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Efficient Computation of the 3D Green’s Function with One

Dimensional Periodicity Using the Ewald Method

F. Capolino∗ 1,2, D. R. Wilton2, and W. A. Johnson3

1) Dept. of Information Eng., University of Siena, Siena, Italy
2) Dept. of Electrical and Comp. Eng., University of Houston, Houston, TX, USA.
3) Electromagnetics and Plasma Physics Analysis Dept., Sandia National Laboratories,
Albuquerque, NM, USA.

Abstract

The Ewald method is applied to accelerate the evaluation of the Green’s function of
an infinite periodic phased linear array of point sources. Only a few terms are needed
to evaluate Ewald sums, which are cast in terms of error functions and exponential
integrals, to high accuracy.

Introduction
In applying numerical full wave methods like the Method of Moments (MoM) to
periodic structures, fast and accurate means for evaluating the periodic Green’s function
are often needed. Among various techniques to accelerate computation of the Green’s
function is the Ewald method, originally developed by P. P. Ewald in [1], and extended
to the case of the free space Green’s function for three dimensional (3D) problems
with 2D periodicity (i.e., a planar array of dipoles) in [2]. Its application in evaluating
Green’s functions for multilayered media is treated in [3] and [4]. The Ewald method
is extended in [5],[6], [7] to 2D problems with 1D periodicity (i.e., a planar array of
line sources), while its application in evaluating Green’s functions for a rectangular
cavity is reported in [8]. Here we accelerate for the first time with the Ewald method
the Green’s function pertaining to a linear array of dipoles.

Statement of the Problem
The scalar potential radiated by the infinite linear array, linearly phased along z, is
G (r, r′) =

∑∞
n=−∞ e−jkz0nd e−jkRn/(4πRn) where kz0 = kd cos θ is the phase

gradient along the array, d is the lattice spacing, θ is the radiation pointing angle, k
is the free space wavenumber, and Rn =

√
ρ2 + (z − z′ − nd)2 , with ρ =

√
x2 + y2,

is the distance between the observation point r ≡ (ρ, z) and the nth source point
r′n ≡ (ρ′ = 0, z′ = nd) (see Fig. 1). An ejωt time dependence is assumed and
suppressed throughout this summary. Terms in the spatial series representation of G
are of order 1/n for large n, so that the series is extremely slowly convergent.
An alternative spectral series representation of this Green’s function, in terms of cylin-
drical waves, also exists,

G
(
r, r′

)
=

1
4jd

∞∑
q=−∞

e−jkzqzH
(2)
0 (kρqρ) (1)

but it is also slowly convergent. Here H
(2)
0 is the Hankel function of zeroth order

and second kind, kzq = kz0 + 2πq/d is the Floquet wavenumber along z, and kρq =
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Fig. 1. Physical configuration and coordinates for a planar periodic array of point sources with interelement
spacing d along z. Rn is the distance between observation point r ≡ (ρ, z) and the nth source element
r′n ≡ (0, nd).

√
k2 − k2

zq is the transverse Floquet wavenumber, along ρ. Convergence of the field
far away from the linear array requires that Imkρq < 0, as can be inferred by using the
large argument expansion of the Hankel function. Note that the spectral representation
(1) has the important drawback that it cannot be used when the observation point lies
on the line of the array, namely when ρ = 0, a situation that often happens in the MoM.
Here we provide a representation of the Green’s function as a rapidly converging series,
that can be evaluated also when ρ = 0.

The Ewald Green’s Function Transformation
Following [2] the Green’s function for a single source is represented as

e−jkRn

4πRn
=

1
2π

√
π

∫ ∞

0
e−R2

ns2+ k2

4s2 ds. (2)

The Ewald method method consists of splitting the integral in (2) into two parts,∫ ∞
0 =

(∫ E
0 +

∫ ∞
E

)
, which also determines the splitting

G
(
r, r′

)
= Gspectral

(
r, r′

)
+ Gspatial

(
r, r′

)
(3)

Gspectral
(
r, r′

)
=

1
2π

√
π

∞∑
n=−∞

e−jkz0nd

∫ E

0
e−Rns2+ k2

4s2 ds (4)

Gspatial
(
r, r′

)
=

1
2π

√
π

∞∑
n=−∞

e−jkz0nd

∫ ∞

E
e−R2

ns2+ k2

4s2 ds. (5)

The Ewald splitting parameter E has to have a proper value to make the splitting
efficient. The spatial term is exponentially converging in n while the spectral term
is slowly converging and requires the use of the Poisson transformation to accelerate
convergence. Skipping here the details of the derivations, similar to hat presented in
[7], closed form formulas are obtained for the spectral and spatial terms.

Gspatial

(
r, r′

)
=

1
8π

∞∑
n=−∞

e−jkz0nd

Rn

[
ejkRn erfc(RnE + j

k

2E
)

+e−jkRn erfc
(

RnE − j
k

2E

)]
(6)
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Gspectral

(
r, r′

)
=

1
d4π

∞∑
p=−∞

e−jkzpz
∞∑

q=0

(−1)q

q!
(ρE)2q Eq+1(−k2

ρp) (7)

in which erfc is the complementary error function and Eq(x) is the qth order exponential
integral defined as [9, p. 228] Eq+1(x) =

∫ ∞
1

e−xt

tq+1 dt. This function has a branch cut
along the negative real axis and thus defines the solution for propagating Floquet modes
with a small loss and propagating modes for lossy medium. From a numerical point
of view, only the exponential integral E1(x) needs to be evaluated numerically using,
for instance, the algorithm of [9, Sec. 5.1]. Higher order exponential integrals may be
evaluated by the recurrence relation Eq+1(x) = 1

q [e−x − xEq(x)], q = 1, 2, 3, .... Note
that in absence of losses all propagating Floquet waves have kρp = k2−k2

zp > 0 and thus
the argument of the exponential integral in (7) is negative, resulting in an ambiguous
branch condition. To resolve the ambiguity, we imagine small ambient losses so that
Im(−k2

ρp) > 0 and therefore the branch can be chosen automatically.

Numerical Results: Convergence
We analyze in Fig. 2 the convergence rate of the Ewald sums using the percent relative
error defined as

Err = |Gexact − GEwald|/|Gexact| × 100, (8)

where Gexact is the Green’s function reference solution evaluated via its spectral coun-
terpart with sufficiently large number of terms to achieve accuracy up to seven decimal
digits (2000 terms are sufficient), and GEwald is the same Green’s function evaluated
using the Ewald splitting (3) with (6) and (7). The percentage relative error is plotted
versus summation limit parameters ±N , ±P in sums (6) and (7) resulting in a total
number of terms of 2N+1 and 2P+1, respectively. The array is phased, i.e., kz0 = 0.1k.
The n = 0 point source is at (x′, y′, z′) = (0, 0, 0), and the two curves are related
to two observation points at (x, y, z) = (0.01, 0, 0.1)λ0 and (x, z) = (0.1, 0, 0.1)λ0,
respectively, where λ0 = 2π/k is the free space wavelength. The period is set to
d = 0.6λ0, typical of array antennas.
In Fig. 2 the error is plotted versus N , with P = N . The Ewald splitting parameter
is chosen as E =

√
π/d (see [7]). A large total number Q = 30 of q-terms in (7) has

been used because we emphasize here convergence issues related only to N and P .
Note the sum limits in Eqs. (6) and (7) are plus and minus N,P, and positive Q.
In our cases the relative error cannot be further decreased by augmenting the number of
terms P, N in Gspectral, Gspatial because of accuracy limits of the numerical subroutines
that evaluate the error functions in Gspatial and the exponential integral E1(z) in Gspectral

(see [10] for erfc(z), and [9, Secs. 5.1.53, 5.1.56] for E1(z)).

Conclusion
The Green’s function for a linear array of point sources linearly phased has been
expressed in terms of two series that exhibit gaussian convergence that can be demon-
strated by following the steps in [7, Sec.V]. It is important to note that the spectral
representation of the GF (1), besides being much slower, cannot be evaluated for
ρ = 0, which is a very typical situation. In this particular case the even slower spatial
representation (sum of spherical waves) can still be used, rendering the Ewald method
even more desirable. When it is required to evaluate the Green’s function for complex
phasings, the spatial representation cannot be evaluated because it would diverge (as

2849
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Fig. 2. Convergence of the Ewald sums in (3) with (6) and (7) evaluated at two observation points
at r = (x, y, z) = (0.01, 0, 0.1)λ0 and at r = (x, y, z) = (0.1, 0, 0.1)λ0. Percentage relative error
versus number of terms N (P = N ) in the sums. The period is d = 0.6λ0, the n = 0 source is at
r′ = (x′, y′, z′) = (0, 0, 0).

well as the spectral method for ρ = 0), while the Ewald method can be evaluated also
in this case.
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