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ABSTRACT OF THE DISSERTATION

Molecular Simulation Guided Protein Engineering and Drug Discovery

By

Edward King

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2021

Professor Ray Luo, Chair

Targeted protein-ligand binding interactions drive the metabolic processes essential for life

and biochemical manufacturing. Binding interactions between enzymes and small molecules

are mediated by the sum of weak, non-covalent interactions including: hydrophobic packing,

steric effects, electrostatics, and hydrogen-bonding. Characterization of these interactions

is limited by the difficulty in obtaining high resolution structural data of the active binding

poses. Furthermore, static models from crystallography are unable to capture the dynamic

conformational changes that occur during the transition from the protein unbound to bound

states. By resolving how these transitory contacts affect protein function, we accelerate the

design of enzymes with target activities and discovery of small molecule inhibitors.

We investigate protein-ligand interactions from two directions: 1) From the perspective of

protein engineering in answering the question, what mutations should be made in a protein’s

amino acid sequence to enhance its binding affinity toward a target ligand. 2) From the field

of drug design, how can we accurately predict the absolute binding free energies of small

molecules. This work demonstrates how computational methods utilizing physical model-

ing can be applied in combination with high-throughput, directed-evolution experiments to

advance biomolecular design.

Molecular dynamics (MD) simulations account for the effects of atomic flexibility and ex-

xi



plicit solvent that are key to biomolecular interactions. In Chapter 1, we review the basis

of free energy calculations based on the Molecular Mechanics Poisson Boltzmann Surface

Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical simulation approaches

in drug development. We perform absolute alchemical simulations in Chapter 2 with in-

hibitors targeting the Urokinase Plasminogen Activator (UPA) system and analyze how a

range of simulation parameters such as counter-ion concentration and alternative binding

pocket protonation states impact the binding free energy predictions. We improve predic-

tive accuracy by adapting the protocol to utilize the continuum PBSA solvent model with

charge polarization corrections through scaling of the solute dielectric.

In Chapter 3, we describe current approaches to engineering proteins for altered redox co-

factor specificity, which has industrial value in specific delivery of electron energy and re-

duction of feedstock costs in biomanufacturing. We integrate molecular modeling with site-

saturated mutagenesis to efficiently navigate protein sequence space with Escherichia coli

glyceraldehyde 3-phosphate dehydrogenase (Ec gapA) to enable utilization of the artificial

redox cofactor nicotinamide mononucleotide (NMN+) in Chapter 4. Lastly, we investigate

how mutations fine-tune oxygenase conformational dynamics to modify substrate specificity

and turnover in Chapter 5.

Metabolic pathway engineering with enzymes specific for NMN/H provides direct control

over electron flow in living organisms. Application of our developed molecular modeling

tools will improve the accuracy and speed of MD simulations, facilitating routine usage to

reduce the costs required to construct and screen protein variants, expedite identification of

potential pharmaceuticals, and allow study of dynamic biomolecular interactions that are

inaccessible through experiment.

xii



Chapter 1

Free energy calculations in drug

discovery

+
∆"#$%&

Figure 1.1: Simulation of protein-ligand binding interactions.
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1.1 Abstract

The grand challenge in structure-based drug design is achieving accurate prediction of binding free

energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical

to the binding process, leading to calculation of thermodynamic quantities involved in estimation of

binding affinities. With recent advancements in computing capability and predictive accuracy, MD

based virtual screening has progressed from the domain of theoretical attempts to real application

in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface

Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly

applied to model molecular recognition for drug discovery and lead optimization.

1.2 Introduction

Modern drug development requires screening over vast regions of chemical space to identify potential

binders against a protein target. This approach is costly in time and material resources[1]. Even

after identification of potential ligands from initial screening assays, further refinement must be

carried out to improve binding properties, ensure that off target effects are minimized, and optimize

pharmacokinetic properties. Evaluation of binding free energies through virtual screening has

shown promise in efficiently narrowing the chemical search space for candidate compounds and

streamlining the process of lead compound optimization. Outside of the pharmaceutical field,

binding affinity predictions find additional uses in protein engineering, and guide the rational

2
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design of mutations altering enzyme substrate/product specificity[2–6], structural stability[7–10],

and catalytic efficiency[11, 12].

Here we discuss recent developments and applications of molecular dynamics to calculate absolute

binding free energies in protein-ligand binding interactions. Through utilization of the Molecu-

lar Mechanics Poisson Boltzmann Surface Area (MM-PBSA)[13–20], Linear Interaction Energy

(LIE)[21–24], and absolute methods[25–31], researchers are able to evaluate biomolecular inter-

actions that drive molecular recognition at atomic resolution and derive accurate predictions for

binding free energies. These methods rigorously account for conformational dynamics and solvent

interactions that are key to protein-ligand interactions and absent in coarser-grained approaches

such as ligand docking. The value in these methods for advancing drug discovery is highlighted by

their widespread application. Within the last 20 years the number of citations for each method has

grown from a small handful to several thousand, notably the MM-PBSA method was found in over

2,000 citations in the last year (Figure: 1.2).

These three methods differ in their treatment of solvent and required simulation data, either involv-

ing only the end point states of bound and unbound species, or demanding simulation of a complete

binding pathway traversing intermediate states between the end points for determination of binding

free energy. These differences result in trade-offs between predictive accuracy and computational

cost that must be weighed by the user to select the best approach for their application. In this

review, discussion of approaches for the calculation of relative binding free energies is skimmed

over as having been recently reviewed elsewhere[32, 33]. We focus on describing the fundamental

principles of each method, recent developments enhancing their usability by improving accuracy

and computational efficiency, and successful applications in drug discovery projects.

3
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Figure 1.2: Citations per year for free energy methods. The development and utilization
of molecular simulation to guide drug discovery has grown dramatically in recent years.
The MM-PBSA method, which balances simulation rigor, high speed, and minimal setup
complexity to allow high throughput screening, has seen extensive application reaching over
2,000 citations in 2020. Steep computational costs and challenges in generalizing protocols
to work on broad sets of protein-ligand systems have limited the usage of absolute alchemical
and LIE based approaches.

1.3 Molecular Mechanics Poisson Boltzmann Surface

Area (MM-PBSA)

The MM-PBSA method as applied to small molecule binding is an end-point method estimating the

binding free-energy difference between the protein-ligand complex and the separate unbound com-

ponents, the complex, ligand, and protein alone[13–19, 34–36] (Figure: 1.3). MM-PBSA provides a

balanced approach characterized by improved rigor and accuracy over molecular docking, and with

reduced computational demands compared to pathway methods such as alchemical transformations

that require involved experimental setup to sample intermediate states through the decoupling of

ligand interactions[37–40].
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Figure 1.3: MM-PBSA thermodynamic cycle. The binding free energy in aqueous environ-
ment is calculated as the difference between the sum of binding in vacuum and solvating the
complex with solvating the receptor and ligand individually. The information necessary to
complete this cycle can be obtained by decomposing a single trajectory into the ensemble
desolvated receptor, ligand, and complex configurations, and computing the solvation free
energies for each state with the Poisson-Boltzmann equation. Normal mode analysis can be
performed to determine the contribution of entropy to the binding process.

In addition to only requiring end-point data, a further approximation with MM-PBSA that enables

efficient free-energy calculation is the utilization of implicit solvation. By coarse-graining solvent

as a continuum with uniform dielectric constant the treatment of solvent interactions is greatly

simplified. However, this may lead to difficulties modeling highly charged ligands and recent works

have focused on minimizing these errors[36].

Two main approaches are employed to generate the data for MM-PBSA binding energy predic-

tions with both starting from molecular dynamics (MD) simulation in explicit solvent: multiple

trajectories with the three components, complex, apo receptor, and ligand separately, or a sin-

gle trajectory with the bound protein-ligand complex that is divided into the three components

afterward[15, 19]. MD is carried out with explicit solvation to maximize accuracy of conformational
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sampling, and frames are post-processed by removal of solvent and ion molecules. The converged

trajectory is evaluated with each frame as an individual sample point to generate ensemble aver-

ages and uncertainty values for the energy quantities. The single-trajectory approach is favored for

its straightforward implementation and cancellation of covalent energy errors as conformations for

the complex and separated receptor and ligand are based on shared configurations. However, the

single-trajectory method may not be optimal due to its reliance on the problematic assumption that

ligand binding does not involve large-scale conformational changes[19, 41]. The multi-trajectory

approach is better suited for binding events associated with large conformation changes, but is

noted to produce noisier estimates and require longer simulation time to reach convergence as the

complex and individual components can sample diverged conformations[17, 42].

The binding free energy between the ligand (L) and receptor (R) is defined as:

∆Gbind = GR −GL (1.1)

The difference in free energy between the complex and individual components can be decomposed

into enthalpic (∆H) and entropic (−T∆S) terms evaluating changes in bonding interactions and

conformational disorder with binding. The enthalpic energy term can be approximated as the gas-

phase molecular mechanics energy (∆EMM ) and solvation free energy (∆Gsolv). The configurational

entropy (−T∆S) can be estimated with the normal mode or quasi-harmonic analysis[17, 43], but

is often omitted due to high computational cost and difficulty obtaining convergence.

∆Gbind = ∆H − T∆S (1.2)

≈ ∆EMM + ∆Gsolv − T∆S (1.3)

∆EMM is computed from the molecular mechanics force field and consists of the covalent energy

(∆Ecovalent), electrostatic energy (∆Eelec), and van der Waals dispersion and repulsion energy
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(∆EvdW ). The covalent term includes changes in bonds (∆Ebond), angles (∆Eangle), and torsion

(∆Etorsion) energies.

∆EMM = ∆Ecovalent + ∆Eelec + ∆EvdW (1.4)

∆Ecovalent = ∆Ebond + ∆Eangle + ∆Etorsion (1.5)

∆Gsolv describes the contribution of polar and non-polar interactions to the transfer of the ligand

from gas phase to solvent. The polar solvation component (∆Gpolar) specifies the interaction en-

ergy of the solute’s charge distribution in the continuum solvent and is found by evaluation of the

Poisson-Boltzmann equation (PBE)[20, 20, 34, 44–65]. The non-polar solvation term (∆Gnon−polar)

measures the energy from the solute forming a cavity in the solvent and the van der Waals inter-

actions at the cavity interface between solute and solvent[66, 67], so that the total solvation free

energy can be expressed as:

∆Gsolv = ∆Gpolar + ∆Gnon−polar (1.6)

The basis of the PBE is the Poisson equation with dielectric distribution ε(r), electrostatic potential

distribution ψ(r), and fixed atomic charge density ρ(r), where each function is dependent on the

solute atom position vector (r).

∇ε(r)∇ψ(r) = −4πρ(r) (1.7)

To account for electrostatic interactions from ionic salt molecules in the solution, the electrostatic

potential (ψ(r)) is solved with the PBE with the additional terms λ(r) representing the ion-exclusion

function set to 0 inside the Stern layer and molecular interior and 1 outside, and salt-related term

f(ψ(r)) that depends on the electrostatic potential, the valence (zi), electron charge (e), bulk

7



concentration (ci), and temperature (T ), with summation over all ion types (i).

∇ε(r)∇ψ(r) + λ(r) f(ψ(r)) = −4πρ(r) (1.8)

f(ψ(r)) = 4π
n∑
i

zi e ci exp

(
−zi eψ(r)

kbT

)
(1.9)

The PBE can be linearized for easier numerical computation under conditions where the ionic

strength and electric field are both weak. The linear PBE equation includes the modified Debye-

Hückel parameter (κ2), solvent dielectric constant (εsolv), and solution ionic strength (I) where

I = z2 c.

∇ε(r)∇ψ(r)− εsolv κ2 ψ(r) = −4πρ(r) (1.10)

κ2 =
8πe2 I

εsolvkBT
(1.11)

MM-PBSA is often used in tandem with the closely related Molecular Mechanics Generalized Born

Surface Area (MM-GBSA) approach as both utilize the same set of inputs for the prediction of

binding free energies with continuum solvation[36, 68]. The difference between the methods lies in

the calculation of ∆Gpolar where the GB model is based on an analytical expression approximating

the PBE. This leads to large speed improvements, but predictive performance is generally reduced

compared to PBE, though this is system dependent[35, 68]. The GB equation is composed of

terms describing solute atoms as spheres with partial charge (q), internal dielectric (ε) and solvent

dielectric (ε0), distance between particles i and j (ri), and the effective Born radius (α).
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∆GGB = −
(

1

ε
− 1

ε0

)∑
ij

qi qj
fGB

(1.12)

fGB =

√√√√r2ij + αi αj exp

(
−

r2ij
4αi αj

)
(1.13)

∆Gnon−polar has classically been determined as proportional to the solute’s solvent accessible surface

area (SASA)[66, 67] as:

∆GSAnon−polar = γ · SASA+ b (1.14)

The surface tension constant (γ) describing the free energy of forming a cavity in water and the

offset (b) are determined empirically and set as constants for all solute molecules. These variables

are assigned as γ = 0.00542 kcal/mol-Å2 and b = 0.92 kcal/mol in the AMBER package[18, 69].

Alternative methods with atom-specific surface tension constants have also been explored[70, 71].

More updated methods to resolve ∆Gnon−polar incorporate the van der Waals dispersion free-energy

as a separate term, treating the process as two events where a cavity is created and the non-polar

solute is inserted into the cavity[67]. The separation of terms additionally allows individual scaling

of the cavity formation and dispersion terms as a function of solute size. ∆Gcavity is calculated

with similar linear regression as the classical ∆Gnon−polar equation with SASA replaced with

solvent accessible volume (SAV ) and the attractive dispersion energy is computed through surface-

integration. The updated scaling factors are set as γ = 0.0378 kcal/mol-Å3 and b = -0.569 kcal/mol

in the AMBER package[18, 69].

∆GCDnon−polar = ∆Gdispersion + ∆Gcavity (1.15)

∆Gcavity = γ · SAV + b (1.16)
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1.3.1 MM-PBSA developments and benchmarks

Improvements to the MM-PBSA method include more rigorous treatment of the dielectric constants

and electrostatic polarization for better predictive accuracy on highly charged ligands, faster PB

solvers, extension to pKa calculation, and novel schemes for determination of entropy. Scaling of

the solute dielectric constant to tune the screening of electrostatic interactions in the non-polar

protein environment is found to have a critical, receptor-dependent role on predictive accuracy[72].

Heterogenous dielectric values are applied to implicit membrane models where the dielectric is

discretely varied with membrane depth[73], and with Gaussian dielectric to smoothly distribute

the interface over protein cavities[74]. Integration of a Gaussian based model for molecular volume

and surface area determination with the Gaussian dielectric distribution removes sharp surfaces

separating the solute and solvent for a surface free approach to MM-PBSA calculation[75].

Electronic polarization effects can be incorporated through the use of polarizable force fields such

as AMOEBA, this is implemented in the boundary integral PBE solver PyGBe[76]. Combination

of the polarizable Drude oscillator force field with PBSA lowers RMSE from 2.5 kcal/mol with the

standard CHARMM36 force field to 0.8 kcal/mol in calculation of solvation free energies for 70

molecules in addition to reducing errors in alanine scanning[77]. Coupling PBE calculation with

Monte Carlo sampling of protonation states is applied to estimation of protonation free energies

leading to pKa values within 2.05 pKa units RMSE of experiment using the Drude-PB method and

within ∼0.8 pKa units RMSE using PypKa[77, 78].

There are also updates to the PBE solvers through geometric multigrid on CPU allowing massively

parallel scaling to 100 CPUs and a grid size of 109[79], and GPU implementation leading to ∼100

times speed up compared to CPU[80]. Introduction of analytical interface and surface regulation

for the immersed interface method is proposed to improve stability and convergence and GPU

implementation leads to 20 times speed up[81]. Regularization methods are investigated under the

matched interface and boundary framework for proper treatment of charge singularities for higher

numerical accuracy[82]. Finally extensions of the harmonic average method are proposed for fully

taking advantage of the dense data parallelism to enhance the performance of PBE solvers on GPU
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platforms[81].

Ensemble MM-PBSA calculation through use of multiple independent trajectories and maintenance

of an explicit ligand hydration shell on the bromodomain-containing protein 4 system, a key regu-

lator of transcription, showed robust reproducibility[83]. Menzer et al.[84] implement a confining

potential on ligand external degrees of freedom and higher order cumulant expansion terms for

average receptor-ligand interaction energies for more effective treatment of entropy.

A number of recent benchmarks identify best-practices to achieve optimal accuracy and directly

compare MM-PBSA with other binding free energy prediction methods to highlight its advantages

and disadvantages in drug discovery. When testing of MM-PBSA was performed on over 250,000

ligands for the GPCR superfamily following docking[85, 86], utilization of a single energy mini-

mized structure is found to be the most computationally efficient method for virtual screening.

In prediction of binding free energies and correct binding pose from 55 protein-RNA complexes,

MM-PBSA (rp -0.51) shows slightly lower performance than MM-GBSA (rp -0.557)[87]. Molecular

mechanics 3-dimensional reference interaction site model (MM-3D-RISM) is shown to have similar

predictive performance as MM-PBSA, but differs in decomposition of polar and non-polar solvation

energies[88]. Mishra and Koca[89] investigate the effects of simulation length, VDW radii sets, and

combination with QM Hamiltonian on MM-PBSA predictions of protein-carbohydrate complexes.

The conditions with optimal agreement to experiment are found to be 10 ns simulation with the

mbondi radii set, and PM6 DFT method with QM resulting in the highest correlation of 0.96.

Entropic effects are further studied by Sun et al.[90] through comparison of normal mode analysis

(NMA) and interaction entropy on over 1,500 protein-ligand systems with varying force fields. The

most accurate results are obtained with the truncated NMA method, but due to high computa-

tional costs the authors recommend the interaction entropy approach instead, and force field choice

made only minor differences. Enhanced sampling methods including aMD and GaMD are com-

pared to conventional MD with MM-PBSA on protein-protein recognition, although the enhanced

sampling methods are beneficial in encouraging exploration of conformational space, they do not

improve binding affinity predictions on the timescales tested[91]. The effect of including a small
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number of explicit water molecules and performing NMA for entropy calculation is examined for

the bromodomain system[92]. Using a limited number of solvent molecules (∼20) and entropy es-

timate improved MM-PBSA accuracy, although performance does not surpass absolute alchemical

approaches the results came at significantly lower compute requirements.

The ease of performing MM-PBSA analysis and balance of speed and accuracy make it a popular

method to use as an initial filter to rank drug candidates. Estimation of binding affinities with

MM-PBSA for small-molecule protein-protein interaction inhibitors is automated with the farPPI

web server[93] and prediction of changes in protein-DNA binding affinities upon mutation with the

Single Amino acid Mutation binding free energy change of Protein-DNA Interaction (SAMPDI) web

server[94]. Furthermore, due to its reliability MM-PBSA is often used as a baseline comparison or in

combination with alternative methods for higher performance. Machine learning methods based on

extracting protein-ligand interaction descriptors as features from MD simulation are compared to

MM-PBSA on the tankyrase system[95]. Machine learning also accelerates pose prediction methods

based on short MD simulation combined with MM-PBSA through the Best Arm Identification

method to obtain the correct binding pose with minimal number of runs[96].

QM approaches allow more accurate consideration of nonbonded electrostatic interactions, but their

usage is limited by high computational costs. This problem is addressed through fragment-based

methods where localized regions of the protein-ligand system are treated with QM and the more

global effects of solvation, entropy, and conformational sampling are evaluated through MM-PBSA

analysis[97–100].

1.4 Linear Interaction Energy (LIE)

The Linear Interaction Energy (LIE) approach is another end-point method that predicts absolute

binding free energies based on the change in free-energy from transferring the ligand from the

solvated receptor-bound state to the aqueous free state[23, 24] (Figure: 1.5).
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Figure 1.4: LIE binding free energy calculation. The binding free energy is computed from
force field energy estimates of the differences in van der Waals and electrostatic energies for
the ligand bound to the protein and free in solvent environment. The system dependent
LIE parameters α and β are empirically determined and used to scale the non-polar and
coulombic interaction energies to have minimal error with respect to available experimental
data. The final term γ acts as an optional offset parameter to further tune the model. LIE
requires no post-processing and can be completed from a single trajectory.
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∆Gbind(lig) = ∆Gboundsolv (lig)−∆Gfreesolv (lig) (1.17)

This process considers binding in terms of the van der Waals (vdW) energy from creating the cavity

in the target environment for the ligand and the electrostatic energy between the molecule and the

environment. With that objective, LIE estimates ∆Gbind by an ensemble approach where two MD

simulations are performed, with the ligand bound in the solvated protein and ligand free in solution,

and the difference in VDW and electrostatic interactions between the ligand and environment in

each case is measured[21, 22, 101].

∆Gbind =
(

∆Gpolarbound −∆Gpolarfree

)
+
(

∆Gnon−polarbound −∆Gnon−polarfree

)
(1.18)

= ∆∆Gpolarbind + ∆∆Gnon−polarbind (1.19)

The molecular mechanics force field applied in MD provides potential energies (U) composed of

polar and non-polar components that can be converted into free-energies. The linear response

approximation where averages of the electrostatic interaction energies between the ligand and en-

vironment is utilized to determine the polar term. The second term
〈
U eleclig−env

〉
off

representing the

potential electrostatic energy from conformations sampled with interactions between ligand and

environment turned off is a negligible constant, and is generally ignored[24].

∆Gelecsolv =
1

2

{〈
U eleclig−env

〉
on
−
〈
U eleclig−env

〉
off

}
(1.20)

=
1

2

〈
U eleclig−env

〉
on

(1.21)

The scaling factor
1

2
is replaced with the variable β, and the polar component for LIE free-energy

calculation considering bound and free ligand simulation is:
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∆Gpolarbind = β

(〈
U eleclig−env

〉
bound

−
〈
U eleclig−env

〉
free

)
(1.22)

= β∆
〈
U eleclig−env

〉
(1.23)

Non-polar interactions including hydrophobic packing and van der Waals interactions are derived

from the Lennard-Jones potential force field term. Due to the observed linear correlation of solvation

free energies for non-polar compounds with solute size, and similar linear scaling for average van der

Waals interaction energies with solute size, LIE assumes that average van der Waals energies can

be directly employed to capture non-polar binding contributions with a similarly formed estimate

as the polar component[21].

∆Gnon−polarbind = α

(〈
UvdWlig−env

〉
bound

−
〈
UvdWlig−env

〉
free

)
(1.24)

= α∆
〈
UvdWlig−env

〉
+ γ (1.25)

The set of three empirical parameters: α to scale the vdW interaction energies[102], β to scale

coulombic interaction energies[101, 103], and γ as an optional offset constant[104], are all freely

tunable. These parameters are known to be system dependent and must be calibrated based on

available experimental data[105, 106]. Scaling of the model parameters is assumed to account

for factors known to impact ∆Gbind but that are not explicitly declared including intramolecular

energies, entropic confinement, desolvation effects, etc. The completed LIE estimation is based

on force-field averaged energies and enables calculation of binding free energies solely through

sampling of potential energies between the ligand and solvent or protein environments without

post-processing

∆Gbind = α∆
〈
UvdWlig−env

〉
+ β∆

〈
U eleclig−env

〉
(1.26)
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1.4.1 LIE developments and benchmarks

As the least computationally expensive method, LIE is uniquely suited for high-throughput screen-

ing and recent efforts are devoted toward the direction of improving predictive accuracy, even if

the calibrated parameters are system dependent. To this end, multiple alterations to the base LIE

protocol are proposed to more rigorously account for polar and entropic interactions by including

additional terms, combining LIE results with PBSA[107], or alchemical calculations, and utilizing

ensemble docking poses with iterative LIE models. The extended linear interaction energy method

(ELIE) introduced by He et al. includes the PBSA terms for the polar solvation energy, non-polar

solvation energy, and entropic contribution and individual scaling factors for each[108]. Perfor-

mance of ELIE in the Cathepsin S D3R 2017 Grand Challenge is found to show improved RMSE

(1.17 kcal/mol) compared to MM-PBSA (3.19 kcal/mol)[108].

Further benchmarking on 8 drug targets with a series of congeneric ligands to examine the applica-

tion of ELIE to drug lead optimization demonstrates that ELIE (0.94 kcal/mol RMSE) can approach

the accuracy of Free Energy Perturbation (FEP)/Thermodynamic Integration (TI) (1.08/0.96

kcal/mol RMSE) methods when using receptor-specific parameters. The authors find that 25 ns

MD simulations show optimal accuracy as it generally decreases with longer simulation[109]. The

performance of LIE in host-guest systems is also evaluated on 4 host families (cucurbiturils, octa

acids, β-cyclodextrin) with an array of 49 chemically diverse guests. The base LIE is modified to

include host strain energy, and parameters are found to be transferable between the different host

systems, notably resulting in binding predictions with RMSE below 1.5 kcal/mol through only a

few nanoseconds of simulation[110]. Ngo et al. estimate HIV-1 protease inhibitor binding affini-

ties with a modified LIE that includes a polar interaction term obtained from PBE, training on

22 samples and testing on a set of 11 ligands demonstrates good performance with 1.25 kcal/mol

RMSE and 0.83 Pearson correlation[111].

Proteins with flexible active sites may bind ligands in multiple orientations, this requires estimation

of binding affinity from multiple poses weighted by their frequency to account for the contributions

from each potential binding mode. Rifai et al. evaluate binding of inhibitors to malleable Cy-
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tochrome P450s with an iterative weighing approach where each training compound is sampled with

multiple simulations starting from different binding poses and LIE parameters are determined from

Boltzmann weighing individual trajectory results[112]. Further accuracy is obtained by combining

LIE with alchemical simulations to consider the ligand solvation free energies. Direct comparison

of LIE with MM-PBSA on the SIRT1 system with a set of 27 inhibitors finds that both methods

produce comparable Pearson correlations of 0.72 for LIE and 0.64 for MM-PBSA indicating good

predictive value in ranking inhibitors, LIE is advantageous in requiring shorter simulation due to

slow convergence of the MM-PBSA polar term[113]. The two-domain LIE (2D-LIE) approach is

introduced to predict the binding free energy between protein domains and applied to computing

cellulase kinetics[114].

1.5 Absolute alchemical simulations

End-point free energy prediction methods generally lack the ability to account for entropic and sol-

vent effects, which play significant roles in protein-ligand interactions[115], except for methods that

explicitly compute end-state free energies such as the Mining Minima method[116–121]. Capturing

receptor conformation changes driven by ligand binding, water-mediated hydrogen-bonding, or sol-

vent exchange that occurs as the ligand crowds the binding pocket are critical to rigorously estimate

the free energy difference between the ligand bound and unbound states[122]. Pathway simulations

tracking the MD trajectory of the ligand binding or unbinding event enable the computing of these

effects, but come at high computational cost and increased simulation complexity[41, 123, 124].

The most direct approach to account for entropy and solvent effects in binding would be to simu-

late the receptor (R) and ligand (L) together and count the frequency of bound (RL) and unbound

(R+ L) conformations.

R+ L ⇀↽ RL (1.27)
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Figure 1.5: Absolute alchemical simulation thermodynamic cycle. Two trajectories are com-
pleted to model the unbinding process. The simulations start from the complex of protein-
ligand bound and end with receptor and unbound ligand (top track), and from ligand alone
in solvent to ligand removed (bottom track). The ligand is transformed through a series of
unphysical states to decouple electrostatic and van der Waals interactions with the surround-
ing environment to reach the final state where it no longer interacts with the initial system.
The binding free energy prediction is the sum of the coulombic and non-polar energies in-
volved in the transformation eliminating protein-ligand interactions. A restraint is typically
included to prevent the ligand from exiting the active site while the binding interactions
keeping the protein and ligand together are scaled off in order to aid convergence, this is
corrected for with an additional transformation progressively turning on the restraints for
the complex track and an analytical correction for the ligand track.
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The ratio of bound to unbound states is an equilibrium constant (Keq) that can be input into the

Gibbs free energy equation where the Boltzmann constant (kb) and temperature (T ) are multiplied

with the natural log of Keq to calculate the binding free energy (Gbind).

Keq =
[RL]

[R][L]
(1.28)

∆Gbind = −kbT lnKeq (1.29)

In practice, it is not possible to estimate the equilibrium constant as the binding and unbinding

events rarely occur within the timescales accessible with current simulation methods, leading to

insufficient sampling. To bypass this sampling limitation, alchemical approaches modeling the

gradual decoupling of electrostatic and van der Waals interactions between the ligand and receptor

have been utilized to simulate the transition between ligand bound and unbound states without the

need to physically capture the process[26]. The basis of this calculation is the thermodynamic cycle

describing in one leg the removal of ligand from the complex, and in a parallel leg the removal of the

ligand from solvent[30]. The end states with receptor alone and solvent alone interconvert with zero

free energy difference as the ligand is absent from both systems, leaving the last transition between

ligand in solvent to ligand bound to receptor solvable with knowledge of the free energy costs in

transferring the ligand out of the receptor and out of solvent. This is typically performed through

the Zwanzig equation also known as Exponential Averaging (EXP) or Free Energy Perturbation

(FEP).

∆GAB = −kbT ln

〈
− 1

kbT
(UB − UA)

〉
A

(1.30)

EXP calculates the difference in potential of the end states using the ensemble of one simulated

end state; however, this method is susceptible to bias in the free energies estimated due to poor

phase space overlap of the end states[125].
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Since free energy is a state function, its difference between states in the closed thermodynamic

cycle is independent of the pathway taken, this includes non-physical intermediates that cannot

be observed experimentally. The sampling of non-physical intermediate states is described by the

parameter λ spanning from 0 where no perturbation has occurred to 1 where the ligand is fully

decoupled from the environment and gives rise to the name alchemical. A drawback of the approach

is the need for many intermediate states to guarantee accuracy of the simulation. The potential

energies are computed for each intermediate state, and the free energy differences are calculated

through thermodynamic integration by evaluating the integral of the ensemble averaged derivatives

of potential energy with respect to λ[25, 126–129].

U(λ) = λU0 + (1− λ)U1 (1.31)

∆G =

∫ 1

0

〈
dUλ
dλ

〉
λ

dλ (1.32)

Standard alchemical transformations are carried out in two stages, first with scaling ligand atom

partial charges to model decoupling of electrostatics, and next with the van der Waals interactions[31?

]. These two transformations are performed separately to avoid singularity artifacts that arise from

atomic overlap created by strong attractive electrostatic interactions drawing atoms lacking steric

bulk over others[130? ]. It is also necessary to utilize an alternative “softcore” Lennard-Jones

potential coupled to the λ window during the van der Waals scaling. Linear scaling with the

standard Lennard-Jones potential leads to numerical instabilities at λ endpoints due to the severe

repulsive forces calculated on overlapping atoms and contributes to poor phase space overlap with

neighboring windows[131, 132]. An example “softcore” potential is illustrated as a function of

the λ window and configuration (x), and contains the tunable parameters α,m, n and standard

terms for the distance where the pair-wise potential is 0 (σ) and the distance separating the atoms

(r)[131, 133, 134].
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U(λ, x) = 4ελn

[(
α(1− λ)m +

( r
σ

)6)−2

−
(
α(1− λ)m +

( r
σ

)6)−1
]

(1.33)

Further considerations involving the direction of the alchemical transformation, the utilization of

restraints, the treatment of charge neutralization, λ window scheduling, procedure to select data

samples that are both uncorrelated and equilibrated, and method to calculate free energy differ-

ences between the intermediate states must be made to ensure simulation stability and minimize

variance in final free energy determination with the alchemical perturbation. The above factors

all play some roles in the accuracy of the simulated free energies but are often not easy to decide

a priori. Sampling of the physiologically relevant binding pose is essential to obtaining accurate

values, initializing the alchemical transformation from an experimentally determined complex and

modeling ligand decoupling generally maintains the ligand in the most applicable configurations[?

]. Theoretically there should be no difference beginning from the opposite end point state with an

empty active site and having the ligand grown in; however, this may require longer simulation time

as the ligand can easily get trapped in local minima away from the true binding pose and sample

irrelevant states. The ligand may leave the binding pocket as the interactions with the receptor are

scaled, hindering convergence[135].

This is prevented by attaching restraints, which are later corrected for with an additional penalty

term, to hold the ligand in the binding pocket. Two types of restraint schemes are common, the

first involves imposing a single virtual bond between the ligand and receptor which is analytically

corrected for by the formula

∆Grestraint = −kbT ln

[
8πV 0K

1/2
r

(2πkbT )1/2

]
(1.34)

where V 0 is the standard state volume and Kr the force constant[29, 136–138]. An alternative

restraining approach, the 6DOF method introduced by Boresch et al.[30], enforces stricter adherence

to a defined pose through one distance, two angular, and three dihedral restraints. Restraining the

ligand to a single orientation expedites convergence, but may frustrate sampling of appropriate
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conformations not directly captured in the crystal structure, leading to overestimation of binding

affinities[139]. The 6DOF restraint correction is calculated with the following equation

∆G6DOF
restraint = −kbT ln

[
8πV 0(KrKθAKθBKφAKφBKφC )1/2

r2a,A,0 sin θA,0 sin θB,0(2πkbT )3

]
(1.35)

where ra,A,0 is the restrained distance, θA,0 and θB,0 are the two restrained angles, and K’s are the

force constants[30].

The transformation of charged ligands demands corrections to maintain neutrality in the simulation

box as the ligand partial charges are scaled[140]. Due to the usage of periodic boundary conditions,

excess charges are propagated through all cells and cause errors in charge distribution[141–143].

This issue can be managed by performing the partial charge scaling simultaneously on a specified

counter-ion[87, 144, 145], or through the correction scheme introduced by Rocklin et al.[146] based

on an additional PB calculation to account for periodic finite-size effects.

The number and length of λ windows governs the variability of the free energy calculation[126, 147].

Increased sampling reduces the variance, but may not be worthwhile due to the added simulation

costs. Rather than equally spacing the λ windows, a better strategy would be to more densely

sample regions where transitions are non-linear near the end points of the van der Waals scaling

stage and reduce sampling in more linear regions such as the electrostatic scaling. Datapoints from

the beginning of each λ window are not yet equilibrated and sequential datapoints are autocor-

related, contamination with these energy values will distort the final free energy prediction[148].

Straightforward solutions to these problems would be to discard all data from the first half of

the λ window and to only process energy values with large intervals. More sophisticated methods

that aim to conserve as many datapoints as possible include the usage of automated equilibration

detection based on reverse cumulative averaging[149] and subsampling of energies based on the

calculated statistical inefficiency[148], this can be performed with the pymbar[150] package written

by the Chodera group.

Lastly, thermodynamic integration is known to produce results with high variability due to the
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numerical integration over highly non-linear functions. The Bennett Acceptance Ratio (BAR)[27]

approach minimizes variance in the calculation of free energy by accounting for energies in neigh-

boring states[125]. The BAR calculation self-consistently solves for the free energy (C) that satisfies

the relations where i and j are consecutive states and U is the potential energy from a selected

state.

∆G = ln

∑
j f(Ui − Uj + C)∑
j f(Uj − Ui + C)

+ C (1.36)

∆G = C (1.37)

f(x) =
1

1 + ex
(1.38)

However, this method can face the same issues as EXP/FEP if there is no overlap between neigh-

boring states. This has been extended to the Multistate Bennett Acceptance Ratio (MBAR)[150]

method addressing the critical issues in BAR and produces the lowest variance of all free energy

estimators by using energy differences from all λ windows[151].

1.5.1 Absolute alchemical developments and benchmarks

A major impediment to the usage of alchemical simulations is their complicated setup and data

processing for ligand decharging and vdW removal stages. Updates to the popular molecular dy-

namics packages NAMD[152] and AMBER[153, 154] enable GPU accelerated calculation of the

dUλ
dλ

term necessary for thermodynamic integration or energy cross terms for sampling conforma-

tions at different lambda values for MBAR computation. To support high-throughput alchemical

screening and improved reproducibility, a number of software packages automate the experimental

setup in preparing the simulation files with appropriately decoupled ligand topologies and out-

put the final binding free energy prediction after processing the trajectories. These include the

VMD plugin BFEE[155], the python tool BAT.py[156] for AMBER, the CHARMM-GUI Free En-
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ergy Calculator[157], the web platform Biomolecular Reaction and Interaction Dynamics Global

Environment[158] (BRIDGE) for GROMACS, and Flare[159].

Improvements in simulation efficiency have allowed faster sampling of protein-ligand binding con-

formations and exploration of longer timescales to more comprehensively capture the significant

perturbations that occur from ligand decoupling in absolute alchemical simulations. Giese et al.[134]

utilize the simple but effective parameter interpolated thermodynamic integration (PI-TI) scheme

where intermediate lambda states are defined by scaling the ligand molecular mechanic parame-

ters, this allows taking full advantage of the standard GPU accelerated MD integrators and existing

Hamiltonian replica exchange methods (HREMD) without the need to implement any alchemical

specific code. Validation of this study examined pKa predictions on a double strand RNA system

resulting in an error within 1.2 pKa units. Monte Carlo methods based on making unphysical,

Boltzmann weighed rotamer and torsion moves lead to greater conformational sampling and cross-

ing of energy barriers that would necessitate substantial simulation time in MD. Pure MC[160, 161]

and the hybrid MC/MD method Binding modes of Ligands Using Enhanced Sampling (BLUES)

involving random ligand rotations, relaxation with MD, and final acceptance or rejection through

nonequilibrium Monte Carlo are demonstrated to have greater binding mode sampling efficiency

than standard MD. Hamiltonian replicas parallelize sampling backbone torsions of T4 lysozyme[162]

and solvent exchange in the cytochrome P450 binding site[163] to speed convergence within 1 ns

in the latter study.

In cases where no reliable experimental structure with ligand bound is available, the generalized

replica exchange with solute tempering (gREST) + FEP[164] approach where protein-ligand inter-

actions are weakened through simulation at high temperature to force refinement of ligand binding

orientation or Alchemical Grid Dock[165] method can be performed to obtain high quality bind-

ing poses. Alternative lambda schedules aimed at reducing the number of intermediate windows

to simulate without sacrificing low variance are introduced by Konig et al.[166] with enveloping

distribution sampling and addition of a restraint energy distribution function in the screening of

SARS-CoV-2 protease inhibitors[167].
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Metadynamics methods utilizing a history dependent bias potential to drive sampling of unex-

plored conformations are used for the theophylline-RNA complex to get within 0.02 kcal/mol of

experiment[168]. The Gaussian algorithm enhanced FEP (GA-FEP) method is used to guide the

design of Phosphodiesterase-10 inhibitors and overcomes poor sampling by fitting the observed

energies to a multivariate Gaussian distribution to extrapolate better converged energy values for

downstream BAR calculation[3]. Dual resolution models where the active site portions of the

protein are modeled with full atom representation and other regions as coarse grained showed sig-

nificant speedup with only minor loss in accuracy compared to the all-atom model for the lysozyme

system binding with di-N-acetylchitotriose[169]. Sakae et al.[170] demonstrate a modified alchem-

ical approach starting with unrestrained ligand for broader sampling of binding poses and bypass

the need to exhaustively enumerate all potential binding modes. The DeepBAR method applies

generative modeling to construct sample conformations of the cucurbit[7]uril host-guest system for

the BAR analysis without the need for intermediate state sampling to achieve higher computational

efficiency[171].

Advances in finite size and charge treatment schemes have improved accuracy in computing decharg-

ing energies, and new formulations for the evaluation of “soft-core” atoms lead to greater numerical

stability and reduced variability in vdW removal. The poor representation of electronic polariza-

tion in molecular simulation makes binding affinity prediction for charged and titratable molecules

challenging. Standard MD simulation is unable to model dielectric screening effects that alter

the strength of ligand partial charges as it transitions between the polar solvent environment to

the non-polar protein active site[139]. We demonstrate that scaling the dielectric constant with

the MBAR/PBSA continuum solvent model provides a convenient method to reproduce the ef-

fects of charge polarization without requiring any modification to the MD integrator. RMSE for

the predicted binding affinities of inhibitors for urokinase plasminogen activator is reduced from

3.2 kcal/mol with standard alchemical simulation to 0.89 kcal/mol with MBAR/PBSA[139]. The

AMOEBA polarizable force field that incorporates electronic polarization through induced dipoles,

atomic dipoles, and quadrupole terms is applied to the lead optimization of the MELK inhibitor

IN17[138]. In the SAMPL7 TrimerTrip host-guest blind challenge, utilization of the AMOEBA

25



force field shows excellent results with 7/8 samples having errors within 2 kcal/mol[172–174].

The commonly used approach to maintain charge neutrality through co-alchemical ions is shown

not to fully eliminate charge artifacts in periodic simulation boxes due to localized differences in

electrostatic potentials and solvent densities for the distant ion and bound ligand[175]. Continuum-

electrostatics calculations[176] and the “Warp-Drive”[177] method of simultaneously perturbing the

protein-ligand complex and a distant unbound ligand are proposed to more accurately correct for

finite-size effects. Difficulty in modeling the extraction of charged ligands from deeply buried

binding sites with potential of mean force (PMF) methods is addressed with the AlchemPMF

protocol where steric obstructions along the physical pathway are alchemically removed, resulting in

improved binding free energy estimates on HIV-1 integrase and telomeric DNA G-quadruplex[178].

Li et al.[179] develop the Gaussian repulsive soft-core potential to produce a linear hybrid Hamilto-

nian with respect to lambda to allow improved simulation efficiency over the standard separation-

shifted potential that generates non-linear Hamiltonians. Extension of smooth-step soft-core po-

tentials that are composed of monotonically increasing polynomial functions that have the desirable

end-point values enable one-step alchemical transformations by overcoming the issues of end-point

catastrophe, particle collapse, and large gradient jumps[153].

Benchmarks of alchemical simulations demonstrate their utility and high accuracies. The SAMPL6

and SAMPL7 challenges[180] feature several entries examining alchemical approaches for CB[8] and

tetra-methylated octa-acids host-guest systems with comparison to umbrella sampling[181, 182],

TrimerTrip host-guest system with comparison of AM1-BCC and RESP charge schemes[183], and

evaluation of GAFF and CGenFF force fields[184]. Novel applications of alchemical simulation

include the estimation of binding affinity change upon protein mutation through the ensemble

thermodynamic integration with enhanced sampling (TIES) approach on the fibroblast growth

factor receptor 3 (FGFR3), notably simulations without enhanced sampling are unable to capture

conformational changes driven by protein mutation in the binding site[4]. PMF methods based on

utilizing restraints to physically pull the ligand out of the binding site are directly compared to

absolute alchemical approaches on the HIV-1 integrase system by Deng et al.[185], the final results
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show similar performance with absolute errors in the range of 1.6–4.3 kcal/mol for alchemical and

1.5–3.4 kcal/mol for PMF. The authors add that the alchemical approach supports simpler setup

as they do not need to geometrically define the pathway for the ligand to exit the binding site.

Loeffler at al.[186] validate alchemical simulation results from different software packages in the

calculation of hydration free energies and determine that the tested packages (AMBER, CHARMM,

GROMACS, and SOMD) produce consistent free energies. The scale of alchemical simulations is

growing dramatically by harnessing cloud computing[187]. The report of massive-scale simulation

of 301 HIV-1 integrase inhibitors on the IBM World Community Grid[188] highlights how the

availability of distributed computing is enabling high-throughput FEP screening.
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fred Jung, and Wolfgang Sippl. Virtual screening of PRK1 inhibitors: ensemble docking,

rescoring using binding free energy calculation and QSAR model development. J. Chem. Inf.

Model., 54(1):138–150, January 2014.

[40] Huiyong Sun, Youyong Li, Mingyun Shen, Sheng Tian, Lei Xu, Peichen Pan, Yan Guan,

and Tingjun Hou. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. im-

proved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA

rescoring. Phys. Chem. Chem. Phys., 16(40):22035–22045, 2014.

[41] Michael S Lee and Mark A Olson. Calculation of absolute protein-ligand binding affinity

using path and endpoint approaches. Biophys. J., 90(3):864–877, February 2006.

[42] Jessica M J Swanson, Richard H Henchman, and J Andrew McCammon. Revisiting free

energy calculations: a theoretical connection to MM/PBSA and direct calculation of the

association free energy. Biophys. J., 86(1 Pt 1):67–74, January 2004.

[43] Summer Kassem, Marawan Ahmed, Salah El-Sheikh, and Khaled H Barakat. Entropy in

bimolecular simulations: A comprehensive review of atomic fluctuations-based methods. J.

Mol. Graph. Model., 62:105–117, November 2015.

[44] M F Perutz. Electrostatic effects in proteins. Science, 201(4362):1187–1191, September 1978.

32



[45] J Warwicker and H C Watson. Calculation of the electric potential in the active site cleft

due to alpha-helix dipoles. J. Mol. Biol., 157(4):671–679, June 1982.

[46] D Bashford and M Karplus. pka’s of ionizable groups in proteins: atomic detail from a

continuum electrostatic model. Biochemistry, 29(44):10219–10225, November 1990.

[47] Malcolm E Davis and J Andrew McCammon. Electrostatics in biomolecular structure and

dynamics. Chem. Rev., 90(3):509–521, May 1990.

[48] Arald Jean-Charles, Anthony Nicholls, Kim Sharp, Barry Honig, Anna Tempczyk, Thomas F

Hendrickson, and W Clark Still. Electrostatic contributions to solvation energies: comparison

of free energy perturbation and continuum calculations. J. Am. Chem. Soc., 113(4):1454–

1455, February 1991.

[49] M K Gilson. Theory of electrostatic interactions in macromolecules. Curr. Opin. Struct.

Biol., 5(2):216–223, April 1995.

[50] B Honig and A Nicholls. Classical electrostatics in biology and chemistry. Science, 268(5214):

1144–1149, May 1995.

[51] Shlomit R Edinger, Christian Cortis, Peter S Shenkin, and Richard A Friesner. Solvation free

energies of peptides: Comparison of approximate continuum solvation models with accurate

solution of the Poisson–Boltzmann equation. J. Phys. Chem. B, 101(7):1190–1197, February

1997.

[52] Rui Luo, John Moult, and Michael K Gilson. Dielectric screening treatment of electrostatic

solvation. J. Phys. Chem. B, 101(51):11226–11236, December 1997.

[53] Ray Luo, Laurent David, and Michael K Gilson. Accelerated poisson boltzmann calculations

for static and dynamic systems. J. Comput. Chem., 23(13):1244–1253, October 2002.

[54] Qiang Lu and Ray Luo. A Poisson–Boltzmann dynamics method with nonperiodic boundary

condition. J. Chem. Phys., 119(21):11035–11047, December 2003.

33



[55] Chunhu Tan, Lijiang Yang, and Ray Luo. How well does poisson boltzmann implicit solvent

agree with explicit solvent? a quantitative analysis. J. Phys. Chem. B, 110(37):18680–18687,

September 2006.

[56] Qin Cai, Jun Wang, Hong-Kai Zhao, and Ray Luo. On removal of charge singularity in

Poisson–Boltzmann equation. J. Chem. Phys., 130(14):145101, April 2009.

[57] Jun Wang, Qin Cai, Zhi-Lin Li, Hong-Kai Zhao, and Ray Luo. Achieving energy conservation

in Poisson–Boltzmann molecular dynamics: Accuracy and precision with finite-difference

algorithms. Chem. Phys. Lett., 468(4):112–118, January 2009.

[58] Xiang Ye, Qin Cai, Wei Yang, and Ray Luo. Roles of boundary conditions in DNA sim-

ulations: analysis of ion distributions with the finite-difference poisson boltzmann method.

Biophys. J., 97(2):554–562, July 2009.

[59] Qin Cai, Meng-Juei Hsieh, Jun Wang, and Ray Luo. Performance of nonlinear finite difference

poisson boltzmann solvers. J. Chem. Theory Comput., 6(1):203–211, January 2010.

[60] Jun Wang, Chunhu Tan, Emmanuel Chanco, and Ray Luo. Quantitative analysis of Pois-

son–Boltzmann implicit solvent in molecular dynamics. Phys. Chem. Chem. Phys., 12(5):

1194–1202, 2010.

[61] Jun Wang and Ray Luo. Assessment of linear finite-difference poisson boltzmann solvers. J.

Comput. Chem., 31(8):1689–1698, June 2010.

[62] Xiang Ye, Jun Wang, and Ray Luo. A revised density function for molecular surface calcu-

lation in continuum solvent models. J. Chem. Theory Comput., 6(4):1157–1169, April 2010.

[63] Qin Cai, Xiang Ye, Jun Wang, and Ray Luo. On-the-Fly numerical surface integration for

Finite-Difference Poisson–Boltzmann methods. J. Chem. Theory Comput., 7(11):3608–3619,

November 2011.

[64] Meng-Juei Hsieh and Ray Luo. Exploring a coarse-grained distributive strategy for finite-

difference Poisson–Boltzmann calculations. J. Mol. Model., 17(8):1985–1996, August 2011.

34



[65] Wesley M Botello-Smith, Xingping Liu, Qin Cai, Zhilin Li, Hongkai Zhao, and Ray Luo.

Numerical Poisson–Boltzmann model for continuum membrane systems. Chem. Phys. Lett.,

555:274–281, January 2013.

[66] Jason A Wagoner and Nathan A Baker. Assessing implicit models for nonpolar mean solvation

forces: the importance of dispersion and volume terms. Proc. Natl. Acad. Sci. U. S. A., 103

(22):8331–8336, May 2006.

[67] Chunhu Tan, Yu-Hong Tan, and Ray Luo. Implicit nonpolar solvent models. J. Phys. Chem.

B, 111(42):12263–12274, October 2007.

[68] Fu Chen, Hui Liu, Huiyong Sun, Peichen Pan, Youyong Li, Dan Li, and Tingjun Hou. As-

sessing the performance of the MM/PBSA and MM/GBSA methods. 6. capability to predict

protein–protein binding free energies and re-rank binding poses generated by protein–protein

docking. Phys. Chem. Chem. Phys., 18(32):22129–22139, 2016.

[69] David A Case, Thomas E Cheatham, 3rd, Tom Darden, Holger Gohlke, Ray Luo, Kenneth M

Merz, Jr, Alexey Onufriev, Carlos Simmerling, Bing Wang, and Robert J Woods. The amber

biomolecular simulation programs. J. Comput. Chem., 26(16):1668–1688, December 2005.

[70] D Eisenberg and A D McLachlan. Solvation energy in protein folding and binding. Nature,

319(6050):199–203, 1986.

[71] T Ooi, M Oobatake, G Némethy, and H A Scheraga. Accessible surface areas as a measure

of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. U. S. A.,

84(10):3086–3090, May 1987.

[72] Xiao Hu and Alessandro Contini. Rescoring virtual screening results with the MM-PBSA

methods: Beware of internal dielectric constants. J. Chem. Inf. Model., 59(6):2714–2728,

June 2019.

[73] D’artagnan Greene, Ruxi Qi, Remy Nguyen, Tianyin Qiu, and Ray Luo. Heterogeneous

dielectric implicit membrane model for the calculation of MMPBSA binding free energies. J.

Chem. Inf. Model., 59(6):3041–3056, June 2019.

35



[74] Tania Hazra, Sheik Ahmed Ullah, Siwen Wang, Emil Alexov, and Shan Zhao. A super-

gaussian poisson boltzmann model for electrostatic free energy calculation: smooth dielectric

distribution for protein cavities and in both water and vacuum states. J. Math. Biol., 79(2):

631–672, July 2019.

[75] Arghya Chakravorty, Emilio Gallicchio, and Emil Alexov. A grid-based algorithm in conjunc-

tion with a gaussian-based model of atoms for describing molecular geometry. J. Comput.

Chem., 40(12):1290–1304, May 2019.

[76] Christopher D Cooper. A boundary-integral approach for the Poisson-Boltzmann equation

with polarizable force fields. J. Comput. Chem., 40(18):1680–1692, July 2019.
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2.1 Abstract

Accurate prediction of binding free energies is critical to streamlining the drug development and

protein design process. With the advent of GPU acceleration, absolute alchemical methods, which

simulate the removal of ligand electrostatics and van der Waals interactions with the protein, have

become routinely accessible and provide a physically rigorous approach that enables full consid-

eration of flexibility and solvent interaction. However, standard explicit solvent simulations are
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unable to model protonation or electronic polarization changes upon ligand transfer from water

to the protein interior, leading to inaccurate prediction of binding affinities for charged molecules.

Here, we perform extensive simulation totaling ∼540 µs to benchmark the impact of modeling

conditions on predictive accuracy for absolute alchemical simulations. Binding to urokinase plas-

minogen activator (UPA), a protein frequently overexpressed in metastatic tumors, is evaluated

for a set of 10 inhibitors with extended flexibility, highly charged character, and titratable proper-

ties. We demonstrate that the alchemical simulations can be adapted to utilize the MBAR/PBSA

method to improve the accuracy upon incorporating electronic polarization, highlighting the impor-

tance of polarization in alchemical simulations of binding affinities. Comparison of binding energy

prediction at various protonation states indicates that proper electrostatic setup is also crucial

in binding affinity prediction of charged systems, prompting us to propose an alternative binding

mode with protonated ligand phenol and Hid-46 at the binding site, a testable hypothesis for future

experimental validation.

2.2 Introduction

Electrostatics and polarization effects are critical to the study of biomolecular processes such as dy-

namics, recognition, and enzymatic catalysis. The success of computational simulation in sampling

physiologically apt biomolecular structures involved in enzyme activity is dependent on both effi-

cient calculations, to enable consideration of atomic interactions at long time scales, and accurate

treatment of those interactions to maximize predictive capability. Current simulation efforts often

ignore the impact of electronic polarization due to their complexity and high computational costs,

leading to errors such as the overestimation of gas-phase water dimer interaction energy by greater

than 30% with the nonpolarizable TIP5P model[1, 2]. The standard nonpolarizable point-charge

model allows analysis of electrostatics through straightforward application of the Coulombic poten-

tial but is unable to capture the effect of exposure to different electrostatic environments such as

between the protein interior and solvent that is essential to biomolecular processes. Furthermore,

reference parameters for nonpolarizable models are typically derived from gas-phase quantum me-
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chanical calculations, resulting in spurious “pre-polarization” when used in an aqueous environment

due to the inclusion of average bulk polarization effects inconsistent with the liquid phase. Improv-

ing the treatment of electrostatics and polarization would significantly enhance efforts to study

the biomolecular processes of ion-dependent interactions, proton and electron transfer in enzyme

catalysis, order–disorder transitions in intrinsically disordered regions, pKa effects in titration, etc.

A number of polarizable models have been developed to address the accurate representation of

electrostatic interactions for biomolecular simulation including the OPLS-AA fluctuating charge

model[3, 4], Drude oscillator[5–7] with CHARMM, and AMOEBA with multipole expansion and

increased force field components[8–10]. Recent developments with AMBER include the polarizable

Gaussian Multipole (pGM)[11, 12] model that improves over the previous induced dipole implemen-

tation based on Thole models[13–17]. pGM represents each atom’s multipole as a single Gaussian

function or its derivatives, speeding electrostatic calculations over alternative Gaussian-based mod-

els. By screening short-range interactions in a physically consistent manner, pGM enables the

stable charge-fitting necessary to describe molecular anisotropy that is difficult to achieve with

Thole models[11, 12].

Regardless of which model to use, an important application of molecular simulations is the accu-

rate prediction of binding affinities to accelerate the drug discovery process as recently reviewed[18].

Accurate virtual screening is necessary to reduce the excessive time and costs associated with drug

development, which are estimated to be over 10 years and $2.8 billion for an approved drug[19].

Methods based on geometric docking to optimize the shape and electrostatic complementarity be-

tween binding partners[20–24], end-point MD simulations with either the linear interaction energy

method[25], or the Molecular Mechanics Poisson–Boltzmann Surface Area method[12, 16, 26–33],

end-point MC simulations with the Mining Minima method[34–36], alchemical pathway simula-

tions with full sampling of conformational flexibility in explicit solvent[21, 37–43], and machine

learning based on correlation of structural features and protein–ligand interactions[44–46] have

shown promise, but have not achieved the generalizable accuracy required or come at a too high

computational cost for practical application to drug discovery.
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Alchemical simulations measure the free energy difference between two states, so that it can be used

to determine the free energy change between the complex state with protein and ligand bound and

the unbound state with protein and ligand separated[47]. Alchemical simulations progress through

a closed thermodynamic cycle, utilizing transformations through unphysical intermediate states

modeling the gradual decoupling of ligand electrostatic and van der Waals (VDW) interactions

with the protein environment, and provide a computational advantage over brute-force simulations

of unbinding or binding processes[48]. Previous work has highlighted the utility of alchemical sim-

ulations in the computation of small molecule distribution coefficients between solvent phases[49],

protein stability upon amino acid mutation[50], binding affinity through relative transformation

growing or deleting functional groups off a reference structure[51–53], and absolute transforma-

tion where the larger perturbation of ligand transfer to gas phase is modeled[54–58]. Absolute

alchemical transformations, which permit direct prediction of binding energy and do not require

initialization from a reference structure with high similarity to the target as relative calculations,

have only recently become practical with the development of high-performance computer hardware,

such as graphical processing units (GPUs).

Structure-based drug design coupled to alchemical simulations has served as the foundation for

drug development campaigns[54]; however, limitations due to heterogeneity in protocols and model

setups, limited accuracies in molecular force fields, and insufficient sampling of the protein and lig-

and conformations still impede prediction accuracy. Furthermore, standard alchemical simulations

are unable to model protonation or electronic polarization changes upon ligand transfer from water

to the protein interior, leading to inaccurate prediction of binding affinities for charged molecules.

In this study, we benchmarked the absolute alchemical transformation methods on the urokinase

plasminogen activator (UPA) system to estimate the impacts of protonation and closely related po-

larization effects during the protein–ligand binding process. UPA is a serine protease that activates

plasmin which is involved in the degradation of blood clots and extracellular matrix[59]. UPA has

been found to be overexpressed in several types of metastatic tumors; this upregulation has been

proposed to drive the tissue degradation required for cancer invasion and metastatic growth, making

UPA a desirable target for anticancer therapeutics. The tested models are a set of high-resolution
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Figure 2.1: Chemical structures of the 10 evaluated UPA inhibitors. The molecules share
a benzamidine-like scaffold with characteristic amidine group carrying positive charge, and
extended tails comprised of a phenol group and other functional modifiers. The hydroxyl
on the phenol is proposed to be titratable and samples deprotonated and protonated states
during binding, altering the hydrogen bonding capability of the ligands. The inhibitors are
categorized as small (those without the phenol group)—1C5X, 1C5Y, 1C5Z, and 1GI7—and
big (for those with potentially charged phenols)—1GJ7, 1GJ8, 1GJA, 1GJB, 1GJD, 1O3P.

crystal structures collected by Katz et al. with 10 different competitive inhibitors of varying sizes,

charges, and chemical groups[60–62] (Figure: 2.1). The inhibition constant (Ki) of each ligand has

been experimentally determined, allowing for the validation of our computational protocols. This

set of ligands represents a diverse and challenging test case with inhibitors bearing a large number

of torsion angles that require lengthy simulation to sample the available conformation space, highly

charged character amplifying inaccuracy in the treatment of electronic polarization, and multiple

potential protonation states due to ionizability and tautomerization.

To address the heterogeneity in the alchemical protocol, we studied the effects of various simulation
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setups/conditions including ligand force field choices, salt concentrations, alternative protonation

states, and ligand restraints through a single harmonic distance (1DOF) or with the more involved

6 degrees of freedom (6DOF) restraints to improve convergence by maintaining the ligand in the

binding pose. We further developed a new strategy to utilize the PBSA continuum solvent model

coupled with the Multistate Bennet Acceptance Ratio (MBAR) approach to estimate the effect of

electronic polarization in this challenging set of highly charged ligands. We demonstrate that the

application of the MBAR/PBSA method with optimized solute dielectric constant permits more

properly modeled electronic polarization, leading to superior accuracy in the absolute binding

free energy prediction for this set of highly charged ligands. This allows us to assess alternative

protonation states for the ligands and titratable residues in the binding pose, offering a testable

hypothesis for future experimental validation.

2.3 Methods

2.3.1 Structure preparation for molecular simulations

Crystal structures for the inhibitor bound urokinase plasminogen activator (PDB: 1C5X, 1C5Y,

1C5Z, 1GI7, 1GJ7, 1GJ8, 1GJA, 1GJB, 1GJD, and 1O3P)[60–62] were obtained from the RCSB

PDB database[63]. Experimentally determined binding free energies were obtained from the PDB-

bind database[64]. The structures were prepared for simulation by removal of all water molecules

greater than 5 Å away from the active site, removal of all cocrystallized ligands that were not

the target inhibitor, and truncation of all structures to 245 amino acids by deletion of disordered

C-terminal residues that were not resolved in all crystal structures (a maximum of 3 residues were

deleted). Disulfide bonds were added as in the crystal structures.

As there are no pKa measurements available, protonation states of titratable residues were deter-

mined at pH 7.4 through the H++ Web server[65] except those in the binding pocket, where the

complex crystal structures were used to infer the likely protonation states. In the binding pocket,
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His-94 and Asp-97 are modeled as default neutral HIE and charged ASP, respectively, as there is

no unusual polar interaction with the ligand molecule. For His-46 and the ligand phenol group,

there are two possible protonation states that satisfy the steric constraint in the crystal structures

as discussed in detail in Results and Discussion. The first possibility is to set His-46 as protonated

HIP and the ligand phenol as deprotonated as suggested in ref [62]. The second possibility is to set

His-46 as deprotonated HID and the ligand phenol as protonated. Given these protonation states,

1C5X, 1C5Y, 1C5Z, and 1GI7 are treated as +1 net charge due to protonation at the amidine

group, and all other ligands are treated as +0 net charge zwitterions with a +1 charge of the

amidine group and -1 charge on the deprotonated phenol hydroxyl or as +1 net charge ions with 0

charge on the protonated phenol hydroxyl. The predictive accuracy of both protonation states was

compared to a baseline model with all ligands treated as +1 net charge due to default protonation

at the amidine and phenol hydroxyl with Hip-46. All tested conditions and protonation states are

summarized in Table: 2.1.

Condition HIS46 Protonated

Ligands (+1

charge)

Deprotonated

Ligands (+0

charge)

Salt Restraint Po-

tential

Baseline HIP 1C5X, 1C5Y,

1C5Z, 1GI7,

1GJ7, 1GJ8,

1GJA, 1GJB,

1GJD, 1O3P

- Counter-ions

only

1DOF

All-HIP HIP 1C5X, 1C5Y,

1C5Z, 1GI7

1GJ7, 1GJ8,

1GJA, 1GJB,

1GJD, 1O3P

150 mM 1DOF/6DOF
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All-HID HID 1C5X, 1C5Y,

1C5Z, 1GI7,

1GJ7, 1GJ8,

1GJA, 1GJB,

1GJD, 1O3P

- 150 mM 1DOF

Small-HIP Mixed 1C5X, 1C5Y,

1C5Z, 1GI7

(HIP)

- 150 mM 1DOF

1GJ7, 1GJ8,

1GJA, 1GJB,

1GJD, 1O3P

(HID)

Small-HID Mixed 1C5X, 1C5Y,

1C5Z, 1GI7

(HID)

1GJ7, 1GJ8,

1GJA, 1GJB,

1GJD, 1O3P

(HIP)

150 mM 1DOF

Table 2.1: Summary of simulation conditions. The baseline corresponds to a default setup
with full ligand and protein protonation, salt concentration at charge neutralizing amount,
and 1DOF restraint. Singular condition changes to the baseline: 150 mM salt concentration,
and deprotonated ligand phenol. Alternative protonation states are tested with variable
ionization at the ligand phenol and His-46 to model the effect of hydrogen bonding potential
on binding free energy prediction.

Ligand partial charges were determined with the Restrained Electrostatic Potential (RESP) method[66]

at the HF/6-31G* level using Gaussian09[67], except HF/CEP-31G was used for ligands with iodine.

Other ligand parameters were taken from the General Amber Force Field (GAFF)[68] or GAFF2.

The protein was modeled with the ff14sb[69] force field. Systems were solvated in TIP3P[70] water,

in a truncated octahedron with 10 Å buffer, and charge neutralized with Na+/Cl− ions. Additional

ions were also added to reach 150 mM salt concentration under the high salt condition tested.
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Molecular dynamics simulations were performed with pmemd.cuda[71] from the Amber18 package

with an 8 Å Particle Mesh Ewald[72] cutoff and otherwise default settings.

2.3.2 Alchemical simulation protocol

Computation of binding free energies was conducted through a four-step process: equilibration, re-

straint sampling, decharging, and softcore van der Waals removal[73, 74]. Imposition of restraints

and each of the two inhibitor transformation steps (decharging and VDW removal) proceeded

through a series of alchemical intermediates described by the coupling parameter lambda increas-

ing from 0 (starting state) to 1 (fully transformed ending state). Final simulation data are an

aggregate of ensemble MD of five independent replicates started from the minimized crystal struc-

tures with randomized initial velocities. The free energy differences between states were calculated

with MBAR[75, 76] through the pymbar[75] package and required the calculation of energy cross-

terms for each trajectory at each restraint, charge, and VDW lambda step. Only data produced

from frames in the last half of each trajectory were included in energy calculations to ensure well-

equilibrated results.

2.3.3 Minimization and equilibration

The UPA systems were minimized in two steps: first with 2,500 steps of steepest descent and 2,500

steps of conjugate gradient where all non-hydrogen solute atoms were restrained with a 20 kcal

mol−1 Å−2 force to relieve steric clash. The second minimization to remove solute steric clashes

was run with the same cycle settings and restraints removed. Heating from 0 to 298 K was performed

over 0.5 ns with 10 kcal mol–1 Å–2 restraints on all non-hydrogen solute atoms. Solvent density

equilibration under the NPT condition and the Langevin thermostat with a collision frequency of

2 ps–1 was carried out over 0.4 ns with 2 kcal mol–1 Å–2 restraints on all non-hydrogen solute

atoms to stably reach 1 atm of pressure. Next, an unrestrained 100 ns NVT equilibration with the

Langevin thermostat and collision frequency 1 ps–1 was completed to clear remaining structural
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artifacts from the initial crystal structure. Separate simulations for the unrestrained inhibitor alone

and the protein–inhibitor complex were run for the decharging and VDW removal process. The

inhibitor alone was extracted from the equilibrated complex and solvated in the TIP3P truncated

octahedron box with 20 Å buffer and neutralized with Na+/Cl− counterions or an up to 150 mM

salt concentration. Trajectory data was analyzed with the cpptraj program[77] and the NumPy[78]

packages.

2.3.4 Imposing restraints

As electrostatic and VDW interactions are decoupled, the ligand has the ability to escape the active

site and sample states irrelevant to binding, hindering convergence. Standard practice is to apply

a restraint on the ligand which requires calculating the free energy contribution of the restraints,

∆Ar = −kT ln
ZPZL
ZCL

(2.1)

where ZP , ZL, and ZCL are the configurational partition functions of the protein, ligand, and the

cross-linked state[34, 79–82]. The derivation of the restraint free energy depends on the external

degrees of freedom restrained on the ligand relative to the protein, which defines the cross-linked

state or virtual bond. Since the ligand position and/or orientation is restrained to the protein, the

protein external degrees of freedom can be separated out leaving the integration of the internal

and external degrees of freedom for the ligand. The restraint free energy can be simplified into the

difference between the term from the integration of all external degrees of freedom of a nonlinear

ligand, 8π2V , and the term of a Gaussian integral for each degree of freedom used to restrain the

ligand,

√
2πkbT

Kξ
, where Kξ is the harmonic restraint force constant.

In the 1DOF restraint, a single harmonic distance restraint with a 20 kcal mol–1 Å–2 force constant

was utilized as a virtual bond between the Asp-192 α-carbon and the ligand amidine carbon. The

final analytical correction for the single distance restraint is as follows for restraining the ligand in
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the unbound state[34, 81],

− kbT ln

[
8π2V 0K

1/2
r

(2πkbT )1/2

]
(2.2)

where Kr is the force constant of the distance restraint and V 0 is the standard state volume (SI

Figure: 2.7). This virtual bond restraint is relative to the protein. This is different from the

Cartesian position restraint from Roux et al.[79], which uses a point in three-dimensional Cartesian

space to restrain the ligand, resulting in an integral of

(
2πkbT

Kξ

)2/3

.

To study the effects of the restraining protocol, an independent set of simulations was also run

with the set of 6 degrees of freedom (6DOF) orientational restraints proposed by Boresch et al.[81]

based on a single distance, two angular, and three dihedral parameters, all with 10 kcal mol–1 Å–2

force constants. For the 6DOF restraint, the final analytical correction for restraining the ligand

in the unbound state is[81],

− kbT ln

[
8π2V 0(KrKθAKθBKφAKφBKφC )1/2

r2a,A,0 sin θA,0 sin θB,0(2πkbT )3

]
(2.3)

where ra,A,0 is the restrained distance, θA,0 and θB,0 are the two restrained angles, and K’s are the

force constants (SI Figure: 2.7).

All restraint bounds were selected based on the final positions of the ligands at the end of the

equilibration stage. Restraint sampling from off to full strength was performed over 6 equally

spaced lambda values (0, 0.2, 0.4, 0.6, 0.8, 1.0), each with 10 ns. A separate analytical correction

is calculated to determine the penalty for restraining the ligand in the unbound state.
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2.3.5 Alchemical simulation parameters

Decharging through parameter-interpolation of the inhibitors’ partial charges to the sampled lambda

window was performed to gradually decouple all electrostatic interactions between the inhibitor and

environment and was separately run prior to VDW removal to avert the possibility of attractive

atom overlap singularities. Decharging for both ligands alone and complex was performed linearly

over 11 equally spaced lambda values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), each for 40

ns with full restraints. System neutrality was maintained with charged ligands by simultaneously

decharging a counterion alongside the ligand. Energies from lambda dependent VDW removal were

calculated with the softcore potential to avoid numerical instability at end point lambdas observed

with linear scaling due to atomic overlap[73, 74]. VDW removal was completed over 16 lambda

values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0) each for

20 ns, with denser sampling of lambda values at the later stages to more smoothly decouple VDW

interactions. The dummy counterions present with charged inhibitor systems are VDW decoupled

concurrently with the ligand. All free energy simulations were conducted with the pmemd.GTI[40]

program in Amber18.

Alchemical simulation results for each ligand were aggregated from five individual trajectories with

randomized starting velocities to ensure robust conformational sampling. Energy values from the

last half of each lambda window for the replicates are concatenated together to combine equilibrated

data for final MBAR analyses. Examination of convergence involves calculating the difference in

final free energy with the addition of each replicate trajectory; the analysis shows that cumulative

free energies with five replicates leads to less than 0.5 kcal/mol deviations. Achieving reasonable

convergence in absolute binding affinities for the systems studied here was not trivial, and the total

MD simulation time including equilibration, restraint sampling, decharging, and VDW removal was

1.7 µs for a single sample. The total cumulative MD simulation time including all tested conditions

and replicates was ∼540 µs. Raw traces of the changes in free energy with each lambda window

illustrate the linearity of the decharging process, and the high variation of the VDW removal process

in the simulation of the complex (SI Figures: 2.8, 2.9, 2.10, 2.11).
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2.3.6 Estimation of electronic polarization with MBAR/PBSA

The Poisson–Boltzmann Surface Area (PBSA) method differs from the standard MD approach

in that solvent molecules are modeled implicitly as a continuum in a mean-field manner rather

than as explicit molecules, which offers significant simulation efficiency[83–104]. PBSA coupled

with the MBAR protocol (i.e., MBAR/PBSA) was developed as an alternative to computing the

decharging free energy for alchemical simulations in explicit solvent[105]. The original explicit

solvent trajectories for all lambda windows used for decharging were prepared by stripping the

waters and ions, except for the counterion used to maintain the ligand charge neutrality.

MBAR/PBSA energy evaluation was performed via the linear Poisson–Boltzmann (LPB) method

with the Amber18 sander module[106] by postprocessing solvent-stripped snapshots from alchemical

simulations. Nonpolar solvation free energies[107] were turned off, as only electrostatic interactions

with and without polarization were compared. Following calculation of electrostatic free energies

from the individual snapshots, the MBAR method was used to determine the composite free energy

change for the complete decharging process as in the explicit solvent model. The PBSA parameters

were set to 0.5 Å grid spacing with different interior dielectric constants ranging from the default of

1 to 2 and solvent dielectric constant 80. Periodic boundary conditions were used, and the box size

was set to twice the size of the complex dimension or four times the size of the ligand dimension.

The incomplete Cholesky conjugate gradient numerical LPB solver was utilized, and the iteration

convergence criterion was set as 10–3[99, 103, 108]. Atomic radii were based on the default mbondi

parameters in the Amber package[106]. The solvent probe radius was set to the default 1.4 Å and

the mobile ion probe radius for the ion accessible surface was also set to the default 2.0 Å. The

short-range pairwise charge-based interactions were cutoff at 7 Å, and long-range interactions were

calculated from the LPB numerical solution[109]. Ionic strength was set to match the value from

the explicit solvent MD simulations.

The solvation free energies computed from the PBSA model are critically dependent on the atomic

radii. The Amber default mbondi radii parameters are revised from the Bondi radius set, and

do not reproduce the solvation free energies with the TIP3P water as used in this study. Thus,
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the binding free energies from the explicit solvent trajectories were first utilized to calibrate the

PBSA model through scaling of the ligand and protein radii at solute dielectric constant 1 to

match the explicit solvent simulations as previously developed for free energy simulations of ionic

systems[105]. First, ligand radii were uniformly scaled by the “Radiscale” PBSA input value and

were tuned to minimize the absolute deviation between PBSA and explicit-solvent electrostatic free

energies for the ligand alchemical simulations. Next given optimized “Radiscale”, the protein radii

were then uniformly scaled by the “Protscale” input value and were tuned to minimize the absolute

deviation between PBSA and explicit-solvent electrostatic free energies for the complex alchemical

simulations. Following calibration of the atomic radii, the PBSA model can be appropriately

utilized for the investigation of electronic polarization by varying the solute dielectric constant.

2.4 Results and discussion

2.4.1 Structural agreement between simulation and experiment

Errors or deficiencies in sampling experimentally relevant conformations are attributed to standard

MD protocols/force fields and highlight sources for inaccuracy in the downstream alchemical process

that is sensitive to sampled conformations. Thus, we first analyzed the effects of force field choices

on the quality of sampled conformations of UPA inhibitors prior to alchemical simulations. Here

GAFF and GAFF2 were both studied.

The 10 cocrystallized inhibitors share a common amidine group attached to an aromatic ring

(Figure: 2.1). The larger ligands maintain the benzamidine scaffold of the small ligands linked to a

phenol-like ring and additional functional groups including methyl and cyclic structures, including

1GJ7, 1GJ8, 1GJA, 1GJB, 1GJD, 1O3P (termed big ligands below). The rest of the ligands,

1C5X, 1C5Y, 1C5Z, and 1GI7, are categorized as small ligands (1GI7 is large in size but lacks the

characteristic phenol-like ring of the larger ligands and so is grouped here).

Binding is mediated by two sets of polar interactions. One is from the positively charged amidine
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Figure 2.2: Example inhibitor binding poses. (A) The protein and ligand form a network
of polar interactions at two locations, at the base of the active site between the negatively
charged Asp-192 and the positively charged amidine, and near the phenol hydroxyl with
Ser-198 and His-46. (B) Electron density supports the positioning of the ligand hydroxyl
unusually close to Ser-198. An exceptionally short hydrogen bond is formed between the
phenol hydroxyl and Ser-198 hydroxyl with a distance of ∼2.2 Å; this interaction may not
be captured accordingly with typical force fields due to van der Waals repulsion.

group, which is common among these inhibitors and makes a dense network of stabilizing polar

contacts to a buried Asp-192 and Ser-193 in the active site (Figure: 2.2A). The phenol hydroxyl

makes an additional group of hydrogen bonds centered on Ser-198; worth noting is its short hy-

drogen bond to Ser-198 with a distance ∼2.2 Å, the lower bound of a hydrogen bond length[62]

(Figure: 2.2B). Due to the short distance, the phenol hydroxyl is inferred to act as an acid and

be deprotonated in the bound state, and His-46 is interpreted to be a fully protonated Hip-46 to

function as a hydrogen bond donor for the ligand phenol[62]. Interestingly, the hydrogen bond

between the phenol hydroxyl and His-46 is longer at ∼2.7 Å even if donor and acceptor are both

charged when inferred this way. An alternative solution that satisfies the similar steric constraint

in the crystal structure is for the protonated phenol hydroxyl to form the hydrogen bond with the

Hid-46. In doing so, both groups are neutral. It should be pointed out that there is no direct

pKa measurement of these residues/functional groups. Several of the inhibitors contain halogens

(1C5X, 1GJ7, 1GJD, 1GJ8), which are not parametrized comprehensively in current force fields,

possibly leading to inaccurate treatment of these ligands.
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2.4.2 Crystal structure analysis

The stability of binding sites and ligands in these crystal structures are evaluated through B-factor

and electron density analyses. The binding pocket is defined to include any residue with atoms

within 6 Å of the inhibitor (SI Figure: 2.12). Crystal B-factors describing flexibility are not directly

comparable between structures since they are a function of the crystalline disorder and resolution.

Thus, the B-factors are normalized within each structure and Z-scores are compared (SI Figure:

2.13). The binding pockets exhibit roughly equivalent stability with median B-factor Z-scores

around -0.6, and the ligands mostly fall into the range of -0.5 to 0. The most stable ligand is

1GJB, possibly due to hydrophobic packing of the highly nonpolar and compact benzene tail, and

the most flexible is 1GI7, which is large but lacks the phenol hydroxyl that enables the hydrogen

bonding array at Ser-198, and instead has the hydroxyl pointing out toward solvent. Visualization

of the density maps supports the close contact between Ser-198 and the phenol hydroxyl (Figure:

2.2). It was noted that atoms involved in the interaction were ignored during structure refinement

due to incompatibility of the short hydrogen bonds with the force field used during refinement[62].

2.4.3 Effect of force field choices on ligand binding modes

The positions of the inhibitors in the equilibrated models were first compared with those in the

crystal structures (SI Figure: 2.14). It is clear that the inhibitors move further into the active

site and assume binding poses with phenol turned slightly outward. The distribution of distances

sampled between the ligand phenol and Ser-198 shows that the ligands move further away to relieve

the steric clash with both tested force fields, and largely maintain the hydrogen bond except for

1GJD (Figure: 2.3A). The average distances are still within hydrogen bonding range even though

there is sampling of unbonded conformations. 1GJD diverges due to rotation of the phenol group;

full rotation causes the hydroxyl to point outward toward solvent and the original hydrogen bond

is replaced by interaction with the carbonyl oxygen that links the phenol ring to the benzamidine

scaffold (Figure: 2.3B). This alternative binding pose is observed with a higher frequency with

GAFF2.
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DRG@O

S198@OG

A B

Figure 2.3: Relieving steric clash between the ligand phenol and Ser-198. (A) The distance
between the ligand phenol oxygen and Ser-198 hydroxyl oxygen is recorded over the last 10
ns of equilibration to analyze sampled conformations and compared to the distance observed
in the crystal structures. The trend observed is identical for both GAFF and GAFF2 force
fields, all ligands except 1GJD twist away due to repulsive steric interactions but remain
in hydrogen bonding range. 1GJD samples broad distances, indicating the initial hydrogen
bond is detached. (B) Sample frame from the 1GJD simulation illustrates that the phenol
hydroxyl rotates outward away from the protein, and the starting hydrogen bond is replaced
with one between the peptide bond-like carbonyl and Ser-198. The inhibitor is colored green
and labeled DRG.
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Next, evaluation of the time evolution of backbone α-carbon RMSD to crystal, binding pocket

RMSD, ligand heavy atom RMSD, and distance from Asp-192 Cγ to ligand amidine is performed (SI

Figures: 2.15, 2.16, 2.17). These values are discretized into 10 ns bins and averaged together from

the five replicate trajectories. 1GJD stands out with a 0.75 Å binding pocket RMSD with GAFF2

compared to a 0.57 Å RMSD with GAFF at the end of equilibration. This major rearrangement is

an indication that an alternative binding pose is sampled and agrees with the phenol distance data,

showing substantial rotation of the phenol ring. Ligand heavy atom RMSD shows no difference

between GAFF and GAFF2. The small set of ligands with fewer torsions cluster together with a

low RMSD, while the highest RMSD values are observed with 1GJ8 and 1GJD. 1GJD is explained

by the phenol rotation. For 1GJ8 the ligand moves away from the crystal pose by sliding more

deeply into the binding pocket. The movement into the binding pocket is also observed to a

lesser degree with 1O3P, 1GJB, 1GI7, and 1GJA. With both GAFF and GAFF2, the favorable

polar interactions between the negatively charged Asp-192 and positively charged amidine draw

the ligands into the binding pocket, signaling overestimation of electrostatic interactions that is

typical of point charge models. In summary, it is clear that a large discrepancy between the crystal

structure and equilibrium binding pose is observed with 1GJD and to a lesser extent with 1GJ8,

while the remaining models show close agreement, suggesting that the current force field treatment

of 1GJD may not sufficiently characterize the important binding interactions observed in the crystal

structure.

2.4.4 Benchmarking the effects of simulation conditions on pre-

dictive accuracy

We analyzed a range of factors including salt concentration, alternative ligand protonation states,

and restraint potential that are known to impact alchemical simulation accuracy. These elements

play critical roles in highly charged ligand binding interactions, and their effects on predictive accu-

racy have not been thoroughly characterized in absolute alchemical simulations. Salt concentration

plays a role in screening the strength of electrostatic interactions, yet consideration of physiologi-
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cally relevant salt conditions is often ignored, and counterions are generally added only up to the

amount necessary to neutralize charge to prevent artifacts arising from periodic boundary condi-

tions. In standard MD simulations, the protonation states of the ligands are fixed and potential

changes due to tautomerization or pKa shifts from differences in the solvent and protein environ-

ments are not accounted for, which leads to inaccuracy when considering ligands that undergo

protonation changes during the binding process. Finally, two types of restraint potentials, 1DOF

and 6DOF, have been utilized to prevent the ligand from drifting out of the active site as binding

interactions are decoupled; the purpose of these restraints is to focus conformational sampling on

configurations most relevant to the binding pose and aid convergence.

2.4.5 Default setup leads to no correlation with experiment

The benchmarks begin with a baseline binding free energy prediction to determine the accuracy with

a simple and widely accepted model setup, based on a single harmonic distance restraint between the

Cα on Asp-192 to the amidine carbon (i.e., 1DOF), with counterions added only to the amount to

neutralize the system charge, and full ligand protonation without consideration of the experimental

data. The Root Mean Square Error (RMSE) for the baseline prediction is 3.2 kcal/mol, and the

Pearson correlation coefficient is -0.15, indicating no linear correlation between the experimentally

determined binding affinities and those predicted from simulation (Figure: 2.4A). The ligands with

0 net charge form a cluster of samples with underestimated binding free energies, while the charged

ligands are predicted to have overestimated free energies indicating excessively favorable binding.

2.4.6 Use of salt and consistent protonation state improves pre-

dicted affinities

Many automated setups neglect setting simulation parameters to match the physiologically relevant

conditions, either due to lack of information or to simplify the protocol for higher computation

throughput. One often overlooked condition is the salt concentration. The oversight may not

68



Figure 2.4: Baseline absolute alchemical binding predictions for UPA inhibitors. Evaluating
the effects of simulation with 150 mM salt alone, deprotonated ligands alone, and with 150
mM salt and deprotonated ligands combined (1DOF All-HIP) on the baseline condition
(fully protonated ligands, counterions added only up to neutralize system charge, and 1DOF
restraints). The highest performance is observed with the 1DOF All-HIP condition with
RMSE 2.50 kcal/mol and Pearson correlation 0.51.
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be an issue for most neutral or hydrophobic ligands but becomes an important issue for charged

ligands due to the impact of ions on electrostatic screening. Given an otherwise identical setup

and identical restraint as the baseline, the use of 150 mM salt concentration reduced RMSE to

2.58 kcal/mol and improved the Pearson correlation from negative to 0 (Figure: 2.4B). Another

discounted issue is the treatment of the protonation state for the ligands and amino acid side

chains in the binding pocket, which is critical for defining the polar interactions that retain charged

ligands. Consistent protonation states maintain hydrogen bond donor and acceptor pairing and/or

charge complementary. Modification from the baseline using the deprotonated ligands was found to

have minimal improvement in RMSE to 3.13 kcal/mol and significant improvement on the Pearson

correlation to 0.43 (Figure: 2.4C). Further, when the 150 mM salt concentration and deprotonated

ligands are combined, RMSE is noticeably reduced to 2.50 kcal/mol, and the Pearson correlation is

further boosted to 0.51 (Figure: 2.4D). These comparisons highlight a consistent beneficial effect in

improving both accuracy and correlation by matching the physiologically relevant salt conditions,

and a greatly improved correlation when maintaining consistent protonation states.

2.4.7 6DOF versus 1DOF in predicted affinities

Both 1DOF and 6DOF restraints are widely utilized, but direct comparison has been lacking. The

single distance restraint is simpler to implement and enables broader sampling of the binding pocket

volume available but has been noted to require longer simulation to reach convergence and may

be contaminated by erroneously high energies when the ligand is trapped in a local minimum[82].

The 6DOF approach more tightly locks the ligand into a predefined conformation with limited

translational and rotational mobility to more readily achieve convergence and is dependent on se-

curely holding the ligand in the pose that is physically relevant to binding. The binding energy

predictions from the 6DOF simulation were found to have an RMSE of 5.59 kcal/mol and a Pear-

son correlation of 0.74 (SI Figure: 2.18). The higher Pearson correlation observed with the 6DOF

restraints enables a more accurate ranking of the binding energies and may be due to restricting the

ligand conformational sampling to a small number of dominant and energetically favorable poses.

Indeed, the predicted binding affinities for the 6DOF runs are all more negative than the experi-
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mentally determined values, consistent with the ligand being trapped in an excessively favorable

binding mode with hindered sampling of higher energy states that are relevant to binding. This

reflects how the entropic component is improperly estimated due to the more intensive restriction

on sampling. It should also be pointed out that the higher correlation here is likely due to the

more negative binding affinities spanning a larger range, indicating use of correlation alone may be

insufficient in evaluating the performance.

2.4.8 Possible protonation states at active sites

We next evaluated the effects of varying the ligand and binding pocket protonation, with deproto-

nated ligand phenol and Hip-46 or protonated ligand phenol and Hid-46 on predictive accuracy as

both satisfy the steric constraint in the crystal structures. Assignment of hydrogens is typically not

resolved with structure determination by X-ray crystallography. The issue is further complicated

by the absence of direct pKa measurement for the system. Nevertheless, based on the close dis-

tance between the ligand phenol hydroxyl and Ser-198, Katz et al. inferred that the ligand phenol

binds as an acid and is deprotonated to minimize steric clash with surrounding atoms[62]. The free

oxygen then acts as a hydrogen bond acceptor interacting with Hip-46. However, the typical pKa

of a phenol hydroxyl is approximately 10 and those on the ligands range between 8 and 9[62, 110],

which suggests that maintenance of the hydroxyl proton is favored under physiological conditions.

His-46 would more likely assume the neutral HID form allowing hydrogen bonding to occur at Nε

on Hid-46. To investigate both possibilities, trials were conducted in four groups as all-HID (all

ligands interacting with Hid-46), all-HIP (all ligands interacting with Hip-46), small-HID (larger

phenol ligands interacting with Hip-46 and smaller nonphenol ligands interacting with Hid-46), and

small-HIP (larger phenol ligands interacting with Hid-46 and smaller nonphenol ligands interacting

with Hip-46).

Utilization of deprotonated ligands and all Hip-46 (all-HIP) led to an RMSE of 2.50 kcal/mol and

a Pearson correlation of 0.51 as previously shown in Figure: 2.4. In contrast, the alternative with

protonated ligands and all Hid-46 (all-HID) resulted in a worse RMSE of 3.91 kcal/mol and slightly
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reduced Pearson correlation of 0.47 (SI Figure: 2.19). Since the smaller and nonphenol ligands are

not expected to form hydrogen-bonding contact with His-46, the protonation state of His-46 may

not match that for the larger ligands. Thus, a more appropriate comparison is between small-HID

versus all-HID. Interestingly the small-HID condition leads to RMSE of 3.40 kcal/mol and Pearson

correlation of 0.21 (SI Figure: 2.19). For the fourth small-HIP condition, the RMSE was calculated

to be 3.16 kcal/mol with the highest Pearson correlation of 0.69 (SI Figure: 2.19).

Notably, 1GJD is an outlier in all conditions, separated from the cluster of other ligands and is

predicted to have a higher binding free energy than measured in experiment for both HIP and

HID conditions. This is potentially due to force field imperfections as discussed above: the 1GJD

phenol pivots away from Ser-198 observed during the equilibration phase (Figure: 2.3B). All other

ligands adopted poses with the phenol shifted away from Ser-198 slightly to alleviate steric clash

but maintained hydrogen bonding range. Thus, 1GJD is excluded from further binding analysis.

Removal of 1GJD from aggregate calculations does not improve the RMSE as it increased to

2.55, 4.06, 3.52, and 3.25 kcal/mol for the all-HIP, all-HID, small-HID, and small-HIP conditions,

respectively, but its omission increases Pearson correlations for all-HIP to 0.55, all-HID to 0.81,

reduced small-HID to 0.14, and brings small-HIP to 0.85 (SI Figure: 2.19). These simulations

demonstrate the impact of protonation state on the binding free energy prediction. Our standard

alchemical simulations suggest that the all-HIP condition with the lowest RMSE and all-HID and

small-HIP conditions with over 80% correlation may all explain some aspects of the experimental

binding affinities. However, the absolute errors are all quite large, over 2.5 kcal/mol which is above

the chemically accurate threshold of 1.0 kcal/mol. Therefore, it is still uncertain which binding

mode best describes these challenging systems.

2.4.9 Estimation of electronic polarization by MBAR/PBSA

Following optimization of protein and ligand radii for all alchemical conditions tested (SI Table:

2.4), we evaluated the effect of solute dielectric on the accuracy of binding affinities to assess the

impact of incorporating polarization into the computational models. Evaluation of the solute di-
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Figure 2.5: MBAR/PBSA binding affinity calculations. The All-HID condition shows the
best agreement to experiment with consideration of polarization effects through solute dielec-
tric scaling. In comparison to values from the standard alchemical transformation, RMSEs
are reduced and Pearson correlations are improved for all conditions.
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electric at the theoretical value of 2 responsible for electronic polarization[111–114] shows improved

Pearson correlation to as high as 0.81, highlighting its applicability to correctly ranking candidate

inhibitors by offsetting charge polarization errors. However, the RMSE increases to as high as 4.84

kcal/mol (SI Table: 2.5). All samples are predicted to have more positive binding free energies with

the increasing solute dielectrics, demonstrating that screening charged effects increase the predicted

free energies.

The standard Amber force fields were developed with effective partial charges to model electro-

statics and include polarization responses to the environment (mostly in water), though only in

an averaged, mean-field manner. They are not fully compatible with the theoretical dielectric con-

stant of 2 because polarization is already partially accounted for in the effective partial charges.

Thus, a further scanning procedure to find the optimal solute dielectrics is necessary. In doing so,

the RMSE to experimental affinities was found to be reduced to as low as 0.89 kcal/mol and the

Pearson correlation is increased to as high as 0.88 for the all-HID condition (Figure: 2.5, SI Table:

2.5). Both metrics are dramatically improved compared to the explicit solvent simulation, enabling

more accurate binding free energy prediction with only postprocessing of existing trajectory data

and minimal modification to current protocols.

It is interesting to see how accounting for polarization affects the prediction of binding free energy

at the tested alternative protonation states. Among the three viable candidates from standard al-

chemical simulations, all-HIP, all-HID, and small-HIP conditions, the all-HIP condition is improved

to a 1.25 kcal/mol RMSE and 0.74 Pearson correlation, the all-HID condition is calculated to have a

0.89 kcal/mol RMSE and 0.88 Pearson correlation, and the small-HIP condition is changed to a 1.0

kcal/mol RMSE and 0.88 Pearson correlation (Table: 2.2). The last tested condition, small-HID,

has a 1.80 kcal/mol RMSE and 0.32 Pearson correlation.

This suggests that the environment of the binding pocket and charged nature of the ligands may

not fully support the originally proposed binding mode with deprotonated phenol and Hip-46.

Instead, the alternative hypothesis of the ligands with protonated phenol as a hydrogen bond donor

and Hid-46 assuming the role of hydrogen bond acceptor may better describe the protein–ligand
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interactions. Both protonation states satisfy the steric constraint in the crystal structures. However,

the differences in errors are within kT between different protonation states. Our analysis here points

to the need for more definite NMR pKa measurement to resolve the issue[115, 116].

Condition Method RMSE (kcal/mol) R

Baseline Standard alchemical 3.22 (3.20) -0.34 (-0.15)

Baseline + 150 mM salt Standard alchemical 2.64 (2.58) -0.12 (0.00)

Baseline + Deprotonated Ligands Standard alchemical 3.25 (3.13) 0.42 (0.43)

6DOF (All-HIP) Standard alchemical 5.85 (5.59) 0.75 (0.74)

1DOF (All-HIP) Standard alchemical 2.55 (2.50) 0.55 (0.51)

All-HID Standard alchemical 4.06 (3.91) 0.81 (0.47)

Small-HIP Standard alchemical 3.25 (3.16) 0.85 (0.69)

Small-HID Standard alchemical 3.52 (3.40) 0.14 (0.21)

All-HIP MBAR/PBSA 1.25 (1.61) 0.73 (0.65)

All-HID MBAR/PBSA 0.89 (1.53) 0.88 (0.67)

Small-HIP MBAR/PBSA 1.00 (1.48) 0.88 (0.81)

Small-HID MBAR/PBSA 1.80 (2.18) 0.32 (0.31)

Table 2.2: Summary of error and correlation statistics. Binding free energy prediction
metrics with outlier 1GJD removed. Values in parentheses represent inclusion of the outlier.
Conditions examining binding pocket protonation include the simulation with 150 mM salt
and deprotonated ligands (1DOF All-HIP). The Baseline condition is described by inclusion
of only neutralizing counterions and with fully protonated ligand phenol groups.

2.5 Conclusion

The current study aims to understand the impact of simulation conditions for absolute binding

calculations in the UPA system, introduces the MBAR/PBSA continuum solvent approach in the

calculation of decharging free energies to capture electronic polarization effects absent in standard

explicit solvent models, and evaluates the effect of varying protonation states of titratable ligands
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and protein residues in binding free energy prediction. Extensive simulations of UPA with a broad

set of inhibitors were performed to benchmark the performance of absolute alchemical simulations,

which have been sparsely studied due to their demanding calculation, allowing us to identify factors

pivotal to increasing predictive accuracy.

The force field description of the ligands plays a significant role in maintaining important interac-

tions and poses for binding, and issues with the ligand force field parameters can cause inaccuracies

in the binding calculation as seen in the case of 1GJD. Here, difficulty maintaining the short hy-

drogen bond between the ligand phenol and Ser-198 caused excessive rotation of the phenol ring

and also overly positive binding energy prediction. Furthermore, the setup of simulation systems

contributes significantly to predictive accuracy as seen in the baseline condition, which does not

account for salt concentration, protonation state, or polarization effects. These oversights lead to

poor performance in prediction with a 3.2 kcal/mol RMSE and -0.15 Pearson correlation. As the

simulation conditions are modified to be consistent with physiologically relevant conditions, notable

improvements in the accuracy are observed with the RMSE decreasing to 2.5 kcal/mol and an in-

crease in Pearson correlation to 0.51. The more restrictive 6DOF ligand restraints were found to

overestimate binding affinity by keeping the ligand in a singular binding conformation, preventing

exploration of relevant higher energy conformations, and resulting in larger error, but improved

Pearson correlation compared to 1DOF restraints.

Importantly, simulation conditions that affect electrostatic interactions are observed to have a major

contribution to binding prediction accuracy, augmenting results from previous studies[53, 117].

Standard MD simulation utilizing explicit solvation and point-charge models lack the capability to

account for electronic polarization effects that undoubtedly occur as the ligands transition from the

high-dielectric water environment to the low-dielectric protein interior. Polarization effects can be

captured through ab initio quantum calculations that evaluate the electron densities surrounding

each atom, but their usage is limited by steep computational costs and typically require that

the system is separated into coupled QM/MM regions where the choice of boundary and level

of QM theory entangle accurate treatment[22, 118]. The MBAR/PBSA calculation allows the

assignment of different dielectric values to solute and solvent, enabling us to measure the impact
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of including polarization effects on binding affinity prediction. The interior dielectric constant in

PBSA parametrizes the strength of charge screening in the protein environment. At the default

value 1, atom charges are not shielded resulting in exaggerated attractive and repulsive interactions

as the atom partial charges, typically assigned for the ligand in gas phase, cannot be adjusted

in standard MD simulation. This overestimation of the electrostatic potential can be offset by

finely increasing the solute dielectric value to imitate the effect of electronic polarization that

masks electrostatics. When the active site protonation state is defined and the polarization effects

are modeled in the MBAR/PBSA calculation, significant enhancement of prediction accuracy is

observed. This method is a mean-field approach demonstrated here for its ease of implementation

and inspires the utilization of more explicit calculations of electronic polarization such as with

polarizable multipole electrostatics[8, 11, 119].

The all-HIP condition was first inferred to be a likely protonation state that satisfies the crys-

tal steric constraint. It was found to have a 1.25 kcal/mol RMSE and 0.73 Pearson correlation,

but is not necessarily the definitive state, as the alternative protonation state, all-HID, shows

higher prediction accuracy, though the differences in errors are within kT. Conclusive protona-

tion assignment requires further experimental validation such as pKa determination via NMR

spectroscopy[115, 116]. This is significant when considering how simulation protocols and algo-

rithms deal with aspects of electrostatic interactions in defining protonation states and handling

polarization effects.

Complete examination of protonation changes is limited with existing simulation protocols. Ex-

ploring alternative protonation states becomes an important and complicating process if the proton

transfer events of the whole system are coupled to the binding process. In the Supporting Infor-

mation, the calculation of the contributions of a single titratable group coupled to the binding

process is discussed. However, this simple model is inadequate for most protein systems, as they

often have multiple titratable groups that are coupled directly or through long-range allosteric

interactions[120, 121]. In particular, the current UPA system involves titratable residues in the

active site at His-46, His-94, and Asp-97 and titratable functional groups on several ligands such as

the phenol hydroxyl. Direct interaction may shift the pKa of the titratable groups involved. The
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investigation of how to approach these coupled processes has been explored by several groups[122–

125] and includes approaches ranging from corrections as discussed in the SI[123, 124], the explicit

enumeration of protonation states for the binding simulations, and techniques such as constant pH

molecular dynamics[125].
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2.7 Supplementary information

2.7.1 Apparent binding free energies with one titratable group in

the active site

The presence of titratable groups in the active site poses an additional challenge for the calculation

of binding free energies. The experimentally resolved apparent binding free energies encapsulate

the whole physical process, which may not distinguish the contributions of coupled processes to the

protein-ligand binding event. Titratable groups in the active site are susceptible to the system pH,

and this susceptibility is observed in the pH dependence of receptor-ligand binding[126, 127] and

enzymatic catalysis[128]. This can be further complicated when the interaction of the binding ligand

shifts the pKa of those titratable groups which can alter protonation states. These interactions and

coupled processes need to be considered for the binding free energy calculations. Using a single

titratable group as a model coupled process, one can derive the separable contributions from the

coupled processes. The coupled binding process can be separated into four separate processes:

binding in the protonated form, binding in the deprotonated form, and protonation/deprotonation

processes in the free and complex states defined in the illustrated thermodynamic cycle where one
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Figure 2.6: Ligand binding pKa process.

of the binding processes is directly calculated.

The apparent binding constant can be expressed with a proton dissociation process for both the

complex and free states,

Kapp =
[RLH] + [RL−]

[R][LH] + [R][L−]
(2.4)

This can be further simplified by substitution to give,

Kapp = K0
b

(1 + (KC
a )−1[H])

(1 + (KF
a )−1[H])

(2.5)

where K0
b =

[RLH]

[R][LH]
is the protonated binding equilibrium constant, KC

a =
[RL−][H]

[RLH]
and KF

a =
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[L−][H]

[LH]
are the proton dissociation constants in the complex and free states, respectively. The

proton dissociation constants can be expressed in pKa and pH units, and the change in free energy

can be calculated using

∆G0(pH) = −kbT

[
lnK0

b + ln
(1 + 10pH−pKaC )

(1 + 10pH−pKaF )

]
(2.6)

[129, 130]

The charged binding equilibrium constant can be converted to the binding free energy which can

be explicitly calculated, where ∆GProtBind = −kbT lnK0
b , resulting in

∆G0(pH) = ∆GProtBind − kbT ln
(1 + 10pH−pKaC )

(1 + 10pH−pKaF )
(2.7)

Additionally, this equation then becomes process dependent, where the equation for binding coupled

to a proton association process is,

∆G0(pH) = ∆GDeprotBind − kbT ln
(1 + 10pKa

C−pH)

(1 + 10pKaF−pH)
(2.8)

Application of the above equation shows that computation of the apparent binding free energy

requires the pKa’s of the ligand in both the free and bound states in addition to the simulated

binding affinity of the ligand in either of the states. However, the application of this simplified

single titratable group coupled binding process equation is apparently inadequate in describing the

complete binding process for most protein systems where many residues in the active site are also

titratable and require proper modeling.

2.7.2 SI Tables

Condition Epsin RMSE (kcal/mol) R
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All HIP 1 2.31 0.6

All HID 1 3.75 0.75

Small HIP 1 2.89 0.85

Small HID 1 3.32 0.17

Table 2.3: MBAR/PBSA binding affinity accuracy with optimized Radiscale and Protscale
parameters. Radiscale and Protscale values were scaled to minimize mean absolute error
between MBAR/PBSA free energies and explicit solvent free energies.

Condition Epsin RMSE (kcal/mol) R

All-HIP 1.17 1.25 0.74

All-HIP 2 4.84 0.81

All-HID 1.43 0.89 0.88

All-HID 2 2.65 0.88

Small-HIP 1.27 1 0.88

Small-HIP 2 3.91 0.87

Small-HID 1.28 1.8 0.32

Small-HID 2 3.9 0.52

Table 2.4: Binding affinity prediction accuracy versus solute interior dielectric (Epsin) with
MBAR/PBSA. Commonly used Epsin of 2.0 and Epsin resulting in the lowest RMSE to
experiment are reported. All-HID condition shows the lowest RMSE and highest Pearson
correlation at optimized Epsin. Epsin 2.0 results in improved Pearson correlations, but also
higher RMSE’s.
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2.7.3 SI Figures
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Figure 2.7: Illustration of Boresch 6DOF orientational restraints. The ligand is constrained
by a single distance, two angles, and three dihedrals selected from the end of the equilibration
phase to lock the ligand into a target conformation. 1DOF condition involves only the
distance restraint, which allows greater exploration of conformational states at the cost of
slower convergence.
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Figure 2.8: . Free energy transitions during the decharging phase for the complex trajectories
in the baseline simulation. Individual replicates show only small variation, the aggregated
energies show almost complete overlap and smooth, nearly linear transition from full ligand
partial charges to zero.
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Figure 2.9: Free energy transition during the decharging phase for the ligand trajectories in
the baseline alchemical simulation. The same pattern of small variation and linear transition
from full ligand partial charges to zero as the complex is observed.
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Figure 2.10: Free energy transition during the VDW phase for the complex trajectories in the
baseline simulation. High variance is observed between replicates, highlighting the sampling
difficulties associated with decoupling VDW interactions.
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Figure 2.11: Free energy transition during the VDW phase for the ligand trajectories in the
baseline simulation. Replicates show high agreement over the course of the highly non-linear
transitions.
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Figure 2.12: Illustration of the UPA binding pocket with all residues within 6 Å of the
ligand highlighted. Notable residues include His-46 which is titratable and observed to form
a hydrogen bond with the ligand phenol. Asp-192 is located at the base of the binding
pocket and forms salt bridges with the positively charged amidine. Sample ligand 1O3P is
highlighted in green.

88



1C5X 1C5Y 1C5Z 1GI7 1GJ7 1GJ8 1GJA 1GJB 1GJD 1O3P
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Z-
sc

or
e

Normalized B-factor Z-scores
Ligand

Figure 2.13: Analysis of binding pocket flexibility through normalized B-factor Z-scores. All
structures show similar binding pocket flexibility, with higher than average rigidity relative
to the rest of the protein. Ligands show varying levels of displacement, notably 1GI7 shows
the highest flexibility, which is larger in size but unable to form a hydrogen bond to Ser-198.
1GJB shows the highest stability, potentially due to its hydrophobic benzene groups and
internal hydrogen bond between the ligand phenol and nitrogen. Each marker represents the
Z-score per residue with all atoms averaged.
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1GJ8 1GJA 1GJB 1O3P1GJD

Figure 2.14: Inhibitor equilibration poses from GAFF and GAFF2 compared to starting
crystal poses. GAFF and GAFF2 trajectories show similar trends, with the ligands moving
further into the binding pocket to more tightly interact with Asp-192, and outward twisting
of the phenol tail to relieve steric clash. Structures were generated from identifying the frame
with the lowest RMSD to the average structure from the last 10 ns of equilibration. The
starting crystal structure models are colored green, GAFF samples are colored cyan, and
GAFF2 samples are colored purple.

Figure 2.15: Backbone CA RMSD development over equilibration with GAFF and GAFF2
force fields. No clear pattern emerges, all proteins drift away from the starting ligand pose
and show a maximum divergence of ∼1.2 Å RMSD, indicating that minor conformational
changes occur.
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Figure 2.16: Binding pocket CA RMSD development over equilibration with GAFF and
GAFF2 force fields. All GAFF samples show stability and do not change noticeably from
the crystal over the course of equilibration. In GAFF2, 1GJD shows larger divergence from
the crystal pose reaching 0.75 Å RMSD.
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Figure 2.17: Ligand heavy atom RMSD development over the equilibration with GAFF and
GAFF2 force fields. Small ligands (1C5X, 1C5Y, 1C5Z, and 1GI7) show minimal changes
in positioning. 1GJ8 shows consistent departure from the crystal pose, the ligand moves
further into the binding pocket to maximize hydrophobic interactions and polar interactions
with Asp-192. 1GJD shows dissimilarity with crystal as well, from the rotation of the phenol
group outward leading to the loss of the hydrogen bond. The aberration is more substantial
with GAFF2.
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Figure 2.18: Comparison of 1DOF and 6DOF restraint schemes. The 1DOF single dis-
tance restraint showed lower error, but worse Pearson correlation than the 6DOF (Boresch)
method. Samples with the 6DOF restraint showed excessively negative free energy predic-
tions, indicating potential over-stabilization in a favorable pose.
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Figure 2.19: Binding affinity predictions with standard alchemical simulation with different
protonation states. In general, binding affinities are predicted to be more negative than
expected, possibly due to exaggeration of favorable charge-charge interactions typical of the
point-charge models used. 1GJD is shown to be an outlier, with free energies far more positive
than the cluster of other tested ligands, this is likely related to the issues in sampling incorrect
binding poses recognized during equilibration where the phenol swings outward such that
the native hydrogen bond to Ser-198 is not maintained.
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Figure 2.20: Binding affinity predictions with outlier 1GJD removed for standard alchemical
simulation with different protonation states. In the standard alchemical simulation, minimal
change is seen in RMSE for all conditions. However, Pearson correlation is found to improve
dramatically for both All-HID and Small-HIP conditions.
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Figure 2.21: MBAR/PBSA binding affinity calculations including the outlier 1GJD. All
metrics are found to worsen with the outlier pushing the trend toward overly positive values.
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Benôıt Roux. High-Performance scalable molecular dynamics simulations of a polarizable

97



force field based on classical drude oscillators in NAMD. J. Phys. Chem. Lett., 2(2):87–92,

January 2011.

[8] Jay W Ponder, Chuanjie Wu, Pengyu Ren, Vijay S Pande, John D Chodera, Michael J

Schnieders, Imran Haque, David L Mobley, Daniel S Lambrecht, Robert A DiStasio, Martin

Head-Gordon, Gary N I Clark, Margaret E Johnson, and Teresa Head-Gordon. Current

status of the AMOEBA polarizable force field. J. Phys. Chem. B, 114(8):2549–2564, March

2010.

[9] Yue Shi, Zhen Xia, Jiajing Zhang, Robert Best, Chuanjie Wu, Jay W Ponder, and Pengyu

Ren. Polarizable atomic Multipole-Based AMOEBA force field for proteins. J. Chem. Theory

Comput., 9(9):4046–4063, September 2013.

[10] Changsheng Zhang, Chao Lu, Zhifeng Jing, Chuanjie Wu, Jean-Philip Piquemal, Jay W

Ponder, and Pengyu Ren. AMOEBA polarizable atomic multipole force field for nucleic

acids. J. Chem. Theory Comput., 14(4):2084–2108, April 2018.

[11] Haixin Wei, Ruxi Qi, Junmei Wang, Piotr Cieplak, Yong Duan, and Ray Luo. Efficient

formulation of polarizable gaussian multipole electrostatics for biomolecular simulations. J.

Chem. Phys., 153(11):114116, September 2020.

[12] Junmei Wang, Piotr Cieplak, Ray Luo, and Yong Duan. Development of polarizable gaussian

model for molecular mechanical calculations i: Atomic polarizability parameterization to

reproduce ab initio anisotropy. J. Chem. Theory Comput., 15(2):1146–1158, February 2019.

[13] Piotr Cieplak, James Caldwell, and Peter Kollman. Molecular mechanical models for organic

and biological systems going beyond the atom centered two body additive approximation:

aqueous solution free energies of methanol and n-methyl acetamide, nucleic acid base, and

amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases.

J. Comput. Chem., 22(10):1048–1057, July 2001.

[14] Junmei Wang, Piotr Cieplak, Jie Li, Tingjun Hou, Ray Luo, and Yong Duan. Development

98



of polarizable models for molecular mechanical calculations i: Parameterization of atomic

polarizability. J. Phys. Chem. B, 115(12):3091–3099, March 2011.

[15] Junmei Wang, Piotr Cieplak, Jie Li, Jun Wang, Qin Cai, Mengjuei Hsieh, Hongxing Lei, Ray

Luo, and Yong Duan. Development of polarizable models for molecular mechanical calcula-

tions II: induced dipole models significantly improve accuracy of intermolecular interaction

energies. J. Phys. Chem. B, 115(12):3100–3111, March 2011.

[16] Jun Wang, Piotr Cieplak, Qin Cai, Meng-Juei Hsieh, Junmei Wang, Yong Duan, and Ray

Luo. Development of polarizable models for molecular mechanical calculations. 3. polarizable

water models conforming to thole polarization screening schemes. J. Phys. Chem. B, 116

(28):7999–8008, July 2012.

[17] Junmei Wang, Piotr Cieplak, Jie Li, Qin Cai, Meng-Juei Hsieh, Ray Luo, and Yong Duan.

Development of polarizable models for molecular mechanical calculations. 4. van der waals

parametrization. J. Phys. Chem. B, 116(24):7088–7101, June 2012.

[18] Michael K Gilson and Huan-Xiang Zhou. Calculation of protein-ligand binding affinities.

Annu. Rev. Biophys. Biomol. Struct., 36:21–42, 2007.

[19] Joseph A DiMasi, Henry G Grabowski, and Ronald W Hansen. Innovation in the pharma-

ceutical industry: New estimates of R&D costs. J. Health Econ., 47:20–33, May 2016.

[20] Samuel DeLuca, Karen Khar, and Jens Meiler. Fully flexible docking of medium sized ligand

libraries with RosettaLigand. PLoS One, 10(7):e0132508, July 2015.

[21] Anthony J Clark, Pratyush Tiwary, Ken Borrelli, Shulu Feng, Edward B Miller, Robert

Abel, Richard A Friesner, and B J Berne. Prediction of Protein–Ligand binding poses via a

combination of induced fit docking and metadynamics simulations. J. Chem. Theory Comput.,

12(6):2990–2998, June 2016.

[22] Martin A Olsson and Ulf Ryde. Comparison of QM/MM methods to obtain Ligand-Binding

free energies. J. Chem. Theory Comput., 13(5):2245–2253, May 2017.

99



[23] Jiankun Lyu, Sheng Wang, Trent E Balius, Isha Singh, Anat Levit, Yurii S Moroz, Matthew J

O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, Andrey A Tolmachev, Brian K

Shoichet, Bryan L Roth, and John J Irwin. Ultra-large library docking for discovering new

chemotypes. Nature, February 2019.

[24] L David, R Luo, and M K Gilson. Ligand-receptor docking with the mining minima optimizer.

J. Comput. Aided Mol. Des., 15(2):157–171, February 2001.
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[49] Ariën S Rustenburg, Justin Dancer, Baiwei Lin, Jianwen A Feng, Daniel F Ortwine, David L

Mobley, and John D Chodera. Measuring experimental cyclohexane-water distribution coef-

102



ficients for the SAMPL5 challenge. J. Comput. Aided Mol. Des., 30(11):945–958, November

2016.

[50] Vytautas Gapsys, Servaas Michielssens, Daniel Seeliger, and Bert L de Groot. Accurate and

rigorous prediction of the changes in protein free energies in a large-scale mutation scan.

Angew. Chem. Int. Ed., 55(26):7364–7368, 2016.

[51] César de Oliveira, Haoyu S Yu, Wei Chen, Robert Abel, and Lingle Wang. Rigorous free

energy perturbation approach to estimating relative binding affinities between ligands with

multiple protonation and tautomeric states. J. Chem. Theory Comput., 15(1):424–435, Jan-

uary 2019.

[52] Zoe Cournia, Bryce Allen, and Woody Sherman. Relative binding free energy calculations in

drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 57(12):

2911–2937, December 2017.

[53] Wei Chen, Yuqing Deng, Ellery Russell, Yujie Wu, Robert Abel, and Lingle Wang. Accurate

calculation of relative binding free energies between ligands with different net charges. J.

Chem. Theory Comput., November 2018.

[54] Zhe Li, Yiyou Huang, Yinuo Wu, Jingyi Chen, Deyan Wu, Chang-Guo Zhan, and Hai-Bin

Luo. Absolute binding free energy calculation and design of a subnanomolar inhibitor of

phosphodiesterase-10. J. Med. Chem., 62(4):2099–2111, February 2019.

[55] Matteo Aldeghi, Alexander Heifetz, Michael J Bodkin, Stefan Knapp, and Philip C Biggin.

Accurate calculation of the absolute free energy of binding for drug molecules. Chem. Sci., 7

(1):207–218, January 2016.

[56] Yue Qian, Israel Cabeza de Vaca, Jonah Z Vilseck, Daniel J Cole, Julian Tirado-Rives, and

William L Jorgensen. Absolute free energy of binding calculations for macrophage migration

inhibitory factor in complex with a druglike inhibitor. J. Phys. Chem. B, 123(41):8675–8685,

October 2019.

103



[57] Yuko Okamoto, Hironori Kokubo, and Toshimasa Tanaka. Prediction of ligand binding affin-

ity by the combination of Replica-Exchange method and Double-Decoupling method. J.

Chem. Theory Comput., 10(8):3563–3569, August 2014.

[58] Nanjie Deng, Lauren Wickstrom, Piotr Cieplak, Clement Lin, and Danzhou Yang. Resolving

the Ligand-Binding specificity in c-MYC G-Quadruplex DNA: Absolute binding free energy

calculations and SPR experiment. J. Phys. Chem. B, 121(46):10484–10497, November 2017.

[59] Niaz Mahmood, Catalin Mihalcioiu, and Shafaat A Rabbani. Multifaceted role of the

Urokinase-Type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prog-

nostic, and therapeutic applications. Front. Oncol., 8:24, February 2018.

[60] B A Katz, R Mackman, C Luong, K Radika, A Martelli, P A Sprengeler, J Wang, H Chan,

and L Wong. Structural basis for selectivity of a small molecule, s1-binding, submicromolar

inhibitor of urokinase-type plasminogen activator. Chem. Biol., 7(4):299–312, April 2000.

[61] B A Katz, K Elrod, C Luong, M J Rice, R L Mackman, P A Sprengeler, J Spencer, J Hataye,

J Janc, J Link, J Litvak, R Rai, K Rice, S Sideris, E Verner, and W Young. A novel serine

protease inhibition motif involving a multi-centered short hydrogen bonding network at the

active site. J. Mol. Biol., 307(5):1451–1486, April 2001.

[62] Bradley A Katz, Kyle Elrod, Erik Verner, Richard L Mackman, Christine Luong, William D

Shrader, Martin Sendzik, Jeffrey R Spencer, Paul A Sprengeler, Aleks Kolesnikov, Vincent

W-F Tai, Hon C Hui, J Guy Breitenbucher, Darin Allen, and James W Janc. Elaborate man-

ifold of short hydrogen bond arrays mediating binding of active site-directed serine protease

inhibitors. J. Mol. Biol., 329(1):93–120, May 2003.

[63] H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov, and

P E Bourne. The protein data bank. Nucleic Acids Res., 28(1):235–242, January 2000.

[64] Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The PDB-

bind database: methodologies and updates. J. Med. Chem., 48(12):4111–4119, June 2005.

104



[65] Ramu Anandakrishnan, Boris Aguilar, and Alexey V Onufriev. H++ 3.0: automating pk

prediction and the preparation of biomolecular structures for atomistic molecular modeling

and simulations. Nucleic Acids Res., 40(Web Server issue):W537–41, July 2012.

[66] Christopher I Bayly, Piotr Cieplak, Wendy Cornell, and Peter A Kollman. A well-behaved

electrostatic potential based method using charge restraints for deriving atomic charges: the

RESP model. J. Phys. Chem., 97(40):10269–10280, October 1993.

[67] Mjea Frisch, G W Trucks, Hs B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scal-

mani, V Barone, B Mennucci, Gaea Petersson, and Others. Gaussian 09, revision a. 02,

gaussian. Inc. , Wallingford, CT, 200:28, 2009.

[68] Junmei Wang, Romain M Wolf, James W Caldwell, Peter A Kollman, and David A Case.

Development and testing of a general amber force field. J. Comput. Chem., 25(9):1157–1174,

July 2004.

[69] James A Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E

Hauser, and Carlos Simmerling. ff14SB: Improving the accuracy of protein side chain and

backbone parameters from ff99SB. J. Chem. Theory Comput., 11(8):3696–3713, August 2015.

[70] William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and

Michael L Klein. Comparison of simple potential functions for simulating liquid water. J.

Chem. Phys., 79:926, July 1983.
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[93] Michael Feig, Jana Chocholoušová, and Seiichiro Tanizaki. Extending the horizon: towards

the efficient modeling of large biomolecular complexes in atomic detail. Theor. Chem. Acc.,

116(1):194–205, August 2006.

[94] Wonpil Im, Jianhan Chen, and Charles L Brooks, 3rd. Peptide and protein folding and

conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with

implicit solvent models. Adv. Protein Chem., 72:173–198, 2005.

[95] B Z Lu, Y C Zhou, M J Holst, and J A McCammon. Recent progress in numerical methods

for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys., 3

(5):973–1009, 2008.

[96] Jun Wang, Chunhu Tan, Yu-Hong Tan, Qiang Lu, and Ray Luo. Poisson-Boltzmann solvents

in molecular dynamics simulations. Commun. Comput. Phys., 3(5):1010–1031, 2008.

[97] Michael D Altman, Jaydeep P Bardhan, Jacob K White, and Bruce Tidor. Accurate solution

of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-

Boltzmann equation with curved boundary elements. J. Comput. Chem., 30(1):132–153,

January 2009.

[98] Qin Cai, Jun Wang, Meng-Juei Hsieh, Xiang Ye, and Ray Luo. Annual reports in computa-

tional chemistry, 2012.

[99] Wesley M Botello-Smith and Ray Luo. Applications of MMPBSA to membrane proteins i:

Efficient numerical solutions of periodic Poisson–Boltzmann equation. J. Chem. Inf. Model.,

55(10):2187–2199, October 2015.

[100] Li Xiao, Changhao Wang, and Ray Luo. Recent progress in adapting Poisson–Boltzmann

methods to molecular simulations. J. Theor. Comput. Chem., 13(03):1430001, May 2014.

[101] Edward Z Wen, Meng-Juei Hsieh, Peter A Kollman, and Ray Luo. Enhanced ab initio protein

folding simulations in Poisson–Boltzmann molecular dynamics with self-guiding forces. J.

Mol. Graph. Model., 22(5):415–424, May 2004.

108



[102] Thu Zar Lwin, Ruhong Zhou, and Ray Luo. Is Poisson-Boltzmann theory insufficient for

protein folding simulations? J. Chem. Phys., 124(3):034902, January 2006.

[103] Jun Wang, Chunhu Tan, Emmanuel Chanco, and Ray Luo. Quantitative analysis of Poisson–

Boltzmann implicit solvent in molecular dynamics. Phys. Chem. Chem. Phys., 12(5):1194–

1202, 2010.

[104] Changhao Wang, Jun Wang, Qin Cai, Zhilin Li, Hong-Kai Zhao, and Ray Luo. Explor-

ing accurate Poisson–Boltzmann methods for biomolecular simulations. Computational and

Theoretical Chemistry, 1024:34–44, November 2013.

[105] Changhao Wang, Pengyu Ren, and Ray Luo. Ionic solution: What goes right and wrong with

continuum solvation modeling. J. Phys. Chem. B, 121(49):11169–11179, December 2017.

[106] David A Case, Thomas E Cheatham, 3rd, Tom Darden, Holger Gohlke, Ray Luo, Kenneth M

Merz, Jr, Alexey Onufriev, Carlos Simmerling, Bing Wang, and Robert J Woods. The amber

biomolecular simulation programs. J. Comput. Chem., 26(16):1668–1688, December 2005.

[107] Chunhu Tan, Yu-Hong Tan, and Ray Luo. Implicit nonpolar solvent models. J. Phys. Chem.

B, 111(42):12263–12274, October 2007.

[108] Qin Cai, Meng-Juei Hsieh, Jun Wang, and Ray Luo. Performance of nonlinear finite-difference

Poisson-Boltzmann solvers. J. Chem. Theory Comput., 6(1):203–211, January 2010.

[109] Qiang Lu and Ray Luo. A Poisson–Boltzmann dynamics method with nonperiodic boundary

condition. J. Chem. Phys., 119(21):11035–11047, December 2003.

[110] Matthew D Liptak, Kevin C Gross, Paul G Seybold, Steven Feldgus, and George C Shields.

Absolute pka determinations for substituted phenols. J. Am. Chem. Soc., 124(22):6421–6427,

June 2002.

[111] A Warshel and A Papazyan. Electrostatic effects in macromolecules: fundamental concepts

and practical modeling. Curr. Opin. Struct. Biol., 8(2):211–217, April 1998.

109



[112] C N Schutz and A Warshel. What are the dielectric “constants” of proteins and how to

validate electrostatic models? Proteins: Struct. Funct. Bioinf., 2001.

[113] H Gouda, I D Kuntz, D A Case, and others. Free energy calculations for theophylline binding

to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods. :

Original Research on . . . , 2003.

[114] P A Kollman, I Massova, C Reyes, B Kuhn, S Huo, L Chong, M Lee, T Lee, Y Duan,

W Wang, O Donini, P Cieplak, J Srinivasan, D A Case, and T E Cheatham, 3rd. Calculat-

ing structures and free energies of complex molecules: combining molecular mechanics and

continuum models. Acc. Chem. Res., 33(12):889–897, December 2000.
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3.1 Abstract

Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in

biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natu-

ral nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+).

Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the

mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable

specific electron delivery in vivo. We compare recent advances in engineering natural versus non-

canonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging

high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-

dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design

principles and technologies which can potentially be translated from engineering natural to non-

canonical cofactor-dependent enzymes.

3.2 Introduction

Nicotinamide cofactor-utilizing enzymes are versatile catalysts for both in vitro chemical synthesis

and in vivo metabolic engineering. Although more than 15,000 sequences have been confirmed or

predicted to encode NAD(P)+ or NAD(P)H utilizing enzymes[1], natural enzymes frequently do

not meet the catalytic needs of compatibility with the metabolism of a chassis host in vivo and

viability at large scales in vitro, and often require engineering of the enzyme’s natural cofactor

specificity, substrate scope, and robustness.
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Figure 3.2: Chemical structures of natural nicotinamide redox cofactors and mNADs. The
natural nicotinamide redox cofactor NAD+ is composed of the catalytic nicotinamide ring at-
tached to a ribose, pyrophosphate, a second ribose, and adenine base. NADP+ differs in that
a phosphate group replaces a hydroxyl on the 2’-carbon of the adenine ribose. mNADs main-
tain the central nicotinamide ring, but are truncated or incorporate alternative functional
groups compared to NAD+. The cofactors are illustrated in their oxidized form, complete
cofactor names are listed under Table 3.1, Table 3.2.
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Recent studies highlight the value of engineering these enzymes to use noncanonical nicotinamide

cofactors, which are mimetics of NAD+ (mNADs). The nicotinamide ring is the only fragment

required for a small molecule to function as a redox cofactor[2–4]. Molecules with alternative

functional groups replacing the NAD(P)/H carboxamide[2], the adenine base[5–7], the nicotinamide

ribose[8], and mimics truncated at different atoms have been explored as artificial redox cofactors[9,

10] (Figure 3.2). These mimics have industrial value for lowering feedstock costs as mNADs are often

simpler to synthesize[11] and have greater stability than native cofactors[12], permit access to new

chemistries with altered redox potential[13], reduce oxygenase decoupling[14, 15], and importantly

enable specific delivery of electrons in both whole cells and crude cell lysates[9, 11, 16]. Metabolic

pathways engineered to specifically utilize mNADs are orthogonal from the host’s metabolism,

as they do not cross-talk with native pathways which only use natural cofactors. This allows

precise control of chemical reactions in the cells without interference and has been demonstrated

in vivo for the production of malate from the carboxylation of pyruvate via nicotinamide cytosine

dinucleotide (NCD+)[6, 16], and selective generation of the pharmaceutical intermediate levodione

by nicotinamide mononucleotide (NMN+) mediated reduction[9].

A number of approaches have been used to design proteins, but all show limited success rates and

ultimately reduce to repeated trial and error experiments. A widely applied method for protein

design is directed evolution (DE)[17], which combines steps of: 1) generating diverse variants, 2)

assaying the pool of mutants for activity, and 3) selecting the most fit samples for subsequent

rounds of design to mimic natural evolution of proteins toward a defined function. DE can be

performed as a blind search with minimal knowledge of the protein. This is in contrast to rational

design methods[18] where focused changes are made based on bioinformatic and structural data to

minimize the experimental effort required in screening.

116



3.3 Design principles in engineering natural cofactor-

dependent enzymes

Many general design principles are derived from decades of research in engineering NAD(P)/H-

dependent enzymes. For example, altering specificity between natural cofactors commonly relies

on the mutagenesis of binding pocket amino acids interacting with the signature 2’-phosphate or 2’-

hydroxyl groups that differentiate NADP(H) and NAD(H), respectively. Fundamental semi-rational

design rules have been captured by an easy-to-use web tool Cofactor Specificity Reversal-Structural

Analysis and Library Design (CSR-SALAD)[19]. This computational method incorporates struc-

tural activity and genetic information to automatically design focused libraries[20]; however, it has

met with limited success for enzymes that utilize cofactors in complex reaction mechanisms[19, 21].

Flexible loop grafting has emerged as another design principle in engineering the cofactor prefer-

ence of TIM barrel oxidoreductases. Swapping of cofactor binding loops between homologous ene

reductases (ERs) with NADPH and NADH preference[22] shows promise as a means of generat-

ing flexibility in cofactor preferences. Additional studies on aldo-keto reductase (AKR) inverted

cofactor preference from NAD+ to NADP+ by inserting either additional residues[23] or a calcium

controllable repeats-in-toxin (RTX) domain[24] into substrate binding loops.

Beyond cofactor specificity, complex traits such as stability and conformational dynamics are a

challenging task for rational design. Recent reports revealed the effects of modulating the microen-

vironment surrounding oxidoreductases, which can potentially be a universal design principle in

engineering both NAD(P)/H and mNAD-dependent enzymes. For example, fusing a variant of

superfolding green fluorescent protein (sfGFP) with extreme surface charges enhanced the activity

of AKR, possibly by influencing the apparent ionic strength of the active site[25]. Furthermore,

increased cofactor availability has been explored with DNA-enzyme nanostructures[26] acting as

local reservoirs of cofactors, fusing of redox cycling partners by co-expression[27–31], and directly

tethering NAD(H) to proteins with polyethylene glycol chains[32].
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3.4 Design principles in engineering noncanonical cofactor-

dependent enzymes

We summarize efforts in enhancing mNAD catalysis and evaluate the extent of success through the

following metrics[33] (Tables: 3.1, 3.2).

(1) Coenzyme Specificity Ratio (CSR) (Equation: 3.1), a measure of preference for the mNAD

over natural cofactors. While most wild type enzymes use mNADs very poorly, as reflected

by near zero CSR, many flavoenzymes including enoate reductases, nitroreductases, and para-

hydroxybenzoate hydroxylase exhibit promising activities[9, 15, 34] (Table: 3.1). In particular, the

xenobiotic reductase from Pseudomonas putida (P. putida XenA) utilizes a range of mNADs more

efficiently than natural cofactors[34] (Table: 3.1). High CSR is desirable for creating orthogonal re-

dox circuitry[6, 9, 16]; however, while most studies only consider NAD+, it is important to measure

CSR for both NAD+ and NADP+[9] when determining orthogonality in vivo.

CSR =

(
kcat
Km

)
mNAD(

kcat
Km

)
NAD(P )

(3.1)

(2) Relative Catalytic Efficiency (RCE) (Equation 3.2), is the ratio of the mutant’s catalytic effi-

ciency with mNAD compared to wild type with native cofactor. Since wild type enzymes have been

optimized by Nature with its native cofactor, RCE essentially indicates how effective the engineer-

ing approaches are compared to natural evolution. RCEs for mNADs are extremely low for most

engineered enzymes, indicating that catalytic activities are a small fraction of the wild type with na-

tive cofactor. We note that P450-BM3 R966D-W1046S reported by Lo et al.[35] had an exceptional

RCE of ∼96 for 1-benzyl-1,4-dihydronicotinamide (BNAH) and ∼60 for N-4-methoxybenzyl-1,4-

dihydronicotinamide (MDH) (Table: 3.2). In comparison, RCEs of >1 are frequently achieved in

switching NAD+ and NADP+ specificity[33].

118



RCE =

(
kcat
Km

)mut
mNAD(

kcat
Km

)WT

NAD(P )

(3.2)

(3) Relative Specificity (RS) (Equation: 3.3), the CSR of a variant compared to that of the wild type,

which is often referred to as the fold of cofactor specificity switch toward noncanonical cofactors.

This parameter is useful for comparing the effectiveness of different engineering approaches in

general, independently of the specific enzymes targeted (Table: 3.2).

RS =


(
kcat
Km

)
mNAD(

kcat
Km

)
NAD(P )


mut


(
kcat
Km

)
mNAD(

kcat
Km

)
NAD(P )


WT

(3.3)
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Because the number of successful cases is still relatively small, core design principles for switching

cofactor specificity toward noncanonical cofactors have yet to clearly emerge. The field still largely

relies on semi-rational and random engineering which often yields beneficial mutations with un-

known mechanisms. Gaining fundamental understanding on enzyme-mNAD interaction through

structural and kinetic studies is crucial to deriving design principles to streamline engineering.

Nevertheless, the following trends are notable:

First, relaxation of cofactor specificity is linked to enhanced activity with mNADs. Bacillus

stearothermophilus lactate dehydrogenase F16Q-C81S-N85R with specificity switched from NAD+

to NADP+ was found to reduce NMN+ with trace activity[39]. The K249G-H255R variant of

Pyrococcus furiosus alcohol dehydrogenase designed to increase the volume of the active site for

NADP+ binding unexpectedly gained the ability to utilize NMN+ (Table: 3.2), and showed a 40%

increase in maximum current density when used in a biofuel cell, postulated to be due to improved

mass transfer of NMN+ compared to NAD+[37]. The P450-BM3 mutant R966D-W1046S (Table:

3.2) capable of using both NADPH and NADH was also able to utilize BNAH for the reduction of

cytochrome c with a catalytic efficiency of 41.3 min−1 uM−1, while the wild type had no detectable

activity[35, 40]. A similar variant P450-BM3 W1046S also gained activity for utilizing both natural

cofactors and reduced NMN+ (NMNH)[9].

Second, size reduction of the cofactor binding pocket to improve packing often affords increased

activity toward mNADs. For example, the phosphite dehydrogenase from Ralstonia sp. 4506 har-

boring I151R-P176R-M207A mutations had significantly enhanced activity toward NCD+. Crys-

tallography suggested activity was achieved through compression of the binding pocket around the

smaller cytosine[7]. Interestingly, natural flavoenzymes that efficiently utilize mNADs also em-

ploy this strategy. The bulky Trp302 residue in P. putida XenA active site adopts a different

conformation when smaller mNADs are bound to pack more tightly against the cofactors[34].

Third, design to install polar interactions, which in principle contribute more strongly to binding

affinity than hydrophobic packing, is effective for achieving stringent binding of mNADs. We

recently engineered a highly orthogonal Bacillus subtilis glucose dehydrogenase S17E-Y34Q-A93K-
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I195R to use NMN+[9] which showed the highest RS (Equation: 3.3) reported to date of 1.1 × 107

for NADP+ and 2.1 × 107 for NAD+. We first utilized Rosetta modeling to identify the positively

charged I195R mutation which is predicted to form a salt bridge with the highly negative NMN+

phosphate. Next, we achieved exclusive specificity for NMN+ by introducing S17E which is modeled

to repel the phosphate in the adenosine monophosphate (AMP) moiety that is only present in the

natural cofactors but not in NMN+. Because of the high conservation of residues lining the cofactor

binding pocket, we hypothesize that these mutations should be readily transferable and support

NMN+ binding in homologs.

3.5 Technology development for engineering natural

cofactor-dependent enzymes

Limited throughput has driven the use of semi-rational strategies to minimize the number of variants

screened and to maximize the likelihood of isolating promising candidates. Many of these focused li-

braries have been screened based on readouts that can be determined by a microplate reader[41, 42]

or visualized on an agar plate[43, 44]. Application of a 4-nitrophenylacetonitrile microplate assay

provided a colorimetric screen to isolate cytochrome P450-BM3 variants for hydroquinone produc-

tion with 70-fold improvement over wild type activity[41] (Figure: 3.3). In another example, an agar

screen leveraged the solubility difference of the substrate and product to evolve the substrate scope

of a cyclohexanone monooxygenase (CHMO) for pilot-scale applications[44, 45]. For enzymes that

do not produce color or absorbance change during catalysis, a mass spectrometry-based screening

platform was developed (Figure: 3.3) to use ‘click’ chemistry to enhance throughput[46] This mass

spectrometry-based platform may be readily applicable to engineering mNAD-dependent enzymes.

Despite success, throughput remains limiting (103–105); furthermore, reduced library sizes may

miss potential cooperative effects critical for dramatic improvements[9].

Recent campaigns apply ‘ultra-throughput’ (>106) methods using reactions that can be detected

by fluorescence sorting[47–49]. For example, Brevibacterium oxydans cyclohexylamine oxidase (Bo
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Figure 3.3: Representative screening methods used to facilitate the directed evolution
of oxidoreductases. PECAN (probing enzymes with click-assisted NIMS), NpCN (4-
nitrophenylacetonitrile), NESPA (NAD(P)-eliminated solid-phase assay), soxR (Redox-
sensitive transcriptional activator), FACS (Fluorescence Activated Cell Sorting), HRP (Horse
radish peroxidase), and FADS (Fluorescence Activated Droplet Sorting). Targeted Oxidore-
ductases: P450BM3 (NADPH-dependent Cytochrome P450 BM3), Tm 6PGDH (NADP+-
dependent Thermotoga maritima 6-phosphogluconate dehydrogenase), Ld ldh (NADH-
dependent Lactobacillus delbrueckii d-lactate dehydrogenase), Lb adh (NADPH-dependent
Lactobacillus brevi alcohol dehydrogenase), Bo CHAO (FADH2-dependent Brevibacterium
oxydans cyclohexamine oxidase).

CHAO) variants were compartmentalized in droplets and screened for their activity towards a non-

natural substrate using fluorescent activated droplet sorting (FADS) (Figure: 3.3), which yielded

a mutant with 960-fold increased catalytic efficiency[49]. However, this method is only applicable

to enzymes that produce H2O2 which is detected by a fluorescent dye, Amplex-Ultra Red. To

overcome this limitation, an Escherichia coli strain harboring SoxR-regulated GFP cassette to re-

port the intracellular NADPH/NADP+ ratio was developed to screen NADPH-dependent enzymes

via fluorescent activated cell sorting (FACS)[47, 48]. This system enabled screening of a random

library and isolated a Lactobacillus brevi alcohol dehydrogenase variant with improved activity
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for the reduction of 2,5-hexanedione to (2R,5R)-hexanediol[48] (Table: 3.3). Advanced sorting

techniques offer rapid screening of the library being explored, but are often hindered by narrow

dynamic ranges and high background signal. Selections, as opposed to screens, do not rely on

special instrumentation and automatically eliminate undesirable candidates.

In vivo selection platforms modulate cell growth by disrupting intracellular cofactor cycling within

engineered E. coli strains. These platforms were pioneered in early work aiming to accumulate

NADH in anaerobic condition by disrupting the host’s native fermentative pathways, for example

in strain JCL166 (∆adhE ∆ldhA ∆fr). In this strain, anaerobic growth is only restored when an

NADH-recycling enzyme is present. This system has identified endogenous E. coli enzymes which

form a 2,3-butanediol production pathway[50]. The same principle of cofactor recycling is the

foundation for a variety of ultra-high throughput (>106) growth-based selections of nicotinamide-

dependent oxidoreductases in directed evolution[51, 51–54]. A recent growth-based selection strain

has an engineered NADPH-dependent glycolysis, and therefore required a NADPH-consuming ‘fer-

mentative’ reaction to grow anaerobically. This platform enabled the selection of ∼6.2 × 107

variants in one round, and produced a Lactobacillus delbrueckii d-lactate dehydrogenase with a

470-fold increase in activity with NADPH[52] (Figure: 3.3).

This selection strategy has since been expanded to include both NADPH and NADH-dependent se-

lections in aerobic conditions, to be compatible with engineering oxygenases such as p-hydroxybenzoate

hydroxylase[55] and cyclohexanone monooxygenase[56]. These results highlight the usefulness of in

vivo growth platforms for oxidoreductase selections.

Growth selection has not been applied in engineering noncanonical cofactor-dependent enzymes.

However, our recent work where E. coli growth was obligately linked to the cycling of the non-

canonical cofactor NMN+ presents a platform for future studies. This was achieved by disrupting

standard glycolysis networks and directing glucose entry into the life-essential carbon metabolism

through our NMN+-specific glucose dehydrogenase (GDH)[9]. Cell growth was only restored when

the NMN+-cycling partner of GDH was present to complete the NMN+ based redox cycle and

prevent cofactor depletion. The specific function of the partner is not linked to cell survival and

136



we anticipate that the complementary partner can be exchanged.

3.6 Technology development for engineering noncanon-

ical cofactor-dependent enzymes
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Figure 3.4: Outline of protocol to engineer enzymes for mNAD activity. An initial screen
is performed with the mNAD of interest and wild type enzyme to determine the baseline
performance. Positions surrounding the cofactor binding pocket and those that contribute
to cofactor specificity found through sequence alignment are chosen for mutagenesis. Vari-
ants are screened through colorimetric assay measuring activity through color development
reflecting production of reduced cofactor. Future tool developments to improve throughput
will include growth-based selection assays where the ability of the cell to regenerate mNAD
is linked to survival.

In general, efforts in engineering mNAD-dependent enzymes follow three steps (Figure: 3.4): First,

wild type enzymes from different organisms are screened with the mNAD of interest to identify

a starting template. Second, sequence alignment or computational models predict positions sur-

rounding the cofactor binding pocket. Third, identified positions are targeted by mutagenesis,
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often in combinatorial fashion. To achieve high diversity, site-saturation mutagenesis is typically

performed with degenerate primers, and variants are screened with 96-well plate-based absorbance

assays detecting reduced cofactor[7, 8] or colorimetric assays detecting reactions of reduced cofactor

with nitroblue tetrazolium and phenazine methosulfate producing the purple dye formazan[5, 57].

Future tool developments will include growth-based selection where the ability of the cell to cycle

the target mNAD is linked to life-essential functions such as carbon metabolism. ariants with

more active mNAD cycling will readily outcompete those with lower fitness resulting in facile,

high-throughput selection of mNAD-dependent enzymes through readout of cell growth.

We highlight two recent reports departing from the standard saturation mutagenesis and 96-well

plate based screening approach. Huang et al.[10] developed the NAD(P)-eliminated solid phase

assay (NESPA) (Figure: 3.3), a colorimetric screen performed with colonies grown on agar plate

advancing throughput to over 105 samples per round while managing low background noise. A

heat treatment step is performed to permeabilize cells, followed by washing to remove endoge-

nous NAD(P)+. Rounds of saturation mutagenesis at the cofactor binding site, followed by er-

ror prone PCR to raise diversity in more distal regions, resulted in a Thermotoga maritima 6-

phosphogluconate dehydrogenase variant with 50-fold enhanced NMN+-dependent activity. How-

ever, heat treatment limits the assay to screening thermostable enzymes, and manual washing steps

may lead to high variance. In our recent study[9], in silico screening was performed in lieu of ex-

perimental screening. Bioinformatic analysis was used to identify positions with high plasticity to

tolerate mutations. Then, by simulating the effects of mutations on the mNAD binding pose using

Rosetta, we greatly narrowed down candidates that warranted experimental testing and eliminated

the need to broadly sample with site-saturation mutagenesis. The best mutant B. subtilis glu-

cose dehydrogenase S17E-Y34Q-A93K-I195R was obtained from just experimentally testing <20

candidates.
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3.7 Conclusion

When engineering enzymes to utilize noncanonical cofactors, even the most developed variants

often show low relative catalytic efficiencies with mNADs. The sampling cap from utilizing 96-well

plate-based screens greatly restricts our ability to identify rare, highly functional variants. Future

directions to expand the mNAD evolution toolbox will involve adapting principles and methods

currently used for natural cofactors.

In addition, computational methods will be highly instrumental in engineering mNAD-dependent

enzymes. Without crystal structures of the target enzymes with noncanonical cofactors bound,

molecular modeling tools are essential for visualizing enzyme-cofactor interaction. Furthermore,

homology modeling tools and sequence alignment facilitate the translation of successful mutations

between different enzymes. For example, E. coli malic enzyme L310R gained the ability to utilize

nicotinamide flucytosine dinucleotide (NCFD+) and NCD+[38]. High sequence conservation at

L310 inspired the rational design of E. coli malate dehydrogenase L6R for NCFD+ binding[38],

Lactobacillus helveticus D-lactate dehydrogenase V152R[7, 38], and Ralstonia sp. 4506 phosphite

dehydrogenase I151R for NCD+ binding[16].
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Chapter 4

Semi-rational design of E. coli gapA

to utilize the artificial redox cofactor

NMN+

4.1 Abstract

Nicotinamide cofactors shuttle the electron energy required for enzymatic redox transformations.

The native cofactors NAD/H and NADP/H are consumed with remarkable specificity determined

by the amino acid sequence of the cofactor binding site. However, the mapping of sequence to

cofactor preference and activity levels are not well understood, hindering efforts to expand enzyme

cofactor scopes to biomimetic nicotinamide cofactors. Here we utilize E. coli gapA to build upon

previous efforts designing proteins with enhanced activity for the artificial redox cofactor NMN+

through two approaches, computationally guided enzyme design and high throughput screening

of semi-rational variants through crude-lysate based colorimetric assay. Through computationally

guided enzyme design, we identify the variant A180S with ∼6-fold increase in NMN+ catalytic

efficiency and ∼10-fold cofactor specificity switch compared to wildtype gapA (WT), and further
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refine orthogonality by developing the double mutant A180S-G10R with ∼7-fold greater NMN+

catalytic efficiency and ∼200-fold cofactor specificity switch from NAD+ to NMN+. From high-

throughput screening of semi-rational mutants on A180S to augment NMN+ activity we discover

the variant A180S-G187K-P188A that has ∼32-fold increase in NMN+ catalytic efficiency and ∼50-

fold cofactor specificity switch over WT. Molecular modeling suggests that the improved NMN+

specificity is driven by the formation of novel polar contacts to the NMN+ phosphate group and

cooperative reshaping of the binding pocket with increased loop flexibility at the subunit binding

interface to exclude native cofactor binding. Overall, we demonstrate two parallel strategies to

engineer enzymes that improve utilization of NMN+ and will be essential tools in the development

of designer metabolic pathways that utilize orthogonal cofactor systems.

4.2 Introduction

Metabolic redox reactions are dependent on electron transfer via the cofactors nicotinamide adenine

dinucleotide (NAD/H) and nicotinamide adenine dinucleotide phosphate (NADP/H)[1]. These two

molecules share a nearly identical scaffold of a nicotinamide head group attached to an adenosine

monophosphate (AMP) tail. The nicotinamide ring is mandatory in catalyzing the hydride transfer

for redox reactions, while the AMP functions as a handle for the enzyme to recognize and latch on

to secure binding with the cofactor. NADP/H differs from NAD/H through addition of a single

phosphate group at the 2’-OH of the AMP ribose. Although both molecules are highly similar and

both bind to the same conserved Rossman fold motif, enzymes are able to precisely distinguish

the cofactors and typically evolve specificity for one of the two[2, 3]. The Rossman fold sequence

signatures that determine cofactor preference and degree of activity are not well characterized, and

efforts to swap cofactor specificity typically show low success rates, leading to demands for more

effective methods for cofactor engineering[4].

The high costs and low stability of native nicotinamide cofactors limits the scalability of bioman-

ufacturing processes[5]. We propose to solve this problem with artificial redox cofactors, which
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A B

Figure 4.1: Redox cofactor generation with native and engineered glycolysis. (A) Glucose
processing results in production of the reduced cofactors NADH and NADPH through en-
zymatic transformations in the pentose phosphate pathway, glycolysis, and TCA cycle. The
functions of the cofactors are partitioned, NADH is utilized in respiration and NADPH in
biomass synthesis. (B) A separate cofactor pool based on the artificial redox cofactor NMNH
enables access to its electron energy with minimal disruption to natural processes and spe-
cific delivery to designer pathways.
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are cheaply synthesized due to their simpler structures and which have been demonstrated to en-

able specific electron delivery in engineered metabolic pathways for more cost-efficient product

generation[6, 7] (Figure: 4.1). Our proof of concept molecule is nicotinamide mononucleotide

(NMN/H), a truncated version of the native nicotinamide cofactors that maintains the catalytic

nicotinamide ring, ribose, and a single phosphate group (Figure: 4.2A). No known enzyme natively

utilizes NMN+, a natural metabolite in NAD+ biosynthesis, as a redox cofactor, but there have

been several reports of engineered enzymes binding NMN+ or other artificial redox cofactor[6, 8–

16]. Here we demonstrate how parallel approaches of computationally guided enzyme design and

high-throughput screening of combinatorial variants through plate based colorimetric assay can be

utilized to engineer NMN+ consuming enzymes with nominal screening effort.

E. coli glyceraldehyde-3 phosphate dehydrogenase (gapA) is a central enzyme in glycolysis function-

ing to convert glyceraldehyde-3 phosphate to D-glycerate 1,3-bisphosphate, in the process reducing

NAD+ to NADH[17, 18]. We select gapA to engineer for NMN+ utilization due to its capacity

for high catalytic turnover rates and challenging functional profile arising from strong sequence

conservation due to its essential role in glycolysis. Previous reports have highlighted the difficulty

of achieving highly active variants with cofactor preference switched to NADP+[19]. We have pre-

viously demonstrated that a small number of mutations are necessary to enable practical levels of

catalysis with NMN+ as the functional portion involved in hydride transfer, the nicotinamide ring,

is kept intact, while the lack of the AMP on NMN+ results in the loss of a substantial number

of polar contacts and surface area for hydrophobic packing with the protein[6]. Our approach is

based on the rationale that low NMN+ activity with WT enzymes is due to the lack of binding

contacts to the Rossman fold that has been optimized by evolution to explicitly recognize the larger

native cofactors, and alterations to the binding site to compensate for the lost AMP contacts need

to be made to realize sufficient binding affinity[20, 21]. Furthermore, to advance orthogonality the

activity with the native cofactor NAD+ must be ablated by impeding binding of the dinucleotide

cofactor. Due to the limited number of successful cases of enzymes engineered to utilize NMN+,

there are no known design principles to follow making the engineering process especially challenging.

The successful design of enzymes for a target function relies on either having the capability to

151



screen with high-throughput and sensitivity to discover rare variants with greater fitness, or the

ability to accurately predict the effect of mutations on the function of a protein such that the

required experimental validation is minimized[22]. We combine both approaches for engineering

gapA to bind NMN+ with computationally guided selection of residues to mutate and a high-

throughput colorimetric activity assay measuring cofactor reduction in crude lysate. Our results

lay the blueprint for designing NMN+ consuming enzymes by introducing structurally predicted

novel hydrogen bonds to the NMN+ phosphate group and greater NMN+ specificity by occluding

the AMP portion of native cofactors from binding through steric hindrance. We further performed

high-throughput screening with a library of combinatorial mutants carrying randomly sampled

substitutions at four hotspots involved in cofactor binding and protein flexibility to discover the

variant A180S-G187K-P188A (HT-9). Based on molecular modeling, HT-9 is proposed to form an

additional salt bridge from G187K to the NMN+ phosphate that is able to reach the ligand due

to increased loop flexibility through mutation of the rigid P188 to the smaller Ala, and achieves a

∼32-fold increase in NMN+ catalytic efficiency over WT.

4.3 Methods

4.3.1 Plasmid and strain constuction

Utilized plasmids and strains are listed in Supplementary Tables 4.3 and 4.2. Plasmid construction

was completed with the Gibson isothermal DNA assembly method. Site directed mutagenesis was

performed via PCR with PrimeSTAR Max DNA Polymerase (TaKaRa) and mutagenic primers

carrying the target codon substitutions to amplify DNA fragments for ligation. Cloning steps were

run with E. coli XLI-Blue (Stratagene).

The E. coli gapA gene was amplified from E. coli BW25113 genomic DNA through PCR, cleaned

through gel extraction, and inserted into the pQE vector backbone (N-terminal 6x His-tag, ColE1

ori, AmpR) through Gibson assembly to generate pEK-28.
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4.3.2 Protein expression and purification

Proteins were expressed with a N-terminal 6x His-tag for affinity purification with the His-Spin

Protein Miniprep kit (Zymo Research Corporation). Plasmids were transformed into E. coli BL21

(DE3) for overexpression, transformant colonies were inoculated in 2XYT media with 100 µg/mL

ampicillin for overnight expansion, sub-cultured the next day at 1% volume with 100 µg/mL ampi-

cillin, induced with 0.5 mM IPTG at OD600 0.5, and incubated at 30◦C for 24 hrs with 250 rpm

shaking for protein production. Pelleted cells were disrupted with bead-beating and purification

from the cell lysate was performed with Ni-NTA resin according to manufacturer protocols. Iso-

lated proteins were quantified with Bradford assay comparing to BSA standard curve and stored

with 20% glycerol at -80◦C.

4.3.3 gapA enzymatic assays and kinetics study

The gapA enzyme assay protocol was adapted from previous work[19]. The reactions to measure

specific activities were initiated by addition of purified enzyme into the assay mixture containing 50

mM Tris-Cl pH 8.5, 0.2 mM EDTA, 50 mM Na2PO4, 3 mM DL-G3P, and 4 mM cofactor at 25◦C.

Production of reduced cofactor was detected with spectrophotometer by absorbance at 340 nm.

Final specific activities were corrected for cofactor carry-over during purification by subtracting

the background activity measured from reaction with no cofactor added.

Determination of the Michaelis-Menten kinetic parameters kcat describing the turnover rate and

Michaelis constant Km was completed with similar master mix where DL-G3P was replaced with

1.5 mM D-G3P and cofactor concentration was varied. Initial reaction rates were recorded and fit to

the Michaelis-Menten equation where v0 is the initial velocity, Et is the total enzyme concentration,

and S is the cofactor concentration.

v0 =
Et · kcat · S
Km + S

(4.1)
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Under conditions where the enzyme could not be saturated with cofactor (Km >> S), the ini-

tial velocities were fit to the linear Michaelis-Menten equation to solve for the catalytic efficiency

kcat/Km.

v0 =
Et · kcat · S

Km
(4.2)

4.3.4 Rosetta ligand docking and enzyme design

The crystal structure of E.coli gapA 1GAD is in the non-functional dimeric form[17]. We first

structurally align single chains of 1GAD to each subunit of the homologous gapA 1J0X from rabbit

muscle (O. cuniculus), which is resolved to be in the functional tetrameric form[23]. The Ec gapA

models with tetrameric symmetry exhibit a binding mode with the cofactor in position to form

inter-subunit polar contacts between neighboring monomers. All simulations are built upon the

resultant structure. The NMN+ conformer library was built and optimized using Spartan, then used

for a docking and design simulation with RosettaDesign[24] using distance and angle constraints

to maintain catalytic geometry. A total of 5,000 simulations were run for each round of design and

the top 20 best scoring outputs sorted based on protein-ligand interface energy and Rosetta total

system energy were selected for analysis and visually checked through Foldit. During the design

simulations, all side chains within 6 Å of the NMN+ ligand were allowed to be designed and any

residues within 8 Å of the ligand were relaxed with backbone movements enabled. For docking

and designing with NAD+, the docking protocol was nearly the same except with a conformer

library of NAD+ generated previously[6]. For the computationally guided library, all side chains

within 10 Å of the NMN+ ligand were allowed to be designed and mutated to all other 19 residues

to maximize the diversity of mutants and comprehensively explore sequence space. Mutants with

Rosetta interface energy and total energy greater than that of the WT protein were discard. The

remaining substitutions were sorted by energy, and a total of 240 variants arising from combinatorial

substitutions at 4 positions were selected for library construction and experimental screening.
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4.3.5 High-throughput library screening

Positions for semi-rational mutagenesis were selected with Rosetta. Primers encoding mutations for

the selected substitutions were pooled together for site-directed mutagenesis and DNA fragments

were generated with PCR using pEK-32 (gapA A180S) as template and gel purified. The backbone

fragment was amplified separately and digested with DpnI overnight at 37◦C to remove residual

template plasmid, then gel purified. The gene inserts and backbone were ligated together through

Gibson assembly with 5:1 insert to backbone ratio and transformed into XLI-Blue through elec-

troporation with recovery for 1 hr in 2XYT at 37◦C with 250 rpm shaking to produce the library

of randomly sampled, combinatorial variants on pQE vector for testing. A small volume of the

culture was plated to verify correct and diverse assembly through Sanger sequencing of randomly

selected colonies, and transformation efficiency from colony counts greatly exceeded the library

size indicating deep coverage of the possible variants. The remaining culture volume was grown

overnight and miniprepped to isolate the library plasmids for storage and later transformation.

The library plasmids were transformed into E. coli DS113[25] (∆gapA12::Cm; obtained from the

Yale E. coli Genetic Stock Center) to minimize background gapA activity that could interfere with

the colorimetric assay. Transformed cells were grown on 2XYT agar with 100 µg/mL ampicillin, 25

µg/mL chloramphenicol, 12.5 mM sodium succinate, and 0.05% glycerol media at 37◦C. Individual

colonies were picked and inoculated in 300 µL 2XYT-Amp-Cm-Suc-Gly in 96 deep well plates

for overnight growth at 37◦C. The overnight growth was sub-cultured the next day with 10 µL

transferred to fresh 300 µL 2XYT-Amp-Cm-Suc-Gly in another 96 deep well plate, immediately

induced with 0.5 mM IPTG, then sealed with breathable membrane for 24 hrs of growth at 30◦C

with 250 rpm shaking.

Purification from 96 deep well plates started from pelleting the cells with centrifugation at 3,500

rcf for 20 min. The supernatant was discarded, and a mixture of 200 µL BugBuster Protein Ex-

traction Reagent (Millipore-Sigma) and 0.2 µL Lysonase Bioprocessing Reagent (Millipore-Sigma)

was added to each sample. The pellets were resuspended and incubated at room temperature for

20 min, then pelleted again through centrifugation at 4◦C for 30 min at 3,500 rcf. The supernatant
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containing the protein lysate was directly utilized in the colorimetric assay.

The colorimetric assay detecting production of reduced cofactor via purple formazan development[26]

utilized the same master mix as the specific activity assays with 3 mM NMN+ and the addition of

0.1 mM nitroblue tetrazolium and 25 µM phenazine methosulfate. 160 µL of the reaction master

mix was aliquoted into 96 well plates, then 40 µL of the protein lysate was added to initiate the

reaction. The plate was briefly mixed at 500 rpm for 20 sec, and color development was monitored

by spectrophotometer readings at 580 nm for 1 hr. Samples showing greater color development

than the included control gapA A180S were saved from the initial overnight plate for validation

with specific activity assay.

4.4 Results

4.4.1 Rational design of NMN+ binding gapA

Based on the expectation that it is more challenging to improve binding affinity for a nonnative

substrate compared to lowering binding affinity for the natural redox cofactor, since reducing affin-

ity can be readily performed through insertion of bulky residues throughout the binding site to

introduce steric clash with the ligand, we begin by engineering for enhanced NMN+ binding. The

successful design of enzymes for a target function relies on either having the capability to screen

with high-throughput and sensitivity to discover rare variants with greater fitness, or the ability

to accurately predict the effect of mutations on the function of a protein such that the required

experimental validation is minimized. We aim to combine both approaches for engineering pro-

teins to bind NMN+ with Rosetta guided selection of residues to mutate and a high-throughput

colorimetric activity assay measuring cofactor reduction in crude lysate. Our strategy starts with

placing polar residues in the first shell of the cofactor binding site that are predicted to generate at-

tractive hydrogen-bonding or salt bridge interactions with the NMN+ phosphate group for stronger

electrostatic complementarity.
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Figure 4.2: Modeled NMN+ binding pose and first round gapA variant activities (A) NMN+

is a truncated version of the natural cofactor NAD+ without the adenosine monophosphate
(AMP) tail. Hydride transfer capability is maintained at the nicotinamide ring, while the
loss of the AMP handle results in diminished binding affinity. (B) WT gapA (purple) showed
low specific activities with NMN+. Two variants, A180S and A180G-G187R (green), were
discovered to have over 2-fold increase in specific activity. (C) Rosetta model of NMN+

docked into the gapA Rossman fold. The cofactor sits at the interface between neighboring
subunits and is able to participate in inter-subunit interactions. The individual monomers
are colored purple and cyan, and residues selected for mutagenesis are highlighted as spheres.
(D) A180S is proposed to improve activity by forming a hydrogen bond with the NMN+

phosphate group.
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Wild-type Ec gapA displays low specific activity of 29.2 ± 3.0 nmol min−1 mg−1 with NMN+, nearly

4,000-fold less than with the native cofactor NAD+ (Figure: 4.2B). We attempted to measure kinetic

parameters with NMN+, and were unable to determine individual kcat or Km values as the reaction

could not be saturated with substrate; the catalytic efficiency found from fitting the reaction rates

to the linear Michaelis-Menten equation was estimated to be 2.0 µM−1 s−1 (Table: 4.1). To build

on the low baseline activity, we utilized molecular modeling with Rosetta to systematically simulate

the effects of amino acid substitutions in the cofactor binding site on the predicted NMN+ binding

pose and affinity. A conformer library of NMN+ was constructed and docked into the structure of

gapA to optimize the protein-ligand interactions. During the simulation, all side chains within 6 Å

of NMN+ were allowed to be designed and any residues within 8 Å of the ligand were relaxed with

backbone movements enabled. The obtained poses are sorted based on protein-ligand interface

energy and total system energy, and the top 20 best scoring outputs were selected for further

inspection and design using Foldit[27]. We selected 10 candidates forming novel polar contacts

to the NMN+ phosphate or ribose hydroxyls to experimentally construct and test (Figure: 4.2C).

G10 occurs at the tip of the Rossman alpha helix, residues at this position would immediately

contact the NMN+ phosphate group. A180 appears on a loop running parallel to the extended

cofactor binding pose and is located across from the Rossman alpha helix. G120 and L100 are

located on separate loops near the nicotinamide ribose, and may support contact to the hydroxyls.

gapA is functionally a tetrameric enzyme, the crystal structure 1GAD[17] used as the template for

molecular modeling only captures the dimeric form. However, a homologous gapA 1J0X[23] from

rabbit muscle (O. cuniculus), was solved in the full tetrameric model and observed to have the

cofactor binding site situated at the interface between adjoining subunits. Structural alignment of

the Ec gapA subunits with the symmetry observed in Oc gapA resulted in a binding mode with

the cofactor in position to form inter-subunit polar contacts with the neighboring monomer via a

loop with V185 or G187 (Figure: 4.2C).

We discovered two variants with enhanced NMN+ activity from the first round of rational design,

A180S and double mutant A180G-G187R (Figure: 4.2B). A180S is predicted to switch the polarity

of the side chain by elongating from a non-polar methyl to a polar hydroxyl group, and establishes
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a novel hydrogen bond to the NMN+ phosphate (Figure: 4.2D). The specific activity is measured

to be 84.5 ± 6.0 nmol min−1 mg−1 with NMN+, roughly 2.8-fold increased over WT, with kcat

0.18 ± 0.01 s−1, Km 15.32 ± 0.9 mM−1, and catalytic efficiency 2.6 x 10−4 mM−1 s−1. A180S

was noted to additionally improve NAD+ activity, increasing specific activity from (1.20 ± 0.03)

x 105 nmol min−1 mg−1 in the WT to (1.37 ± 0.09) x 105 nmol min−1 mg−1. A180G-G187R is

modeled first to reduce steric hindrance around the NMN+ phosphate by removing the Ala methyl

with the A180G mutation, this enables G187R to extend without volume restriction to form a

salt bridge with the NMN+ phosphate group. A180G-G187R was measured to have lower specific

activity than A180S with NMN+ at 63.1 ± 12 nmol min−1 mg−1, and decreased NAD+ activity

compared to WT with (6.0 ± 0.09) x 104 nmol min−1 mg−1. The results demonstrate that targeting

the NMN+ phosphate for polar contacts is a viable strategy to improve NMN+ binding; however,

the obtained variants still display low activity levels. Obtaining catalytic activity that approaches

native levels likely requires greater perturbation to the enzyme sequence for optimal shape and

electrostatic complementarity. We continue engineering mutations on A180S, the most effective

variant, to further improve activity and specificity for NMN+.

4.4.2 Advancing orthogonality by disrupting native cofactor bind-

ing

To enforce specificity for NMN+ and orthogonality from native metabolism, we next designed

mutations that block binding of the native cofactor NAD+ in gapA, while minimally disturbing

NMN+ binding. We applied the two approaches of electrostatic repulsion and steric clash to reduce

binding affinity for NAD+. The AMP handle on NAD+ is observed to fit into a cleft formed between

the alpha helix and second beta strand of the Rossman fold. The introduction of bulky residues

into this region would occlude the adenosine from fitting, while the NMN+ binding pose would

be nominally affected as NMN+ makes no interaction in that region. The AMP phosphate group

carries a strong negative charge that is not present on NMN+, this portion can be explicitly targeted

for electrostatic repulsion by placing a negatively charged residue such as aspartate or glutamate
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nearby to make binding unfavorable. Since the NBT-PMS saturation library screening is not

amenable to negative screening, the assay is not able to distinguish low activity due to no binding

affinity from completely non-functional protein, we evaluated these variants individually through

rational design. Mutants harboring introduced bulky and negatively charged residues concentrated

in the adenine cleft were systematically built in silico, docked with a conformer library of NAD+,

and visually inspected for realistic geometries. We focused on selecting variants that possessed

the most disturbed NAD+ binding mode, where NAD+ is restricted to binding as a non-native

conformer or is dislocated from the position in crystal structure.

We constructed mutations on top of gapA A180S, and identified the double mutant A180S-G10R

with greater orthogonality (Figure: 4.3). The specific activity for NMN+ was improved compared to

WT, but lower than the template A180S at 52.3 ± 0.3 nmol min−1 mg−1, with kinetic parameters

kcat 0.05 ± 0.001 s−1, Km 3.88 ± 0.3 mM−1, and catalytic efficiency 0.014 ± 0.001 mM−1 s−1.

Improved orthogonality is demonstrated by the lowered NAD+ specific activity levels (3.3 ± 0.08)

x 103 nmol min−1 mg−1, kcat 2.5 ± 0.6 s−1, Km 0.041 ± 0.001 mM−1, and catalytic efficiency

61.7 ± 9 mM−1 s−1. Modeling suggests that the decrease in NAD+ activity is driven by G10R

steric blockage. The Arg side chain extends from the tip of the Rossman helix to fill in the void

where the AMP would typically bind, displacing the AMP and forcing it to suspend out freely

in solvent instead of packing tightly against the protein (Figure: 4.3D). Since the native contacts

stabilizing the AMP tail are not adhered to, the nicotinamide ring at the head of the cofactor

cannot reliably achieve the naturally optimized binding geometry necessary for hydride transfer,

resulting in reduced catalytic activity.

4.4.3 High-throughput library screening for NMN+ activity

Given the sparsity of functional mutants and vast extent of the sequence search space, we must take

advantage of high-throughput methods to overcome low success rates by testing larger numbers of

samples. We generate semi-rational variants through site directed mutagenesis with mixed codons,

this results in a pool of mutants with combinatorial amino acid substitutions at focused positions
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Figure 4.3: Orthogonal gapA specific activities and cofactor binding poses. (A) Specific
activities with NMN+ and the two natural cofactors NAD(P)+. gapA (purple) natively
utilizes NAD+, A180S (green) enhanced activity with both NMN+ and NAD+. A180S-
G10R (red) substantially reduced specific activity with NAD+ while having small reduction
in NMN+ compared to A180S alone. (B) G10R extends into the AMP binding pocket to
create steric clash. This excludes the NAD from binding with high affinity and forces the
cofactor to twist out toward solvent. (D) A180S maintains the polar contact to the NMN+

phosphate group, and G10R forms a salt bridge with D33 to occupy the AMP cleft.
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Figure 4.4: High-throughput colormetric screening of gapA for NMN+ activity. (A) Model of
Ec gapA with positions selected for saturation mutagenesis highlighted as spheres, individual
chains colored purple and cyan. The colorimetric assay is based on the reaction of the
generated reduced cofactor NMNH with NBT and PMS to form the purple dye formazan.
Activity from crude lysate in 96-well plate is measured by the intensity of color development.
(B) NMN+ specific activities from variants identified from the colorimetric assay. Baselines
WT gapA (purple) and A180S (green) are compared to the high-throughput samples (blue
and tan). HT-9 (GIKA) was found with 250.8 ± 10.0 nmol min−1 mg−1 specific activity.
(C) HT-9 is modeled to form an additional salt bridge from G187K to the NMN+ phosphate
group. This is made possible by P188A increasing loop flexibility for optimal positioning.

critical for cofactor binding. In this way, we limit the library search space to be experimentally

tractable, yet random enough to allow for unpredictable cooperative interactions and major re-

organization of the binding pocket. Based on Rosetta prediction of cofactor binding hotspots,

we selected G10 (G, S, T, K), I12 (I, V, T), G187 (G, A, L, K , R), and P188 (P, I, G, A) for

mutagenesis to enhance NMN+ activity. I12, one of the initial residues on the Rossman alpha helix,

natively packs alongside the face of the nicotinamide ring, and mutation could potentially allow

the formation of hydrogen bonds with the ribose oxygen or phosphate group, or alter the flexibility

of the alpha helix to shift the cofactor binding pose. The consecutive mutations at G187 and P188

reduce rigidity at the Phe base of the loop such that substitutions at G187, especially positively
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charged residues, can move closer to the cofactor. In total our screening library covers 240 possible

variants, the small library size permits screening by 96-well plate based assays.

Following construction of the library and transformation into cells with knocked out native gapA

to minimize background noise, we cultured individual transformants with each carrying a separate

gapA variant. Growth was completed in deep well plates, and following overnight development

the cultures were transferred to another plate for induction and protein purification. The cells

were lysed with detergent and the crude lysate was separated from the cellular debris through

centrifugation. The lysate is mixed with the enzyme reaction buffer containing NMN+, the substrate

DL-G3P, and the reagents nitroblue tetrazolium (NPT) and phenazine methosulfate (PMS). gapA

production of NMNH reacts with NBT-PMS to produce the purple dye formazan, which can be

easily readout with greater purple color intensity corresponding to higher total enzyme activity in

the sample (Figure: 4.4A).

With screening over six 96 well plates to oversample and ensure complete coverage, we identified 33

samples with improved color development over the template A180S. Sequencing of these resulted

in 10 unique variants, the sequence discovered with the highest frequency was the A180S template

which was found in 20 of the samples (Figure: 4.4B) (SI Table: 4.4). G10 showed almost no

variability, one sample was G10K, while the rest maintained the WT residue, highlighting the

importance of conserving Gly at this position. I12 was also highly maintained with 2 samples

showing I12V, and 1 sample showing I12T. G187 sampled the greatest range of substitutions,

with 4 G187K, 3 G187A, 1 G187L, and 2 G187R with the rest staying Gly. Moderate variation

was observed at P188 with 4 P188A, 1 P188G, 1 P188A, and 1 P188I. The unique variants were

assayed for NMN+ specific activity, 7 showed increased NMN+ activity compared to the A180S

template, and 3 had reduced activity. The most active variant, A180S-G187K-P188A, which we

label HT9, has NMN+ specific activity of 250.8 ± 10.0 nmol min−1 mg−1. Interestingly, the second

most active mutant A180S-G187K differed only in maintaining the native P188 and had 144.8 ± 7.0

nmol min−1 mg−1 specific activity with NMN+, emphasizing the key role of G187K in advancing

NMN+ activity. This is suggested by Rosetta modeling to form a salt bridge with the NMN+

phosphate, and the beneficial influence of increasing loop flexibility by mutating the rigid Phe
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residue to permit optimal positioning of G187K (Figure: 4.4C). The kinetic parameters for HT9

with NMN+ were measured to be kcat 0.51 ± 0.001 s−1, Km 8.16 ± 0.02 mM−1, and catalytic

efficiency 0.06 ± 0.001 mM−1 s−1 (Table: 4.1). Compared to the template A180S, HT9 has both

superior turnover and binding affinity.

Interestingly, HT9 also gained the ability to utilize NADP+. An unintended effect of engineering

for improved NMN+ binding ability was enhancing catalytic activity with NADP+ as HT9 showed

specific activity of 1829.2 ± 109 nmol min−1 mg−1 compared to A180S and gapA WT which

showed similar NADP+ activity levels at 361.1 ± 17 nmol min−1 mg−1 and 445.0 ± 72 nmol

min−1 mg−1 respectively (SI Figure: 4.6). Modeling suggests that P188A reduces crowding in

the binding pocket to allow space for the extra phosphate group on the 2’-OH to fit, furthermore

the Lys from G187K is able to form a salt bridge with the phosphate group for greater attractive

binding interactions. The results indicate that strategies relaxing cofactor specificity by reshaping

the contours of the binding interface are broadly applicable to native and non-native cofactors, and

that binding modes designed to accommodate the smaller NMN+ through polar contacts at the

pyrophosphate group may inadvertently support promiscuous cofactor binding. We further tested

HT9-G10R to evaluate if the AMP blocking mutation would function similarly on HT9 in enhancing

orthogonality (SI Table: 4.5). HT9-G10R showed decreased NAD+ activity as expected, but also

showed dramatic loss in the ability to utilize NMN+ as specific activity dropped from 250.8 ± 10

nmol min−1 mg−1 in HT9 to 11.5 ± 0.4 nmol min−1 mg−1 in HT9-G10R. The G10R mutation

is incompatible with HT9 likely due to unfavorable steric and electrostatic repulsion between the

outstretched Arg and G187K near the NMN+ phosphate group (SI Figure: 4.6).

Enzyme Cofactor kcat (s−1) Km (mM) kcat/Km (mM−1

s−1)

gapA WT NAD+ 51.8 ± 1.7 (3.2 ± 0.3) × 10−2 (1.6 ± 0.1) × 103

gapA WT NMN+ ND ND (2.0 ± 0.1) × 10−3

A180S NAD+ 53.4 ± 0.8 (6.1 ± 0.4) × 10−2 (8.7 ± 0.5) × 102

A180S NMN+ (1.7 ± 0.1) × 10−1 15.3 ± 0.9 (1.1 ± 0.1) × 10−2

A180S-G10R NAD+ 2.5 ± 0.6 (4.1 ± 0.3) × 10−2 61.7 ± 9.4
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A180S-G10R NMN+ (5.4 ± 0.1) × 10−2 3.8 ± 0.3 (1.4 ± 0.1) × 10−2

HT9 (A180S-

G187K-P188A)

NAD+ 43.2 ± 2.8 (3.9 ± 0.5) × 10−2 (1.1 ± 0.1) × 103

HT9 (A180S-

G187K-P188A)

NMN+ (5.1 ± 0.1) × 10−1 8.1 ± 0.1 (6.3 ± 0.1) × 10−2

Table 4.1: gapA Michaelis-Menten kinetic parameters. ND indicates the value could not be
determined due to high Km preventing reaction saturation.

4.5 Discussion

We engineered NAD-dependent E. coli gapA to utilize the artificial redox cofactor NMN+ with

improved catalytic activity and specificity. Through a single round of rational design guided by

Rosetta molecular simulation, we discovered the variant A180S with ∼6-fold enhancement in NMN+

catalytic efficiency and ∼10-fold cofactor specificity switch. We carried out a second round of ratio-

nal design with the goal of blocking native NAD+ activity to increase orthogonality, this resulted in

the variant A180S-G10R with ∼7-fold improved NMN+ catalytic efficiency and ∼200-fold cofactor

specificity switch from the WT. To more deeply navigate sequence space and identify variants with

unpredictable cooperative effects, we turned to high-throughput screening. We utilized a 96-well

plate based assay with facile readout of color development that measured the production of reduced

cofactor, NMNH, from crude lysate through reaction generating the purple dye formazan. After

screening a semi-rational library covering four cofactor binding hotspot positions, we found the

triple mutant A180S-G187K-P188A that displayed ∼32-fold increase in NMN+ catalytic efficiency

while maintaining ∼50-fold cofactor specificity switch over the WT.

Through combination of molecular simulation predicting the NMN+ binding pose of mutants and

experimental validation, we uncover general principles that can be applied to designing enzymes

to utilize NMN+ and other artificial redox cofactors. Since NMN+ lacks the AMP portion of

native cofactors critical to binding interactions, we must introduce compensatory mutations able
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to form novel polar contacts to the remaining phosphate and ribose hydroxyl groups and reshape the

binding pocket to more tightly contour the smaller NMN+. Although polar contacts can be formed

with the carboxamide portion of NMN+, we avoid perturbing this region as it is directly involved

in positioning the nicotinamide ring for the catalytic hydride transfer and is acutely sensitive

to the surrounding environment. By exploring the placement of polar residues around the NMN+

phosphate, we found A180S that formed an inter-subunit hydrogen bond across the binding interface

of separate monomers. Next, we sought to block binding of the native cofactor NAD+ by introducing

bulky residues in the active site cleft where the AMP would typically bind. The G10R mutation

extends off the loop between the first Rossman beta strand and alpha helix, and forms a salt

bridge with the conserved D33 that follows the second Rossman beta strand. Typically the D33

participates in a bidentate hydrogen bonding interaction with the AMP ribose groups, this is

a well-known interaction that determines the specificity for NAD+ over NADP+ as the acidic

residue creates electrostatic repulsion with the negatively charged 2’ phosphate group. NAD+ is

excluded from binding here due to the steric clash formed by G10R occupying the pocket and the

unavailability of D33 to form the conserved bidentate hydrogen bonds. The last variant A180S-

G187K-P188A showed the highest NMN+ activity due to the additional salt bridge from G187K to

the NMN+ phosphate group. Notably, this improved activity was observed to a lesser degree with

A180S-G187K alone, highlighting the key role of P188A in facilitating greater loop flexibility for

G187K to position optimally to bind NMN+.

We demonstrate two complementary approaches to the design and screening of enzymes for NMN+

activity. By using Rosetta to filter rational designs on only the first shell residues able to form polar

contacts, we considerably reduce the number of variants to test. Previous work has relied heavily

on chemical intuition to drive rational design, leading to long, laborious rounds of trial-and-error

as human analysis of candidates has far lower throughput and less quantitative assessment than

computational evaluation. Works based on purely random mutagenesis have also seen success,

but these approaches rely on complicated screening approaches with stiff limitations such as only

being amenable to engineering thermostable enzymes, and the mechanistic contributions of the

accumulated mutations are difficult to interpret leading to low generalizability[8]. By exploring
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computationally guided mutations focused on hotspot positions with limited residue substitutions

at each, we balance the library search space to be experimentally tractable, yet random enough to

allow for unpredictable cooperative interactions and major re-organization of the binding pocket.

Both computational simulation and the colorimetric screen are extendable to other artificial redox

cofactors and enzyme systems.

Future directions to advance this work will involve adapting the protocol to achieve higher through-

put. Plate based assays are still limited to sampling several hundreds of samples per round. Design

of enzymes with cofactor specificity switch between NAD+ and NADP+ has been performed with

growth selection schemes where engineered bacterial strains experience cofactor imbalance and im-

peded growth[28–31]. By transforming the bacteria with an enzyme able to restore redox balance,

growth is rescued. Growth selections enable the highest throughput of over 106 variants per round

and easy readout of growth where the most fit mutant will outcompete the less active variants in

a mixed culture. With higher throughput, we will be able to more broadly explore sequence space

and can investigate mutations predicted to have indirect, allosteric effects further away from the

active site.

4.6 Supplementary information

4.6.1 SI Tables

Strains Description Reference

XL-1 Blue Cloning strain Stratagene

BL21 (DE3) Protein expression strain Invitrogen

BW25113 E. coli F-, DE(araD-araB)567,

lacZ4787(del)::rrnB-3, LAM-

, rph-1, DE(rhaD-rhaB)568,

hsdR514

Datsenko et al.[32]
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DS113 E. coli MG1655 ∆gapA::Cm

∆gapB::Erm

Seta et al.[25]

Table 4.2: gapA strains table. Ec, Escherichia coli.

Plasmids Description Reference

pQElac AmpR; ColE1 ori; PLlacO1 Expression vector Li et al.[33]

pEK-28 pQElac 6xHis Ec gapA, AmpR This study

pEK-30 pQElac 6xHis Ec gapA G10S, AmpR This study

pEK-31 pQElac 6xHis Ec gapA G10R, AmpR This study

pEK-32 pQElac 6xHis Ec gapA A180S, AmpR This study

pEK-33 pQElac 6xHis Ec gapA A180R, AmpR This study

pEK-34 pQElac 6xHis Ec gapA A180G-G187R, AmpR This study

pEK-35 pQElac 6xHis Ec gapA V185R, AmpR This study

pEK-36 pQElac 6xHis Ec gapA G120S, AmpR This study

pEK-37 pQElac 6xHis Ec gapA G120T-L100A, AmpR This study

pEK-38 pQElac 6xHis Ec gapA L100R, AmpR This study

pEK-39 pQElac 6xHis Ec gapA L100H, AmpR This study

pEK-52 pQElac 6xHis Ec gapA A180S-G10R, AmpR This study

pEK-74 pQElac 6xHis Ec gapA A180S-G10R-G187K-P188A, AmpR This study

HT-2 pQElac 6xHis Ec gapA A180S-G187K, AmpR This study

HT-3 pQElac 6xHis Ec gapA A180S-G187L, AmpR This study

HT-4 pQElac 6xHis Ec gapA A180S-I12V, AmpR This study

HT-5 pQElac 6xHis Ec gapA A180S-G187A, AmpR This study

HT-6 pQElac 6xHis Ec gapA A180S-G187A-P188G, AmpR This study

HT-7 pQElac 6xHis Ec gapA A180S-P188A, AmpR This study

HT-8 pQElac 6xHis Ec gapA A180S-G10K-I12T-G187R-P188I, AmpR This study

HT-9 pQElac 6xHis Ec gapA A180S-G187K-P188A, AmpR This study
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HT-10 pQElac 6xHis Ec gapA A180S-G187A-P188A, AmpR This study

HT-11 pQElac 6xHis Ec gapA A180S-I12V-G187R, AmpR This study

Table 4.3: gapA plasmid table. Ec, Escherichia coli.

Name Sequence Count

HT-2 GIKP 3

HT-3 GILP 1

HT-4 GVGP 1

HT-5 GIAP 1

HT-6 GIAG 1

HT-7 GIGA 2

HT-8 KTRI 1

HT-9 GIKA 1

HT-10 GIAA 1

HT-11 GVRP 1

A180S GIGP 20

Table 4.4: Counts of gapA variants obtained from high-throughput screen. Sequnce indicates
the amino acid observed at G10, I12, G187, and P188. Most samples found were the template
A180S.

Enzyme Cofactor kcat (s−1) Km (mM) kcat/Km (mM−1 s−1)

HT9-G10R NAD+ (5.1 ± 0.1) × 10−1 (1.2 ± 0.1) × 10−2 42.7 ± 3.2

HT9-G10R NMN+ (1.9 ± 0.1) × 10−2 9.4 ± 1.2 (2.0 ± 0.1) × 10−3

Table 4.5: Michaelis-Menten parameters for HT9-G10R. HT9 is A180S-G187K-P188A and
loses activity with addition of G10R.

4.6.2 SI Figures
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A B

NAD specific activities

Figure 4.5: gapA specific activities with the native cofactor NAD+. (A) Activities from
first round variants. A180S showed increased activity with both NAD+ and NMN+. (B)
Samples from high-throughput colormetric screen.

A B C

Figure 4.6: Designed gapA specific activities with NMN+, NAD+, and NADP+. (A) NMN+

specific activities. HT-9 was identified from high-throughput colorimetric assay. (B) NAD+

specific activities. The orthogonal variant A180S-G10R has substantial loss in NAD+ activ-
ity. (C) NADP+ specific activities. HT-9 unexpectedly gained increased ability to utilize
NADP+.
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Analysis of mutations altering

oxygenase conformational dynamics

and substrate specificity
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Leveraging Oxidative Stress to Regulate Redox Balance-Based, In Vivo Growth Selections for

Oxygenase Engineering
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ACS Synth Biol. 2020;9: 3124–3133.

doi: 10.1021/acssynbio.0c00380

Publication Date (Web): September 23, 2020

5.1 Abstract

Directed evolution methods based on high-throughput growth selection enable efficient discovery of

enzymes with improved function in vivo. High-throughput selection is particularly useful when engi-

neering oxygenases, which are sensitive to structural perturbations and prone to uncoupled activity.

Through redox balance-based growth selection of variants generated through site-saturation muta-

genesis, we engineered: 1) P450-BM3 to degrade acenaphthene (ACN), a recalcitrant environmental

pollutant, and 2) cyclohexanone monooxygenase (CHMO) to favor NADH over the more expensive

NADPH. The P450-BM3 variants GVQ-AL (A74G-F87V-L188Q-V78A-A328L) and GVQ-D222N

(A74G-F87V-L188Q-D222N), which have both improved coupling efficiency and catalytic activity

compared to the starting variant, were discovered. Computational modeling indicates that the

discovered mutations cooperatively optimize binding pocket shape complementarity to ACN, and

shift the protein’s conformational dynamics to favor the lid-closed, catalytically competent state.

The CHMO variant DTNP (S209D-K326T-K349N-L143P) with a ∼1,200-fold relative cofactor

specificity switch from NADPH to NADH was identified and rationalized to be due to concerted

fine-tuning of cofactor contacts.

5.2 Introduction

Biooxygenation provides a viable alternative to traditional means of synthetic chemistry for the se-

lective activation of C–H bonds. Members of the diverse oxygenase families such as two-component

flavin hydroxylases[1, 2], Cytochrome P450s[3], nd Baeyer–Villiger monooxygenases (BVMOs)[4]
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show considerable potential as industrial catalysts. Directed evolution has been widely exploited

to tailor these oxygenases for desired reactions; however, their full potential is limited by the rela-

tively low throughput of downstream selection technologies. To address this issue, advancements in

designing efficient libraries with smaller theoretical sizes[5] and and ultrahigh-throughput screening

methods utilizing microfluidic devices and fluorescence sorting[6–9] have been developed. Although

these processes have facilitated the successful directed evolution of a number of enzymes, there is a

need for more general and accessible methods that do not require specialized reagents or expensive

equipment.

Growth-based selection methods are high-throughput ( 106 candidates per round) and use growth

as a facile readout. Importantly, they directly yield enzymes that are active in vivo. However,

the selection platforms currently do not account for the unique engineering requirements of oxy-

genases. Oxygenases execute a complex orchestration of reaction mechanisms to couple NAD(P)H

consumption to substrate conversion. This coupling is often disrupted in engineered oxygenases,

resulting in futile NAD(P)H consumption to reduce O2 in lieu of substrate conversion[10, 11]. The

frequency of the completed reaction cycle can be described by the product formed relative to the

NADPH consumed and is reported as the coupling efficiency. In existing platforms, it is unclear

whether the growth-based selection methods can accommodate the need for improving coupling

efficiency.

Cytochrome P450s are a promiscuous class of heme-containing monooxygenases that are able to

incorporate molecular oxygen with high regio- and stereoselectivity onto inert C–H bonds. The

naturally chimeric, NADPH-dependent P450 BM3 is prolific as an engineering target because it

is self-sufficient, readily soluble, and possesses the highest turnover rate of any known P450[12].

Extensive studies aimed at engineering BM3 to modify substrate scope beyond its native fatty acid

preference have faced a reoccurring challenge to control electron coupling of the catalytic cycle[12].

During the reaction cycle, the enzyme is activated by the transfer of electrons from NAD(P)H

through a FAD and subsequent FMN coenzyme on the reductase domain. Following this initial

transfer, electrons are mediated through a series of residues serving as electron transport pathways

to the heme center of the P450 domain. Upon activation, the reactive heme is able to bind oxygen
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and generate an iron–oxygen complex that proceeds through a series of reductive steps. When

disrupted through engineering, the precise electron transfer dynamics can be shifted out of tune

with substrate binding, and the activated oxygen can decay into reactive oxygen species (ROS). De-

spite their broad substrate scope, engineered BM3 variants with non-native substrates frequently

demonstrate extremely low coupling between NADPH consumption and product formation[12].

BM3 engineering strategies frequently target bulky active site residues close to the internal heme

such as F87 for mutagenesis to smaller residues to allow substrate access to the reactive center.

Although this approach is effective, these preliminary mutants do not always provide the expected

promiscuity[13], and frequently display low coupling with the desired non-native substrates. Subse-

quent engineering typically aims to reshape the binding pocket with targeted mutations to establish

improved coupling through complementary steric packing. Because excessive uncoupling wastes re-

ducing power and produces reactive oxygen species (ROS) that can inactivate the enzyme, it is

essential to pursue both high activity and high coupling efficiency simultaneously in oxygenase

engineering.

We simultaneously improved both the activity and the coupling efficiency of an engineered P450-

BM3 variant for an unnatural substrate, acenaphthene (ACN). The discovered P450-BM3 vari-

ant may be applied in environmental remediation to facilitate the degradation of this persistent

pollutant[14, 15]. Computational modeling indicates that we obtained synergistic mutations re-

shaping the substrate binding pocket and identified mutations distal to the active site shifting the

global conformational dynamics of P450-BM3. This highlights the power of high-throughput se-

lection methods for directed evolution in discovering mutations that optimize multiple criteria in

concert.

Acinetobacter sp. cyclohexanone monooxygenase (Ac CHMO), is a NADPH-dependent Baeyer–Villiger

monooxygenase (BVMO) with broad applications[16–18]. A major limitation of Ac CHMO is that

it strictly prefers NADPH[19]. At large scale in vitro, NADPH is less stable and more costly than

NADH[20], and in vivo, the rate of NADPH regeneration relative to NADH is lower in ubiquitous

microbial chassis such as Escherichia coli and Bacillus subtilis[5, 20]. CHMO has been shown to be

notoriously averse to cofactor specificity switching with existing methods[19, 21, 22], and a high-
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throughput selection is advantageous for exploring alternative engineering strategies. Through the

development and utilization of an aerobic, NADH-dependent selection platform, we obtained Ac

CHMO DTNP (S208D-K326T-K349N-L143P with ∼1,200-fold improvement in catalytic efficiency

(kcat/KM ) for NADH over NADPH in comparison to CHMO WT. Molecular dynamics (MD) sim-

ulation suggest that the selected mutations may function by tuning the conformational dynamics of

the protein and the cofactors, which would not be readily predicted in structure-guided protein de-

sign. For example, the key mutation L143P in CHMO DTNP emerged as a spontaneous mutation

outside the three rationally picked positions (S208, K326, K349) for site-saturated mutagenesis.

Although L143P does not directly interact with NADH, MD analysis suggests that it tunes the

conformation of the flavin adenine dinucleotide (FAD) in CHMO DTNP, allowing more efficient

hydride transfer from NADH. These effects would not be evident through analysis of static models,

illustrating the difficulty of engineering functionally innovative variants through rational design and

the critical role of high-throughput selections.

5.3 Methods

5.3.1 Docking acenaphthene into P450-BM3

The substrate acenaphthene (ACN) was docked into the P450-BM3 binding pocket with Rosetta[23].

The crystal structure 1ZO9[24] of P450-BM3 with N-palmitoylmethionine (EPM) bound in the

closed conformation was used as the starting template. The heme was modeled in the catalytically

active Fe(IV)-oxo compound 1 state. The coordinates for EPM were removed from the structure,

the ACN model was downloaded from the PubChem database[25], and ACN was initially placed in

the open region above the heme oxygen. The Rosetta docking protocol consisted of mutation from

the WT structure, perturbation of the ACN binding pose through random translation and rotation,

and optimization of active site rotamers through Monte Carlo evaluation. A distance restraint was

imposed between the heme oxygen and ACN reactive carbons (due to ligand symmetry two carbons

have the potential to be hydroxylated) to focus sampling on the protein–ligand intermediate state
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preceding catalysis, and full flexibility for protein backbone torsions was allowed. A total of 1,000

docking trials were completed for each variant, the top 100 models filtered on total Rosetta energy

were further sorted based on ACN interface energy, and the model with the most favorable interface

energy was selected as the reference.

5.3.2 Ac CHMO homology modeling

The model of WT Ac CHMO with cofactors FAD and NADPH bound was generated with Rosetta

CM[23, 26]. Threading templates with high sequence identity and cocrystallized cofactors were

identified through BLASTP search of the Protein Data Bank with Ac CHMO as the query[27, 28].

Crystal structures of CHMO from Rhodococcus sp. (PDB: 4RG3, 3GWD, 3GWF, 3UCL), which

shares 57.8% sequence identity to Ac CHMO, were selected as input models[29–31]. The Rosetta

CM protocol consisted of repeated rounds where the target Ac CHMO sequence was threaded onto

the template structure based on MAFFT sequence alignment, segments of the protein structure

were constructed through insertion of fragments drawn from the library provided by the templates

through Monte Carlo evaluation, followed by minimization to relax the final output[32]. 1,500

homology modeling trajectories were completed, the output structure with the most favorable total

Rosetta energy was selected as the representative model for all further analysis. Point mutations

for the Ac CHMO variants were produced through 1,000 further Rosetta docking simulations on

the homology model with backbone flexibility, side chain repacking, and ligand minimizations; final

models were selected by lowest total Rosetta energies. The NADH binding poses were prepared

by deleting atoms of the ribose 2’ phosphate group on the existing NADPH models prior to the

Rosetta Design trials.

5.3.3 Molecular dynamics simulations

MD simulations were completed with PMEMD[33] from the AMBER 18[34] package utilizing the

ff14sb force field[35] and 8 Å Particle Mesh Ewald real space cutoff[36]. Protonation states of
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titratable residues were determined with the H++ web server[37]. The TLEAP program was

utilized to solvate the complexes with TIP3P water molecules in a truncated octahedron with

10 Å buffer and neutralizing Na+/Cl− counterions. Minimization was performed in two stages,

first with 2,500 steps of steepest descent and 2,500 steps of conjugate gradient with non-hydrogen

solute atoms restrained with a 20 kcal mol−1 Å−2 force to relieve solvent clash. The second stage

minimization to remove solute steric clashes was run with the same cycle settings and restraints

removed. Heating from 0 to 298 K was performed over 0.5 ns with 10 kcal mol−1 Å−2 restraints on

all non-hydrogen solute atoms under NPT conditions at 1 atm pressure with Langevin thermostat

and 1 fs time step. Structural artifacts from the heating step were cleared with solvent density

equilibration over 5 ns with 5 kcal mol−1 Å−2 restraints on all solute atoms and an unrestrained

10 ns equilibration using 2 fs time step. Production MD trajectories were carried out with SHAKE

restraints on hydrogens, NVT ensemble, Langevin thermostat with collision frequency 1.0 ps−1,

and periodic boundary conditions.

P450-BM3 simulation were run with Compound 1 heme parameters obtained from Shahrokh et

al.[38] for 250 ns with 2 fs time step. The apo models for P450-BM3 variants were initiated from

the open state with 2HPD[39] as the template, amino acid substitutions were introduced with

Rosetta, and structures were relaxed to relieve unfavorable contacts. The holostructures for P450-

BM3 variants with ACN bound started from the representative Rosetta docking models. Average

structures based on α carbon coordinates were calculated for each apo trajectory by aligning all

snapshots to the starting frame and averaging the α carbon positions. Direct coordinate averaging

distorts bond angles and lengths, to depict a realistic model we identified the frame with the

minimum α carbon RMSD to the calculated average model as an instance of the mean structure.

Lid opening distances describing the positioning of the G helix were recorded as the length between

PRO146 and PRO45 alpha carbons. Root mean square fluctuation (RMSF) over α carbon atoms

was measured for trajectories of the holomodels and aggregated over secondary structure elements

to compare flexibility. Ac CHMO production MD simulations were run for 400 ns with 2 fs timestep.
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5.3.4 Ac CHMO cofactor binding analysis

Cofactor binding comparisons were completed between WT Ac CHMO, DTN CHMO, and DTNP

CHMO with either NADH or NADPH bound. Protein backbone flexibility over the trajectories was

measured through α-carbon RMSF. Hydride transfer potential was recorded as the distance between

the nicotinamide C4 to FAD N5. Metastable FAD binding conformations were established through

featurization on minimum heavy atom distance to residues with any atom within 4 Å contact

and PCA dimensionality reduction with K-means clustering. The distance array was standardized

to zero mean and unit variance and transformed to lower dimensional space with components

maintaining maximal variance through PCA. K-means clustering was performed to discretize the

sampled conformations projected onto the free energy landscape of the first two PCA components

into metastable states. The optimal number of clusters was selected by the elbow heuristic where

clustering over a range of K values, from one to nine here, is completed and the sum of squared

distances from the sample points to their assigned cluster center is computed. The value of K

where the sum of squared distances decrease becomes linear is selected as optimal and indicates

that increasing K further will result in overfitting. The residue positions neighboring FAD include:

12, 13, 15, 16, 17, 36, 37, 44, 45, 46, 48, 49, 51, 56, 57, 58, 63, 109, 110, 140, 141, 142, 390, 426,

434, 435, 436, and 439.

5.4 Results and discussion

5.4.1 P450-BM3 GVQ-AL shows improved binding pocket com-

plementarity to ACN

We hypothesized that P450-BM3 GVQ-AL (A74G-F87V-L188Q-V78A-A328L), the best variant

obtained from substrate active site (SAS) engineering library, has improved active site shape com-

plementarity to ACN (SI Figure: 5.6). To investigate this hypothesis, we performed computational

docking with Rosetta to model the substrate binding pose.
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A328
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A328F87V

V78

A328LF87V

V78A

A Wild type GVQ GVQ-ALB C

A328

Figure 5.1: Docked models of the P450-BM3 ACN binding poses. (A) In the WT, steric
clash from the bulky F87 and V78 block the ACN from positioning the catalytic carbon
over the heme oxygen. (B) In GVQ, the mutation F87V results in greater volume for the
ligand to maneuver over the heme oxygen, but the extension of V78 prevents the ACN left
surface from reaching optimal hydrophobic packing against F87V. (C) GVQ-AL displays
improved binding pocket shape complementarity for ACN binding, F87V and V78A reduce
steric hindrance, while A328L provides increased nonpolar surface area to face the ACN
rings.

Docking of ACN in the wild type P450-BM3 results in an unproductive binding pose, with the

ACN catalytic carbons positioned too far (>3.0 Å) from the heme oxygen for catalysis(Figure:

5.1A). In P450-BM3 GVQ (A74G-F87V-L188Q), which was the starting point of engineering, the

F87V mutation partially relieves steric hindrance, but the hydrophobic packing against ACN is not

optimal(Figure: 5.1B). By targeting V78 and A328 for saturation mutagenesis, the active site is

further contoured to narrowly enclose ACN and limit unfavorable solvent interactions or excessive

ligand mobility, while creating headspace for the ligand to readily maneuver the catalytic carbon

over the heme oxygen(Figure: 5.1C). V78A clears vertical space to accommodate ACN and allows

F87V to adopt a different rotamer state compared to in the GVQ model, which creates even more

volume. On the other side, A328L, with its increased bulk, packs tightly against the face of ACN.

5.4.2 P450-BM3 GVQ-D222N favors the catalytically active, lid-

closed state

Since P450-BM3 GVQ-D222N (A74G-F87V-L188Q-D222N), the best variant obtained from elec-

tron transport (ET) pathway modulation library, has key mutations distal from the active site, we

184



hypothesized that their beneficial effect arises from altering the enzyme conformational dynamics to

more frequently sample catalytically productive states. To evaluate this hypothesis, we performed

molecular dynamics (MD) simulation(Figure: 5.2).

The flexible nature of P450-BM3 is reflected by crystal structures with the F helix, F/G loop, and

G helix regions (Figure: 5.2A) , which are known to act as a lid that moves during catalytic cycle,

in varying positions with the “closed” lid often associated with the substrate bond, catalytically

active state[12] (Figure: 5.7). We compared representative models of wild type and GVQ-D222N

apo enzymes and our simulations indicate that the mutations promote lid closing (Figure: 5.2A,

B). The A74G-L188Q mutations function cooperatively, forming a novel hydrogen bond between

the B‘ helix and the F helix. The function of the hydrogen bond is suggested to fasten the F helix,

minimizing the mobility of the lid. The D222N mutation occurs at the base of the G helix and

forms a novel polar contact with the backbone carbonyl of K218, which may function to anchor

the G helix and reduce lid flexibility (Figure: 5.2A).

The effect of the mutations on P450-BM3 dynamics is first evaluated from trajectories started

from the lid-open, no substrate bound states. We compare the distribution of lid distances in wild

type (WT), GVQ, and GVQ-D222N (Figure: 5.2B). WT samples the largest lid distances with an

average of 21.1 Å, indicating that it favors maintaining the unproductive open state; GVQ samples

more intermediate distances averaging 20.0 Å, suggesting greater disposition to closing than the

WT; and GVQ-D222N favors occupying the fully closed conformation with average lid distance

18.6 Å. These results are consistent with the hypothesis that novel hydrogen bonds formed by the

evolved mutations are critical to decreasing the free energy barrier of transitioning from open to

closed forms and stabilizes the closed state.

We then analyzed trajectories started from the lid-closed, ACN bound state. While all enzyme

variants tend to maintain the closed state, the stability of the lid varies (Figure: 5.2C). The FG

loop shows similar root mean square fluctuation (RMSF) for all samples, but the RMSF for the F

helix declines from 1.34 Å in the WT, to 1.18 Å in GVQ, and finally to 0.93 Å in GVQ-D222N,

while the G helix RMSF trends identically with 1.55 Å for WT, 1.44 Å for GVQ, and 1.28 Å for
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Figure 5.2: Selected mutations alter P450-BM3 conformational dynamics. (A) Overlay
of WT (cyan) and GVQ-D222N (orange) average structures from MD simulations of the
apo structures with mutated positions highlighted as purple spheres. GVQ-D222N favors
adopting the catalytically active closed conformation with the G helix lowered while the WT
maintains the open conformation. L188Q forms a hydrogen bond to A74G to fasten the F
helix, and D222N potentially acts as an anchor to curb lid opening motions by establishing a
backbone hydrogen bond with the K218 carbonyl to stabilize the base of the G helix. (B) The
lid distance characterizing the substrate channel opening is defined as the length between
PRO196 and PRO45 alpha carbons. GVQ-D222N samples conformations resembling the
active closed state, while GVQ experiences intermediate states, and the WT tends to stay
open. (C) The WT holoprotein shows the highest mobility at the F/G-helix as measured
by α carbon RMSF. GVQ has reduced flexibility at the lid regions, and GVQ-D222N is the
most stable throughout.
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GVQ-D222N. The decrease in RMSF upon accumulation of the selected mutations supports the

role of the novel hydrogen bonds in stabilizing the closed state and reducing excess flexibility of

the lid region.

5.4.3 Ac CHMO cofactor binding pose

The Ac CHMO homology model shows that NADPH binds in an extended conformation with

the nicotinamide ring tucked into a small binding pocket against the FAD flavin. The NADPH

binding mode is characterized by the conserved Rossman fold with β-α-β secondary structure

motifs enclosing the cofactor. The primary interactions predicted to hold the NADPH in place

include: Q190 side-chain amide which contacts the NADPH carboxamide oxygen, W490 indole

which forms a hydrogen bond to the nicotinamide ribose hydroxyl, backbone polar interactions

at the N-terminus of the Rossman α-helix and hydrogen bonding from the T189 hydroxyl to the

pyrophosphate, a salt-bridge from K326 extending from a loop across the substrate channel to the

pyrophosphate, and R207 guanidinium forming a salt-bridge to the ribose 2’ phosphate group and

packing against the adenosine ring. The side of the NADPH facing away from the Rossman fold

is marginally exposed, with the control loop defined as residues 489–505 lightly packing against

the cofactor. Since NADH differs from NADPH only in the absence of the 2’ phosphate group

and is capable of establishing the same set of binding interactions along the pyrophosphate and

nicotinamide ring, we postulate that Ac CHMO’s strict specificity for NADPH is driven by the

R207 contact spanning from the end of the second Rossman β-strand stabilizing the adenosine tail

of the cofactor for optimal packing dynamics with the control loop. The FAD is held opposite of

the nicotinamide cofactor with the flavin group facing the nicotinamide ring and is tightly bound

through polar contacts throughout the adenosine tail, ribose, pyrophosphate, ribitol, and flavin

carbonyls. The numerous hydrogen bonds restrict FAD mobility, position the flavin for efficient

hydride transfer with the nicotinamide cofactor or substrate, and prevent the FAD release. The

cyclohexanone binding pocket is adjacent to the nicotinamide ring, it is proposed that some degree

of protein and NADPH flexibility is required to allow the substrate to move close enough to the

FAD for electron transfer.
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Rosetta modeling suggests that S208D and K349N function cooperatively to recognize NADH, with

K349N supporting the S208D loop through backbone hydrogen bond and S208D forming a novel

bidentate hydrogen bond to the NADH adenosine ribose that resembles interactions seen in native

NADH specific proteins (Figure: 5.3A, B). The contribution of K326T and L143P are not evident

from static structural analysis since they do not directly contact NADH (Figure: 5.3A, C, D),

which motivated further analysis through MD simulations.
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143326

349

208

NADH FAD

Control Loop

S208D

K349N

L143P

K326T

FAD

NADH
NADH

NADH

Figure 5.3: Homology model of CHMO DTNP. (A) Overview of the cofactor binding pocket,
NADH (in green) is pressed on one end by the control loop (pink). FAD (yellow) is held
opposite of the NADH, and positions of the selected mutations are represented as spheres.
(B) K349N supports the loop that S208D sits on, and S208D makes a bidentate hydrogen
bond to the NADH adenosine ribose. (C) K326T initiates a hydrogen bond to the control
loop at the backbone carbonyl of A487. The additional hydrogen bond may cause the control
loop to favor maintaining the catalytically relevant, closed conformation. (D) L143P impacts
the conformations that FAD can adopt.

5.4.4 Mutations reshape Ac CHMO conformational landscape and

hydride transfer potential

K326T contacts the “control loop” through A487 (Figure: 5.3A, C). The control loop is observed to

be ordered in some CHMO crystal structures but disordered in others[29, 31, 40], suggesting that

its flexibility varies depending on the enzyme’s position in catalytic cycle. Specifically, it is hypoth-

esized that the control loop must become rigid to hold the NADPH cofactor and cyclohexanone

during the hydride transfer stages[40]. We analyzed the flexibility of the control loop through
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α-carbon root-mean-square fluctuation (RMSF), and plot the difference between CHMO DTNP

(bound with NADH) and CHMO WT (bound with NADH or NADPH, respectively) (Figure: 5.4).

The results show that CHMO DTNP with NADH bound maintains greater rigidity over the control

loop in comparison to the WT with NADH bound and the level of control loop rigidity in CHMO

DTNP with NADH bound is nearly identical with that of the CHMO WT binding NADPH. These

results support the role of K326T in stabilizing the control loop which clamps on the otherwise

loosely bound cofactor NADH.
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Figure 5.4: Root mean square fluctuation (RMSF) analysis of CHMO DTNP. Results are
plotted as the difference in RMSF between DTNP (with NADH bound) and WT (with
NADH or NADPH bound, respectively). The control loop is found to have greater stability
with DTNP:NADH, comparable to the native condition of WT:NADPH. The inactive pairing
of WT:NADH exhibits high flexibility at the control loop.

L143P contacts FAD and not NADH (Figure: 5.3D, 5.5) Therefore, we hypothesized that this

mutation is involved in positioning FAD and in turn affects hydride transfer from the nicotinamide

cofactors to FAD. We first compared the hydride transfer distances (the distance between nicoti-

namide C4 and FAD N5) when CHMO WT utilizes different cofactors, and confirmed that higher

activity is linked to a shorter hydride transfer distance (4.6 ± 0.5 Å for NADPH versus 6.5 ± 1.0
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Å for NADH[29] (Figure: 5.5A), in line with the logic that enzymes capable of sampling catalytic

geometry more frequently are more active. Interestingly, the hydride transfer distance when using

NADH as the cofactor was much shorter in CHMO DTNP compared to in CHMO DTN (Figure:

5.5B, C), which is consistent with our hypothesis that L143P facilitates more efficient hydride

transfer from NADH.

To understand the role of L143P in influencing hydride transfer, we identified metastable FAD

conformations in CHMO DTN (with NADH bound) and CHMO DTNP (with NADH bound)

based on minimum heavy atom distance to residues within 4 Å by performing PCA and K-means

clustering (Figure: 5.8). Conformations from the most populated cluster of each sample were

compared and indicate that the native leucine packs underneath the flavin (Figure: 5.5D), limiting

flavin’s flexibility to move closer to the nicotinamide. This limited flexibility is likely advantageous

under the native condition of NADPH binding to CHMO WT, resulting in precise organization of

the flavin for hydride transfer. However, upon mutation at S208D and K326T which contact the

adenosine end of the cofactor, the binding pose of the cofactor is altered, which requires the flavin

to adjust its position accordingly. The L143P proline in CHMO DTNP appears to pack along the

FAD ribitol instead of directly against flavin (Figure: 5.5E). This may support twisting motion of

FAD to optimally orient the flavin toward the NADH nicotinamide ring.

5.5 Supplementary information
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Figure 5.5: Evaluation of hydride transfer efficiency in CHMO variants. Shorter distances
between NAD(P)H C4 and FAD N5 contribute to enhanced catalysis. (A, B) WT and
DTN are both marked by NADPH sampling distances ∼5 Å, while the less active NADH
samples distances are >6 Å and are too remote to engage in hydride transfer. (C) DTNP
displays the opposite arrangement, with NADH sampling closer distances than NADPH. (D)
L143 in DTN firmly packs under the flavin ring, blocking the flavin from moving closer to
nicotinamide, resulting in suboptimal hydride transfer distance. (E) L143P presses against
the FAD ribitol rather than contacting the flavin. This anchors the FAD core and allows the
flavin head to rotate in response to changes in the nicotinamide positioning to sustain closer
contact. The dashed lines show representative distances between the nicotinamide C4 and
FAD N5.
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Figure 5.6: Proposed P450-BM3 ACN reaction mechanism. Compound I Fe(IV)=O ab-
stracts a hydrogen from the substrate to form Compound II Fe(IV)-OH. This is followed by
the ”rebound” of the substrate and hydroxy radical to form the final product.)
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Figure 5.7: P450-BM3 structural flexibility. The lid opening motion of P450-BM3 is de-
scribed by the alpha carbon distance from P196 located on the F/G loop to P45 across
the substrate channel. The heme group is highlighted in green. (A) PDB 2HPD captures
P450-BM3 in the inactive, open state with raised F and G helices. The lid opening distance
is measured to be 23.1 Å. (B) PDB 1Z09 illustrates P450-BM3 in the substrate bound,
closed form that is catalytically active. The bound substrate N-palmitoylmethionine is col-
ored yellow, and the lid opening is distance is measured to be 19.5 Å, indicating downward
movement of the F and G helices by roughly 3.6 Å.

193



Figure 5.8: Free energy landscapes for DTN, DTNP, and WT CHMO with NADH or NADPH
bound. Each row illustrates the K-means clustering elbow heuristic to determine the op-
timal number of clusters, free energy landscapes projected on first 2 principal components
with cluster centers, and cluster populations. (A) WT with NADPH bound (B) WT with
NADH bound (C) DTN with NADPH bound (D) DTN with NADH bound (E) DTNP
with NADPH bound (F) DTNP with NADH bound.

194



Bibliography

[1] Yuheng Lin and Yajun Yan. Biotechnological production of plant-specific hydroxylated phenyl-

propanoids. Biotechnol. Bioeng., 111(9):1895–1899, September 2014.

[2] Toshiki Furuya and Kuniki Kino. Catalytic activity of the two-component flavin-dependent

monooxygenase from pseudomonas aeruginosa toward cinnamic acid derivatives. Appl. Micro-

biol. Biotechnol., 98(3):1145–1154, February 2014.

[3] Vlada B Urlacher and Sabine Eiben. Cytochrome P450 monooxygenases: perspectives for

synthetic application. Trends Biotechnol., 24(7):324–330, July 2006.

[4] Sandy Schmidt, Christian Scherkus, Jan Muschiol, Ulf Menyes, Till Winkler, Werner Hummel,
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Chapter 6

Conclusions and future directions

Applying molecular simulation to accurately capture protein-ligand binding interactions is critical

to accelerating efforts in rational protein design and drug discovery.

Chapter 1 reviews the mathematical foundations and steps for commonly utilized free energy meth-

ods including: MM-PBSA, LIE, and absolute alchemical simulations. We next demonstrated how

absolute alchemical free energy simulations based on removal of electrostatic and van der Waals in-

teractions between the protein and ligand are able to achieve predictive accuracies below 1 kcal/mol

with polarization corrections on the UPA system (Chapter 2). Previous approaches treating atoms

as fixed point charges in explicit solvent are unable to model the polarization changes that occur

as the ligand moves between the solvent and non-polar protein interior, leading to overly favor-

able (negative) binding free energies. By benchmarking binding free energy predictions with 10

UPA inhibitors, we found that standard alchemical approaches reach 3.2 kcal/mol RMSE and -0.15

Pearson correlation, indicating poor predictive value. With scaling of the dielectric constant in

PBSA continuum solvent to screen charged effects, the performance was improved to reach 0.89

kcal/mol RMSE and 0.67 Pearson correlation. We further explored the effects of simulation pa-

rameters including counter-ion concentration, restraint choice, forcefield, and protonation states of

titratable residues in the binding pocket. Each of the parameters had consequential effects on con-
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formational sampling and predictive outcome, and we conclude that the best practice for absolute

alchemical simulation involves simulating with experimental salt conditions, with 1DOF restraints

to allow some degree of ligand mobility, and that examination of protonation is limited with existing

protocols.

The MBAR/PBSA method demonstrated is a mean-field approach that is easily implemented

through post-processing of existing MD trajectories. More sophisticated and computationally ex-

pensive methods that explicitly calculate the effects of electronic polarization such as through polar-

izable forcefields[1, 2] or Gaussian multipoles[3] will lead to further improvements as they continue

to mature. The reliability of any molecular simulation is dependent on convergence in sampling

of the configurations available. Although our simulations total over 500 µs, these timescales are

insufficient to draw definitive conclusions. Hardware improvements will inevitably allow longer sim-

ulations, and algorithmic developments to overcome these sampling limitations include the use of

Markov state models[4, 5] by composing configurations from multiple shorter trajectories together

or with enhanced sampling approaches[6], where small boost potentials are dynamically added to

accelerate motion in configuration regions that have been previously sampled, thereby reducing the

depth of free energy basins to push the system forward along the reaction coordinate.

In Chapter 3 we review methods to swap cofactor specificity between the natural redox cofactors

NAD/H and NADP/H, and examine how these approaches can be extended to design proteins

utilizing artificial redox cofactors. We applied semi-rational design with Ec gapA to engineer the

protein to utilize the artificial redox cofactor NMN+ (Chapter 4). Our strategy is based on: 1)

boosting binding affinity by introducing mutations that can form novel polar interactions with the

NMN+ phosphate group. and 2) enforcing NMN+ specificity by sterically occluding the native

cofactor from binding through insertion of bulky residues into the adenosine pocket, With Rosetta

simulation where residues lining the binding pocket were systematically mutated to sample all

possible residues, we identified the variant A180S that had the potential to form an inter-subunit

hydrogen bond with the phosphate group. Experimental testing showed A180S had ∼6-fold increase

in NMN+ catalytic efficiency in comparison to the WT. An orthogonal gapA variant with ∼200-

fold cofactor specificity switch was discovered by introducing G10R on top of A180S. G10R is
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modeled to extend into the adenosine cleft and form salt bridges with D33, preventing the larger

NAD+ from fitting and making the conserved polar contact. To broadly explore gapA sequence

space and find cooperative mutations that would not be evident through molecular modeling, we

developed a high-throughput colorimetric assay measuring NMNH production from crude lysate.

High-throughput screening led to the best performing gapA HT-9 (A180S-G187K-P188A) that had

∼32-fold increase in NMN+ catalytic efficiency over the WT.

Our design strategy was successful, but the gapA mutants still utilize NMN+ at levels significantly

lower than the WT with NAD+, and far below the levels necessary for industrial scale processes.

Multiple sequence alignment, comparison of crystal structures with the cofactors NAD(P)+ in

bound pose, and existing mutagenesis data describing cofactor specificity switching shows that

even minor changes to the Rossman fold residues can have a large impact on binding specificity

and kinetics, and that these effects are generally transferrable[7, 8]. Based on these observations,

we hypothesize that there exists a general set of mutations that will allow universal conversion of

enzymes with the Rossman fold architecture to have altered cofactor preference for NMN+. We

have examples of engineered NMN+ binding proteins, but with so few active samples we cannot

draw any broader conclusions about what sequence profile may be optimal for NMN+ activity. To

better understand the contributions of mutations to NMN+ binding and identify a general sequence

motif for conversion of enzymes to prefer NMN+, we should obtain crystal structures of our NMN+

binders with cofactor bound and apply deep mutational scanning[9, 10] methods to systematically

test the effect of all possible single residue mutations in the Rossman fold on NMN+ binding.

Future work can also incorporate continuous growth selections[11, 12], where cell survival is linked

to the enzymes ability to regenerate NMN/H, or test out other artificial redox cofactors[13, 14].

Lastly in Chapter 5, we describe how molecular simulations can be used to rationalize the mecha-

nistic effects of mutations on conformational dynamics. The previous chapters focused on applying

MD or Rosetta as predictive tools to select variants with binding potential, here we begin with

experimentally characterized mutants and investigate how the discovered mutations lead to the

target activities. Oxygenases have complex reaction mechanisms dependent on concerted, global

changes in structure that are not apparent through static models. Docking of ACN into P450-BM3
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GVQ-AL illustrated that the mutations cooperatively reshaped the binding pocket for improved

shape complementarity to the planar ACN ligand, and MD simulation of GVQ-D222N revealed

that the mutations shifted the protein to favor the lid closed, catalytically competent state with

ACN over the open state where the reaction could not proceed. Homology modeling and simulation

of Ac CHMO DTNP, which had ∼1,200-fold cofactor specificity switch from NADPH to NADH,

identified changes in control loop flexibility and cofactor positioning affecting hydride transfer po-

tential. Flexibility of the control loop measured through RMSF decreased with NADH in CHMO

DTNP compared to the WT, suggesting that the mutations resulted in a stronger clamp on the

cofactor. Hydride transfer efficiency between NAD(P)H and FAD was evaluated by recording the

distances sampled between the NAD(P)H C4 and FAD N5. CHMO DTNP with NADH bound was

found to average shorter distances <6 Å resembling the behaviour observed with WT CHMO and

the native cofactor NADPH. Modeling suggests that the L143P mutation presses against the FAD

ribitol to support rotation of the flavin head for better positioning with the NADH for hydride

transfer. Further insight can be obtained through graph analysis comparing how residue dynamic

cross correlation is affected[15], or with alchemical simulation transforming the WT to mutated

amino acids[16].
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