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ABSTRACT 
Resource managers often rely on long-term 
monitoring surveys to detect trends in biological 
data. However, no survey gear is 100% efficient, 
and many sources of bias can be responsible for 
detecting or not detecting biological trends. The 
SmeltCam is an imaging apparatus developed 
as a potential sampling alternative to long-
term trawling gear surveys within the San 
Francisco Estuary, California, to reduce handling 
stress on sensitive species like the Delta Smelt 
(Hypomesus transpacificus). Although believed 
to be a reliable alternative to closed cod-end 
trawling surveys, no formal test of sampling 
efficiency has been implemented using the 
SmeltCam. We used a paired deployment of the 
SmeltCam and a conventional closed cod-end 
trawl within the Napa River and San Pablo Bay, 
a Bayesian binomial N-mixture model, and data 
simulations to determine the sampling efficiency 
of both deployed gear types to capture a Delta 
Smelt surrogate (Northern Anchovy, Engraulis 
mordax) and to test potential bias in our modeling 
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framework. We found that retention efficiency—a 
component of detection efficiency that estimates 
the probability a fish is retained by the gear, 
conditional on gear contact—was slightly higher 
using the SmeltCam (mean = 0.58) than the 
conventional trawl (mean = 0.47, Probability 
SmeltCam retention efficiency > trawl retention 
efficiency = 94%). We also found turbidity did 
not affect the SmeltCam’s retention efficiency, 
although total fish density during an individual 
tow improved the trawl’s retention efficiency. 
Simulations also showed the binomial model 
was accurate when model assumptions were met. 
Collectively, our results suggest the SmeltCam 
to be a reliable alternative to sampling with 
conventional trawling gear, but future tests are 
needed to confirm whether the SmeltCam is as 
reliable when applied to taxa other than Northern 
Anchovy over a greater range of conditions.

KEY WORDS 
Bayesian, gear retention efficiency, N-mixture 
model, Northern Anchovy, midwater trawl, Napa 
River, San Pablo Bay, Delta Smelt

INTRODUCTION 
Nearly all sampling methods in fisheries and 
wildlife are imperfect (Royle et al. 2005). Not 
detecting an individual during a survey does not 

 RESEARCH

Use of the SmeltCam as an Efficient Fish–Sampling 
Alternative within the San Francisco Estuary
Brock M. Huntsman*1, Frederick Feyrer1, Matthew J. Young1



2

VOLUME 19, ISSUE 2, ARTICLE 6

exclusively mean a species is absent, but may 
reflect whether the species was available to or 
retained by the chosen gear. Such imperfections 
in the observation process propagate into the 
desired latent state metric (e.g., abundance, 
survival, diversity) that a study is designed 
to estimate. Although this source of bias can 
dramatically alter inference if unaccounted for 
(Kéry and Royle 2016), implementing appropriate 
sampling designs that can address catchability 
issues is not trivial. 

In fisheries, the common catch equation explicitly 
defines the issue of detection efficiency (Catch = 
Detection Efficiency × Fishing Effort × Latent State 
Abundance, Walsh 1997). Detection efficiency can 
be further decomposed into components, which 
vary because of differing sources of sampling 
bias (Zhou et al. 2014; Hostetter et al. 2019). The 
common components of detection efficiency 
are the probability that a fish is present during 
sampling; the probability the fish, given it is 
present, is available to the gear; and the probability 
that a fish is retained once in contact with the 
gear, or retention probability (Hostetter et al. 2019; 
Vasilakopoulos et al. 2020). Various sampling 
designs have been developed to specifically target 
components of sampling efficiency (e.g., retention 
probability with covered cod-end trawling designs) 
or combinations of detection efficiency components 
(e.g., depletion surveys provide information 
specific to retention and availability probability, 
Hostetter et al. 2019). Often such sampling designs 
require replicate samples to be collected during 
demographic closure (i.e., when no movement, 
births, or deaths are occurring, Nichols et al. 2009; 
Amundson et al. 2014; Zhou et al. 2014), providing 
the appropriate sampling design to estimate bias in 
sampling efficiency. Designing experiments where 
closure is certain is relatively simple when surveys 
occur within small water bodies (e.g., using block 
nets within wadeable streams); however, it is 
difficult to ensure demographic closure in larger 
water bodies (large rivers, lakes, estuaries), and 
creative solutions are required. This difficulty is 
exacerbated for species with conservation status, 
especially if the most efficient gear types coincide 
with adverse effects (e.g., greater fish mortality 
when electrofishing or trawling).

The upper San Francisco Estuary (the estuary) 
provides municipal and agricultural water to 
satisfy most of California’s freshwater demand, 
and is also home to multiple listed species that 
are dependent on this water supply. The Delta 
Smelt (Hypomesus transpacificus) is a federally 
threatened fish species (CDFW 2020) that is 
often the focus for resource managers tasked 
with balancing ecological needs and human 
demands because its decline is linked in part to 
freshwater outflows (Kimmerer and Rose 2018). 
A major concern with monitoring Delta Smelt 
populations is that it is sensitive to sampling 
mortality when collected by standard methods 
within the estuary (conventional trawls), and 
few sampling alternatives are currently available 
that can provide equally reliable indices of 
abundance (Feyrer et al. 2013). Recently, Feyrer 
et al. (2013) showed that an underwater video 
camera attached to trawling gear, referred to as 
the SmeltCam, could not only detect fish passing 
through the trawl but also reduced mortality by 
removing the need to handle fish (although some 
fish do get entangled in the mesh). The SmeltCam 
has been used to investigate the distribution of 
pelagic communities within different habitats 
of the estuary (Feyrer et al. 2017), suggesting 
its effectiveness to monitor taxa other than the 
fish species for which it was designed. Although 
current evidence points to the SmeltCam as 
a valid alternative to conventional trawling 
methodologies, no formal assessment of gear 
detection efficiency has been conducted.

Paired gear sampling designs can be used to 
assess detection efficiency among sampling 
gears in fisheries studies (Walsh 1997; Millar 
and Fryer 1999) and can be used to assess 
the relative efficiency of the SmeltCam as a 
sampling alternative to conventional trawling 
methods. For example, Coggins Jr. et al. (2014) 
combined baited traps and video cameras to 
estimate imperfect detection within an occupancy 
modeling framework. An important aspect of the 
paired gear sampling design is that the paired 
gear deployments simultaneously act as replicate, 
closed sampling passes (Coggins Jr. et al. 2014), 
a requirement for studies designed to estimate 
detection bias in sampling methods. Retention 
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probability—the probability that an organism is 
retained by the sampling gear, conditional on 
it being available to the gear—is a component 
of detection efficiency commonly estimated for 
trawling gear deployed in the estuary. Paired 
gear studies have already been conducted within 
the estuary to estimate gear retention probability 
for Delta Smelt (Mitchell et al. 2017, 2019) and 
used to provide a less biased index of abundance 
throughout the estuary (Polansky et al. 2019). 
However, no such assessment has been performed 
for the SmeltCam, which is important if it is to 
be used as a viable alternative to conventional 
trawling surveys. 

The goal of this study was to assess the gear 
retention efficiency of the SmeltCam relative 
to conventional trawling surveys deployed 
within the estuary. We used a paired gear 
sampling design, with the SmeltCam deployed 
simultaneously with a conventional trawl that 
targeted Northern Anchovy (Engraulis mordax) 
as a Delta Smelt surrogate to test the relative 
retention efficiency of the SmeltCam compared 
with conventional trawling methods. Our specific 
objectives were to (1) estimate how common 
environmental conditions during sampling might 
affect retention efficiency of the SmeltCam 
and a conventional trawl, (2) compare retention 
efficiency of the sampling gear types, and (3) use 
data simulations to determine potential bias in 
paired gear retention efficiency analyses.

MATERIALS AND METHODS
Field Data Collection 
We performed our study in September of 2016 
within the Napa River and San Pablo Bay, 
California (Figure 1). Surveys were conducted 
using the same equipment and operating 
protocols as normally deployed by the California 
Department of Fish and Wildlife (CDFW) during 
Fall Midwater Trawl (FMWT) surveys (Feyrer et 
al. 2007, 2013; https://www.dfg.ca.gov/delta/data), 
and near fixed sampling stations sampled by 
CDFW monitoring programs (Napa River stations 
340 and 341; San Pablo Bay stations 310 and 311; 
https://www.dfg.ca.gov/delta/data/fmwt/stations.
asp). The net is 3.66 m in width and height, and 

17.6 m long, with nine tapered panels of stretch 
mesh that start at 14.7 cm near the mouth to 
1.3 cm in the cod end. 

The SmeltCam is a video camera apparatus (Genie 
HM1400, Teledyne Dalsa) attached to the cod 
end of a midwater trawl (see Feyrer et al. 2013 
for more details about the SmeltCam’s design). 
The purpose of the trawl-camera’s design is to 
function as an open-ended trawling system 
in which fishes can be identified by trawling 
methods without the need to bring fish to the 
surface and retrieve them from a closed cod 
end (Feyrer et al. 2013). Unlike previous studies 
(Feyrer et al. 2013, 2017), we included a closed 
cod end with the SmeltCam for our sampling 
design to test the fish retention efficiency of the 
SmeltCam relative to a typical oblique tow. Thus, 
our methods are similar to Coggins Jr. et al. 
(2014) in that the paired gear deployment served 
as replicate surveys in which gear retention 
efficiency could be assessed. 

We conducted 65 paired SmeltCam and closed 
cod-end oblique tows over 4 sampling days, with 
each tow lasting roughly 12 minutes. All tows 
occurred against the current, 35 within the Napa 
River and 30 within San Pablo Bay. For analysis, 
we removed data points with missing covariate 
information, which reduced the number of tows 
to 52 (Napa River, n = 26; San Pablo Bay, n = 26). 
We conducted tows from 9/15/2016 to 9/16/2016 
within the Napa River, and from 9/22/2016 to 
9/23/2016 within San Pablo Bay, where the 
time between tows ranged from 17 minutes to 
253 minutes. We estimated the volume of water 
filtered by the net using a mechanical flowmeter 
(model 2030R, General Oceanics) deployed off the 
side of the vessel during tows, with calculations 
provided by the manufacturer to account for tow 
speed and net size. We used a hand-held EXO2 
YSI multi-parameter sonde (YSI Inc.) to determine 
water temperature (°C), turbidity (NTU), specific 
conductivity (μS cm–1), and salinity (ppt); and a 
boat-mounted sonar unit to estimate water depth 
(m) after tows were completed.

We counted Northern Anchovy separately for the 
SmeltCam and the cod end. For the SmeltCam, all 
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images were processed by an expert in the lab, 
where fish were identified and counted. All fishes 
caught in the cod end were identified and counted 
in the field.

Statistical Analyses 
We used a binomial N-mixture modeling 
approach (Royle 2004) to analyze the combined 
trawl–SmeltCam data to test for differences in 
retention efficiency between the two gear types. 
We used the dual gear binomial N-mixture 
modeling approach described by Graves et al. 
(2011) to analyze our data set, where two binomial 
N-mixture models were fit to count data collected 
by separate sampling methods within the same 
sampling area. This modeling approach assumes 

that latent state abundance (N) in contact with 
the gear was the same, regardless of sampling 
gear used, but differences in the observation 
process between gear types is the primary source 
of variability. We fit this same model with our 
dual gear surveys for Northern Anchovy with the 
following form:
 
(1)

 

 

Figure 1 Sampling locations (black circles) within San Pablo Bay and the Napa River, San Francisco Estuary, California
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(2)

  

where

and y is observed counts of Northern Anchovy 
from the SmeltCam (Camera) and the number of 
Northern Anchovy captured in the closed cod 
end of the trawl (Trawl) during each individual 
tow (i). Gear-specific retention efficiency (p) was 
constrained as a function of turbidity for the 
SmeltCam because of its presumed effect on video 
processing (DeCelles et al. 2017). The retention 
efficiency of the closed cod end was modeled as 
a function of the log-transformed total number of 
fish (plus 1 due to zeros) captured in the sample, 
because this is known to increase the sampling 
efficiency of trawl surveys because it blocks 
the mesh from which smaller fish may escape 
(Mitchell et al. 2017; Peterson and Barajas 2018). 
The latent state abundance parameter was also 
constrained by fixed tide effects ( i; ebb, flood, 
high slack, low slack) and site effects (Napa River 
vs. San Pablo Bay), with the intercept  
( N) representing the ebb tide within the Napa 
River. We included the log transformation of 
the volume of water filtered during individual 
trawls as an offset. We also included a random 
effect ( ) for each observation in the observation 
process (pCamerai

 and pTrawli 
), and the latent state 

process (Ni) to account for over-dispersion (Kéry 
2010; Harrison 2014), with  as observation-level 
standard deviations.

We fit the dual gear N-mixture model using a 
Bayesian framework, with minimally informative 
priors assigned to all model parameters (Table 1). 
We conducted full Bayesian inference using Gibbs 
sampling (JAGS v4.3.0; Plummer et al. 2017) via 
Markov Chain Monte Carlo (MCMC) sampling 

with the jagsUI package in program R (Kellner 
2019; R Core Team 2020). Final inferences for the 
N-mixture model were based on 6,000 samples for 
each parameter from the posterior distributions. 
Posteriors were generated from three independent 
chains, each with an initial length of 110,000 
iterations, burn-in of 10,000 and a thinning of 
50. We assessed model convergence by examining 
Gelman and Rubin convergence diagnostics 
( ̂R < 1.1; Gelman and Rubin 1992). We assessed 
“goodness-of-fit” for the N-mixture model by 
calculating a χ2 discrepancy and a Bayesian 
p-value to assess model fit (Kéry and Royle 2016). 
Bayesian p-values indicate poor fit near values 
of 0 and 1, with the best fit at values near 0.5. 
Because the SmeltCam and the conventional 
trawl data were fit with two separate binomial 
N-mixture models integrated by a shared latent 
state abundance parameter, we assessed model fit 
by calculating a separate χ2 discrepancy for the 
SmeltCam and conventional trawl observation 
processes (gear retention efficiency). 

We used two criteria as evidence for Objectives 
1 and 2. We designated parameters with 95% 
credible intervals that did not overlap 0 as 
evidence for environmental conditions that 
affected retention efficiency of both gear 
types and latent state abundance (Objective 1). 
Objective 2 was addressed in multiple steps. First, 
we predicted retention efficiency for each tow 
from both gear types. We took the mean from 
all tows, which resulted in a retention efficiency 
estimate for each gear type and posterior sample. 
We then compared retention efficiency predictions 
of the SmeltCam to closed cod-end midwater trawl 
predictions. We used the probability of direction 
to determine whether retention efficiency 
differences existed between the SmeltCam and 
the conventional trawl from posterior samples 
[Pr(Camera > Trawl)]; Makowski et al. 2019). If 
95% of retention efficiency posterior samples 
were greater for one gear type than the other, we 
considered this evidence of an effect. Lastly, we 
used the probability of direction to also determine 
whether differences existed [Pr(Camera > Trawl)] 
based on the intercept estimates for each retention 
efficiency model ( Camera and Trawl ). We used 
this criterion because the intercept represents the 
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expected mean of retention efficiency for each 
gear type when standardized covariates equal 0. 

Simulations
We performed data simulations to test whether 
the model provided unbiased estimates of gear 
efficiency (Objective 3, see Appendix A for 
R code). We simulated data with linear constraints 
on the observation process (retention efficiency 
of the SmeltCam and trawl) and the latent state 
process (abundance), similar to the analytical 
framework described in Equations 1 and 2 but 
without the random observation effect, which was 
included to improve model fit for the observed 
data. The binomial model simulations included 
scenarios in which the intercept of both the 
SmeltCam and the trawl retention efficiencies 
were set at three different values (back-
transformed from the logit scale = 0.4, 0.6, and 

0.8) for a total of nine mean retention efficiency 
scenarios between the SmeltCam and trawl 
surveys. 

The purpose of these simulation scenarios was to 
determine the extent that mean gear retention 
efficiency affected model reliability. We included 
a negative covariate effect (–1.0) for the SmeltCam 
simulation, which was the assumed effect of 
turbidity on SmeltCam retention efficiency. A 
positive effect also was included for the trawl 
retention efficiency simulation (1.0), an assumed 
effect of fish density on the retention efficiency 
of the trawling gear (Mitchell et al. 2017). A 
second simulation scenario included a range of 
sample sizes (or sites) to determine whether our 
sample size of 52 tows was sufficient to produce 
unbiased results of gear efficiency and how many 
tows (n = 25, 52, 88, 150) would be needed to 

Table 1 Model priors and posterior parameter estimates fit to the integrated binomial N-mixture model with SmeltCam and 
midwater trawl sampling gears in the San Francisco Estuary, California. Parameters reflect notation presented in Equations 1 and 2. 
Posterior values are means, with 95% credible intervals reported in parentheses. Bold numbers represent parameters with 95% 
credible intervals that did not overlap 0. The σ parameters could not overlap 0 because standard deviations can’t be less than 0. 

Process Parameter Definition Prior Posterior

Observation     

Camera Camera intercept Normal (0, 10) 0.44 (-0.46, 1.65)

Turbidity Camera turbidity effect Normal (0, 10) 0.30 (-0.34, 1.09)

Camera Camera random observation effect Uniform (0, 100) 0.80 (0.04, 2.38)

Trawl Trawl intercept Normal (0, 10) –1.25 (– 2.99, 0.60)

Density Trawl density effect Normal (0, 10) 0.63 (0.07, 1.33)

Trawl Trawl random observation effect Uniform (0, 100) 1.56 (0.57, 3.11)

Latent State

N Intercept (ebb tide and Napa River) Normal (0, 100) – 7.54 (– 8.80, – 6.37)

NFlood
Flood tide effect Normal (0, 100) – 1.93 (– 3.31, – 0.63)

NHigh Stack
High slack tide effect Normal (0, 100) – 2.64 (– 4.60, – 0.81)

NLow Stack
Low slack tide effect Normal (0, 100) – 0.89 (– 3.35, 1.65)

NSan Pablo
San Pablo Bay effect Normal (0, 100) 1.57 (0.40, 2.83)

N Random observation effect Uniform (0, 100) 1.85 (1.30, 2.62)

Model Fit

Bayesian p Camera data — 0.53

Bayesian p Trawl data — 0.45
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produce reliable parameter estimates. A final 
simulation scenario included additional replicate 
passes during closed sampling for both gear 
types, which is similar to conventional occupancy 
and binomial N-mixture model sampling designs 
(Royle et al. 2005). The replicate pass scenario 
included either a single pass with both gear types 
(like the current Northern Anchovy analysis), 
three passes, or six passes. In all simulations, the 
latent state parameter was fit with linear 
constraints, with an intercept set at 2.7 [log(15) = 
2.7, and the mean observed counts were 13 and 14 
for trawl and SmeltCam, respectively], with a 
slope set at 2. A total of 10,800 simulations were 
run (100 simulations × four site scenarios × three 
camera efficiency scenarios × three trawl 
efficiency scenarios × three replicate sample 
scenarios). When a simulation did not converge 
( ̂R of all parameters < 1.1), additional simulations 
were performed until 100 converged simulations 
were gained. We assessed model performance for 
all parameters of each simulation scenario for 100 
converged simulations (Zhao and Royle 2019). We 
assessed model performance by calculating 
relative bias ( ; Amundson et al. 2014; 

Duarte et al. 2018), whether the truth was 
captured by 95% credible intervals (coverage; 
Amundson et al. 2014), and assessed for accuracy 

with root-mean-squared error (RMSE = 
; Walther and Moore 2005; 

Hostetter et al. 2019). Models were similarly fit 
with Bayesian approaches but with 11,000 
iterations, 1,000 samples removed (burn-in), a 
thinning of five, and three chains run in parallel.

RESULTS
Northern Anchovy counts and habitat variables 
collected during trawling surveys varied between 
sampling locations. The highest number of 
Northern Anchovy captured with either gear 
type occurred in San Pablo Bay, where mean 
observed counts were approximately 8 to 12 
times higher than counts from the Napa River 
(Table 2). Northern Anchovy counts were similar 
between gear types on each individual tow, 
although some variability was evident (Figure 2). 
Water-quality measurements also differed among 
sampling locations, with greater conductivity and 
salinity in San Pablo Bay, and all other measured 
water-quality variables higher in the Napa River 
(Table 2). 

Table 2 Sampling conditions during dual gear surveys in 
the San Francisco Estuary, California. All values reported 
for continuous habitat and sampling condition variables are 
means (SE). The Northern Anchovy counts from the SmeltCam 
and Trawl are reported as means with minimums and 
maximums in parentheses.

Variable Napa River San Pablo Bay

SmeltCam counts 3.0 (0, 22) 24.2 (0, 193)

Trawl counts 2.0 (0, 12) 23.8 (0, 165)

Volume 8,853 (402) 10,383 (590)

Turbidity (NTU) 22.4 (1.6) 10.8 (1.5)

Conductivity (μS cm–1) 32,022 (232) 42,464 (395)

Salinity (ppt) 20.0 (0.2) 27.4 (0.3)

Temperature (° C) 19.3 (0.1) 18.5 (0.1)

Depth (m) 13.5 (0.1) 13.2 (0.2)

Napa River

Number of Northern Anchovy detected by the SmeltCam
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Figure 2 Observed Northern Anchovy counts detected 
with the SmeltCam vs. the closed cod end of the midwater 
trawl during dual gear surveys in the San Francisco Estuary, 
California. The broken red line represents a 1:1 relationship
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Objective 1 
Analysis of the Northern Anchovy data with the 
integrated binomial N-mixture model showed 
adequate model fit (Bayesian p = 0.53 and 0.45 
for the camera data and trawl data respectively, 
Table 1). No evidence was found that turbidity 
affected SmeltCam retention efficiency (Table 1), 
where 18% of the posterior samples for the 
turbidity effect were less than 0, and 95% 
credible intervals overlapped 0 (mean  

Turbidity = 0.30, 95% credible intervals = –0.34 to 
1.09; Figure 3). Retention efficiency of the trawl 
increased with fish density (Table 1), with 98% of 
the posterior samples for the fish density effect 
greater than 0, and 95% credible intervals did 
not overlap 0 (mean Density = 0.63, 95% credible 
intervals = 0.07 to 1.33; Figure 3). 

Northern Anchovy were also more abundant 
during ebb tide than either flood tide (mean  

NFlood
 = –1.93, 95% credible intervals = –3.31 to 

–0.63) or high slack tide (mean NHigh Stack
 = –2.64, 

95% credible intervals = –4.60 to –0.81; Table 1). 
Northern Anchovy abundance during ebb tide 
was not different than at low slack tide (mean  

NLow Stack
 = –0.89, 95% credible intervals = –3.35 to 

1.65; Table 1 and Figure 4).

Objective 2 
Multiple analyses estimated retention efficiency 
to be higher for the SmeltCam than the closed 
cod-end (trawl). Overall mean retention efficiency 
for the SmeltCam was higher than the closed cod 
end based on all 52 tows, with 94% of posterior 
samples (mean retention efficiency = 0.58, 95% 

Figure 3 Turbidity and log transformed total fish density effects on Northern Anchovy retention efficiency using the SmeltCam and 
closed cod-end midwater trawl sampling gears, respectively

Napa River
San Pablo Bay

Site

Ebb Low Slack Flood High Slack

60

40

20

0

Figure 4 Predicted latent state abundance by sampling 
location and tidal phase from simultaneous SmeltCam and 
midwater trawl surveys of Northern Anchovy in the San 
Francisco Estuary, California
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credible intervals = 0.40 to 0.73) greater than 
posterior samples of retention efficiency for the 
closed cod end (mean retention efficiency = 0.47, 
95% credible intervals = 0.28 to 0.64; Figure 5). 
Similar results were found when we compared 
the retention efficiency intercepts, where 97% of 
posterior samples were higher for the SmeltCam 
(mean Camera = 0.44, 95% credible intervals = –0.46 
to 1.65) than the closed cod end (mean  

Trawl = –1.25, 95% credible intervals = –2.99 to 
0.60, Table 1).

Objective 3 
Simulations demonstrated that relative bias 
in all parameter estimates decreased as the 
number of tows increased, retention efficiency 
of both gear types increased, and the number of 
replicated passes increased (Figure 6; see also 
Appendix B, Figures B1–B5). Patterns in RMSE 
for all parameters and simulation scenarios 
showed that RMSE decreased with higher sample 
size, number of replicates, and greater retention 
efficiency of each gear type (Figure 7). For 
simplicity, we only present results for intercept 
( ) and slope ( ) parameters for simulation 
scenarios that matched our observed data set 
(SmeltCam retention efficiency = 0.6, and trawl 
closed cod end retention efficiency = 0.4; Figure 7). 

Parameter interval coverage was high among all 
scenarios (all parameters were covered by 95% 
credible intervals in at least 83% of simulations); 
consequently, we similarly only present interval 
coverage of intercept and slope parameters for the 
same scenarios as RMSE (Figure 7). Simulation 
results for scenarios similar to our observed field 
data (number of tows = 52 and 1 replicate) showed 
coverage to be greater than 93% for the intercept 
and slope parameters, and RMSE to be low for 
both parameters (RMSE < 0.14, Figure 7). 

DISCUSSION
We presented a combined gear sampling design 
within an integrated analytical framework to 
demonstrate the potential of the SmeltCam as a 
valid sampling alternative to conventional closed 
cod-end trawling gears used in the estuary. 
By allowing combined gear deployment to act 
as sampling replicates (see Coggins Jr. et al. 
2014), we were able to estimate the retention 
efficiency of each gear type. Simulations further 
demonstrated that the integrated model can 
provide unbiased parameter estimates as long 
as model assumptions are met, and sample sizes 
are—as they were in the present study—high 
enough. The combined gear sampling design and 
analytical framework implemented here provides 
evidence that the SmeltCam is as efficient as a 
conventional midwater trawl at detecting fish 
available to the gear.

We found observed fish counts from the 
SmeltCam to be similar to trawl counts, but this 
direct relationship was variable, and reflected 
the imperfect retention efficiency of each 
gear type. (Again, retention efficiency is the 
probability that a fish is detected once it is in 
contact with the gear.) Retention efficiency was 
estimated for both gear types in this study, and 
is a common component of catchability estimated 
in fisheries studies (Walsh 1997). Mitchell et al. 
(2017, 2019) used covered cod end and paired 
gear sampling methods for midwater trawling 
surveys within the estuary. These surveys were 
not 100% efficient at capturing Delta Smelt, and 
smaller fishes were less likely to be retained 
than larger fish. Although we did not directly 

Figure 5 Posterior density of the mean retention efficiency 
using the combined SmeltCam and closed cod-end midwater 
trawl (Trawl) sampling gears analyzed with the integrated 
binomial N-mixture model
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test fish size during our surveys, fish size likely 
explains a considerable amount of variability in 
the retention efficiency estimates made for the 
trawl and the SmeltCam in our study. Fish size 
effects on retention efficiency estimates could 
be addressed with future modifications to the 

SmeltCam by incorporating multiple camera 
mounts (pairs of stereo-imaging cameras) that 
would allow for fish sizes to be determined (Rosen 
et al. 2013; Williams et al. 2015; DeCelles et al. 
2017). 

Figure 6 Relative bias for the SmeltCam retention efficiency intercept from simulations of the integrated binomial N-mixture model 
based on paired SmeltCam and closed cod-end sampling scenarios
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The inclusion of covariates was important for our 
analyses because different aspects of sampling 
design can affect the efficiency by which gears 
perform. Turbidity was expected to negatively 

affect our ability to detect fish with the 
SmeltCam, similar to issues encountered in other 
image sampling approaches (DeCelles et al. 2017). 
However, we could not confirm whether there was 

Figure 7 SmeltCam retention efficiency intercept (α) and slope (β) coefficient coverage by 95% credible intervals and root-mean-
squared-error (RMSE) based on simulations of the integrated binomial N-mixture model. Interval coverage is the percent of 100 
simulations in which the 95% credible intervals captured the true parameter value. Scenarios represented include the retention 
efficiency of the SmeltCam = 60%, retention efficiency of the closed cod end of the trawl = 40%, with all other simulation scenarios 
shown (different number of sites and number of true closed replicate passes).
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a meaningful turbidity effect on the SmeltCam’s 
performance. If turbidity is, in fact, important 
for SmeltCam performance, our analysis would 
indicate that our samples were not collected along 
a broad enough turbidity gradient (from 2.3 to 
36.5 NTU) to detect an effect. We also included 
the total density of fish in the trawl as a factor 
affecting retention efficiency of the conventional 
trawling gear, and found evidence that the 
trawl was more efficient when fish densities 
were higher. Higher fish densities can fill mesh 
and prevent smaller fishes from escaping, a 
mechanism described for other trawling surveys 
in the estuary (Mitchell et al. 2017; Peterson and 
Barajas 2018).

The simultaneous deployment of the SmeltCam 
and closed cod-end midwater trawl was used to 
estimate gear retention efficiency for these gear 
types. Similar approaches have conceptually 
been taken in other studies, where cameras 
combined with other sampling gears (e.g., baited 
traps) are simultaneously deployed to estimate 
the same latent state variables (e.g., abundance, 
occupancy) using different gear types to inform 
the sampling efficiency of the complementary 
gear type (Bacheler et al. 2013; Kotwicki et 
al. 2013; Coggins Jr. et al. 2014). As expected, 
our simulations indicated greater accuracy and 
precision in parameter estimates when greater 
sample sizes and a greater number of closed-
replicate passes were included (Zipkin et al. 2014; 
Duarte et al. 2018). However, increasing the 
number of true, closed replicate samples collected 
within the estuary to improve gear sampling 
efficiency is not a trivial matter, and cannot 
easily be addressed simply by increasing sampling 
effort. Confirming that sampling conditions are 
truly closed during replicate sampling passes is 
challenging, but is a requirement for estimating 
other decomposed forms of the detection process 
(e.g., the probability a fish is available to the 
sampling gear; Hostetter et al. 2019). For this 
study, we estimated the probability that a fish 
was retained by the sampling gear, but this value 
is conditional on a fish already being available 
to the sampling gear. Future efforts to reduce 
uncertainty in developing biological metrics 
from long-term trawling data sets in the estuary 

would greatly benefit from identifying sources 
of variability in detection efficiency beyond gear 
retention.

We used the binomial N-mixture model for our 
analysis, which can generate biased results if 
modeling assumptions are not met. First, the 
N-mixture model implicitly requires that double 
counting does not occur during data collection 
(Kéry 2018). The SmeltCam data could violate 
this assumption because a fish could move into 
or out of the scope of detection for the camera 
during a single tow. Similar counts between 
gears suggest that no strong violation of this 
assumption occurred during this study, but 
confirmation is not possible without unique fish 
identification. The N-mixture model also has 
issues with parameter identifiability when fit 
without covariate relationships in the observation 
or latent state processes (“intercept only models,” 
Barker et al. 2018; Kéry 2018). However, we 
included covariate effects on both the observation 
and latent state processes, with strong covariate 
effects detected in the latter. Collectively, our 
results demonstrate that the SmeltCam provides 
abundance estimates that are as reliable as the 
conventional trawl, and can be used as a valid 
alternate sampling gear choice when monitoring 
at-risk populations such as the Delta Smelt.
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