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Abstract 
What makes some words harder to learn than others in a second 
language? Although some robust factors have been identified 
based on small scale experimental studies, many relevant 
factors are difficult to study in such experiments due to the 
amount of data necessary to test them. Here, we investigate 
what factors affect the ease of learning of a word in a second 
language using a large data set of users learning English as a 
second language through the Duolingo mobile app. In a 
regression analysis, we test and confirm the well-studied effect 
of cognate status on word learning accuracy.  Furthermore, we 
find significant effects for both cross-linguistic semantic 
alignment and English semantic density, two novel predictors 
derived from large scale distributional models of lexical 
semantics. Finally, we provide data on several other 
psycholinguistically plausible word level predictors. We 
conclude with a discussion of the limits, benefits and future 
research potential of using big data for investigating second 
language learning. 

Keywords: second language learning; vocabulary; big data; 
corpus analysis; distributional semantics; 

Introduction 
Spanish speakers learning English on Duolingo are more than 
twice as likely to err with the word ‘blue’ than with the word 
‘gray’. They are also about 1.5 times more likely to make a 
mistake with the word ‘blue’ than Italian speaking learners 
are.1 What explains such differences in word learning? In this 
paper we investigate these questions by examining which 
word level factors predict accurate word learning in a large, 
naturalistic dataset of Spanish, Italian, and Portuguese 
speakers learning English. 

The second language (L2) literature has identified several 
word level factors that predict how easy a new word in L2 
will be to remember (De Groot & Keijzer, 2000). The 
strongest predictor is concreteness. All else equal, concrete 

                                                        
1 Example data-points based on the dataset used in this paper, 

described in more detail in the methods section.  

words tend to be easier to learn. Researchers hypothesize that 
concrete words have richer representations in memory, and 
this richer representation provides more opportunities for the 
learner to associate the L2 word with the L12 word. Another 
predictor of learning ease is whether the L2 wordform is a 
cognate (largely shares form and meaning) of the L1 form 
(e.g., ‘actor’ in English and Spanish). Studies have 
manipulated word frequency (both L1 frequency and L2 
exposure), but this predictor does not have a simple robust 
effect (De Groot & Keijzer, 2000). Finally, there is a body of 
work on translation ambiguity, showing that if a word in one 
language has two distinct translations into another language, 
it will be harder to learn (Bracken, Degani, Eddington & 
Tokowicz, 2017).  

Other potentially interesting factors that could matter for 
L2 word learning have been proposed but not yet studied (De 
Groot & Van Hell, 2005). Because L2 word learning studies 
are typically conducted in small classrooms or laboratories, it 
has been difficult to study word level factors at scale. There 
have been several recent calls in the L2 literature to move 
beyond small classroom studies and towards more 
quantitatively robust analyses (e.g. Milin, Divjak, 
Dimitrijevic, & Baayen, 2016; Norris & Ortega, 2000). One 
larger scale study successfully assessed some factors that 
predict L2 word recognition in fluent bilinguals (Lemhöfer et 
al, 2008). Furthermore, there has been a broader call in the 
cognitive sciences to use big and natural datasets to shed light 
on the questions that the field has been struggling to answer 
with experimental studies (Paxton & Griffiths, 2017). 

Here, we analyze a big and naturally occurring dataset to 
analyze word level factors that may affect word-learning 
performance of L2 English learners. The dataset we use 
contains a total of 36,799 people using the program Duolingo 
to learn English (Settles & Meeder, 2016).  

 

2 L1 = first language; We assume that for most users, the user 
interface language in Duolingo is their native language.  
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Figure 1: Screenshots from the Duolingo user interface. 
(a) Progress bars wrapped around each skill encourage users 

to do learning sessions that contain weak words.   
(b) Example trial where the user translates a sentence from 
L1 Spanish into L2 English by choosing words from a word 

bank. In this example, the user has already translated the 
sentence. Note that in this example, several words are 

embedded in a longer phrase, as is typical in Duolingo.  
 
Duolingo is a popular free online program that gamifies 

second language learning. It combines several best practices 
from learning research in its design including explanations, 
implicit instruction and mastery learning (see Fig. 1 and 
Settles & Meeder). In the app, a user does practice sessions 
revolving around a skill (e.g. ‘food’ or ‘animals’, Fig. 1a). A 
practice session consists of multiple trials, often involving 
several words embedded in larger phrases (Fig. 1b). Different 
trials embed different language learning tasks —written 
translation, fill in the gap sentences, multiple choice, 
matching tasks — in both the L2 to L1 and the L1 to L2 
direction. Duolingo applies a carefully constructed 
curriculum, so different skills are learned in a specified order 
with the goal of aiding learning. To do so, Duolingo’s 
algorithm predicts when words are becoming weak in 
memory and should be studied again by the user (Fig. 1a).  

We focus our analyses on two types of word-level 
predictors. The first is orthographic similarity between the L1 
and L2 wordform — a measure that can be viewed as a 
continuous estimate of cognate status. We expect words with 
similar L1/L2 forms to be learned more easily. The second is 
a novel measure of semantic similarity. For each pair of 
words that are translation-equivalents, we compute semantic 
similarity based on distributional semantics of L1 and L2. 
This measure — described in more detail below — allows us 
to ask whether words whose meanings are more alignable in 
L1 and L2 are learned more easily.  

                                                        
3 An OSF archive containing all data and analysis scripts for this 

paper will be made publicly available at osf.io/uwdcm 

Method3 

Duolingo dataset manipulation 
The English learning part of the Duolingo dataset (Settles & 
Meeder, 2016) as originally released contains 5.01 million 
instances of data. Each instance contains accuracy data for a 
single user during a single Duolingo session on a single 
lexeme, though that lexeme may have been seen multiple 
times during that session. A lexeme is a word with specified 
morphological form. For example, ‘girl’ and ‘girls’ are 
separate lexemes, as one is singular and the other plural. 
While the Duolingo dataset has separate entries for different 
lexemes that correspond to the same word (e.g. the lexemes 
‘cat’ and ‘cats’ both correspond to the lemma ‘cat’), most of 
the other corpora that we used to obtain word-level predictors 
did not. Thus, we aggregated the Duolingo dataset by word, 
collapsing from 2983 different lexemes to 1412 different 
words, with data on each word originating from 1-21 
different lexemes.  
   The Duolingo dataset contained data collected over two 
consecutive weeks, resulting in several (sometimes 
thousands of) instances for a given learner being presented 
with a given word. In addition to accuracy data for the current 
session, the data instance also included a timestamp and 
aggregated accuracy data on all previous encounters that the 
learner had with that word. Since we are not interested here 
in the time course of learning, we aggregated accuracy data 
to get a single datapoint per learner per word that detailed 
how often the learner had seen the word in total and how often 
they had been correct on that word. This aggregated dataset 
contained 1.86 million user-word data points taken from 
English courses with three different user interface languages: 
Portuguese, Spanish and Italian. 
   Because the order and frequency with which words are 
presented to a learner are not random in Duolingo, we used 
two user level measures as control predictors. The first, which 
we call word experience, is the total number of times that a 
user saw a given word in Duolingo. The second, user 
experience, is the sum of word experience for all words a user 
has practiced. Both of these predictors were log-scaled since 
their distributions were highly skewed, with many words 
practiced only a few times and some words practiced many 
times, and many users practicing English only a little and 
some users practicing it a lot.  
   We expect that user experience is predictive of word 
learning accuracy, with more experienced users doing better 
than less experienced users. For word experience, the naive 
prediction would be that the more experience a user has with 
a certain word, the better they should do on it. However, 
Duolingo will present a word more often after a user has 
made a mistake on it, meaning that words that a user has more 
difficulty on will be practiced more often. Due to this biased 
sampling procedure, average accuracy will be lower for 
words that have been practiced more often.  
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Word level predictors 
We used Google Translate to obtain word translations of the 
English words into three different user interface languages, 
since the dataset released by Duolingo did not include the L1 
translation equivalents used in the app. We then calculated 
the minimum edit4 (Levenshtein) distance between the 
English word and its translation equivalent as a continuous 
measure of cognate status, which we refer to as translation 
distance. Earlier L2 studies have mainly used cognate status 
as a binary predictor, comparing perfect cognates to non-
cognates. Our prediction for this measure of cognate status 
goes in the same direction: the smaller the translation distance 
between the two words in a translation pair is, the easier it 
should be to learn the word.  
   We focus on two main semantic predictors5, both derived 
from large scale distributional models of lexical semantics.  
The first, which we call semantic alignment, measures one 
aspect of how similarly a word is situated in the semantic 
representations of two languages. In intuitive terms, this 
captures the quality of a translation pair from a distributional 
perspective: If a translation pair keep similar semantic 
associations in two languages, then their meanings can be 
understood to be more aligned, and perhaps easier to learn. 
To compute semantic alignment (denoted rho), we obtained 
distributional models of lexical semantics for English, 
Spanish, Portuguese, and Italian. These networks were 
recently released by Facebook Artificial Intelligence 
Research (Bojanowski et al., 2017). Each model encodes the 
vocabulary of its language as points (or vectors) in an abstract 
semantic space. The configuration of these points is estimated 
by training a neural network to predict the words that appear 
often with a word in a large dataset of text derived from 
Wikipedia, and using this neural network to assign vectors to 
words. Close proximity in this vector space, as measured by 
cosine distance, implies a close semantic relationship 
between words. 
   To compute the semantic alignment of a translation pair, we 
found the semantic neighborhood of each word -  the N 
closest words within their respective semantic spaces (here N 
= 40). We only included in each space those words from the 
Duolingo dataset for which we were able to translate between 
the two languages using Google Translate. We then 
compared the cosine similarity of the words in the semantic 
neighborhoods of the translation pair. To do so, we first 
identified common neighbors, i.e, words which are in the 
semantic neighborhood of the target in English, and whose 
translation equivalent appears in the semantic neighborhood 
of the target in the other language.  For each of these common 
neighbors, we calculated the cosine similarity between the 
target and the neighbor, in both semantic spaces. We 

                                                        
4 Minimum number of edits needed to change one word into 

another. For example, the Levenshtein distance between ‘cat’ and 
‘gato’ is 2: the ‘c’ needs to become a ‘g’ and an ‘o’ needs to be 
added. 

5 The method for calculating the new semantic predictors 
mentioned in this section is described in more detail in Thompson, 
Roberts & Lupyan (2018).  

calculated total structural alignment by computing the rank 
correlation statistic (Spearman’s rho) between these aligned 
target-neighbor cosine similarities6. If the similarity structure 
is closely aligned between the semantic spaces of the two 
languages near the translation pair, rho will approach 1, and 
words with a large rho should be easier to learn. If the 
similarity structure were inverted between languages (i.e. the 
closest common neighbor in English is the most distant 
common neighbor Spanish), rho would approach -1; such 
words should be harder to learn.  
   Thus, while our new measure semantic alignment is 
conceptually related to translation ambiguity, it is calculated 
in an automated way that does not rely on human similarity 
judgments, making it easier to calculate for a wide variety of 
words between different language pairs. Our prediction that 
words that are less semantically aligned should be harder to 
learn corresponds to experimental findings that words that are 
more translation ambiguous are harder to learn (Bracken et 
al., 2017). 
   In addition to semantic alignment, we also recorded the 
mean edit (Levenshtein) distance between the target English 
word and its N = 40 closest neighbors in English semantic 
space. This measure identifies, for example, whether a word 
has many morphological variants, which are close in 
orthographic and semantic space.  We call this variable 
English morphological density. 
   The third semantic predictor is English semantic density (a 
measure distinct from phonological or orthographic density 
used in some past studies). By identifying the N nearest-
neighbors of a target English word, we can obtain a measure 
of how concentrated the region of semantic space the word 
occupies. Some words are surrounded by many other words 
with similar or related meanings, while others occupy 
isolated territory with few close associations. This aspect of 
a word can be quantified by the mean cosine distance to its 
closest 40 neighbors (in this dataset), and can be understood 
as a close analog of local clustering coefficients used in 
network analysis (how many words connected to a target 
word are connected to each other). An English word from a 
dense semantic neighborhood may be more confusable with 
its neighbors and thus harder to learn.  
  Besides our three measures of core interest (translation 
distance, semantic alignment and semantic density), we 
added several other exploratory word level predictors7. We 
added English word recognition, a z-scored Reaction Time 
measure for native English speakers in a lexical decision task 
as a predictor (Balota et al, 2007). We added this measure 
from the English Lexicon Project to see if and how native 
speaker ease of processing of a word might be related to early 
L2 English word learning accuracy. 

6 Neighbor overlap and semantic alignment are correlated 
statistics; in ongoing work, we are exploring this relationship 
further.  

7 Our dataset includes additional predictors, e.g. measures of 
phonological neighborhood density; predictors that didn’t 
significantly contribute to model fit in initial analyses were left out 
of later analyses. 
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   We used a multilingual WordNet (Bond & Paik, 2012) to 
obtain a measure for the number of distinct meanings a word 
has. We added concreteness (Brysbaert et al., 2014) as a 
predictor because the L2 word learning literature identifies 
this as the most robust predictor for early L2 word learning 
accuracy, with more concrete words easier to learn.  
We also add user interface language word frequency (Cuetos, 
Glez-Nosti, Barbón, & Brysbaert, 2012). Some, but not all 
previous studies investigating early L2 word learning 
accuracy find that more frequent words are easier to learn. 
Since users’ frequency of exposure to a word in English is 
already captured by our word experience variable, we opted 
to use frequency estimates based on the user’s L1.  
   Finally, to control for part of speech, we included the 
dominant part of speech based on a parse of SUBTLEX-US 
in our dataset (Brysbaert et al, 2012). Since most closed part 

of speech categories (e.g. articles) only consist of a handful 
of words in our dataset, we collapsed this into 4 big open 
categories (noun, verb, adjective, adverb) and a 5th 
miscellaneous category containing all other word types.  

Final corpus descriptives 
Combining all word level predictors with the Duolingo 
dataset, we were able to collect a measure of each predictor 
on 1064 different English words. We removed data from 
users who completed less than 41 data instances (15% of total 
users). We also excluded words for individual users that had 
been practiced fewer than three times (2.6 % of user-word 
data points). Table 1 shows, Mean, SD, and range for all 
predictors in our final corpus. 

 
Table 1. Descriptive statistics (Mean, Standard Deviation and Range) for the predictors in data sets for the three different user 
interface languages.  
 

Predictor Language of dataset Mean (SD) Range na  
user experience Spanish 5.59 (1.15) 3.71 to 12.69 26628 

Portuguese 5.6 (1.13) 3.71 to 10.3 7329 
Italian 5.72 (1.17) 3.71 to 10.17 2843 

word experience Spanish 2.3 (0.82) 1.1 to 9.51 1007092 
Portuguese 2.3 (0.79) 1.1 to 8.51 258609 
Italian 2.23 (0.79) 1.1 to 7.14 124471 

translation distance Spanish 3.99 (2.23) 0 to 12 979 
Portuguese 4.1 (2.11) 0 to 12 952 
Italian 4.3 (2.37) 0 to 13 956 

semantic alignment Spanish 0.37 (0.3) -0.86 to 0.94 979 
Portuguese 0.36 (0.29) -0.75 to 1 952 
Italian 0.35 (0.3) -0.77 to 0.96 956 

English morphological density Spanish 5.91 (1.28) 3.4 to 11.32 979 
Portuguese 5.94 (1.29) 3.4 to 11.32 952 
Italian 5.91 (1.27) 3.4 to 11 956 

English semantic density Spanish 0.42 (0.07) 0.25 to 0.68 979 
Portuguese 0.42 (0.07) 0.25 to 0.71 952 
Italian 0.42 (0.08) 0.25 to 0.71 956 

English word recognition Spanish -0.59 (0.19) -1 to 0.17 979 
Portuguese -0.59 (0.19) -1 to 0.17 952 
Italian -0.59 (0.18) -1 to 0.17 956 

distinct meanings Spanish 1.48 (0.82) 0 to 3.56 911 
Portuguese 1.46 (0.69) 0 to 3.5 896 
Italian 1.41 (0.65) 0 to 3.66 892 

concreteness Spanish 3.32 (1.11) 1.12 to 5 979 
Portuguese 3.32 (1.11) 1.12 to 5 952 
Italian 3.31 (1.12) 1.12 to 5 956 

word frequency Spanish 7.86 (1.75) 0.69 to 14.16 911 
Portuguese 8.25 (1.75) 0.69 to 14.38 896 
Italian 8.54 (1.8) 0 to 14.67 892 

aThe number of data points n used to estimate the reported statistics of each predictor are different due to properties of the 
data set. For example, user experience is determined based on the number of users in a dataset, concreteness is determined 
based on the number of English words in a dataset, and word experience is based on unique user-word data-points. Finally, 
since there were many more Spanish users, some words had enough users to make it into the Spanish but not the Portuguese 
or Italian datasets. 
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Results 
Overall accuracy was 90% and was remarkably similar for 

the three L1 languages in the dataset: Italian (90.9%), Spanish 
(90.0%), Portuguese (89.9%). Not surprisingly, performance 
was better for users who used Duolingo more, b=.10, 95% CI 
= [0.094, 0.104], t=41.2. Despite the robustness of user 
experience as a predictor of performance, absolute 
differences in performance were quite small. Users at the 
lowest quartile of usage had 90.5% accuracy, while users at 
the highest quartile of usage had 91.3% accuracy. This highly 
restricted range of accuracies speaks to the adaptive nature of 
Duolingo’s platform. When users make mistakes, they are 
more likely to practice the words later, keeping overall 
accuracy high and relatively constant. Accordingly, 
controlling for overall user experience, greater experience 
with a given word is associated with lower accuracy b=-.04, 
95% CI=[-0.052, -0.047], t=-36.8, most likely because users 
get increased exposure to a word because they made mistakes 
with it. This adaptive-sampling property of Duolingo makes 
it difficult to predict accuracy from word-level properties, but 
as we describe below, we can nevertheless account for what 
makes some words more difficult than others. 

We modeled accuracy for each user-word datapoint with 
mixed-effects regression, running separate models for each 
of three user interface languages (Italian, Spanish, and 
Portuguese). This model included a random intercept for user 
(since each user had seen multiple words), English word 
(since each word was seen by multiple users) and major part 
of speech (to ensure that some predictors like concreteness 
are not confounded by differences between parts of speech). 
We show standardized coefficients and 95% CIs for each L1 
language model in Fig. 2. For example, a 1SD increase in user 

experience for Portuguese users leads to .12 SD increase in 
overall accuracy. Corresponding p-values can be inferred 
from the displayed 95% CIs. 

Controlling for both user and word experience, we find that 
translation distance between L1 and English is negatively 
associated with accuracy. This relationship is significant for 
Spanish-English, Italian-English and is marginal for 
Portuguese-English. Accuracy in all three languages is 
associated positively with semantic alignment. The larger the 
semantic alignment between L1 and English for a given 
translation-pair, the more likely people are to be accurate 
(controlling for all other factors in the model). Accuracy in 
all three L1s models is associated negatively with the density 
of the English word’s semantic neighborhood. Words having 
high density neighborhoods such as “something”, “anything” 
and “anybody” pose greater learning challenges (controlling 
for other factors) compared to words such as “register”, 
“profile”, and “special”, which reside in neighborhoods with 
lower semantic density. 

Aside from these three predictors, we found some other 
effects which we did not explicitly predict and which should 
be interpreted with caution. Words being learned with larger 
English morphological density were associated with larger 
accuracy for Portuguese-English users, but this was not a 
significant predictor in the Italian and Spanish datasets. 
Concreteness is not reliably associated with accuracy when 
we take part of speech into account. Puzzlingly, more 
concrete words were associated with marginally lower 
accuracy for Portuguese-English users. Finally, longer lexical 
decision times from native-English speakers (Balota et al., 
2007) were associated with numerically lower accuracy. 
However, this predictor was only significant for the 
Portuguese-English users. 

 

 
Figure 2: Regression results for accuracy. Standardized coefficients and 95% CIs are plotted for the predictors in each L1 

language model. Standardized coefficients are interpreted as in the following example: a 1SD increase in user experience 
for Portuguese users leads to .12 SD increase in overall accuracy.
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Discussion 
We predicted accuracy of learning English words by 

Italian, Spanish, and Portuguese users of Duolingo as 
measured in a large naturally collected dataset. We found 
evidence for several novel factors for L2 word learning. As 
predicted, English words having smaller orthographic 
distances to their translation-equivalents were easier to 
learn. In addition to orthographic similarity, semantic 
similarity (obtained by cross-linguistic alignment of word 
embeddings derived from distributional semantics) was 
also associated with higher accuracy. Finally, words 
residing in dense English semantic neighborhoods were 
harder to learn than words residing in less dense semantic 
neighborhoods, when controlling for all other predictors. 
We also examined several other predictors that might be of 
interest to researchers investigating L2 word learning (Fig. 
2). 

These results can form the basis for future experimental 
studies. Since classroom and experimental studies are often 
necessarily limited in the number of words they test, 
predictors could first be investigated in this or similar big 
data, so that items for controlled studies can be strategically 
chosen.  

Limitations 
There are several aspects of this naturally occurring dataset 
that, despite its size, limit its usefulness for answering 
theoretically interesting questions about L2 learning. The 
Duolingo curriculum is constructed to maximize accuracy. 
This leads to a much smaller range of accuracy scores than 
is usually seen in experimental studies of word-learning. 
Furthermore, highly biased sampling of words produces a 
non-random ordering that affects several of our word level 
predictors. This may be why we do not find effects for 
certain predictors that are typically strong in experimental 
studies. Relatedly, Duolingo’s algorithm presents a word 
sooner for repeated study after the user gets it wrong on a 
trial. Finally, we have very little information about the 
users. In experimental studies, a participant’s language 
background and other demographics that might influence 
learning abilities can be measured in questionnaires, 
whereas for this dataset even a user’s native language is 
only inferred. Such limitations in using big and naturally 
occurring datasets should not, however, preclude their use 
in cognitive science (Paxton & Griffiths, 2017).  
   On the positive side, these data provide certain ecological 
validity absent from lab studies, and allow us to look at a 
longer slice of learning time compared to typical lab 
studies. Duolingo users are self-motivated to learn a second 
language, which is not necessarily true for learners in 
school classrooms who might just be meeting a curriculum 
requirement and participants in experimental studies. 
Furthermore, the size of this dataset allowed us to 
investigate many more word level predictors than can 
easily be manipulated in any one classroom study.  
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