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MODELS OF DYNAMIC COMMUTER BEHAVIOR 
USING LONGITUDINAL DATA 

M. Khanal and W.W. Recker 

University of California, Irvine, CA 92717 

Department of Civil and Environmental Engineering 

and 

Institute of Transportation Studies 

University of California, Irvine, CA 92717 

Abstract 

The majority of demand models used at present are based on cross-sectional data. Behavior, 

however, is temporally related. Using three waves of a panel data of 2200 commuters in 

Southern California, this paper conducts a comparative analysis of three types of models: an 

ordered prob it model, a two-period joint choice probit model, and a two-period dynamic beta­

logistic model. The choice behavior modeled is the choice between driving alone and sharing a 

ride for the work commute. Prediction tests both on a hold-out sample as well as on a forecast 

sample were conducted. With the hold-out sample, all three models performed similarly. With 

the forecast sample, however, the beta-logistic model performed better than the other two models 

in aggregate predictions, and approximately the same as the joint choice probit model in 

disaggregate predictions, while both of these models performed better than the ordered prob it 

model. 
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1. INTRODUCTION 

The level and extent of demand for a transportation service, including the determinants of 

the demand, can be meaningfully analyzed only by incorporating their evolution over time. 

Conversely, analytical tools in use at the present time are, in the majority of cases, based on data 

observed at a single point in time. Although time series on aggregate measures of various aspects 

of transportation have been used for trend projections, and cross-sectional data for different time 

periods pertaining to the same system have been collected and used in the past, observations on 

the same set of persons over an extended period of time have only infrequently been collected 

and used in transportation behavior analysis. To the extent that temporal dependences and 

questions arising from heterogeneity of behavior are important, behavioral modeling in the 

transportation planning field is not adequately developed. 

Problems of state dependence and heterogeneity in behavioral modeling have been 

recognized in various disciplines, including labor economics (Heckman and Willis, 1977; 

Heckman, 1981b; and Davies, Crouchley and Pickles, 1982 ), urban and regional planning (Clark 

and Huff, 1977; Davies, 1984; Davies and Crouchley, 1984; Davies and Pickles, 1985; Dunn 

and Wrigley, 1985; and Dunn, Reader and Wrigley, 1987 ), and highway safety (Bates and 

Neyman, 1951 ). Applications more directly related to transportation decision making include 

the works of Goodwin (1989), Mahmassani and Chang (1986), Mahmassani (1990), Johnson and 

Hensher (1982), Daganzo and Sheffi (1982), Uncles (1987), Kitamura and Bunch (1990), 

Hensher and Le Plastrier (1985), and Smith, Hensher and Wrigley (1986), all of which are 

concerned with discrete choice-making processes. 

Existing discrete-time models for recurrent choice analysis generally can be classified 

into two major categories: "error distribution models" and "probability distribution models." In 

the former category of models the effect of such random variations as those rooted m 

heterogeneity in behavior are removed by integrating the probability expression over the domain 

of the random component, requiring a priori assumptions about the distributional properties of 

the random component. Examples of error distribution models are provided in Heckman (1981a) 

and Kitamura and Bunch (1990). 
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Kitamura and Bunch (1990) present a dynamic analysis of household car ownership in 

which the effects both of heterogeneity in behavior among households and of past behavior on 

current behavior are accounted for explicitly. Examination of hypotheses on state dependence 

and heterogeneity has been accomplished through alternate specifications of the error terms. 

They test two specifications for the structure of error: a components-of-variance error scheme 

and a one-factor error scheme. Using the two schemes to control for heterogeneity, they estimate 

eight different variants of the model. With the components-of variance scheme, the conclusion 

was that heterogeneity is not significant but state dependence is; conversely, with the one-factor 

scheme both heterogeneity and state dependence were found to be statistically significant. 

The Heckman and Kitamura and Bunch approaches belong to a class of dynamic models 

in which the heterogeneity of behavior is removed by integrating out the error term from the 

model. Apart from this explicit recognition of heterogeneity and the treatment used to control for 

it, reliance is largely on techniques traditional to discrete choice modeling. Probability 

distribution models are, however, from a different class. Instead of focusing on the error term in 

the utility or latent value function of the alternatives in the choice models, this class of models is 

predicated on distributional assumptions about the probability of choice itself. Closed solutions 

are obtained for a certain class of distributions of the choice probability, with differences in the 

measured variables introduced in the model through the parameters of the distribution of the 

choice probability. 

To account for heterogeneity or variation in choice behavior between two alternatives at a 

given point in time, the choice probability, p, can be assumed to be beta-distributed. 

The beta distribution has the density function: 

a,b>O (1) 
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where 

1 

B(a,b)= Je-1(1-t)b-ldt= f(a)f(b), and 

0 
f(a+b) 

(2) 

r ( ) is the gamma function. 

There are three reasons for the choice of beta distribution to represent the distribution of 

probability of choice. First is that its domain is the interval (0, I). Second is that it is 

parsimonious with only two parameters, a and b. Third is that the shape of the distribution is 

flexible. When a> I and b> I the distribution is unimodal. The shape is U-shaped when a<l and b 

<l. It is J shaped when a>l and b<l, and is reversed J-shaped when a<l and b>l. The shape is 

rectangular when both a and b are equal to I. With regard to symmetry: when a=b it is 

symmetric; it is negatively skewed when a>b and positively skewed when a<b. 

With the specification of the distribution of probability, the effect of unobserved factors 

on the probability of choice can be removed by integrating the probability function over its 

domain. Mean and variance can be thus obtained. An especially attractive feature of the beta 

distribution in this regard is that these integrations reduce to gamma functions, computations for 

which can be further reduced by using the recurrence relation f(x+ I)= xf(x). 

If it can be assumed that the error terms in the two time periods are uncorrelated, the 

choice over the two periods can be modeled as a product of two probability functions, each beta­

distributed. But the error terms are correlated due to person specific unobserved factors. 

Therefore, the choice probabilities for the different time periods are also related. If this 

relationship between choice probabilities can be specified, then the sequence of choice over time 

can also be expressed in terms of a single beta distribution function. 

Specification of such a relationship will allow for the measurement of state dependence of 

choice at one time period on choice at some preceding time point. This state dependence is the 

dependence between propensities of choice, since the dependence measured is between 
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probabilities of choice and not between dummy variables measuring the selection or rejection of 

the alternatives or states. The association between propensities of choice measures the degree of 

attachment or the strength of attraction to an alternative. In a dummy variable, this measure of 

the strength of attachment is lost and all that is recorded is whether or not the person chooses a 

particular alternative. 

Approaches have been adopted by other researchers toward extending the one period 

static Beta-Logistic Models to model choice behavior over two or more periods. In a study of 

residential mobility histories from birth of 633 individuals residing in County Borough of Leeds 

in England in 1973, Davies (1984) examined both heterogeneity and state dependence problems. 

The heterogeneity problem is addressed using the beta distribution approach, while the state 

dependence, or dynamic part, is handled by assuming that all probabilities are a logistically­

scaled function of some reference probability. Denoting the reference period as r, this means that 

the probability for some time tis given by: 

(3) 

where, 

Yqt = the logistic scaling factor for individual q at time t. 

The logistic scaling factor used by Davies is given by: 

(4) 

The vector Xqt is the vector of exogenous variables associated :with decision maker q and 

the time t. For computational simplification, the likelihood function is expressed in terms of 

probability for the reference period using a Maclaurin series expansion of the logistic scaling 

function; the logarithm of the likelihood is then maximized to compute the required parameter 

estimates. 

5 



The effects included in the study were: duration of stay in years, age in years beyond age 

21, and time in years measured from year 1920. Age effects and the need for time-varying 

variables were shown to exist, while the evidence of duration-of-stay effects was not found to be 

conclusive. Though the work by Davies represents a valuable extension of the beta-logistic 

approach and an important step toward estimating truly dynamic models, the following caveat 

about the methodology adopted appears to be in order. 

By expressing the posterior probability of choice P qt as a deterministic function of the 

reference period probability P qr, the covariance between two period error components, 

expressed by equation (6), is reduced to zero in the Beta-Logistic Model generalization adopted 

by Davies. No theoretical justification to using the logistic scaling factor is given, other than the 

fact that it allows the posterior probability value to be limited between zero and unity. The 

generalization is also not tested empirically. Additionally, the values of all exogenous variables 

are assumed to be zero for the reference period. The distribution of probability is thus defined 

only by constants in the beta parameters. 

Smith et al. (1986) used the methodology developed by Davies to analyze the decision of 

households relative to whether to replace or to keep their car in each year of a four year period 

between 1981 and 1984 in Sydney, Australia. Two groups of variables were used in the model: 

"slow" and "fast. 11 The "slow" set of variables are those that are unchanging or are changing only 

slowly and are used in the specification of the beta distribution parameters. The "fast" variables 

are those whose values vary during the course of the study period. These variables are used in the 

specification of the scaling factor in the logistic scaling function. 

The main problem with the paper by Smith et al. is the division of exogenous variables 

into the "slow" and "fast" groups. The authors do not present either a theoretical or an empirical 

reasoning of key methodological decisions taken in their study. The extension of Beta-Logistic 

models to longitudinal analysis appears to be unjustifiable, and thus the conclusions obtained 

from such extensions are suspect. 
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The research methodology adopted in this paper is to test the validity of the generalization 

adopted in the two papers described above. Since a theoretical test of the generalization is not 

readily available, the methodology adopted is to conduct empirical tests. The empirical tests are 

conducted in the context of the dynamics of the choice of mode for daily commute among full­

time workers in the southern California South Coast Air Basin. 

2. DATA ON COMMUTING BEHAVIOR 

The data used in this study relate to the commuting behavior of full-time employees in the 

South Coast Air Basin in California. They are from a panel ( instituted in 1990 ) of 

approximately 2,200 commuters. A detailed description of the panel study is provided in Uhlaner 

and Kim (1992). Approximately half of the commuters in the panel work in the Irvine Business 

Complex (IBC) located near John Wayne Airport in Orange County. The other half are from 

different areas from around the contiguous urbanized four-county area comprising Los Angeles, 

San Bernardino, Orange, and Riverside in Southern California. Businesses included in the survey 

are all relatively large, with 100 or more employees. The survey was conducted by the Institute 

of Transportation Studies, the University of California, Irvine, as part of a University of 

California Transportation Center project on commuter behavior. The first wave consists of 2,189 

commuters. The study uses Waves 1, 5, and 8 of this panel, which encompasses a period 

beginning February, 1990 to February, 1993. The time periods during which the surveys were 

mailed were: February and March of 1990 for Wave 1, July of 1991 for Wave 5, and the middle 

of February of 1993 for Wave 8. 

A brief description of the questionnaire used in the first wave is provided below. The 

questionnaire has six parts, Part A through Part F. The first part, Part A, is short and has 

questions regarding the day, the distance traveled, the travel time length, the congestion level, 

whether or not a freeway was used on the respondent's last working day, and the mode used for 

the commute. Following this preliminary section, there are three parts, Part B through Part D, 

based on the mode used. The modes are: bus; shared ride in a car, truck, or van; and drive alone, 

including motorcycle. Respondents are also allowed to pick a fourth mode, 'other'. However, 
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only 1.1 % of the total number of respondents in the first wave indicated this choice as their mode 

of travel. (Since the 'other' mode is not restricted to one specific mode, there is no separate 

mode-specific part devoted to the 'other' mode.) Part E contains a set of questions on the 

respondent's attitude toward various issues regarding mobility and congestion, including whether 

or not the respondent rode the bus any time during the previous two weeks, and questions 

regarding the respondent's knowledge of employer incentives for non-solo modes. The last part 

of the questionnaire (Part F) has socio-economic and personal questions related to mobility. 

The mode-specific sections of the questionnaire have questions that can be classified 

broadly into three groups. The first group of questions are, as the name suggests literally, mode­

specific. For example, for bus mode some of the questions in the first group are whether the 

service type was express or local, whether or not a bus pass was used, and whether or not bus use 

involved transfers. The second group of questions are of a more general nature. Some examples 

of the second group are: the length of walk from the bus stop or from the drop-off point or 

parking spot to the work site, whether stops were made in the trip from home-to-work or from 

work-to-home, and the frequency of use of the mode during last two weeks. The third group of 

questions in each of the three mode-specific parts are related to the availability to the respondent 

of the two alternate modes not used on the day of the survey. 

The questionnaire used in the fifth wave is slightly different from that used in the first. 

The changes in the newer questionnaire reflect improvements in the questionnaire design. There 

are also some new questions about changes in respondent's job and employment type and 

location. The number of response categories in some variables such as occupation type and 

income, are also different in the two waves. The categories in such cases were redefined by 

combining two or more classes into one class. Details of such modifications follow later in the 

paper. Overall, there are many common travel-related survey questions to allow for a meaningful 

dynamic analysis of travel behavior. The eighth wave questionnaire is similar to the 

questionnaire for Wave 5. 

Choice data are available for three modes: bus, shared ride, and drive alone. Of the 2189 

respondents in the first wave only 1.7% were found to use bus, while for the shared ride and the 

8 



Uncles, M.D., 1987, "A beta-logistic model of mode choice: goodness of fit and intertemporal 
dependence". Transportation Research B 21B No 3, 195-205. 

Wachs, M., 1991, "Transportation Demand Management: Policy Implications of Recent 
Behavioral Research°, Journal of Planning Literature, Vol. 5, No. 4, 333-341. 

Willson, R.W. and D.C. Shoup, 1990, "Parking subsidies and travel choices: Assessing the 
evidence", Transportation, 17, 141-157. 

35 



drive alone modes the market shares were 17.4% and 79.9%, respectively. Because of this 

predominance of the shared ride and the drive alone modes, the bus mode is excluded from the 

analysis reported here. The two modes selected for analysis will be abbreviated as SR for shared 

ride and DA for the drive alone modes. 

3. MODEL SPECIFICATION 

Denote the probability of choice of SR for wave i as Pi- The probability of choice of DA 

is thus 1-Pi- With two time periods (Waves 1 and 5) and two choices per time period (DA and 

SR) the four possible state transitions are: SR➔SR, SR➔DA, DA➔SR, and DA➔DA. The 

probabilities of choice for different time periods in each of the four paths can not be expected to 

be independent of each other due to correlation among unobserved factors in the different time 

periods. If this correlation can be removed, the probability function for each of the four possible 

paths can be specified very simply, and the probability functions, in the order listed above, can be 

represented as: p1p5, pi(l-p5), (l-p1)p5, and (1-p1)(l-ps). 

For individual q, at time t, let the probability of sharing a ride either exclusively or 

occasionally be P qt- Since only two modes are considered, the probability of driving-alone is 

thus equal to (1-P qt)- Let there be a total of T time periods and define an indicator variable fqt 

which takes a value of zero if the individual drives alone in period t and 1 if he or she does not. 

Then the likelihood function for the probability of the individual choosing the exhibited sequence 

can be expressed as a conditional function of the parameters of the probability processj3, and the 

individual-specific error terms eq and eqt, as shown in the following equation. 

(5) 

where, 

j * is the exhibited sequence of choice. 

The probability of choice during a given time period is specified, following Davies 

(1984), as a logistic function of the probability for the reference time period r. The reference 
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period is taken to be the first period, which in this case is Wave 1. The subsequent period 

probability is assumed to be a function of the reference period probability as shown in Equation 

(3). The logistic scaling factor 'Yqt is expressed as an exponential function of the difference 

between the exogenous variables for the two periods and also of the levels of the variables in the 

first period, similar to, but not quite the same as, the function shown in Equation (4). 

The likelihood function expressed by Equation (5) is conditional. It is subscripted by q to 

signify the conditioning on individual-specific error terms. The individual-specific effects are 

removed by integrating the product of Lq and the density function of choice probability over its 

domain, resulting in 

(6) 

Making use of the assumption that p is beta distributed, the expression for the conditional 

likelihood (CL) function for each of the four possible paths outlined earlier can be reduced to the 

following simple form: 

CLss = P1Ps 

CLsn = P1 (1- Ps) 

CL08 = (l-p1)Ps 

CLnn = (1- P1)(l- Ps) 

The unconditional likelihood (UL) function for the four alternative paths are as shown below: 

1 a+l(l )b-1 
UL _ f 'Y sP - P d 

ss - J( p o ( 1-p + y 5p )B( a, b) 

fl pa(l-p)b 
ULsn = J( ~--~~~dp 

o ( 1- p + y 5p) B( a, b) 

(7a) 

(7b) 



(7c) 

(7d) 

B(a,b) in Equations (20) denotes, as before, the beta function with parameters "a" and 11 b. 11 

4. MODEL ESTIMATION 

A review of current literature (refer to Cervero and Griesenbeck (1988), Feeney (1989), 

Ferguson (1990), Small(l983), Teal (1987), Wachs (1991), and Willson and Shoup (1990), 

among others) on ride-sharing and on the effects of incentives for high-occupancy and 

disincentives against single-occupancy vehicles in the commute to work helped identify the 

following groups of variables as potential determinants of the choice between the two modes: 

accessibility, mobility, socio-economic, dynamic, incentive, and disincentive variables. The 

individual variables available from the survey and belonging to any one of the above groups are 

listed in Table 1 (the variable symbols are shown in bold). For each variable two symbols are 

shown, one corresponding to level of the variable in Wave 1 and the other corresponding to 

difference in the variable values between Waves 1 and 5 (Wave 5 minus Wave 1). 

The mean of the distance-to-work for the 681 cases with non-missing values is 16.5 miles 

and the median is 13 miles. Of these, more than half (376) report having a change in value 

between Waves 1 and 5, with a mean change of about .7 miles. (With a standard error of .35, the 

estimate of the mean is almost equal to zero, at the 5% level.) Mean vehicle ownership for this 

sample is 2.41; 234 households reported a change in vehicle ownership between the two waves. 

Over 65 percent of the commutes use a freeway in either wave. Of the 456 commuters 

who used a freeway 213 had an HOV lane available in Wave 1. This breakdown for Wave 5 was 

255 of 478 commuters who used a freeway. Only 3.3 percent of the commuters reported traffic 
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as being very heavy in their commutes in Wave 1, although almost 20 percent commuters 

reported traffic as being heavy in the same wave. 

TABLE 1. Variable Descriptions 

VARIABLE GROUP VARIABLE DESCRIPTION VARIABLE NAME 

ACCESSIBILITY Natural logarithm of home to work distance DIST DDISTWRK 
Use of freeway during commute WlFRWYUZ DFRWY 
Existence of an HOV lane on any freeway used WlHOVLAN DHOVLANE. 

MOBILITY Number of vehicles owned by household WlVEH DVEH 

SOCIO-ECONOMIC Household size WlHHSIZE DHHSIZE 
Children under 15 in the household W1CHLD15 DCHLD15 
Workers in the household WlWORKER DWORKER 
Household income WlHHINCM DINCOME 
Education level of the respondent WlEDCTN 
Size of employment site in Wave 5 WSEMPSIZ 

DYNAMIC Changed employers during the last six months: CHGEMP6M 
Changed employment since January 1990 CHGEMJ90 
Changed job during last 6 months CHGEML6M 
Changed residence since January 1990 CHGRSJ90 
Bought vehicles during the last 6 months BUYVEH6M 
Sold vehicles during the last 6 months SLDVEH6M 
Moving residence within the next year MVNNXTYR 

RS INCENTIVE Reserved parking for ride-sharing RESERVPK DRESERV 
Cost subsidy for ride-sharing CSTSBSDY DCSTSB 
Guaranteed ride home GRNTDRID DGRNTD 

DA DISINCENTIVE Traffic was very heavy during home to work trip WlCONGVH 
Traffic was heavy during home to work trip WlCONGH. 

Wave 1 and Wave 5 data were merged and a subset that included respondents common to 

both waves was extracted from the merged set. This resulted in a file with 1062 cases. The 

attrition rate was about 40 percent (not all of the 2189 returned first wave surveys were 

complete). Brownstone and Chu (1992) have reported that the attrition seen between the two 

waves, Waves 1 and 5, are not ignorable. However, their results indicate that attrition bias is not 
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serious for the data set or the models used in their analysis. No correction is made for attrition 

bias in the models presented here. 

The removal of erroneous cases during the 11 data cleaning 11 phase of the research resulted 

in a file size of I 025 cases. Of these, 75 percent were randomly sampled to form a file for model 

development. The remaining 25 percent were set aside as a hold-out sample to be used in 

evaluating predictions after the model building stage. 

The GAUSS-386 software package from Apteck Systems Inc.(1991) was used to estimate 

the parameters of the likelihood function system shown in Equations (7). Unlike previous efforts, 

no series approximation of the logistic scaling function was done in the estimation of the model 

shown in Equation (7) above; the model system was directly used in a maximum likelihood 

estimation of the variable coefficients. The modeling effort for the dynamic models described in 

this section start with a comprehensive explanatory variable set that was identified in an analysis 

with conventional probit models that is described in Section 5 below. The variable set used in the 

model shown in Table 2 below is the most comprehensive set of variables determined in that 

analysis. The model shown in Table 2 is denoted as the full model. As can be seen from the table 

not all variables have commonly accepted significance levels. However, the variables are 

retained in the analysis because the primary focus of this research is in testing the structure of 

dynamic Beta-Logistic Models rather than in finding a individual variables with satistically 

significant influence on mode choice. Also, since the model's effectiveness will be determined on 

the basis of prediction success rate, the inclusion of some variables with lower than normally 

accepted significance levels is not believed to lead to erroneous conclusions regarding the 

predictive capabilities of the developed model. 
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TABLE 2. Full Model Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODEL I y PARAMETERS BET A FUNCTION - A BET A FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST t-STAT. 
CONSTANT 1.79 1.24 -2.36 -0.10 5.18 4.05 
DVEH -0.05 -0.10 -1.86 -0.16 1.05 2.47 
DHHSIZE 0.28 0.46 2.79 0.26 0.39 0.98 
DDISTWRK 0.20 0.44 0.77 0.06 -0.60 -1.21 
DINCOME 0.07 0.28 1.65 0.65 -0.14 -0.86 
DWORKER -0.24 -0.50 -0.70 -0.09 -1.10 -2.57 
DCHLD15 0.09 0.12 -4.63 -0.31 -0.54 -0.95 
DRESERV 0.61 1.03 3.21 0.25 -0.10 -0.20 
DCSTSB -0.09 -0.10 3.41 0.26 0.50 0.63 
DGRNTD 1.54 2.67 -2.36 -0.13 0.17 0.35 
WlVEH 0.05 0.11 -13.63 -0.75 0.13 0.44 
WlHHSIZE -0.30 -0.54 6.25 0.41 0.80 1.82 
DIST -0.52 -1.28 -3.36 -0.45 -1.64 -4.21 
WlHHINCM -0.08 -0.73 0.670 0.36 0.03 0.28 
WlWORKER 0.25 0.41 0.52 0.05 -1.22 -2.60 
W1CHLD15 0.50 0.80 -5.41 -0.34 -0.91 -1.82 
RESERVPK -0.80 -1.30 8.39 0.36 -0.92 -1.91 
CSTSBSDY 0.31 0.33 -8.32 -0.02 -0.34 -0.37 
GRNTDRID 2.37 2.45 4.05 0.30 -1.01 -1.38 

AUXILIARY STATISTICS 
-L.L.(# ofparam.) 433.87(57) 

Next, the results from successively restricting the full model are presented. Model II 

(shown in Table 3) is nested in model I -- all of the difference variables in they term as well as in 

the beta functions, a and b, have been constrained to zero in model II. The results shown in Table 

3 indicate that this restriction does not appear to be valid based on a likelihood ratio test between 

models I and II. 
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TABLE 3. Restricted Model II Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODEL II y PARAMETERS BET A FUNCTION - A BETA FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST. t-STAT. 
CONSTANT 2.11 1.82 0.76 0.000 4.39 4.34 
DVEH - - - - - -
DHHSIZE - - - - - -
DDISTWRK - - - - - -
DINCOME - - - - - -
DWORKER - - - - - -
DCHLD15 - - - - - -

DRESERV - - - - - -
DCSTSB - - - - - -
DGRNTD - - - - - -
WlVEH 0.09 0.27 -14.64 -0.49 0.06 0.31 
WlHHSIZE -0.54 -1.17 4.21 1.08 0.39 1.40 
DIST -0.48 -1.38 -4.43 -0.37 -1.32 -4.47 
WlHHINCM -0.08 -0.86 -1.14 -0.73 0.01 0.12 
WlWORKER 0.48 1.07 2.32 0.16 -0.72 -1.99 
W1CHLD15 0.66 1.21 -3.68 -0.55 -0.48 -1.38 
RESERVPK -0.83 -1.72 11.45 0.002 -0.98 -2.63 
CSTSBSDY 0.82 1.08 -8.06 -0.25 -0.11 -0.15 
GRNTDRID 1.59 1.93 15.71 0.47 -0.75 -1.21 

AUXILIARY STATISTICS 
-L.L.(# ofparam.) 467.15(30) 
L.R.xL(d.f.) 66.55(27) 
Restrictions on I 
Model 
Restricted Group of Differences in 
variables Functions y, A, & B 

In model III (shown in Table 4), only the differences in the beta functions, a andb, have 

been reduced to zero. This specification is somewhat analogous to the specifications reported in 

the literature. However, as evidenced by the likelihood ratio test between models I and III, the 

restrictions are not justified statistically. Thus, difference variables can not be ignored in beta­

logistic dynamic variables. 

15 



TABLE 4. Restricted Model III Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODEL ill y PARAMETERS BET A FUNCTION - A BET A FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST. t-STAT. 
CONSTANT 0.94 0.71 3.11 0.88 4.19 4.017 
DVEH -0.74 -1.80 - - - -
DHHSIZE 0.19 0.44 - - - -
DDISTWRK 0.59 1.46 - - - -
DINCOME 0.21 1.08 - - - -
DWORKER 0.36 0.86 - - - -
DCHLD15 0.31 0.56 - - - -
DRESERV 0.67 1.392 - - - -
DCSTSB -0.23 -0.35 - - - -
DGRNTD 1.43 2.92 - - - -
WlVEH -0.09 -0.22 -8.72 -1.83 -0.11 -0.44 
WlHHSIZE -0.50 -0.94 2.11 1.80 0.41 1.45 
DIST -0.39 -1.00 -0.80 -1.64 -1.24 -4.16 
WlHHINCM -0.03 -0.31 0.14 0.78 0.04 0.52 
WlWORKER 0.62 1.17 1.30 1.07 -0.62 -1.71 
WlCHLD15 0.75 1.28 -2.51 -1.58 -0.53 -1.47 
RESERVPK -0.53 -0.92 0.52 0.47 -0.82 -2.08 
CSTSBSDY 0.30 0.34 -8.17 -1.32 -0.34 -0.44 
GRNTDRID 2.21 2.49 6.98 1.46 -0.55 -0.84 

AUXILIARY STATISTICS 
-LL.(# ofparam.) 454.65(39) 
LR. x;'.L(d.f.) 41.55(18) 
Restrictions on I 
Model 
Restricted Group of Differences in 
variables Functions A & B 

Model IV (shown in Table 5) has level variables in they function restricted to zero. 

These restrictions are based on the premise that variables measuring levels are not appropriate in 

they function since, purportedly, the need for including they function in the dynamic model is to 

capture the dynamic behavior of probability of choice and levels do not capture dynamic effects. 

This hypothesis appears to be valid based on a likelihood ratio test between models IV and I. 
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TABLE 5. Model IV Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODEL IV y PARAMETERS BETA FUNCTION -A BET A FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST. t-STAT. 
CONSTANT 0.06 0.16 -2.89 -0.12 4.27 4.48 
DVEH -0.09 0.23 -1.86 -0.17 1.01 2.60 
DHHSIZE 0.54 1.07 2.93 0.27 0.52 1.40 
DDISTWRK 0.34 0.82 0.92 0.08 -0.51 -1.06 
DINCOME 0.08 0.426 1.67 0.67 -0.14 -0.90 
DWORKER -0.46 -1.16 -0.72 -0.11 -1.17 -2.88 
DCHLD15 -0.23 -0.36 -4.75 -0.32 -0.67 -1.22 
DRESERV 1.02 2.20 3.37 0.28 0.06 0.13 
DCSTSB -0.37 -0.54 3.38 0.26 0.38 0.53 
DGRNTD 0.85 1.62 -2.79 -0.16 -0.16 -0.34 
WlVEH - - -13.81 -0.76 0.13 0.52 
WlHHSIZE - - 6.43 0.43 0.93 2.61 
DIST - - -3.28 -0.42 -1.38 -4.78 
WlHHINCM - - 0.65 0.36 0.05 0.59 
WlWORKER - - 0.53 0.06 -1.29 -3.26 
W1CHLD15 - - -5.52 -0.37 -1.08 -2.60 
RESERVPK - - 8.74 0.36 -0.58 -1.39 
CSTSBSDY - - -8.15 -0.02 -0.45 -0.54 
GRNTDRID - - 3.77 0.28 -1.81 -2.45 

AUXILIARY STATISTICS 
-L.L.(# ofparam.) 440.44(48) 
L.R.xL(d.f.) 6.57(9) 
Restrictions on I 
Model 
Restricted Group of Levels in 
variables Function y 

Model V (shown in Table 6)is nested in model IV; the difference variables used in model 

IV have been dropped. A likelihood ratio test reveals that, statistically, they function needs only 

the constant term. 
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TABLE 6. Restricted Model V Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODELV y PARAMETERS BET A FUNCTION - A BET A FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST. t-STAT. 
CONSTANT 0.35 1.62 -4.29 -0.33 4.14 4.49 
DVEH -1.49 -0.20 0.99 2.81 
DHHSIZE 2.71 0.43 0.29 1.01 
DDISTWRK 0.82 0.10 -0.65 -1.45 
DINCOME 1.62 0.87 -0.17 -1.22 
DWORKER -0.31 -0.06 -0.92 -2.53 
DCHLD15 -4.32 -0.46 -0.55 -1.21 
DRESERV 3.53 0.45 -0.37 -0.90 
DCSTSB 2.12 0.35 0.45 0.78 
DGRNTD -4.01 -0.39 -0.62 -1.47 
WlVEH -12.74 -1.43 0.14 0.56 
WlHHSIZE 5.39 0.65 0.88 2.62 
DIST -2.95 -0.70 -1.34 -4.88 
WlHHINCM 0.69 0.58 0.05 0.71 
WlWORKER 1.26 0.21 -1.22 -3.20 
W1CHLD15 -4.39 -0.51 -1.01 -2.53 
RESERVPK 8.94 0.65 -0.47 -1.15 
CSTSBSDY -5.52 -0.31 -0.46 -0.58 
GRNTDRID 3.43 0.44 -1.80 -2.63 

AUXILIARY STATISTICS 
-L.L.(# ofparam.) 447.27(39) 
L.R.x,L(d.f.) 6.83(9) 
Restrictions on IV 
Model 
Restricted Group of DIFFERENCES IN 
variables y FUNCTION 

A further restricted model is estimated to check the very need of they function in the 

model system. Such a restriction is shown in model VI (shown in Table 7), in which they 

function has been removed entirely from the specification. This restriction appears to be justified 

statistically. The empirical results obtained so far indicate that the parameterization of the beta 

function employed here captures the effects of heterogeneity as well as non-stationarity. The 

need for the logistic function is thus obviated. Thus the generalization of the Beta-Logistic 

Model, adopted by Davies (1984), does not have any empirical basis in the longitudinal mode 

choice behavior exhibited by the data set used in this study. 
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TABLE 7. Restricted Model VI Coefficient Estimates 

COEFFICIENT ESTIMATES 

MODEL VI y PARAMETERS BET A FUNCTION - A BET A FUNCTION - B 
PARAMETERS PARAMETERS 

PARAMETERS EST. t-STAT. EST. t-STAT. EST. t-STAT. 
CONSTANT -4.33 -0.33 3.90 4.44 
DVEH -1.50 -0.20 0.98 2.77 
DHHSIZE 2.70 0.43 0.27 0.92 
DDISTWRK 0.83 0.11 -0.64 -1.43 
DINCOME 1.62 0.88 -0.17 -1.19 
DWORKER -0.30 -0.06 -0.90 -2.48 
DCHLD15 -4.32 -0.46 -0.52 -1.16 
DRESERV 3.54 0.46 -0.38 -0.93 
DCSTSB 2.16 0.35 0.46 0.80 
DGRNTD -4.00 -0.40 -0.60 -1.40 
WlVEH -12.77 -1.46 0.13 0.53 
WlHHSIZE 5.42 0.66 0.84 2.53 
DIST -2.95 -0.70 -1.31 -4.91 
WlHHINCM 0.70 0.57 0.06 0.76 
WlWORKER 1.25 0.21 -1.17 -3.13 
W1CHLD15 -4.42 -0.52 -0.97 -2.44 
RESERVPK 8.96 0.65 -0.46 -1.13 
CSTSBSDY -5.40 -0.31 -0.47 -0.57 
GRNTDRID 3.44 0.45 -1.75 -2.49 

AUXILIARY STATISTICS 
-L.L.(# ofparam.) 448.63(38) 
L.R.xL(d.f.) 1.36(1) 
Restrictions on V 
Model 
Restricted Group of CONST ANT in y 
variables FUNCTION 

The validity of the beta-logistic models developed above was evaluated on the basis of its 

predictive performance. Both the hold-out sample as well as a new sample using data from 

Waves 5 and 8 were used for predictions. The predictive performance of these models was also 

tested against those of more conventional models. The conventional models used are probit type 

models. Their development is described in the following section. 
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5 CONVENTIONAL MODELS 

Ordered Probit 

Ordered probit models differ from binary probit models primarily in the specification of 

the utility function and in the decision rule used in making a choice among alternatives. 

Specifically, utility functions are not defined separately for each of the alternatives, only one 

utility function is defined for the choice process. The different choices a user can make is 

assumed to be represented by an ordinal variable. In other words, it is assumed that the 

alternatives in the choice set can be put in an order. The ordinal dependent variable is further 

assumed to be related to an unobserved latent utility measure depending on the value of the latent 

utility. Various regions of the domain of the latent utility measure are assumed to have a one-to­

one correspondence with the ordinal dependent variable, as explained in the next paragraph. 

Denote the latent utility, the representative utility, and the unobserved utility by U, V, and 

i::, respectively. U is assumed to be related to V and i:: as shown below: 

Ui=~+i::i. 

Note that the variables have only one subscript which denotes the individual making the choice 

decision. The error term ei is assumed to be unit normally distributed. Define a variable Zi 

which denotes an ordinal dependent variable with the number of outcomes equal to the number of 

alternatives in the choice set. Assume that the number of choices are three corresponding to 

shared ride, sometimes shared ride and drive alone modes. The dependent variable Ziis related 

to the utility measure through a set of thresholds or constants, a 1s, as shown below: 

Zi = shared ride, if 

Zi = sometimes shared ride, if 

Zi = drive alone, if 

Ui:::::al 

al< Ui :::::a2 

a2 < Di. 

Expressing the representative utility, ~' in terms of independent variables and a set of 

parameters, x{J3, the probabilities of choosing each of the three modes are as shown below: 
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P[shared ride]= P[Ui sa1] =P[x{f3+si sa1] = P[si sa1 -x'.~] = <I>(a1 -x'.~), 

P[sometimes shared ride]= P[a1 < x{~ + si s a 2 ] = <I>( a 2 - x{~)-<l>( a 1 -x{~ ), and 

P[drivealone]=P[a2 <x'.~+sJ= l-<I>(a2 -x'.~). 

Conditional Probit 

The other type of conventional model that was developed for comparative purposes 

modeled the two period joint choice as a product of a conditional and a marginal choice. To help 

simplify the estimation, the choices were collapsed to two: always drive-alone (DA), and always 

or sometimes shared-ride (SR), allowing the estimation to be in the form of two binary probit 

models. The condition is the choice made in Wave 1. 

6. COMPARATIVE MODEL ESTIMATION RESULTS 

In the ordered probit model the dependent variable has three categories. The dependent 

variable is created from information obtained regarding respondents' choice of mode both on the 

day of the survey as well as on other days during the past two weeks. Using this information, 

commuters in the sample are classified into one of the following three groups: ride-sharing, 

sometimes ride-sharing, and driving-alone. The ordered probit models capture the category 

choice in Wave 5 based on explanatory variable values in Wave 5 as well as in Wave 1. 

The results of the estimation of two ordered probit models that were developed from a 

series of specifications with various subsets of available explanatory variables are shown in Table 

8. The variable set used was based on a priori expectations about determinants of travel behavior, 

that was obtained from a review of past studies, as explained in Section 4. Variables depicting 

levels in Wave 1 as well as differences in levels between Waves 1 and 5 were included in the 

analysis. It was deemed necessary to include the difference variables since one past study on 

dynamic beta-logistic models had used difference variables as determinants of dynamic behavior. 

The first model, labeled Unrestricted Model, uses the full set of variables. A sequence of other 

models which were nested in some model preceding it (i.e., which had successively more 

comprehensive subsets of variables which were restricted from the specification) were estimated 
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and the likelihood ratio statistics for each pair of such models compared to determine if the 

models were significantly different from each other. On the basis of these tests the specification 

labeled Restricted Model has a set of explanatory variables that can not be further restricted 

without significantly changing the estimation results 

TABLE 8. Ordered Probit Model Estimation Results 

FULL MODEL RESTRICTED MODEL 
VARIABLE 

Coefficient Est. (t-Score) Coefficient Est. (t-Score) 

DIST -0.38(-3.74) -0.36(-4.66) 
DDISTWRK -0.36(-2.26) -0.34(-2.36) 
WlFRWYUZ -0.24(-1.21) 
W5FRWYUZ 0.37(1.71) 
WlHOVLAN 0.13.(.75) 
W5HOVLAN -0.30(-1.76) 
WlVEH 0.18(2.4) 
DVEH 0.12(1.24) 
WlHHSIZE 0.20(1.43) 0.31(2.38) 
DHHSIZE 0.06(0.53) 0.12(1.14) 
W1CHLD15 -0.31(-1.86) -0.44(-2.88) 
DCHLD15 -0.23(-1.35) -0.29(-1.85) 
WlWORKER -0.53(-3.47) -0.51(-3.62) 
DWORKER -0.28(-2.09) -0.28(-2.28) 
WlHHINCM 0.03(1.1) 0.03(1.34) 
DINCOME -0.05(-0.99) -0.03(-0. 73) 
W5EMPSIZ -0.04(-1.08) 
CHGEMJ90 0.17(0.71) 0.20(0.84) 
CHGEML6M 0.75(1.84) 0.85(2.14) 
BUYVEH6M 0.19(1.15) 0.25(1.50) 
MVNNXTYR 0.18(1.21) 
RESERVPK 0.08(0.45) 0.05(0.31) 
CSTSBSDY -0.22(-0.9) -0.19(-0.80) 
GRNTDRID -0.49(-2.36) -0.55(-2.86) 
RESERVP5 -0.10(-0.53) -0.11(-0.67) 
CSTSBSD5 0.01(0.05) 0.001(0.00) 
GRNTDRD5 -0.34(-2.23) -0.36(-2.53) 
THRESHOLD 1 -2.71(-7.55) -2.68(-8.34) 
THRESHOLD 2 -1.77(-5.03) -1.76(-5.65) 

2L. L. (#ofParameters) 804.09(27) 823.50(19) 
% correctly predicted 70.4 69.9 
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Although they use time-changing explanatory variables, the ordered probit models 

described above are essentially static models since only one period choice behavior is modeled. 

They can not be used to model the two-period choice spanning Waves 1 and 5 dynamically, since 

the four alternatives that result in a two-period-two-alternative choice have no natural order in 

their propensities to be modeled using the ordered probit formulation. An alternative approach is 

to treat the dynamic choice as a conditional choice problem. 

If the choice alternatives are formulated as being between always driving-alone (DA) and 

sometimes ride-sharing or always ride-sharing (SR), the choice process for the two waves viewed 

collectively consists of four paths: SR➔SR, SR➔DA, DA➔SR, and DA➔DA. To avoid the 

computational complexity of a multinomial probit formulation the four-alternative choice 

problem is transferred to a two-alternative conditional choice problem, with the condition being 

the choice made in Wave 1. Thus, based on whether the choice made in Wave 1 is DA or SR, 

two sets of prob it models are estimated. The results of the estimation are shown in Table 9. 

TABLE 9. Conditional Pro bit Model Estimation Results 

PROBABILITY CONDITIONED ON 

VARIABLE SR in Wave 1 DA in Wave 1 

Coefficient Est. (t-Score) Coefficient Est. (t-Score) 

CONSTANT 0.63(1.41) 1.76(6.6) 
DIST -0.30(-1.96) -0.25(-2.51) 
DDISTWRK -0.33(-1.21) -0.11(-0.81) 
RESERVPK 0.25(0.87) 0.05(0.27) 
CSTSBSDY -0.06(-0.12) -0.15(-0.48) 
GRNTDRID -1.16(-2.62) -0.01(-0.06) 
RESERVP5 -0.24(-0.82) -0.08(-0.41) 
CSTSBSD5 0.18(0.45) 0.08(0.32) 
GRNTDRD5 -0.22(-0.81) -0.54(-3.05) 

2L.L.(#of Parameters) 177.87(8) 415.83(8) 
% correctly predicted 67.7 82.8 
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Models conditioned on choice of DA in Wave 1 were estimated first. Starting with a 

large set of potentially significant variables, groups of variables were successively restricted and 

a most parsimonious model was obtained. A model conditioned on choice of SR in Wave 1 could 

not, however, be estimated using the specification used for the most parsimonious DA­

conditioned model obtained as explained above. The specification shown in Table 3 had to be 

used instead since it worked for both conditional choices. The same specification for both 

conditional choices were used so that the predictions from both models could be combined for 

comparison with predictions that will be described in the next section. 

Finally, Table 10 shows a beta-logistic model that has been modeled with the 

specification used in the conditional choice models of Table 9. This was done so that the 

prediction from the dynamic beta-logistic model could be compared with the prediction from the 

conventional joint choice probit model. 

TABLE 10 

COEFFICIENT ESTIMATES 

MODEL VII BET A FUNCTION - A BET A FUNCTION -
PARAMETERS B PARAMETERS 

PARAMETERS EST. t-stat. EST. t-stat. 
CONSTANT -2.80 -2.34 1.70 2.68 
DDISTWRK 0.58 1.01 0.02 0.06 
DRESERV -1.89 -2.82 -1.01 -2.27 
DCSTSB -0.21 -0.27 -0.26 -0.40 
DGRNTD 2.50 3.34 1.03 1.80 
DIST 0.56 1.60 -0.47 -2.05 
RESERVPK -1.97 -3.17 -1.28 -3.19 
CSTSBSDY 0.13 0.12 -0.37 -0.38 
GRNTDRID 1.78 1.91 -1.01 -1.09 

AUXILIARY STATISTICS I 
-L.L.(# ofparam.) 598.27(18) I 
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7 MODEL VALIDATION RESULTS 

The models (i.e., as specified in Tables 8, 9, and 10) developed and estimated in the 

previous section were validated in two ways. First, model results were tested against the hold-out 

sample comprised of Wave 1 and Wave 5 data. The second method of validation used data from 

Waves 5 and 8 and involved applying the model calibrated on the period encompassing Waves 1 

and 5 to predict behavior in the succeeding time interval between Waves 5 and 8. (Recall that the 

time periods during which the surveys were mailed were: February and March of 1990 for Wave 

1, July of 1991 for Wave 5, and the middle of February of 1993 for Wave 8. Since, the time 

between Waves 1 and 5 is approximately the same as that between Waves 5 and 8, it was deemed 

reasonable to use the models calibrated on Waves 1 and 5 to predict the choice between the latter 

two waves.) 

There are 255 cases in the hold-out sample, comprising 25% of the total number of cases 

in the data set. Of the 255 cases, only 228 cases remained when a selection criterion of only solo 

drivers or car-poolers was applied, excluding respondents using other modes from the analysis. 

The prediction results associated with the ordered probit model for the choice among three 

alternatives for Wave 5 are shown in Table 11. When applied to the hold-out sample, the model 

produced an overall successful prediction rate of about 94% in terms of aggregate shares and 

about 70% in terms of disaggregate predictions. The difference between propensities of choice 

and actual assignment of choice based on the highest probability of choice can be seen clearly 

from the table in the difference in predictions in the aggregate shares and disaggregate 

classifications. For example, for the RS alternative, only 1 out of 20 was correctly predicted. 

This represents an error of 95%. However, for the same alternative, the deviation in prediction of 

aggregate shares is only about 3%. This phenomenon is repeated for the two remaining model 

types as well, as will be seen later in this paper. 
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TABLE 11. Ordered Probit Model Validation Results - Holdout Sample 

Wave 5 Modal Choice RS SRS DA TOTAL 

Observed Number 20 36 133 189 

Predicted Number 1 1 131 133 

% Correct 5.00 2.78 98.5 70.37 

% Incorrect 95.00 97.22 1.50 29.63 

Observed Shares(%) 10.58 19.05 70.37 

Predicted Shares(%) 7.64 18.98 73.38 

Predicted-Observed Shares -2.94 -0.07 3.01 

Deviation in Shares 
Observed Shares (%) -27.79 -0.37 4.28 

Absolute Sum of Deviations(%) 6.02 

The numbers shown in bold are comparable measures for the aggregate and disaggregate 

predictions. For example, the overall incorrect prediction rate for the disaggregate prediction is 

about 30%. For the aggregate shares prediction, the overall discrepancy in prediction is only 

6.02%. 

The conditional models shown in Table 9 were also applied to the same holdout sample. 

Of the two models , the first estimates the choice of modes in Wave 5 given that the choice in 

Wave I was "sometimes or always shared ride". In the second model the dependent variable is 

the same, but the choice in Wave 5 is conditioned on having chosen the "always drive alone 

mode" in Wave 1. 

To estimate the joint probability of choice for the two periods a binary probit model for 

Wave I was estimated. The specification of the binary model is the same as that of the 

conditional model except that no difference explanatory variables and Wave 5 incentive variables 

26 



are included. Parameter estimates and other pertinent information for this model are shown in 

Table 12, where the choice probability is specified for drive alone. 

TABLE 12. Binary Marginal Probit Model Estimation Results 

ESTIMATION 
VARIABLE 

Coefficient (t-Score) 
CONSTANT 1.69 (8.5) 
DIST -0.326 ) (-4.56 
RESERVPK -0.275 (-2.27) 
CSTSBSDY -0.108 (-0.48) 
GRNTDRID -0.35 (-1.93) 
-2L.L.(#of Parameters) 45.3 (4) 

% correctly predicted 74.5 

The conditional and the marginal probit models were combined to produce the joint 

probability of choice in Waves 1 and 5 for the holdout sample. The results of this prediction are 

shown in Table 13. The overall successful prediction rate for the conditional model is over 97% 

for aggregate shares prediction, and only about 63% for the disaggregate prediction. 

TABLE 13. Conditional Model Validation Results - Holdout Sample 

Modal Transitions SR ➔ SR SR ➔ DA DA ➔ SR DA ➔ DA TOTAL 

Observed Number 32 21 30 133 216 

Predicted Number 3 0 0 133 136 

% Correct 9.38 0.00 0.00 100.00 62.96 

% Incorrect 90.62 100.00 100.00 0.00 37.04 

Observed Shares(%) 14.81 9.73 13.89 61.57 

Predicted Shares (%) 15.25 8.95 13.21 62.59 

Predicted-Observed Shares 0.44 -0.78 -0.68 1.02 

Deviation in Shares 
Observed Shares (%) 2.97 -8.02 -4.90 1.66 

Absolute Sum of Deviations(%) 2.92 
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The prediction results for the dynamic beta-logistic model are shown in Table 14. 

TABLE 14. Model Validation Results - Holdout Sample 

Modal Transitions SR ➔ SR SR ➔ DA DA ➔ SR DA ➔ DA TOTAL 

Observed Number 32 21 30 133 216 

Predicted Number 3 0 0 129 132 

% Correct 9.38 0.00 0.00 96.99 61.40 

% Incorrect 90.62 100.00 100.00 3.01 38.89 

Observed Shares (%) 14.81 9.73 13.89 61.57 

Predicted Shares (%) 15.78 10.60 10.60 63.02 

Predicted-Observed Shares 0.97 0.87 -3.29 1.45 

Deviation in Shares 
Observed Shares ( % ) 6.55 8.94 -23.69 2.36 

Absolute Sum of Deviations(%) 6.58 

As before, the prediction error for aggregate prediction is the difference between the 

predicted share and the observed share for each alternative. The total prediction error is the sum 

of the deviations for all four alternatives, which in this case is about 7%. The prediction success 

rate of the beta-logistic Model developed in this research is thus a little over 93%. In terms of 

disaggregate predictions, the success rate is only about 61 %. One other noticeable feature of the 

beta-logistic model prediction is that none of the mode-switchers were correctly predicted. 

However, as in other cases, the propensity of choice was predicted much more closely to the 

actual shares observed. 

Validation based on using the model to forecast travel behavior in the subsequent time 

period started with the 724 cases of Wave 8 data, from which a subset of 628 cases was created 

that included only respondents choosing "shared ride" or ''drive alone" as their primary mode of 

commute. Some of the variables were recoded and some categories were regrouped to match 
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Wave 8 responses with those of Waves 1 and 5, since the Wave 8 questionnaire differed slightly 

from that used in the previous waves. The resulting data file was then merged with the data file 

containing Wave 5 responses. A file with 428 cases was then created with variables 

corresponding to the period spanning Waves 5 and 8. Predictions using these 428 cases were 

then calculated using the ordered probit and conditional models. The results for the ordered 

probit models are shown in Table 15. As can be seen from the table the ordered probit model 

predictions are grossly erroneous for the forecast sample. 

TABLE 15. Ordered Probit Model Validation Results - Forecast Sample 

Wave 8 Modal Choice RS SRS DA TOTAL 

Observed Number 29 78 242 349 

Predicted Number 27 2 39 68 

% Correct 93.10 2.56 16.12 19.48 

% Incorrect 6.9 97.44 83.88 80.52 

Observed Shares(%) 8.31 22.35 69.34 

Predicted Shares(%) 69.87 15.64 14.49 

Predicted-Observed Shares 61.56 -6.71 -54.85 

Deviation in Shares 
Observed Shares (%) 740.79 -30.02 -79.10 

Absolute Sum of Deviations 123.12 

As in the case of the hold-out sample, the conditional models used for predictions in this 

case are those shown in Table 9. The first of these two models is used to predict the choice in 

Wave 8 given that the choice in Wave 5 was "sometimes or always shared ride". The second 

model predicts the choice in Wave 8 given that the choice in Wave 5 was "always drive alone". 

To compute the joint probability of choice during the two-wave period, marginal probabilities of 

choice are needed for Wave 5. These Wave 5 marginal probabilities are computed using the 
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coefficient values of a binary probit model estimated using Wave 1 data. The joint probabilities 

for the two-wave period is then obtained from the product of the marginal probability of choice 

for each of the two Wave 5 choice and conditional probabilities for each of the two Wave 8 

choices conditioned on the corresponding Wave 5 choice. The prediction for the conditional 

model is shown in Table 16. Successful prediction for this case is only about 65%, for aggregate 

shares, and. about 61 % for the disaggregate prediction. 

TABLE 16. Conditional Model Validation Results - Forecast Sample 

Modal Transitions SR ➔ SR SR➔ DA DA ➔ SR DA ➔ DA TOTAL 

Observed Number 77 41 42 218 378 

Predicted Number 38 0 5 186 229 

% Correct 49.35 0.00 11.90 85.32 60.58 

% Incorrect 50.65 100.00 88.10 14.68 39.42 

Observed Shares(%) 20.37 10.85 11.11 57.67 

Predicted Shares (%) 27.51 0.99 21.78 49.72 

Predicted-Observed Shares 7.14 -9.86 10.67 -7.95 

Deviation in Shares 
Observed Shares (%) 35.05 -90.88 96.04 -13.79 

Absolute Sum of Deviations(%) 35.62 

As seen from the above tables, although the ordered probit model predictions have 

relatively good correspondence with choices in the holdout sample, the prediction success drops 

significantly when applied to the Wave 8 forecasts. On the contrary, the conditional model is 

observed to exhibit relatively better performance. 

Predictions using the new sample for the Beta logistic model were conducted next. The 

results are shown in Table 17. 
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TABLE 17. Model Validation Results - Wave 5 to Wave 8 Forecast 

Modal Transitions SR ➔ SR SR➔ DA DA➔ SR DA➔ DA TOTAL 

Observed Number 77 41 42 218 378 

Predicted Number 33 0 0 192 225 

% Correct 42.86 0.00 0.00 88.07 59.52 

% Incorrect 57.14 100.00 100.00 11.93 40.48 

Observed Shares(%) 20.37 10.85 11.11 57.67 

Predicted Shares (%) 23.09 10.00 10.00 56.91 

Predicted-Observed Shares 2.72 -0.85 -1.11 -0.76 

Deviation in Shares 
Observed Shares (%) 13.35 -7.83 -9.99 -1.32 

Absolute Sum of Deviations(%) 5.44 

For the forecast sample the total prediction error for aggregate prediction is about 6%, 

which means the prediction success rate is 94%. In terms of disaggregate predictions the success 

rate is only about 60%. As in the hold-out sample, no mode-switcher was correctly classified by 

the model. However, as before, the prediction of propensities matched the observed aggregate 

shares very closely. 

7. CONCLUSIONS 

The research presented in this paper focuses on a major weakness of existing models of 

transportation behavior in adequately addressing time or state dependence of behavior. Dynamic 

models using panel data appear to offer a promising approach in the study of non-stationary 

behavioral patterns. Although beta distribution models have been used in the past for behavioral 

modeling, most are, however, static. Two previous cases of use of beta distribution models in 

dynamic modeling were observed from the literature research. The extension of static beta-
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logistic models to dynamic models in those previous studies was achieved only after making an 

unsupported assumption of logistically scaled posterior probabilities that were assumed to be 

logistic functions of a reference period probability. In this research the assumption of logistically 

scaled posterior probabilities was tested empirically and was found to be unjustified for the data 

set under study. It was found that the beta distribution could account for variation in choice 

probabilities over the two waves used in this research and no scaling of posterior probabilities 

was found to be needed. 

The validation of the models was carried out with the help of a hold-out sample as well as 

with a new sample. Both with the hold-out sample, as well as with the new data set, the 

aggregate prediction success rate was high for the dynamic beta-logistic model. A comparative 

analysis using more conventional models was also undertaken. It was found that a two-period 

joint choice probit model performed slightly better than the beta-logistic model in disaggregae 

prediction. However, for aggregate shares prediction using a forecast sample, the beta-logistic 

model performed significantly better than the joint choice model. Both of these models 

outperformed the ordered probit model. 

The dynamic model was not able to predict mode switching behavior at the disaggregate 

level. Since no variables measuring attributes of the alternatives in the choice set were used in 

the model, it can be speculated that the model performance might improve if such variables are 

included. Additionally, increasing the number of observations will allow the calibration of 

models with a better specification of variables that used in the dynamic model reported in this 

paper. Finally, modeling a choice process with a more evenly balanced split among the 

alternatives, might produce better prediction results than reported in this paper. 
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