted below. 

For lists of publications about these polymorphisms, see the following publicly available 

resources, PharmGKB, ClinVar, Human Longevity Inc. Open Search and other (see Figure 

2).

Polymorphisms in SLC22A2 (OCT2):

OCT2 mediates the uptake of many drugs including antidiabetic drugs, platinum anti-cancer 

drugs, and histamine H2 receptor blockers, across the basolateral membrane of tubular 

epithelial cells25. In vitro studies of SLC22A2 genetic polymorphisms have been 

controversial. For example, some studies have shown that genetic variants of SLC22A2 
result in a significantly reduced uptake of metformin, lamivudine and other substrates26–29, 

whereas other studies have failed to show effects of SLC22A2 polymorphisms on substrate 

uptake30,31. Clinical data suggest that SLC22A2 variants are associated with metformin 

disposition and response30,32–34, cisplatin toxicity35, as well as with levels of a variety of 

endogenous metabolites in humans36. However, here again, clinical studies have been 

inconclusive as various studies report opposite associations between these genetic variants in 

SLC22A2 and clinical drug levels28,30,34.

Polymorphisms in SLC22A6 (OAT1) and SLC22A8 (OAT3):

OAT1 and OAT3 are renal transporters involved in the elimination and disposition of 

important drugs including statins, diuretics, nonsteroidal anti-inflammatory drugs, and anti-

microbial drugs (see UCSF-FDA Transportal, http://transportal.compbio.ucsf.edu/). Data 

indicate that the coding regions of SLC22A6 and SLC22A8 have low genetic and functional 

diversity and suggest that coding region variants of these transporters may not contribute 

substantially to inter-individual differences in renal elimination of xenobiotics37–39. Despite 

clinical evidence from DDI studies, which demonstrate that inhibition of these transporters 

significantly changes the levels of many endogenous metabolites (e.g. taurine, creatinine, 

indoxyl sulfate, bile acid conjugates40–42) or victim drugs43,44, there are few significant 

associations of genetic polymorphisms in SLC22A6 or SLC22A8 with drug levels or 

response. In fact, to our knowledge, only one study showed a significant association 

(p<0.05) of an SLC22A8 Asian-specific non-synonymous variant, Ile305Phe (rs11568482) 

with reduced renal and secretory clearance of the antibiotic, cefotaxime45. However, the 

effect of this variant has not been evaluated in an independent study.

Polymorphisms in SLC47A1 (MATE1) and SLC47A2 (MATE2):

MATE1 is expressed on the canalicular membrane of hepatocytes and on the apical 

membrane of the renal proximal tubule cell where it serves to secrete drugs into the urine46. 

MATE2 is expressed specifically on the apical membrane of the proximal tubule and works 

in concert with MATE1 in renal drug secretion47. These transporters are known to transport 

many drugs including metformin, oxaliplatin and cimetidine (see UCSF-FDA Transportal). 

Although in clinical studies, MATE1/MATE2 inhibitors produced significant differences in 

endogenous metabolite levels48 and in the disposition of MATE1/MATE2 substrates49,50, 

evidence indicating that genetic polymorphisms in the transporters can phenocopy the 

effects of clinical MATE inhibitors is inconsistent. For example, an intronic variant in 

Yee et al. Page 6

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://transportal.compbio.ucsf.edu/


SLC47A1 (rs2289669), without known function, is associated with metformin response in 

several studies12,18 but not in other studies17. Similarly, the functional variants in SLC47A1 
(5’UTR, rs2252281) and SLC47A2 (5’UTR, rs12943590) also showed significant 

associations with metformin disposition and response in a small cohort of approximately 

200 patients with type 2 diabetes51,52 but were not associated with response to metformin in 

a large cohort of patients with type 2 diabetes17. Considering that changes in metformin 

pharmacokinetic and pharmacodynamics as a result of transporter modulation are complex, 

these findings would need to be confirmed with other drug probes. Recent studies have 

shown that there are ethnic differences metformin response. In particular, patients from 

African American ancestry have better response to metformin than patients from European 

ancestry53,54. Further, the pharmacogenomic studies involving SLC47A1 or SLC47A2 have 

been carried out primarily in individuals of European ancestries. Thus, further studies are 

needed to determine the effects of polymorphisms in the MATEs on the disposition and 

response to metformin in other populations.

Polymorphisms in SLCO2B1 (OATP2B1):

OATP2B1 is expressed in all tissues (GTEx Portal), including the tissues of interest for 

xenobiotic absorption and disposition, such as brain (luminal membrane of endothelial cells 

of the blood brain barrier), small intestine, and liver (basolateral/sinusoidal membrane of 

hepatocytes)1. Further, the transporter is expressed in many tumors such as tumors 

originating in breast and prostate55. OATP2B1 mediates the transport of structurally diverse 

organic anions (sulfobromophthalein, methotrexate, pemetrexed, folic acid, reduced folates) 

(see UCSF-FDA Transportal). Emerging data suggest that SNPs within SLCO2B1 associate 

with altered protein function and clinical efficacy and/or safety. Several studies have 

evaluated the impact of an SLCO2B1 non-synonymous SNP, rs12422149 (Arg312Gln) on 

drug response. The results show that the OATP2B1-Arg312 is associated with increased 

transport of dehydroepiandrosterone (DHEAS) and increased resistance to androgen-

deprivation therapy (ADT)56 as well as lower overall survival rates in patients with prostate 

cancer56,57. Another independent study showed that OATP2B1-Arg312 is significantly 

associated with shorter time to progression in prostate cancer patients treated with androgen 

deprivation58. Furthermore, the nonsynonymous polymorphism, OATP2B1-Gln312, was 

associated with poorer response to rosuvastatin59. However, the effect of this SLCO2B1 
non-synonymous variant was not significant in the disposition or response for other 

substrates, e.g. montelukast60,61. Several clinical studies have shown that apple juice or 

grapefruit juice can inhibit OATP2B1 and hence reduce absorption (reduce plasma AUC 

levels by >1.5 fold) of several drugs that are substrates of OATP2B1, such as fexofenadine, 

atorvastatin, and celiprolol62,63. More recently, a drug in early development, ronacaleret, 

unexpectedly reduced plasma levels of rosuvastatin, a substrate of OATP2B164 by 50%. 

These interaction studies suggest that, similar to the inhibition effects of juice or drugs on 

OATP2B1 transport function, SLCO2B1 reduced function variants may play a role in 

modulating drug disposition (Table S3).

Polymorphisms in SLCO1B3 (OATP1B3):

OATP1B3 is predominantly expressed in hepatocytes (basolateral/sinusoidal membrane)1. 

The transporter mediates the transmembrane flux of bile acids, cholesterol, hormones and 
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their metabolites as well as drugs such as HMG-CoA reductase inhibitors, anti-hypertensive 

drugs, anti-cancer drugs, HIV protease inhibitors and others (see UCSF-FDA Transportal). 

An assessment of polymorphisms (SNPs) in SLCO1B3 revealed that a number of variants 

were associated with anti-cancer drug and immunosuppressant drug response or toxicity (see 

https://www.pharmgkb.org/gene/PA35844/variantAnnotation). For example, patients who 

are carriers of the T allele of rs4149117 (OATP1B3-Ser112Ala, c.334T>G), were 19% less 

sensitive to thrombocytopenia from carboplatin/paclitaxel treatment, than the homozygotes 

for the G allele65. SLCO1B3 699GG (rs7311358, OATP1B3-Met233Ile, c.699G>A) and 

344TT (rs4149117) genotypes are also associated with non-response to imatinib in patients 

with chronic myeloid leukemia66. Collectively, studies suggest that OATP1B3 may be an 

important polymorphic transporter for new and approved drugs.

Polymorphisms in ABCB1 (P-gp, MDR1):

The multi-drug resistance-1 (MDR1) protein belongs to ATP-binding cassette (ABC) family 

and encodes the efflux pump, P-glycoprotein (P-gp). P-gp, expressed in tumors, mediates 

drug resistance to many anti-cancer drugs67 and its roles in the intestine and blood-brain 

barrier have been extensively studied using different experimental methodologies such as 

knockout mice68, imaging probes69 and clinical studies of genetic polymorphisms70. The 

most highly studied polymorphisms in ABCB1 are the synonymous variant, C3435T 

(Ile1145Ile, rs1045642) and the non-synonymous variant, G2677T, Ala893Ser (rs2032582). 

These common polymorphisms are found in all ethnic groups. Functional studies showed 

that the C3435T variant is associated with lower expression levels of P-gp in the 

duodenum71 and placenta72 and that these lower expression levels have been correlated with 

increased digoxin plasma concentrations71. The ABCB1 non-synonymous variant, 

Ala893Ser, has been shown to cause reduced function and increased accumulation of 

substrates inside cells73,74. However, controversial and conflicting data of these 

polymorphisms were reviewed previously75,76 (also see resources: https://

www.pharmgkb.org/search?connections&gaSearch=rs2032582&query=rs2032582 and 

https://www.pharmgkb.org/search?connections&gaSearch=rs1045642&query=rs1045642).

Polymorphisms in ABCC2 (MRP2):

The multi-drug resistance associated protein-2 (MRP2) belongs to the ABC family. This 

transporter is highly expressed in the liver and kidney, and serves to efflux drugs from the 

cells into the bile and urine, respectively. Rare mutations in ABCC2 are known to cause a 

Mendelian disorder, Dubin-Johnson syndrome, which causes conjugated hyperbilirubinemia 

(https://www.omim.org/entry/601107). Many drugs and glucuronide-conjugated drug 

metabolites are known substrates of MRP2, e.g. methotrexate, the irinotecan inactive 

metabolite, SN-38 glucuronide, and etoposide (see UCSF-FDA Transportal). The most 

highly studied polymorphism in ABCC2 is the promoter variant, c.−24C>T (rs717620). This 

promoter variant is associated with lower expression levels of ABCC277 (Table S3). Several 

candidate gene studies have identified significant associations of the variant with drug 

levels78,79, toxicity80,81 and response82 of anti-cancer drugs, such as methotrexate and 

irinotecan. The effect of this variant on drug response shows contradictory results, which 

may be due to small sample sizes or differences in the populations studied (see PharmGKB 
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for clinical studies which are significant or not significantly associated with this promoter 

variant).

In summary, though there is some evidence that SNPs in the transporters in this section 

contribute to variation in drug response and toxicity, more experiments are clearly needed. 

For SNPs in SLC22A2 (OCT2), SLCO2B1 (OATP2B1), SLC47A1 (MATE1), ABCB1 (P-

gp), and ABCC2 (MRP2), reports in the literature have been conflicting, and sample sizes 

have generally been small. For variants of SLCO1B3 (OATP1B3) and SLC22A6 (OAT1), 

only a few studies have been published. Clarification with further studies and studies of 

larger sample sizes will greatly enhance our understanding of the clinical implications of 

polymorphisms in these transporters.

3. Functional Genomics of Drug Transporters

From a mechanistic view, polymorphisms in membrane transporter genes can modulate 

transport function by affecting either the activity of the transporter or expression level of the 

transporter protein. Polymorphisms can affect transporter activity through several 

mechanisms. For example, polymorphisms in the binding site of the transporter may directly 

affect the binding and de-binding of substrates and may act in a substrate-dependent fashion 

(e.g. SLC47A2 missense variant, Gly393Arg)51. In contrast, missense variants not found in 

the binding site may affect the expression level of the transporter protein in the plasma 

membrane by altering trafficking to and from the plasma membrane or protein stability (e.g. 

SLC47A2 missense variant, Pro162Leu)51. Noncoding region variants as well as 

synonymous variants (and some non-synonymous variants) may affect the mRNA 

expression level of the transporter by affecting rates of transcription or RNA stability. In this 

section, we provide a list of functionally characterized coding and promoter variants of 

twelve major transporters that play a role in drug absorption, disposition and toxicity, along 

with their in vitro effects on protein function or expression (Table S3). The majority of the 

SNPs were discovered in large sequencing projects of multiple genes, and a large research 

project focused on membrane transporter polymorphisms, the Pharmacogenomics of 

Membrane Transporters project83. More recently, genetic polymorphisms across the genome 

have been discovered through multiple sequencing efforts, and frequently accessed 

databases now post genetic variants in all genes: Exome Variant Server and eMERGE 

SPHINX (see more examples in Figure 2 and Table S4). Below, we highlight key examples 

in which the genetic polymorphism leads to functional changes.

Transporter variants that cause changes to transporter activity or protein expression:

Nonsynonymous transporter variants have been characterized using site-directed 

mutagenesis in mammalian cells (e.g. HEK293, CHO, HeLa) or X. laevis oocytes (see 

references in Table S3). For transporter variants that retain some functional activity, kinetic 

studies have been performed to determine the Michaelis-Menten constants (Km and Vmax 

values) of the variant transporters for various substrates. For some transporters, further 

studies to determine the molecular mechanisms responsible for changes in kinetic 

parameters have been performed including structural modeling, in situ docking of substrates 

in the binding pocket of the variant transporter, and measurement of the transporter protein 
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level on the cell membrane. A glance at the table (Table S3) shows 180 non-synonymous 

variants that have been characterized in cellular assays of which ~50% exhibited reduced 

transporter function and/or expression levels on the membrane compared to the reference 

allele. Many of these reduced function variants are substrate-dependent. Generalizable 

findings for functional studies of drug transporter variants are as follows:

• Several well-characterized xenobiotic transporters have common reduced 

function nonsynonymous variants found at allele frequencies greater than 10% in 

particular ethnic populations. These include: OATP1B1-V174A (rs4149056), 

BCRP-Q141K (rs2231142), and OCT1–420del (rs202220802). These variants 

have been associated with changes in efficacy and safety for a number of drugs 

and are considered in this manuscript as highly significant transporter 

polymorphisms (see Table S1 and S2).

• Mechanisms responsible for reduced function are more frequently related to 

reduced protein expression levels on the cell surface membrane (e.g., the 

OATP1B1-V174A and BCRP-Q141K) rather than direct effects on substrate 

binding and translocation.

• Less common and rare nonsynonymous variants (minor allele frequency (MAF) 

< 1%) are more likely to exhibit significant reductions in their uptake kinetics 

than more common variants.

• Most of the twelve transporters have at least one less common nonsynonymous 

variant (1% - 5% in at least one population) that affects transporter kinetic 

parameters and many of these are present in one ethnic group only. Examples 

are: OCT1-G401S (European), OCT2-K432Q (African), MATE2-P162L 

(African), OAT1-R50H (African), OAT3-I305F (Asian) and OATP1B1-G488A 

(African).

• The majority of less common reduced-function transporter variants have not been 

associated with drug disposition or response in clinical studies, presumably due 

to their low allele frequencies and the difficulty of obtaining sufficient numbers 

of study subjects who harbor the variants.

Collectively, these finding suggest that further studies should be conducted assessing the 

associations of less common and rare variants in transporters and drug response, or 

combinations of less common and rare variants in individual transporters (as in the case of 

OCT1).

Transporter variants that cause changes in transcriptional rates:

Though many noncoding variants in transporter genes are associated with variation in drug 

response (Table S3), few of these variants have been characterized. A handful of variants in 

promoter, enhancer or UTR regions of these transporters have been functionally 

characterized using reporter assays with luminescent probes such as luciferin (19742321). In 

general, the effect of variants in non-coding regions may be subtle modulating, but not 

ablating, expression levels. A noncoding region variant in a transporter gene may change the 

expression level of the mRNA transcript and correspondingly, the transporter protein level. 
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Variants that are associated with changes in transcript levels are termed expression 

quantitative trait loci (eQTL). Through major efforts of consortia or large research projects, 

many eQTL databases are available publicly. These databases allow users to look up genetic 

polymorphisms in any gene, including membrane transporter genes, and determine whether 

they are significantly associated with mRNA expression levels of the transporter or other 

genes in various tissues. The most popular eQTL database is the GTEx Portal. In Table S3, 

we highlighted several SNPs in the promoter and UTR regions of transporters that are 

known eQTLs and alter luciferase activity in reporter assays.

4. Clinical Study Design and The Use of Modeling and Simulation

Clinical Study Design:

Studies of the clinical effects of transporter polymorphisms can provide enormous insights 

into the role of a transporter in drug disposition, response and toxicity. Unlike DDI studies, 

which often involve the use of non-selective inhibitors, studies of transporter polymorphisms 

provide direct evidence for the pharmacologic role of a particular transporter. However such 

studies may be challenging due to the low allele frequencies of many transporter 

polymorphisms (<20%), and the fact that the effects of transporter polymorphisms are 

largely seen in individuals who are homozygous. Thus, Hardy Weinberg equilibrium 

predicts that for a variant with an allele frequency of 20%, only 4% of the population will be 

homozygous. Of course, if allele frequencies are lower, homozygotes will be even rarer; 

leading to underpowered studies or studies where conclusions are drawn from a handful of 

patients. Other issues that should be addressed during drug development are when and how 

to evaluate the effects of genetic polymorphisms on drug disposition or response. As in our 

previous manuscript2, we recommend that during all phases of drug development, genetic 

polymorphisms in drug transporters are studied. Furthermore, recent guidances from 

regulatory groups (e.g., the FDA draft guidance of Clinical Drug Interaction Studies, the 

FDA guidance of Clinical Pharmacogenomics, the International Council for Harmonization 

(ICH) Guideline E18 on Genomic Sampling and Management of Genomic Data, and the 

FDA final guidance of E18 Genomic Sampling and Management of Genomic Data (see 

URLs in Table 1)) encourage sponsors to routinely collect DNA from all subjects for 

retrospective analysis of polymorphisms in transporters of interest. In the pre-clinical phases 

of drug development, it is important to characterize which transporters are important 

determinants of the drug disposition. For substrates of BCRP or OATP1B1 in which the 

transporter plays an important role in drug disposition, the ITC recommends that clinical 

studies are considered to assess the effects of genetic variants on the pharmacokinetics and if 

possible pharmacodynamics84. Key considerations for pharmacogenomic clinical designs 

have been reviewed85.

Pharmacogenomic Discovery Studies:

Though there have been a number of candidate gene pharmacogenomics studies focused on 

transporter polymorphisms, many have been underpowered to make meaningful conclusions. 

Further, most have focused on more common variants in transporter genes. To enhance 

reproducibility of results and explore the effects of less common genetic variants, larger 

sample sizes are needed. In order to accomplish this feat, many investigators are pooling 

Yee et al. Page 11

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples to obtain the necessary sample sizes. For example, a recent meta-analysis 

examining the association between genetic variants in transporter genes and metformin 

response included up to 7,968 samples17.

In addition to underpowered studies focused on candidate genes, most of the retrospective 

pharmacogenomic studies have evaluated the effect of transporter variants in isolation, i.e., 

lack the information on the potential effect of multiple coexisting genetic covariates (e.g., 

SLCO1B1 and ABCG2 polymorphisms in the same subject) together with demographic 

factors (e.g., age, ethnicity) on the pharmacokinetics of a drug and/or its DDI sensitivity. The 

population pharmacokinetic modeling reported recently for simvastatin acid identified 

combination of genetic and demographic risk factors associated with altered simvastatin 

exposure and increased myopathy risk that was not solely attributed to rs414905686. In 

addition, a number of studies have reported differences in transporter activity and plasma 

exposures of statins between Japanese and Caucasian populations, which appear to extend 

beyond the SLCO1B1 genotype86,87. However, these findings have been challenged in other 

studies, which suggest that genetic variants in SLCO1B1 and ABCG2 may explain much of 

the ethnic differences between plasma exposures of statins88.

Role of Modeling and Simulation:

Modeling and simulation, especially physiologically-based pharmacokinetic (PBPK) 

models, can be used to understand and project the effects of genetic polymorphisms on 

pharmacokinetics and pharmacodynamics during drug development, as illustrated in number 

of literature examples predominantly focusing on OATP1B121,89. Recently, PBPK modeling 

approach was applied to predict morphine clearance and associated inter-subject variability 

in children with different OCT1 allelic variants90. Plasma concentrations of many 

prescription drugs are affected by SLCO1B1 polymorphisms, particularly the OATP1B1-

Val174Ala variant (rs4149056, c.521T>C)2. In spite of their strong associations with 

systemic plasma levels and muscle toxicities of various statins, SLCO1B1 polymorphisms 

have minimal effect on pharmacodynamics of statins, i.e. their lipid lowering effects20,91. 

These observations can be explained by understanding that hepatic elimination is the 

predominant route and that metabolic clearance (simvastatin acid) and biliary efflux 

(pravastatin) rather than active uptake determine liver exposure of statins21,92,93. In contrast, 

polymorphisms in efflux transporters on the canalicular membrane such as BCRP (or efflux 

transporter-mediated DDI) are expected to have a significant effect on the liver exposure84. 

Verification of these model-derived tissue exposures and associated challenges are discussed 

in detail in the Guo et al. whitepaper in this Clin Pharmacol Ther issue. A PBPK model-

based approach also provides a framework to inform power calculations and guide the 

design of either pharmacogenetic or DDI studies, as illustrated by Gertz et al.89 where this 

mechanistic approach was applied to simulate repaglinide exposure in subjects with co-

existing CYP2C8*3 and OATP1B1-Val174Ala.

Pharmacogenomic clinical data provide an incredibly valuable dataset for the verification of 

the PBPK models, as they allow evaluation of the importance of individual transporters/

elimination mechanisms in the model. Recent examples illustrate the use of plasma data 

from different SLCO1B1 variant groups to validate PBPK models developed for repaglinide, 
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simvastatin acid, simeprevir and pitavastatin21,89,94. Following initial verification of the 

simulated plasma profiles against pharmacogenomic data, PBPK models were subsequently 

used to predict liver and muscle exposure in subjects with different polymorphism and/or 

predict DDIs with these clinical probes. Overall, there is less confidence in transporter 

PBPK models compared to PBPK models for drug metabolizing enzymes because of 

knowledge gaps in transporter biology and limited experience in determining and modeling 

the kinetics of transporters (see this issue by Guo Y. et al.). The recently revised FDA draft 

guidance of In Vitro Metabolism and Transporter-Mediated Drug-Drug Interaction Studies 

(see Table 1) recommends that clinical data from a wide range of DDI or pharmacogenetic 

studies be used to verify PBPK models developed for transporter substrates.

5. Future Directions and Conclusions

Future directions will depend on continued use and growth of technology in the discovery of 

important associations between genetic variants in transporters and drug response, as 

highlighted below.

Genomewide Association Studies:

Genomewide association studies (GWAS) continue to be a powerful tool for determining the 

role of transporters in human biology and pharmacology. In fact, in addition to genomewide 

level significant results between pharmacogenomics traits and polymorphisms in ABCG2 
and SLCO1B1, GWAS have revealed associations between polymorphisms in other ABC 

and SLC transporters and drug response at genomewide level significance (p<5×10−8) 

(Table S1 and Table S5)95. Surveying the NHGRI-EBI GWAS Catalog (https://

www.ebi.ac.uk/gwas/) and Pubmed, we identified eleven publications relevant to 

pharmacogenomic traits, which described significant associations with polymorphisms in 

ABC or SLC transporter genes or loci (p<5×10−8). However, with the exception of 

polymorphisms in ABCG2 and SLCO1B1, associations between polymorphisms in other 

transporter genes (e.g. SLC17A1, SLC2A2, SLC15A1, SLCO1B3) (Table S5) and 

pharmacogenomic traits have yet to be replicated in independent cohorts. It is envisioned 

that some of these associations will be replicated in future studies. GWAS is envisaged to 

facilitate identification of potential endogenous biomarkers for transporters, as reported 

recently for OATP1B196, especially considering interest in application of endogenous 

biomarkers to support evaluation of transporter-mediated DDI risk in early stages of drug 

development (see Chu et al in this issue for details). In the last few years, there has been 

growing interest with phenome-wide association studies (PheWAS), in which many 

phenotypes (disease, traits, drug response, etc) are correlated with a particular single genetic 

polymorphism97. For example, scanning across all the available GWAS, one could look for 

new implications of a single polymorphism, such as those in transporters. Such resources are 

publicly available, e.g. PheWAS Resources, https://phewascatalog.org/

Massively Parallel Sequencing:

In recent years, massively parallel sequencing has been increasingly used for discovering 

SNPs in pharmacogenes in large and diverse ethnic populations from various regions of the 

world 98–100. The majority of these studies have focused on CYP enzymes. However some 
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of these studies have included membrane transporter genes known to play a role in drug 

response, such as SLCO1B1 and ABCG298,99. Leveraging publicly available human 

variation databases, such as the 1000 Genomes Project, Exome Variant Server, and gnomAD 

browser (see Figure 2, Table S4) allows an extensive examination of the spectrum of 

genomic variations across all genes including SLC and ABC transporters. Some advantages 

of Next Generation Sequencing (NGS) methods are that they are potentially cheaper and 

analyses are simpler compared to traditional Sanger sequencing. Further, the results 

generated from NGS allow re-analysis of the raw sequencing data, especially when updated 

information about new variants or reclassified variants become available in the future. 

Although NGS has been used for discovering SNPs, its use in the identification of the 

genetic determinants of drug response and adverse drug response has been very limited. The 

following are examples of how NGS have been used in the discovery of variants in 

membrane transporters, which are associated with drug disposition, response or toxicity.

• NGS to identify genetic determinants for drug levels (or exposure). Recently, the 

Niemi laboratory used NGS to sequence candidate genes to identify the genetic 

basis of inter-individual variation in response to montelukast and clopidogrel as 

well as concentrations of drug metabolites101,102. These studies were conducted 

in approximately 190 healthy volunteers, focusing on relevant enzymes and 

membrane transport proteins. The results showed that individuals who are 

carriers of uridine diphosphateglucuronosyltransferase (UGT), UGT1A3*2 

(rs3821242 and rs6431625) have lower montelukast exposure and greater 

exposure to montelukast metabolites with very large effect sizes (effect size 

≥18% change per copy of minor allele, p<10−9). In general, these SNPs are not 

readily available in genotyping arrays (see NCBI dbSNP) and thus massive 

parallel sequencing facilitated the discovery of common SNPs (~40% allele 

frequencies) associated with montelukast exposure. Other candidate genes, 

including the transporters, ABCC9 and SLCO1B1 were also associated with 

montelukast metabolite concentrations.

• NGS to identify genetic determinants for non-response to medication. NGS 

technology was also used to sequence DNA from patients who are extremely 

resistant to particular medications. For example, Chua et al. 103 performed 

whole-exome sequencing of DNA samples from 12 patients who exhibited 

extreme therapeutic resistance to azathioprine or 6-mercaptopurine. The study 

was designed to focus on genes within the drug disposition pathway, which 

included SLC and ABC transporters as well as enzymes103. Although the sample 

size was small, a potential missense variant in the transporter, SLC17A4, had 

significantly higher allele frequency in the patients (3/24 (12.5%)) compared to 

population controls from public data sources (101/8600 (1.2%) (p<0.0001).

In addition to its use in the discovery of variants that associate with clinical drug response, 

disposition and toxicity, NGS technology is also being used in preemptive genotyping in the 

patient care setting. The design and implementation of preemptive approaches to integrate 

pharmacogenomic data in the electronic health record has begun in several healthcare 

institutions since 2012 and may include functional variants in SLCO1B1 and ABCG2 (see 

examples104,105). Although genotyping using arrays is most commonly employed in 
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preemptive studies, there are recent examples where exome-sequencing with NGS has 

slowly been adopted in a few healthcare institutions, such as eMERGE-PGx Project106. In 

these studies, genotype information is deposited in the electronic health record along with 

some decision support tools, with the goal of assisting clinicians in the use of genomic 

information to guide choice of therapies and doses.

Drug Development Perspective:

Pharmaceutical industry-leading practices now incorporate pharmacogenomics routinely in 

drug development to better understand drug safety and response in individual patients. For 

many years, pharmacogenomic studies largely focused on common polymorphisms in drug 

metabolizing enzymes. However, proactive strategies now include genotyping patients using 

genome-wide platforms that are specifically enriched for ADME genes including 

transporters. With this approach, data are collected during the conduct of the trial (and 

across many trials in a drug development program) and can be retrospectively analyzed for 

association with disposition, toxicity and/or efficacy. Costs of collection, genotyping and 

long term biorepository storage are now in the realm of making this a relatively low-cost 

endeavor107,108. Furthermore, as more companies adopt such strategies, logistics are enabled 

by several commercial organizations offering such services. Such practice has resulted in a 

relatively low-cost approach to improved understanding of pharmacokinetic and 

pharmacodynamic mechanisms including the role of particular transporters and enzymes in 

the absorption, disposition, efficacy and toxicity of drugs. While it is not uncommon to 

identify genetic polymorphisms that are statistically associated with differences in drug 

disposition, it is also not uncommon that those differences are deemed clinically non-

meaningful when considering the therapeutic window of the drug. When clinically 

meaningful associations exist, it is important to identify those during drug development and 

understand their effect with respect to other co-existing polymorphisms so that appropriate 

dosing or exclusion decisions can be made. In addition to improved practices with the 

industry and better understanding of pharmacologic mechanism, regulators are increasingly 

expecting and asking for such data.

CONCLUSION

In this review, evidence has been presented that genetic polymorphisms in the emerging 

transporter, SLC22A1, be considered in addition to previously recommended 

polymorphisms in ABCG2, and SLCO1B1 during drug development when evaluating 

mechanisms responsible for inter-individual variation in drug disposition, response and 

toxicity. Review of clinical and functional genomic studies of other drug transporters 

including SLCO2B1, SLCO1B3, ABCB1, and ABCC2 suggests that further studies are 

needed to understand the role of polymorphisms in these transporters in clinical drug 

disposition and response. The integrated use of PBPK modeling and pharmacogenomic data 

to support model development and improve our understanding of the consequences of 

genetic variants in membrane transporters on drug disposition and response is 

recommended. Future studies using GWAS and massively parallel sequencing approaches in 

larger cohorts of patients are clearly needed to advance our understanding of transporter 
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polymorphisms and variation in drug disposition and response so that they may be fully 

integrated into clinicians’ decision-making when choosing doses and therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An overview of selecting highly important polymorphisms in transporters that mediate 

clinical drug-drug interactions.
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Figure 2. 
Commonly used databases for pharmacogenomics and membrane transporter research. The 

figure shows different categories of databases. The asterisk (*) shows that the database is not 

publicly available. See Table S4 for links to each of the databases, as well as for descriptions 

of the database categories.
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Table 1.

List of URLs to the guidelines and guidance from Food and Drug Administration (FDA), European Medical 

Agency (EMA), Pharmaceuticals and Medical Devices Agency (PMDA) and International Council for 

Harmonization (ICH), which are mentioned in this review.

Agency: Title of the 
Guidance, Year

URL

FDA: Guidance of 
Clinical 
Pharmacogenomics, 2013

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM337169.pdf

FDA: Draft Guidance for 
Clinical Drug Interaction 
Studies, 2017

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

FDA: Draft Guidance for 
In Vitro Metabolism and
Transporter Mediated 
Drug-Drug Interaction 
Studies Guidance for 
Industry, 2017

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM581965.pdf

FDA: E18 Genomic 
Sampling and 
Management of Genomic 
Data, 2018

https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm504556.pdf

EMA: Guideline on 
investigation of drug 
interactions, 2012

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

PMDA: Japanese 
Guideline on the 
Investigation of Drug 
Interactions, 2014

https://www.pmda.go.jp/files/000206158.pdf
http://www.solvobiotech.com/documents/Japanese_DDI_guideline_(draft)_2014Jan.pdf (English) (require 
registration to login for access)

ICH: Guideline E18 on 
Genomic Sampling and 
Management of Genomic 
Data, 2017

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/10/WC500236219.pdf
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