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Abstract 

Mechanisms and Characteristics of Landfalling Atmospheric Rivers 

Affecting Southern California 

By 

Sarah M. Harris 

Atmospheric rivers (ARs) are filamentary channels of water vapor flux that play a vital role in the 

meridional transport of heat and moisture to midlatitudes. These features travel horizontally 

through the low atmosphere and over the open oceans. When they interact with orographic 

barriers such as coastal mountain ranges they are often responsible for high-intensity storms. In 

Southern California (SCA), an area that receives most of its annual precipitation from relatively 

few storms per season, ARs are important components of the region’s hydrological cycle. They 

provide significant proportions of annual precipitation totals within only a handful of storms and 

are responsible for many high-intensity rainfall events leading to hazards such as flooding. There 

is abundant AR research that analyzes the events affecting North America’s west coast. Yet, few 

examine ARs that landfall in SCA and instead focus on latitudes farther north. This research 

analyzes the AR events that make landfall in SCA, about their dynamics, characteristics, and 

lifecycles on the day of and in the days before landfall. It is the goal of this research to increase 

our understanding of these events to enhance AR modeling and forecasts for SCA. This may 

improve general preparedness, mitigate against hazards, and aid with water resources management. 

In this dissertation, we create an algorithm to identify ARs within reanalysis fields to 

determine the historical events affecting the west coast of North America (30°-55°N) during the 

last four decades. We categorize these events according to landfall areas and create composites of 

regional events using additional reanalysis fields to establish atmospheric characteristics on the day 
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of and the days before landfall. We aim to determine the defining characteristics of SCA ARs. We 

find that all ARs landfalling in western North America have landfall day characteristics consistent 

with baroclinic wave trains in the position and organization of moisture, temperature, and 

geopotential (500mb) heights. In the days before landfall, we determine that the position, phase, 

and amplitude of the wave train are important drivers behind SCA ARs which we see in the 

development of 500mb trough-ridge couplets in the western Pacific and subsequent changes to 

the 200mb jet core (³60ms-1). We also investigate the relationship between these ARs and modes 

of variability, the El Niño Southern Oscillation, the Madden-Julian Oscillation and the Pacific 

North American Teleconnection Pattern. We find that there are no strong relationships between 

these modes with AR landfall locations indicating that while these modes may increase AR 

frequency for North America’s west coast, they are not the drivers of specific AR landfall 

locations. We also complete a backward trajectories model of identified west coast ARs to 

determine the hourly movement and lifecycles of air parcels from these events at various 

atmospheric levels. We run the model from the hour of landfall and hourly for the 72 hours before 

landfall. For all ARs, we find that variables indicative of orographic uplift occur in the hours (0-15 

hours) right before landfall. However, we find that SCA ARs are slower and warmer, giving them 

the potential to hold more moisture. Significantly higher specific humidity values confirm these 

observations. A case study analysis of a particularly strong SCA AR is also introduced. We find 

commonalities between this AR and the average AR characteristics but also differences in along-

trajectory variables of temperature and specific humidity values as well as temporal characteristics 

that highlight why this event was so extreme. 

Collectively these analyses show us fundamental differences between SCA ARs and ARs 

landfalling farther north along North America’s west coast. These characteristics need to be 

accounted for to improve event modeling and/or forecasting. 
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Chapter 1 

Introduction 

 

Southern California (SCA) is loosely defined as the area north of the U.S. Mexico western border 

to a variable northern boundary and encompasses several large cities including Los Angeles and 

San Diego. Regional coastal areas have Mediterranean climates with distinct rainy seasons although 

SCA precipitation has large intra-seasonal and interannual variability. Annual rainfall totals occur 

from relatively few storms per season and provide water to millions of residents as well as its 

prominent industries including agriculture and tourism (Dettinger et al. 2011; Kim et al. 2013). 

The area is also prone to high-intensity cool-season precipitation as well as rainfall-induced hazard 

events that affect both humans and the natural environment. Understanding regional precipitation 

is imperative as any changes to storm frequency and/or intensity may have dramatic consequences 

for this area. 

 The boundaries encompassing SCA are not defined borders but are subjective transitions 

based upon experience and opinion. SCA’s southern boundary is typically identified as the border 

between California and Mexico (~32.5°N) with the exclusion of Baja California as its climate is 

greatly affected by the North American Monsoon (Mechoso et al. 2005). SCA’s northern boundary 

is more difficult to identify and is often based on locations of cities and/or mountain ranges. Some 

define the northern boundary as several mountain groups including the Santa Ynez Mountains in 

Santa Barbara County (~35.0°N), which are a unique landmark of SCA’s landscape. The Santa 

Ynez Mountains comprise a portion of the Transverse Ranges, a mountain chain positioned in an 

east-west direction rather than the more common northwest-southeast orientation of other 

California mountains (e.g., the Sierra Nevada) (Schoenherr 1992). This alignment as well as the 

intersection with mountains of the Coastal and Peninsular Ranges affects how storms behave 
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within the region (Neiman et al. 2004; Schoenherr 1992). The area also has a unique coastal 

orientation with an east-west alignment from Point Conception to Ventura and Los Angeles 

Counties where the coast shifts to the more common northwest-southeast direction. Additionally, 

various islands are near the coastline and in some cases, shelter coastal regions from incoming 

storm systems (Schoenherr 1992). 

 Major orographic effects throughout the state result in fundamental climatic differences 

particularly between coastal and inland areas. SCA coastal regions experience Mediterranean 

climates with warm, dry summers and cool, wet winters with defined rainy seasons. Upon moving 

inland, desert climates dominate the landscape (Schoenherr 1992). For coastal SCA, precipitation-

bearing storms are infrequent and have high rainfall intensity variability with some events reaching 

intensities like those of hurricanes affecting the U.S. southeast and Gulf coasts (Dettinger et al. 

2011; Kim et al. 2013; Ralph and Dettinger 2012). High inter-and intra-seasonal precipitation 

variability poses problems for storm forecasting and water resources management. 

 Storm frequency and intensity resulting from orographic rainfall are important for a variety 

of reasons. SCA is prone to various precipitation-induced hazards including landslides and 

flooding (e.g., Ryan 1994). Landslides alter landscapes and can occur within seconds. The 2005 La 

Conchita, CA landslide seriously damaged or destroyed 36 houses, killed 10 people, and is among 

the most dramatic examples of the power and abrupt nature of landslides, a hazard which is 

intrinsically linked to rainfall (Caine 1980; Iverson 2000; Jibson 2005). Floods, such as the one that 

occurred during the 1997-1998 season in Santa Barbara, CA (Naftaly et al. 1998), can cause short- 

and long-term changes to an area through soil movement and alteration of the water cycle 

(Anderson and Anderson 2010). In SCA flooding is especially hazardous since the region is prone 

to flash floods that occur in a matter of minutes (www.fema.gov). On the other end of the 

spectrum, seasons with little to no precipitation may lead to drought as well as fire. The 2012-2016 
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CA drought is a stark reminder of what continual seasons of little to no rainfall will do to a 

landscape. During 2016 there were 11 fires in San Luis Obispo, Santa Barbara, Ventura, Los 

Angeles, Orange, and San Diego counties with 4 of these fires burning over 10,000 acres 

(www.calfire.ca.gov/). Fire can have many ramifications for a landscape including changes to soil 

cohesion and evapotranspiration rates due to burning of vegetation (Shakesby 2011). As most the 

area’s population resides along coastal cities including Los Angeles, San Diego, Ventura, and Santa 

Barbara (www.census.gov), these regions are vulnerable to hazards and thus, are affected by 

changes of precipitation patterns and events. Additionally, as CA generates much of the U.S.’s 

agricultural produce, any changes to storm intensity and/or frequency may have dramatic effects 

for the entire country. Thus, it is important to understand and predict storms that may lead to 

these events in SCA. 

 The phenomena that influence precipitation vary both spatially as well as temporally and 

depend on systems ranging from large-to small-scales and their interactions with topography and 

other geographic features. In SCA multiple phenomena on varying timescales including the El 

Niño Southern Oscillation (ENSO) (Mo and Higgins 1998), the Madden-Julian Oscillation (MJO) 

(Madden and Julian 1994), and atmospheric rivers (ARs) (Zhu and Newell, 1994) influence rainfall 

intensity and duration through ocean-atmospheric interactions and dynamical forcings. It is well 

known that ENSO and the MJO influence storms that occur in SCA through processes such as 

modulation of the upper-level jet and low-level moisture flux (e.g., Jones 2000; Mo and Higgins 

1998; Zhang 2005). Although much insight has been gained in understanding the climatology of 

ARs that affect North America’s west coast (e.g., Dettinger et al. 2011; Neiman et al. 2008b), the 

spatiotemporal characteristics and atmospheric forcings driving ARs to SCA needs to be further 

addressed. 
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 The following sections provide background information and known impacts of AR events. 

The final section presents this dissertation’s objectives and organization. 

 

1.1 Synoptic atmospheric river characteristics 

ARs are long (>2000km), narrow (<1000km) channels of high water vapor flux that transport 

moisture horizontally from lower to higher latitudes through the low troposphere (Neiman et al. 

2008a, 2008b; Ralph et al. 2005, 2006, 2011; Zhu and Newell 1994, 1998) (Fig. 1.1a). These 

synoptic features are comparable to highways of water vapor and are responsible for over 90% of 

Earth’s meridional water vapor movement while covering a small percentage (<10%) of Earth’s 

surface (Neiman et al. 2008a, 2008b; Newell et al. 1992; Ralph et al. 2004; Zhu and Newell 1994, 

1998). ARs form and traverse over the oceans (Neiman et al. 2008b) and all continents experience 

these events. Newell et al. (1992) found that at any given time, there are four or five ARs present 

globally (Fig. 1.1b). 
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Fig. 1.1 Morphed composites of total precipitable water illustrating AR events on 12:00 UTC 13 
October 2009 for a SCA and b globally. Figures from the Cooperative Institute for Meteorological 
Satellite Studies (tropic.ssec.wisc.edu) 

 

	

 ARs have warm temperatures, high moisture contents (³20mm), and strong winds 

(³12.5ms-1) resembling low-level jets. Additionally, AR cores occur within the bottom 2.5km of 

the atmosphere where they tend to have weak moist static stability. All this results in rapid water 

vapor movement (Dettinger et al. 2011; Neiman et al. 2008a; Ralph and Dettinger 2011, 2012; 



6 

 

Ralph et al. 2003, 2004, 2005, 2006; Sodemann and Stohl 2013). Once this warm, water dense, 

horizontally moving air moves over land (herein landfall), particularly along mountainous 

coastlines, orographic forcing often leads to high-intensity rainfall (Martinković et al. 2017; 

Neiman et al. 2002, 2008a, 2008b; Ralph and Dettinger 2011) (Fig. 1.2; Ralph et al. 2005). 

 

	

Fig. 1.2 Cross section schematic denoting AR offshore vertical structure of along-river moisture 
flux, moist static stability, and wind speeds on the left. Schematic showing orographic forcing of 
landfalling AR conditions is on the right. Figure is from Ralph et al. (2005) 

 

 

 ARs are intrinsically linked to extratropical cyclone activity and are found within the pre-

cold frontal warm sectors (Bao et al. 2006; Dettinger 2004; Dettinger et al. 2011; Martinković et 

al. 2017; Neiman et al 2008a, 2008b, 2011; Ralph et al. 2004, 2005, 2006; Zhu and Newell 1994). 

This provides one method of moisture acquisition through convergence of local water vapor along 

the extratropical cyclone’s cold front. This results in continuous cycling of moisture contributing 

to AR maintenance and formation (Bao et al. 2006; Newman et al. 2012; Sodemann and Stohl 
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2013). However, other events suggest that some ARs transport water vapor directly to the 

midlatitudes with few losses to precipitation over the oceans (Bao et al. 2006; Stohl et al. 2008).	

 

1.2 Atmospheric rivers and the western coast of North America 

The western coast of North America is one region that experiences repeated AR events (e.g., 

Neiman et al. 2008b; Ralph and Dettinger 2012). In this area, AR storms often lead to high-

intensity rainfall (Dettinger 2004; Neiman et al. 2008a, 2008b; Ralph and Dettinger 2012; Ralph et 

al. 2011), extreme winds (Waliser and Guan 2017), flooding and other hazards (e.g., Neiman et al. 

2011). Additionally, they also present challenges for local water management agencies through 

methods such as changes to regional snowpack totals (e.g., Guan et al. 2013). Yet, ARs affecting 

North America’s west coast vary in strength, source areas, as well as trajectories (Neiman et al. 

2008a). 

AR frequency and intensity varies according to latitude and proximity to coasts (Kim et al. 

2013; Neiman et al. 2008a; Rutz et al. 2014). A study by Neiman et al. (2008a) establishes that AR 

storms landfalling in western North America form over the Pacific Ocean and are characterized 

by baroclinic midlatitudes wave trains resulting in offshore troughs and southwesterly flow. 

Troughs vary in depth and placement depending on AR landfall location. Upon landfall, most AR 

conditions dissipate leeward of mountain barriers due to orographic forcing along the various 

ranges of the coastal west (Dettinger et al. 2011; Neiman et al. 2008a; Rutz et al. 2014). In effect, 

the strongest AR conditions are along the coasts with weakening conditions upon moving inland. 

Nevertheless, Rutz et al. (2015) determine that ARs resulting in inland storms have the highest 

moisture contents and/or strongest winds of all ARs. A subset of ARs, the Pineapple Express 

(PE), is a predominant AR known to affect the western coast of North America (Ralph et al. 2004; 

Zhu and Newell 1998). PEs have a specific orientation and are associated with direct transport of 
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tropical water vapor from Hawaii to North America (Bao et al. 2006; Dettinger 2011; Dettinger et 

al. 2011; Neiman et al. 2008ab; Ralph et al. 2011). 

ARs landfall throughout the entire western coast of North America although less so in 

SCA than latitudes farther north (Kim et al. 2013; Neiman et al. 2008a). Some areas of SCA 

experience only several ARs per season; despite this, ARs are still significant contributors to SCA 

annual water budgets (Dettinger et al. 2011; Neiman et al. 2013; Rutz et al. 2014). Dettinger et al. 

(2011) determine that in some regions of SCA, ARs provide up to 45% of annual precipitation 

totals whereas a study by Rutz and Steenburgh (2012) concludes that in parts of SCA (including 

Baja California) ARs are responsible for up to 50% of seasonal (November-April) precipitation 

totals. ARs have also been responsible for some of area’s highest-intensity rainfall (e.g., Dettinger 

et al. 2011; Kim et al. 2013; Rutz and Steenburgh, 2012) and according to Rutz et al. (2014) some 

of the longest-duration storms. A 2017 AR storm in SCA brought about high-intensity 

precipitation, measured winds of over 60 knots (with gusts >90 knots in some places), and rogue 

waves all concentrated over a narrow region of populated coastline (weather.com1). This led to 

mudslides, flooding of local sloughs and roads, et cetera (latimes.com2). Due to SCA’s large 

population and sensitivity to meteorological events, it is imperative to investigate the role of ARs 

within SCA and how various phenomena may affect these features. Additionally, as infrequent AR 

events provide large rainfall totals to SCA and AR frequency is expected to change in a changing 

climate (Dettinger 2011), understanding the background dynamics behind AR development is 

crucial. Furthermore, although the characteristics of ARs affecting North America’s west coast are 

generally understood and well examined (e.g., Neiman et al. 2008a), the characteristics and 

mechanisms of those affecting SCA have not been thoroughly investigated yet. 

																																																								
1 Web article at weather.com/forecast/regional/news/california-record-wet-water-year-forecast-feb2017 
 
2 Web article at latimes.com/local/lanow/la-live-powerful-storms-moving-l-area-20170216-htmlstory.html 
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1.3 Dissertation scope and objectives 

This research takes a new approach to AR analysis in the isolation and examination of ARs 

affecting SCA. We investigate the atmospheric characteristics, pre-landfall dynamics, association 

with various modes of variability, as well as distance and trajectory characteristics of ARs that 

landfall in SCA and how they differ from ARs affecting latitudes farther north. The specific 

objectives of this dissertation are: 

1. Design an algorithm that identifies historical AR events landfalling along the western 

coast of North America within reanalysis fields (Chapter 2); 

2. Organize and categorize said AR events according to landfall regions and determine 

the climatological atmospheric characteristics during SCA ARs. Differentiate SCA 

ARs from ARs landfalling farther north on the day of as well as the days leading to AR 

landfall (Chapter 2); 

3. Determine the relationships of defined AR groups with modes of variability known to 

affect western North America (Chapter 2); 

4. Investigate the movement and change of AR groups and their along trajectory 

characteristics in the hours before landfall using a backward trajectories model 

(Chapter 3). 

 

Implications of these studies are a better understanding of the formation and dynamics of 

SCA ARs and their conditions in the days before and during landfall. This in turn can help to 

improve regional forecasting and hazard mitigation. 

 In Chapter 2 I introduce a method for AR detection in reanalysis fields of total precipitable 

water (TPW) using a fit-ellipse approach. This detection algorithm builds upon a previous 

approach and is used to identify AR events affecting western North America during the October-
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March seasons of 1979-2013. Once identified, ARs are categorized according to separate landfall 

areas designated by latitude. Daily composites of atmospheric variables for the day of and several 

days prior to-landfall are created for each region to determine the climatological characteristics 

and dynamics of AR groups. I summarize the dominant modes affecting AR frequency for western 

North America and the statistical occurrences of AR events during various modes and their phases 

are also investigated. Work in chapter 2 is a slightly modified version of a previously published 

journal article available in Theoretical and Applied Climatology as: 

Harris, S.M. and L.M.V. Carvalho. 2017. Characteristics of southern California 

atmospheric rivers. Theoretical and Applied Climatology. 1-17, DOI: 

10.1007/s00704-017-2138-1. 

 

 In Chapter 3 I discuss the main approaches found in the literature for AR trajectory 

analysis including the Lagrangian trajectory model used. I use the model to analyze seasonal 

(October-March) ARs affecting the U.S. west coast between December 2004 and December 2015 

in the hour of and up to 72 hours before landfall at one hour time-steps. Statistical analyses of 

distances and along-trajectory characteristics for regional ARs are determined. This work is being 

prepared for publication in the journal of Theoretical and Applied Climatology and is published 

here with only minor changes. 

 Chapter 4 summarizes the work completed and conclusions made. Additionally this 

chapter discusses a possible direction of future AR research.  
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Chapter 2 

Characteristics of Southern California Atmospheric Rivers 

 

As appears in: 

Harris, S.M. and L.M.V. Carvalho. 2017. Characteristics of southern California atmospheric rivers. 

Theoretical and Applied Climatology. 1-17, DOI: 10.1007/s00704-017-2138-1. 

 

Abstract 

Atmospheric rivers (ARs) are channels of high water vapor flux that transport moisture from low 

to higher latitudes on synoptic timescales. In areas of topographical variability, ARs may lead to 

high intensity precipitation due to orographic forcing. ARs landfalling along North America’s west 

coast are linked to extreme events including those leading to flooding and landslides. In Southern 

California (SCA), proper AR forecasting is important for regional water resources as well as hazard 

mitigation and as the area’s annual precipitation totals occur from relatively few storms per season, 

any changes to storm frequency and/or intensity may have dramatic consequences. Yet, as most 

regional AR studies focus on the Pacific Northwest, there is little information about SCA ARs. 

 We develop an algorithm to identify ARs landfalling on North America’s west coast 

between 1979-2013 within total precipitable water reanalysis fields. ARs are then categorized 

according to landfall region. To determine and differentiate the characteristics and spatial 

distributions of ARs affecting these areas, we examine lag composites of various atmospheric 

variables for each landfall region. SCA ARs differ from ARs landfalling farther north in the days 

prior to landfall with the position and amplitude of a trough offshore from the Asian continent 

and ridge over Alaska, as well as the displacement and eastward extension of the jet core that 

potentially guides AR moisture southwards. The relationships between AR landfalls and the El 
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Niño/Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the Pacific/North 

American Teleconnection Pattern (PNA) are also investigated. 

 

2.1 Introduction 

Using a combination of satellite as well as station rainfall data, Dettinger et al. (2011) determines 

that during 1998 to 2008 ARs landfalling on North America’s west coast between 32.5˚-52.5˚N 

latitudes contributed between 30% to 45% of rainfall in all California with SCA ranging from 20% 

to ~35% along the coast. In a similar analysis by Rutz and Steenburgh (2012), ARs crossing over 

the Baja Peninsula are also accounted for increasing the AR contributing proportion between 20 

to ~40% in SCA during the cool season of November-April. With few events but high 

precipitation totals, ARs are often of high-intensity and/or of long duration (Rutz et al. 2014). As 

SCA is characterized by vast mountainous terrain, particularly along the coast, high-intensity 

precipitation is often associated with a landfalling AR in the area (e.g. Rutz et al. 2014). 

 ARs are influenced by the interactions of tropical and extratropical phenomena. It is 

generally understood that the Madden-Julian Oscillation (MJO), considered the most important 

tropical mode on intraseasonal timescales (e.g. Madden and Julian 1994), alters North Pacific 

atmospheric circulation, modulating regional air and moisture movement and affecting 

meteorological events that occur in North America including ARs (Bell and Higgins 2005). The 

propagation of the MJO’s convection and associated pattern of atmospheric circulation over the 

Pacific and Indian Oceans (Bell and Higgins 2005; Guan et al. 2012; Mo and Higgins 1998; Ralph 

et al. 2011) is known to assist ARs, particularly a specific subset of ARs known as the Pineapple 

Express (Dettinger 2004; Dettinger et al. 2011). For seasons with frequent and/or exceptionally 

strong MJOs, numerous and/or higher-intensity ARs may occur causing an increase in the 



13 

 

frequency and/or intensity of extreme precipitation events in SCA (Jones 2000; Jones et al. 2011; 

Payne and Magnusdottir 2014). 

 Payne and Magnusdottir (2014) investigate the link between MJO phases with ARs and 

determine that ARs affecting western North America increase in frequency during MJO phases 3, 

6, 7, and 8 with the highest increase during phase 6 and the smallest increase during phase 3. This 

is semi-consistent with Guan et al. (2012) who compares MJO phases and AR activity to snow 

water equivalent (SWE) values in the Sierra Nevada and determines that positive SWE anomalies 

are most prominent during MJO phases 3 and 6 whereas phase 8 is associated with negative SWE 

anomalies. 

 The El Niño Southern Oscillation (ENSO) is another phenomenon known to influence 

precipitation in SCA through processes such as the modulation of the upper level jet and low-level 

moisture flux (e.g., Mo and Higgins 1998). Studies regarding ARs and ENSO reveal mixed 

findings. Payne and Magnusdottir (2014) determine that the frequency of landfalling ARs increases 

during warm ENSO phases and is at a minimum during cold ENSO phases. They also find that 

AR landfall latitudes shift southward during warm ENSO events. Bao et al. (2006) argue that direct 

“river-like” transport of moisture is most likely to occur during ENSO-neutral years and least 

likely during warm ENSO years. Like most AR studies, investigations of the relationships between 

ARs and the MJO as well as ENSO is limited to ARs events affecting northern latitudes or the 

west coast of North America as whole, and is not specific to SCA. 

 This study investigates the atmospheric characteristics of ARs landfalling in SCA and the 

differences from ARs affecting latitudes farther north. This is accomplished first through an 

algorithm that detects AR activity by identifying plume-like features using reanalysis. Mechanisms 

associated with AR activity are examined with composites of various atmospheric variables for the 

identified AR events, organized by landfall region. Additionally, this study uses MJO and ENSO 
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indices to describe the statistical significance of these phenomena over SCA landfalling ARs. This 

paper is organized as follows. Section 2.2 describes the datasets and methodologies used. Sections 

2.3, 2.4, and 2.5 present the results of the validations, composites, and statistical analyses of the 

MJO and ENSO, respectively. Conclusions and implications are presented in section 2.6. 

 

2.2 Datasets & Methods 

We develop an algorithm to identify AR activity affecting North America’s west coast and 

particularly SCA based on an AR detection algorithm from Jiang et al. (2014). Daily total 

precipitable water (TPW) fields calculated from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Prediction’s Climate Forecast 

System Reanalysis (CFSR) (Saha et al. 2010) at a 0.5˚×0.5˚ spatial resolution are used to identify 

ARs events from 1979 to 2013. CFSR are used because of its high spatial resolution, the coupling 

to the ocean, and the assimilation of satellite radiances for the entire period of study (Saha et al. 

2010). TPW (in kg m-2) is an equivalent to integrated water vapor as it reflects the water total 

within an atmospheric column (vertically integrated, surface – 200mb) if all water vapor is 

condensed into liquid water with 1 kg m-2 equal to 1 mm (Campmany et al. 2010). 

 A previous record of AR activity created by Neiman et al. (2008a) and later extended by 

Dettinger et al. (2011) uses Special Sensor Microwave Imager (SSM/I) data to identify AR activity 

affecting North America’s west coast expanding water years 1998 to 2011. Here we use TPW from 

reanalysis due to SSM/I’s limited temporal span. Extending the record provides additional AR 

cases (from 1979 to 2013) to adequately investigate the characteristics and dynamical forcings of 

these high-intensity episodes. 

 This algorithm modifies a previous AR detection procedure first introduced in Jiang and 

Deng (2011) and later modified in Jiang et al. (2014) that identifies AR plumes using the National 
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Aeronautical and Space Administration’s Modern Era Retrospective-Analysis for Research and 

Applications (MERRA) at a 0.5˚latitude × 0.667˚longitude spatial resolution. A summary of the 

tracking algorithm is described in Steps 1-5 below. Note that steps 1-2 are based on Jiang et al. 

(2014) criteria while steps 3-5 describe the methodologies that were developed in the present study 

and differ from Jiang et al. (2014).  

1) TPW grid point values (Qr) north (south) of 15.0˚N (15.0˚S) that meet the following listed 

criteria are identified. 

𝑄" ≥ 𝑄$%&'( + 𝐴 𝑄$%'+ − 𝑄$%&'(                                            (Eq. 2.1) 

𝑄" ≥ 𝑄%%&'( + 𝐵 𝑄%%'+ − 𝑄%%&'(                                        (Eq. 2.2) 

𝑄" ≥ 𝑞/01 = 20mm                                                                         (Eq. 2.3) 

Where Qzmean, Qzmax, Qmmean, and Qmmax refer to the zonal (latitudinal, z) and meridional 

(longitudinal, m) mean and max values of Qr (i.e. TPW) respectively. Parameters A and B are 

meant to preserve the elongated shape of the AR and are identified as 0.3 and 0.1 respectively. 

Variable qcut is a threshold parameter referring to the minimum TPW value required to be 

considered an AR (Jiang and Deng 2011; Jiang et al. 2014). 

2) Of the identified Qr points, contiguous areas meeting or exceeding an area threshold mark of 

5.0×105 km2 are determined and smaller regions are dismissed as they are considered too small 

to be ARs. Jiang et al. (2014) uses an area threshold of 2.5×105 km2which we conclude is too 

small as it classifies extraneous filamentary features as ARs. 

3) ARs exhibit elongated geometry. To identify the elongation of the AR candidates we calculate 

the first two (orthogonal) eigenvectors (or Principal Components) that explain most of the 

spatial variance of each large contiguous region. The first two eigenvectors (PC-1 and PC-2 

respectively) can be interpreted as the two axes of an ellipse that best fits to the area. From 

the ellipse axes we are able to calculate eccentricity, defined as the ratio between the minor 



16 

 

(PC-2) and major (PC-1) axes of the ellipse. This fit ellipse procedure is the most prominent 

difference between this algorithm and the one described in Jiang et al. (2014) that uses an aerial 

fraction criterion to determine AR eligibility. 

4) Ellipses with eccentricities less than 0.40 as well as widths less than 1,000 km are classified as 

ARs. The 0.40 criterion is used to guarantee the AR’s elongated structure. If the feature is 

greater than 1,000 km wide, then the eccentricity must be less than 0.30. Although a width of 

1,000 km or less is used as a defining AR characteristic (e.g. Neiman et al. 2008ab; Ralph et al. 

2005, 2006, 2011; Zhu and Newell 1994, 1998), an AR may occur within a broader region of 

high TPW and using the 0.30 eccentricity criterion for wider TPW areas attempts to capture 

these features. 

5) For all identified ARs, ellipse orientation is calculated using the 1st eigenvector (PC-1) and 

determining the degrees counter clockwise from the x-axis (east-west orientation). ARs 

affecting North America are often oriented between 0.0˚ - 90.0˚ due to the dominant wind 

patterns and Coriolis force. Features that meet all of the above criteria are defined as ARs 

landfalling along the western coast of North America. 

 

 Dates classified as ARs by the AR algorithm (steps 1-5) but not meeting a visual inspection 

of AR criteria are identified and removed so as not to skew composites. From the total record of 

762 identified events, 43 are removed leaving 719 AR events. ARs are then categorized according 

to landfall region. 

 Even though SCA experiences high-intensity ARs responsible for significant proportions 

of regional annual precipitation (e.g. Dettinger et al. 2011; Kim et al. 2013; Rutz and Steenburgh 

2012), fewer ARs occur in SCA compared to latitudes farther north (Neiman et al. 2008ab; Rutz 

et al. 2014) therefore, it is important to determine if SCA ARs have unique characteristics. 
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Additionally the orientation of much of SCA’s coastline as well as a local mountain range, the 

Transverse Range, run in an east-west direction rather than the typical north-south common to 

the rest of western North America (Schoenherr 1992). This affects how storms make landfall and 

ultimately how they interact with the environment in this region. We conduct composite analyses 

to determine if the overall features of SCA ARs differ from other ARs. In the record from Neiman 

et al. (2008a) and Dettinger et al. (2011), AR activity affecting North America’s west coast from 

32.5° to 52.5°N is identified where the coast is divided into two domains “south-coast” (i.e. CA; 

32.5˚-41.0˚N) and “north-coast” (i.e. Oregon, Washington, and/or British Columbia; 41.0˚-

52.5˚N). To maintain consistency with the previous record, composites are performed over the 

latitudinal domain of 32.5˚-52.5˚N. However, as we intend to investigate the role of ARs in SCA, 

the subdomains are partitioned into smaller groups. For simplicity we divide the domain into four 

subdomains each with similar latitudinal ranges: SCA (32.5˚ ≤ latitude ≤ 37.0˚), Northern 

California (NCA, 37.0˚ < latitude ≤ 42.0˚), Southern Pacific Northwest (SPNW, 42.0˚ < latitude 

≤ 47.0˚), and Northern Pacific Northwest (NPNW, 47.0˚ < latitude ≤ 52.5˚). These ranges 

additionally capture the change of coastal and mountain orientation for SCA discussed earlier. 

 To perform a comprehensive analysis of AR features and identify AR characteristics 

according to region of landfall, lag-composites of various atmospheric variables (from CFSR) are 

created for different landfalling regions for the dominant rainy season months of October through 

March (Oct-Mar). Lag-composites are created from 10 days prior to the day of the event (0 Lag 

days), to 3 days after the AR landfall. Atmospheric variables examined include TPW, TPW 

anomalies, 500mb geopotential heights (h500), h500 anomalies, as well as two-meter surface 

temperature (t2m) anomalies. Daily anomalies are calculated at each grid point by removing the 

smoothed annual cycle. 
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2.3 Validation and Case Studies 

First, we assess the modified algorithm’s ability to detect AR events compared to the algorithm 

identified in Jiang et al. (2014). We applied both algorithms using CFSR for the December, January, 

February (DJF) months of 1979-2005 to obtain AR climatology according to latitude (between 

30.0˚-55.0˚N) (Fig. 2.1). Our algorithm (Fig. 2.1a) exhibits a peak of approximately 9% of all 

landfalling ARs affecting western North America at about 40°N whereas Jiang et al.’s (2014) 

algorithm (Fig. 2.1b) shows a peak of 8% around 39oN. The latitudinal variation of AR landfall 

probability is comparable between both methods with AR probability decreasing farther away 

from 40˚N. However, our algorithm indicates a greater decrease in AR probability toward latitudes 

equatorward of 40oN compared to Jiang et al. (2014). For instance the AR landfall probability at 

35oN drops to about 2.5% in our algorithm compared to 4.5% for Jiang et al. (2014). The regional 

AR climatology obtained with MERRA and discussed in Jiang et al. (2014) suggests a maximum 

AR probability of approximately 10% around 40˚N for DJF 1979-2005 (see Jiang et al. 2014, Fig. 

2.1), whereas our algorithm run using MERRA found approximately 8% of all landfalling ARs 

around 40°N and a similar profile (not shown). 
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Fig. 2.1 Landfalling AR climatology for North America’s west coast (30.0˚-55.0˚N) outputted 
from a the modified algorithm and from b the criteria described in Jiang et al. (2014). AR activity 
is derived using CFSR and covers DJF from 1979 to 2005 
 

 

 Additionally, four independent AR dates affecting North America’s west coast identified 

in previous analyses (Ralph and Dettinger 2012; Ralph et al. 2011) are examined using outputs 

from both algorithms with CFSR as inputs (Fig. 2.2). Case study dates include March 26, 2005, 

November 7, 2006, October 13, 2009, as well as December 18, 2010. Outputs of these dates are 

visually assessed in order to investigate how well each algorithm identifies AR features. Both 

identification algorithms detect all four ARs; still, differences between each set of outputs can be 

identified in terms of recognition of extraneous features not directly related to the investigated 

AR. For example, for March 26, 2005 an AR extending from the Hawaiian Islands northeastward 

to the Oregon coast is identified by both the modified algorithm (Fig. 2.2a) as well as the original 

algorithm (Fig. 2.2e). However, while the modified algorithm identifies this plume as the only 

feature affecting North America, the original algorithm identifies another component affecting 

the U.S. east coast and the Gulf of Mexico. This feature may be associated with high TPW values 

from an existing storm. It is important that the algorithm does not identify these features as we 
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want to eliminate characteristics that do not classify as ARs (such as the movement of the 

Monsoon, hurricanes, etc.). Overall, the modified algorithm (Fig. 2.2a-d) gives a more precise 

identification of AR plumes and excludes objects not directly related to the event of interest. This 

is most likely due to the criterion of eccentricity adopted in the modified method (step 3) as the 

first two eigenvectors accurately capture the elongated AR shape. 
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Fig. 2.2 AR events as identified by the algorithm presented in this paper (a-d) as well as the 
algorithm described in Jiang et al. 2014 (e-h) using CFSR data. Case study dates include a, e March 
26, 2005, b, f November 7, 2006, c, g October 13, 2009, and d, h December 18, 2010. Areas 
identified as an AR are indicated by black shading 
 

 

2.4 Synoptic characteristics  

The numbers of independent AR events during Oct-Mar from 1979 to 2013 separated according 

to landfall regions are 72 SCA, 213 NCA, 183 SPNW, and 160 NPNW (Table 2.1), in agreement 

with previous literature in that AR landfalls are greatest between northern California and southern 

Canada with decreased frequencies upon moving southward (e.g. Rutz et al. 2014). Independent 

events are defined as ARs with no other AR events within ±3 days of landfall. In spite of large 

year-to-year variability in the frequency of AR events (not shown), no significant trends in AR 

occurrence is observed for any of the investigated landfall regions during the examined time period 

(1979-2013). In SCA, there are several seasons with zero detected AR events. As AR storms bring 

about large proportions of SCA’s annual rainfall totals (e.g. Dettinger et al. 2011; Kim et al. 2013; 

Rutz and Steenburgh 2012), a lack of these extreme events may lead to a severe reduction in 

seasonal rainfall totals. 
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Table 2.1 Landfall regions and the number of identified landfalling ARs during Oct-Mar seasons 
from 1979 to 2013 

Name Abbr. Lat. Covered (°N) Landfalling ARs 

Southern California SCA 32.5°-37.0° 72 

Northern California NCA 37.0°-42.0° 213 

Southern Pacific 
Northwest SPNW 42.0°-47.0° 183 

Northern Pacific 
Northwest NPNW 47.0°-52.5° 160 

All ARs - 30.0°-55.0° 719 

  

 

The main objective of this study is to examine dynamical mechanisms associated with ARs 

affecting North America’s west coast at different latitudes and particularly SCA. Figures 2.3-2.12 

show composites of atmospheric variables for all landfall regions. ARs are characterized by 

baroclinic wave trains propagating through the Pacific resulting in northeastward extending 

moisture plumes (Neiman et al. 2008a). These plumes are flanked to the northwest and southeast 

by areas of dryness as indicated by anomalous TPW values that appear days prior to AR landfall 

with both positive and negative anomalies strengthening as an AR approaches landfall (Fig. 2.3-

2.6). After landfall moisture plumes retreat from the coast and dissipate (not shown). 

Composites of TPW and TPW anomalies (Fig. 2.3-2.6) on AR landfall days (0 Lag days) 

for all landfall regions display, as expected, positive TPW anomalies within regions of high TPW 

(i.e. the AR moisture plume) with neighboring negative anomalies to the northwest and southeast, 

consistent with a midlatitude wave-train pattern. These anomalies appear similar in terms of area 

covered for all regions. Additionally, all ARs display comparable maximum positive anomalies 

(+10 kg m-2 SCA, Fig. 2.3; +9 kg m-2 for all other landfall regions, Fig. 2.4-2.6) as well as negative 
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anomalies, including negative anomalies to the southeast of the AR plume (-6 kg m-2 SCA, Fig. 

2.3; -3 kg m-2 NCA, Fig. 2.4; -2 kg m-2 SPNW, Fig. 2.5; -3 kg m-2 NPNW, Fig. 2.6). For all landfall 

regions the strongest positive anomalies on AR landfall days appear offshore, near the coastline 

and do not stretch farther inland. As these are areas of mountainous terrain it suggests that the 

topography impedes on AR progression possibly affecting AR persistence and intensity (Rutz et 

al. 2014). 
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Fig. 2.3 Composites of TPW anomalies (colored shading; kg m-2) overlaid with TPW (contours) 
starting seven days prior to AR landfall (-7 Lag days) and continuing to the day of AR landfall (0 
Lag days) for ARs affecting SCA. Anomalies are calculated at the 95% level using a Student’s t-
test. TPW contours indicate regions of high moisture and begin at 20 kg m-2 with a contour interval 
of 10 
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Fig. 2.4 Same as Fig. 2.3, but for ARs affecting NCA 
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Fig. 2.5 Same as Fig. 2.3, but for ARs affecting SPNW 
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Fig. 2.6 Same as Fig. 2.3, but for ARs affecting NPNW 
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 Prior to landfall (Lag -7 to -1 days), ARs are associated with a buildup of moisture above 

the eastern Pacific Ocean that occurs a few days earlier (Fig. 2.3-2.6), characterizing ARs as 

synoptic scale phenomena. As composites are averages of group events, weak or no statistically 

significant anomalies indicate case-to-case variability and suggest that SCA ARs have greater 

consistency among events due to statistically significant anomalies, whereas ARs landfalling farther 

north show more variability in the days prior to AR landfall. In other words, statistically significant 

anomalies resulting from the composites of these fields do not properly characterize the narrow 

zones with high TPW anomalies associated with ARs landfalling farther north. This is because of 

the spatial characteristics of the ARs and the large case-to-case variability of the moisture plumes. 

In terms of orientations, leading edges for SCA AR moisture plumes initialize farther eastward as 

well as equatorward with their trailing ends extending to the eastern Pacific (Fig. 2.3) whereas 

leading edges for ARs landfalling farther north initialize farther westward and poleward as well as 

have trailing ends extending farther westward (Fig. 2.4-2.6). These orientation differences are as 

anticipated, and suggest that SCA ARs vary in terms of manifestation as well as possible moisture 

sources from ARs landfalling farther north. 

 Composites of h500 anomalies (Fig. 2.7a-d) on AR landfall days display trough-ridge 

couplets with an offshore trough and onshore ridge leading to overall southwesterly flow for all 

landfall regions (Neiman et al. 2008a). SCA ARs exhibit the lowest positive h500 anomalies 

(maximum +34 m SCA, Fig. 2.7a) as well as the strongest negative anomalies (minimum -159 m) 

corresponding to the onshore ridge and offshore trough, respectively. These differences result in 

a shifting of the trough and ridge axes, guiding AR moisture farther south along the coastline. The 

other landfall regions have weaker negative h500 anomalies (minimum -118 m NCA, Fig. 2.7b; -

107 m SPNW, Fig. 2.7c; -87 m NPNW, Fig. 2.7d) as well as stronger positive anomalies (maximum 

+49 m NCA; +72 m SPNW; +123 m NPNW), guiding wind and moisture farther northward 
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along the coast. Additionally, SCA ARs are associated with negative h500 anomalies over Oregon, 

Washington, and southern British Columbia that are closer to the coast as well as positive 

anomalies to the south and southeast (Fig. 2.7a). These anomalies shift for ARs landfalling farther 

north with NPNW ARs displaying positive h500 anomalies over Oregon, Washington, and 

southern British Columbia with weaker negative anomalies directly to the south and west and 

additional positive anomalies off the coast of Hawaii (Fig. 2.7d). These h500 anomaly wave train 

patterns resemble the two phases of the Pacific/North American Teleconnection Pattern (PNA), 

with SCA ARs most closely resembling the negative PNA (PNA-) phase and NPNW resembling 

the positive PNA (PNA+) phase (Wallace and Gutzler 1981). PNA- involves a westward 

retraction of the jet stream along with cooler, wetter weather over western North America while 

PNA+ indicates an eastward extension of the jet stream along with warm, drier conditions over 

southwestern North America (Leathers et al. 1991). 
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Fig. 2.7 Composites of h500 anomalies (colored shading; m) on the day of AR landfall (0 Lag 
days) for ARs affecting a SCA, b NCA, c SPNW, and d NPNW. Anomalies are calculated at the 
95% level using a Student’s t-test. TPW contours are overlaid to help visualize AR plume location 
and begin at 20 kg m-2 with a contour interval of 10 
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 A daily PNA record from NOAA’s Climate Prediction Center (CPC) reveals a neutral 

trend in PNA occurrences during Oct-Mar 1979-2013 (not shown) with a slightly higher 

proportion of PNA+ events at or greater than 1 standard deviation and an analysis of AR 

frequencies corresponding with PNA phases at or greater (less) than +1 (-1) standard deviation 

(Table 2.2) reveals greater AR incidences during PNA+ for all four landfall regions. However, 

according to a test of proportions at a 95 percent confidence interval, the frequency of SCA ARs 

during PNA+ is not significantly greater than that during PNA-, whereas ARs during PNA+ are 

significantly more frequent for all other landfall areas. A previous study by Guan et al. (2013) 

concludes that from Nov. 1997 to Mar. 2011, ARs affecting the Sierra Nevada are more frequent 

during PNA-. Although our results do not support this finding, it is important to note that Guan 

et al.’s (2013) study focuses on a smaller, mountainous area within eastern California and covers a 

shorter time span (1997-2011) during which the PNA was predominantly negative. In a different 

study, Payne and Magnusdottir (2014) determine that from 1979 to 2011 ARs affecting North 

America’s west coast between 20.0°-60.0°N are associated with a westward retraction of the jet 

stream which coincides with changes in the potential vorticity gradient resulting in Rossby wave 

breaking. Fig. 2.8(a-d) shows composites of 200mb winds on AR landfall days for each location. 

Only wind speeds meeting or exceeding a 40ms-1 threshold are shown in order to visualize the 

upper level jet core. These composites show an eastward extension of the jet core for SCA ARs 

(Fig. 2.8a) whereas the jet core retracts farther westward for ARs landfalling farther north (Fig. 

2.8b-d). Particularly, SCA ARs show more intense jets east of 180˚E compared to SPNW and 

NPNW, and with NCA, SCA ARs showing more intense jet east of 150˚W, closer to shore. As 

ARs landfall farther south, the jet core is more zonally-oriented with greater concentrations of 

strong winds (≥60ms-1) and shifts to a more wavelike pattern as ARs landfall farther north. This 

displacement of the jet core suggests that while a westward retraction of jet winds is important for 
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most ARs landfalling along the western coast of North America (consistent with results from 

Payne and Magnusdottir 2014), an eastward movement of the jet exit region plays a significant 

role with SCA ARs. Additionally, this retraction and extension may not be primarily determined 

by PNA phase. 

	

Table 2.2 AR frequencies according to landfall region coinciding with strong (+/- 1 standard 
deviation) positive and negative PNA phases 

 no. ARs PNA(+) PNA(-) 

SCA 72 15 10 

NCA 213 62 18 

SPNW 183 51 21 

NPNW 160 42 6 

All ARs 719 201 63 
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Fig. 2.8 Composites of 200mb wind (ms-1) on AR landfall days for ARs affecting a SCA, b NCA, 
c SPNW, and d NPNW. Winds below 40ms-1 are disregarded in order to visualize the location of 
the jet core. TPW (contours) is overlaid to help visualize AR plume location 
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 T2m anomaly composites (Fig. 2.9-2.12) for AR landfall days show warming within AR 

plumes for all landfall regions, consistent with findings that ARs have warm low-troposphere 

temperatures (Neiman et al. 2008a). Additionally warming is seen downstream of AR plumes 

confirming the presence of onshore ridges (Neiman et al. 2008a) whereas cooling is observed 

poleward of the plume. These patterns of temperature along with the corresponding geopotential 

height patterns are consistent with the baroclinic wave theory, supporting the idea that ARs are 

components of extratropical cyclones. Even though SCA ARs have the least amplified onshore 

ridge, positive t2m anomalies downstream of AR plumes are comparable to other landfall regions 

(+2 ˚C, SCA, Fig. 2.9; +2 ˚C, NCA, Fig. 2.10; +2 ˚C, SPNW, Fig. 2.11; +3 ˚C, NPNW, Fig. 2.12), 

suggesting dynamical forcing of SCA ARs. 
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Fig. 2.9 Composites of t2m anomalies (colored shading; ˚C) and h500 (contours; m) starting five 
days prior to AR landfall (-5 Lag days) and continuing to the day of AR landfall (0 Lag days) for 
ARs affecting SCA. Anomalies are calculated at the 95% level using a Student’s t-test 
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Fig. 2.10 Same as Fig. 2.9, but for ARs affecting NCA 
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Fig. 2.11 Same as Fig. 2.9, but for ARs affecting SPNW 
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Fig. 2.12 Same as Fig. 2.9, but for ARs affecting NPNW 
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 Prior to landfall, h500 composites (Fig. 2.9-2.12) show differing trough-ridge patterns 

progressing through the Pacific. Five days prior to landfall (-5 Lag days), all regions develop a 

trough over the far western Pacific near the Korean Peninsula along with a ridge over Alaska. 

However, the trough appears most pronounced for ARs landfalling farther south with SCA ARs 

(Fig. 2.9) displaying the widest trough as well as the most amplified ridge. The dynamics of these 

systems along with the previously described extension/retraction of jet winds suggest that the 

amplitude of the trough developing over eastern Asia/the western Pacific along with an adjacent 

amplified ridge is perhaps the main mechanism responsible for the equatorward displacement of 

upper level jet. This leads to the eastward extension of the jet core, forcing AR associated moisture 

to landfall farther south, eventually landfalling in SCA. 

 

2.5 MJO and ENSO Effects 

AR occurrences at landfall coinciding with MJO activity are assessed using an MJO index from 

Jones and Carvalho (2012). This index identifies daily MJO activity including MJO phases (p1-p8) 

and magnitudes. A complete description of the index and its construction can be found in Jones 

and Carvalho (2012). Of the 6370 dates examined (Oct-Mar 1979-2013) 3873 (60.8%) align with 

active MJO and 2497 (39.2%) with inactive MJO. For the 719 identified AR events landfalling on 

North America’s west coast (30.0˚-55.0˚N) during Oct-Mar 1979-2013, 418 (58.13%) occur during 

an active MJO whereas 301 (41.86%) ARs take place during an inactive MJO (Table 2.3). For the 

72 ARs landfalling in SCA 40 (55.56%) occur during an active MJO and 32 (44.4%) during an 

inactive MJO. All landfall regions experience greater AR frequencies during active MJOs; however, 

for all regions except NPNW, the AR frequency differences during active and inactive MJO are 

not statistically significant according to a test of proportions at a 95 percent confidence interval. 
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This suggests that for most of western North America during Oct-Mar, ARs landfalling during 

active MJO may occur by chance. 

 

Table 2.3 AR frequencies according to landfall region during active (ac.) and inactive (in.) MJO  

 no. ARs MJO (ac.) % MJO (in.) % 

SCA 72 40 55.56% 32 44.44% 

NCA 213 133 62.44% 80 37.56% 

SPNW 183 115 62.84% 68 37.16% 

NPNW 160 81 50.63% 79 49.38% 

All ARs 719 418 58.14% 301 41.86% 

 

 

 In regards to MJO phases (Table 2.4) for all landfalling ARs (30.0˚-55.0˚N) the greatest 

AR frequencies occur during p1 and p7 (62 dates each) with secondary peaks at p3 (58 dates) and 

p6 (54 dates). During p1, MJO enhanced convection manifests over the equatorial Indian Ocean 

with suppressed convection directly to the east over the western Pacific Ocean along with a 

retracted jet stream (Bell and Higgins 2005; Zhang 2005). At p3 enhanced convection has migrated 

eastward over the eastern Indian Ocean with suppressed convection towards the central Pacific. 

By p6 enhanced convection has continued to the western equatorial Pacific Ocean with suppressed 

convection directly to the west over the equatorial eastern Indian Ocean. At p7 enhanced 

convection has progressed farther towards the central Pacific Ocean and begins to dissipate, while 

wind and surface pressure signals normally coupled with the convection continue to propagate 

eastward and suppressed convection is to the west over the western Pacific Ocean (e.g., Jones and 

Carvalho 2012). Additionally, as the MJO enhanced convection advances towards the central 
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Pacific, there is an eastward extension of the Jet Stream (Bell and Higgins 2005; Zhang 2005). 

Overall AR activity is consistent with previous analyses such as from Guan et al. (2012) who states 

that SWE fractions in the Sierra Nevada from ARs increase during MJO p3 and p6. Additionally, 

Payne and Magnusdottir (2014) conclude that ARs affecting North America’s west coast (20.0°-

60.0°N) increase during MJO p3, p6, p7, and p8, with the greatest frequency increase during p6. 

However, our results show half the total ARs during p8. Conclusions from individual landfall 

regions (Table 2.4) are inconsistent with these previous findings and are also not uniform between 

landfall areas suggesting that MJO activity during particular MJO phases is not indicative of 

specific AR landfall location. 

 

Table 2.4 AR frequencies according to landfall region corresponding to various MJO phases  

 p1 
(phase1) p2 p3 p4 p5 p6 p7 p8 

SCA 4 9 6 2 7 3 6 3 

NCA 15 16 16 16 12 19 28 11 

SPNW 21 18 17 12 13 13 10 11 

NPNW 15 6 11 13 10 12 11 3 

All ARs 62 52 58 50 47 54 62 33 
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 AR events at landfall and coinciding ENSO phases are also assessed. ENSO phases are 

identified from the Oceanic Niño Index (ONI) from the CPC of NOAA. A description of ONI’s 

construction can be found at the CPC’s website (www.cpc.ncep.noaa.gov). For all identified ARs 

(30.0˚-55.0˚N) during Oct-Mar 1979-2013, the greatest event frequencies occur during neutral 

ENSOs (315 dates, 43.8%) with roughly even numbers during warm (203 dates, 28.2%) and cold 

(201, 28.0%) ENSOs (Table 2.5). As neutral ENSO occurs most frequently (45.2% of Oct-Mar 

1979-2013, with 29.0% warm, and 25.7% cold), this is to be expected. NCA, SPNW, and NPNW 

ARs also occur more frequently during neutral ENSO conditions (Table 2.5). However, SCA ARs 

show more even proportions of warm (25, 34.72%), cold (25, 34.72%), and neutral (22, 30.56%) 

ENSOs (Table 2.5) that is significant according to a test of proportions at the 95 percent 

confidence interval. This is also apparent in Fig. 2.13 that shows AR interannual variability by 

water year for each landfall location. The increased frequencies of ARs during ENSO neutral 

conditions for NCA, SPNW, and NPNW are consistent with previous findings from Bao et al. 

(2006). Payne and Magnusdottir (2014) conclude that during warm ENSOs AR landfalling 

latitudes shift southward, in part explaining the increase of AR frequencies in SCA during warm 

ENSOs but not the frequency increase during cold ENSOs. These results indicate that the ENSO 

neutral phase may provide the background atmospheric conditions required for AR occurrence in 

western North America but may not play a direct role in the development and/or modulation for 

ARs occurring farthest south. 
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Table 2.5 AR frequencies according to landfall region corresponding to ENSO phases 

 no. ARs warm % cold % neutral % 

SCA 72 25 34.72% 25 34.72% 22 30.56% 

NCA 213 53 24.88% 60 28.17% 100 46.95% 

SPNW 183 51 27.87% 53 28.96% 79 43.17% 

NPNW 160 48 30.00% 42 26.25% 70 43.75% 

All ARs 719 203 28.23% 201 27.96% 315 43.81% 
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Fig. 2.13 Seasonal Oct-Mar AR frequencies for water years 1980-2013 and corresponding ENSO 
phase during landfall for a SCA, b NCA, c SPNW, and d NPNW 
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2.6 Conclusions  

Understanding the characteristics and atmospheric conditions behind SCA AR events is 

imperative for proper forecasting, hazard mitigation, as well as water resources management. This 

study uses an algorithm to identify ARs affecting western North America within CFSR TPW fields 

spanning from 1979 to 2013 and then classifies ARs according to region of landfall. The current 

identification method modifies of a previous algorithm established by Jiang and Deng (2011) as 

well as Jiang et al. (2014) and most notably uses a fit ellipse approach to detect individual AR 

events. The algorithm identifies 719 ARs landfalling between 30.0°-55.0°N with 72 landfalling in 

SCA, 213 in NCA, 183 in SPNW, and 160 in NPNW. Composites of TPW, TPW anomalies, h500, 

h500 anomalies, 200-mb winds, as well as t2m anomalies are investigated for ARs affecting each 

individual landfall region on the day of, prior to, and after AR landfall in order to differentiate 

characteristics of ARs landfalling in different areas. In general, ARs landfalling along the North 

American west coast are characterized by baroclinic midlatitude wave trains progressing through 

the Pacific resulting in northeastward oriented moisture plumes extending from low-to 

midlatitudes that appear to culminate along coastal mountain ranges. On landfall days ARs are 

characterized by an offshore trough and onshore ridge as well as localized low-tropospheric 

warming. 

 Although SCA ARs display similar features to ARs landfalling farther north along the 

western coast of North America, differences arise in their progression and landfall. Anomalously 

high moisture associated with AR plumes appears farther eastward as well as equatorward for SCA 

ARs and in addition, materialize days earlier suggesting that SCA AR moisture plume patterns 

have less case-to-case variability. Several days prior to landfall, SCA ARs display a wide trough off 

the eastern coast of Asia along with an amplified ridge over Alaska leading to the displacement 

and possible merger of the upper level jets and subsequent eastward extension of the jet core with 
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winds at or greater than 60ms-1 close to shore. In combination with an offshore trough and weak 

onshore ridge on the day of landfall, there is increased zonal flow of wind and moisture suggesting 

that the region of landfall depends on the phase, position, and amplitude of the wave-train. 

 ARs occurring during and throughout various phases of the PNA, MJO, and ENSO are 

also investigated with SCA ARs again exhibiting differing relationships than that of ARs landfalling 

farther north. H500 anomalies for SCA ARs most closely resemble PNA- whereas ARs landfalling 

farther north resemble PNA+. However, an analysis of ARs with the PNA index indicates that 

ARs occur more frequently during PNA+ for all landfall regions but that the frequencies of SCA 

ARs during PNA+ and PNA- is not significantly different. All other landfall regions show 

significantly increased AR activity during PNA+. This finding is contradicted by the eastward 

extension of the jet core seen with SCA ARs, a feature associated with PNA+, suggesting that 

other mechanisms may be more relevant in modifying the position of the jet. Additionally, as ARs 

landfall farther north, there is a westward retraction of the jet core, a feature more common to the 

PNA- phase. This indicates that the PNA may not be the main driver of AR activity for the western 

coast of North America. 

 The frequencies of SCA, NCA, and SPNW ARs reveal no statistically significant 

differences of proportions for active or inactive MJO whereas NPNW ARs occur more evenly 

between active and inactive MJO, inconsistent with overall MJO activity. Furthermore, while ARs 

in general occur more frequently during MJO phases 1, 3, 6, and 7, when separated into landfall 

regions there is no discernible pattern. In regards to ENSO, SCA ARs occur evenly between warm, 

cold, and neutral ENSOs whereas NCA, SPNW, and NPNW see greater AR frequencies during 

ENSO neutral conditions in accordance with ENSO proportions. These results hint at the 

complexity of SCA ARs, as the dominant mechanisms affecting ARs along the North American 

western coast do not appear to affect SCA ARs the same way. 
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Chapter 3 

Backward Trajectories Analysis of Southern California Atmospheric Rivers 

 

Abstract 

Atmospheric rivers (ARs) are filamentary channels of high water vapor flux that transfer moisture 

horizontally through the atmosphere at low-levels. These features form over the oceans with 

limited losses of moisture through precipitation until landfall. For areas with extensive 

topographical variations, particularly along coastlines, ARs are often responsible for large annual 

rainfall totals as well as high-intensity storms due to orographic forcing. ARs are important factors 

when predicting hazardous events such as flooding and are vital components of many regional 

water budgets. This is especially true for drought-prone areas such as Southern California (SCA) 

which experiences relatively few storms per season, many of which are AR events. While extensive 

research has been developed to investigate AR events affecting the west coast of the U.S, few 

focus on southern latitudes. Additionally, apart from case studies, limited research has addressed 

the climatology of AR lifecycles. 

 We use a Lagrangian model to create backward air parcel trajectories of 159 AR events 

that made landfall on the U.S. west coast from December 2004 to December 2015. Trajectories 

are used to examine the lifecycles and movements of these ARs and to differentiate SCA ARs 

from ARs landfalling farther north. We compare hourly trajectories for the hour of and 72 hours 

before landfall. Prior to landfall, SCA ARs share similarities but also have distinct differences from 

other ARs. At 1000 m above mean sea level (MSL) SCA AR trajectories are shorter than 

trajectories for ARs landfalling farther north. Additionally, along trajectory measurements for SCA 

ARs tend to be warmer and have higher specific humidity values. This applies to both the 1000 m 
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and 2000 m MSL levels. These results imply that SCA ARs move slower and have the potential to 

produce higher-intensity storms at landfall. 

 

3.1 Introduction 

Few studies have examined AR trajectories and lifecycles (e.g. Ramos et al. 2016; Rutz et al. 2015; 

Sodemann and Stohl 2013) and are often limited to singular case study events (e.g. Moore et al. 

2012). Those that did examine AR trajectories often focused on ARs landfalling farther north 

along North America’s western coast (e.g. Neiman et al. 2013). While use of trajectory models is 

often limited to case studies, these tools can provide us with valuable information about the 

characteristics of AR events in the days leading up to landfall. This research aims to examine the 

trajectories and lifecycles of ARs affecting the western coast of North America with a focus on 

ARs affecting SCA. The main goal of this work is to determine the differences of SCA ARs from 

ARs landfalling farther north using trajectory locations and distances, as well as along trajectory 

characteristics before and during landfall. This will be achieved by describing in detail the 

climatology of the trajectories and respective environmental conditions along the trajectories. The 

backward trajectory analysis is beneficial for this study as it provides hourly outputs of location as 

well as several along trajectory characteristics important to AR progression including pressure, 

specific humidity values, among others. This paper is organized as follows. Section 3.2 describes 

datasets and methods used. Section 3.3a discusses trajectory model locational results. Section 3.3b 

discusses along trajectory characteristic results. Section 3.4 presents a case study analysis. Section 

3.5 conclusions. 
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3.2 Datasets & Methods 

Two gridded datasets from the National Centers for Environmental Prediction (NCEP) at the 

National Oceanic and Atmospheric Administration (NOAA) provide synoptic-scale conditions 

for these analyses: 1) the Climate Forecast System Reanalysis (CFSR), used for AR identification 

as well as determining AR landfall locations, and 2) the Global Data Assimilation System (GDAS), 

used for backward trajectories. We use daily CFSR (Saha et al. 2010) fields of total precipitable 

water (TPW) from 1979 to 2015 available at a 0.5° ´ 0.5° horizontal resolution and calculate daily 

anomaly fields at each grid point by removing the smoothed annual cycle. TPW (in kg m-2) is an 

equivalent to integrated water vapor as it reflects the water total within an atmospheric column 

(vertically integrated, surface – 200mb) if all water vapor condenses into liquid water with 1 kg m-2 

equal to 1 mm (Campmany et al. 2010). We use daily GDAS (Kanamitsu 1989) analyses available 

at a 1.0° ´ 1.0° horizontal resolution with a vertical resolution of 25 hPa between 1000 and 900 

hPa and 50 hPa available from December 2004 until December 2015. 

We use an AR identification algorithm to identify events and their landfall locations for 

ARs affecting the western coast of North America during the wet season months of October 

through March within 0.5° ´ 0.5° TPW fields using a fit ellipse approach. More information about 

the algorithm can be found in Harris and Carvalho (2017). We then designate ARs according to 

regions of landfall and create backward air parcel trajectories of 159 AR events (Table 3.1) using 

the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess 

1997, 1998) from the Air Resources Laboratory at NOAA. HYSPLIT uses a Lagrangian 

methodology along with 3D meteorological fields of horizontal wind, temperature, pressure 

and/or heights, along with surface pressure to create forward and backward trajectories.  
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We use the TPW anomaly fields to determine locations of the maximum positive TPW 

anomaly overland for each AR event affecting North America between 34.0°-49.0°N and within 

2° of the coastline. This is the main starting location (latitude, longitude), i.e. the first and center 

grid cell, for the backward trajectories. In HYSPLIT one backward trajectory is calculated from 

this grid cell. Additionally, we build a box of eight other grid cells each offset by 1.0° 

longitude/latitude surrounding the original cell with a backward trajectory calculated at each cell 

to create a 3° latitude ´ 3° longitude box centered over the landfall location grid cell. This group 

of nine cells/trajectories is obtained for each of the ending levels, 1000 m, 2000 m, and 3000 m 

above mean sea level (MSL), consistent with previous backward trajectories analyses of ARs using 

HYSPLIT (e.g. Moore et al. 2012) resulting in 27 calculated trajectories for each AR. Backward 

trajectories run hourly for the previous 72-h, consistent with Moore et al. (2012), with GDAS 

providing the 3D atmospheric conditions for the events including vertical motion fields. We use 

GDAS as it is already converted into a HYSPLIT ready format and is used in previous AR 

HYSPLIT analyses (e.g. Neiman et al. 2013; Moore et al. 2012). It is important to note that AR 

lifecycles range temporally. The designated 72-h is a framework to understand the selected AR 

events and their synoptic conditions. Longer or shorter temporal trajectories may be more 

appropriate depending on individual events. Since the main goal of this study is to provide a 

climatology of all AR events we use 72-h as a guideline to evaluate properties that are consistent 

among ARs that landfall in coastal North America. Our analyses indicate that longer trajectories 

are normally subject to a number of distinct processes, increasing the variance among events (not 

shown).  

 HYSPLIT computes trajectory advection using 3D velocity vectors (V) averages for initial, 

P(t), as well as first guess, P’(t+Dt), positions, where the advection distance per time step (Dt) is 



53 

 

less than the grid spacing and the velocity vectors are linearly interpolated in time and space. The 

first guess position is calculated as 

   𝑃9 𝑡 + ∆𝑡 = 𝑃 𝑡 + 𝑉(𝑃, 𝑡)∆𝑡                                                   (Eq. 3.1) 

And the final position is calculated as 

   𝑃 𝑡 + ∆𝑡 = 𝑃 𝑡 + 0.5 𝑉 𝑃, 𝑡 + 𝑉 𝑃9, 𝑡 + ∆𝑡 ∆𝑡                (Eq. 3.2) 

 

HYSPLIT is terrain following (normalized s coordinate) with 

   𝜎 = 𝑍1DE − 𝑍%FG / 𝑍1DE − 𝑍IG                                                (Eq. 3.3) 

Where Ztop is the height of the top of the model, Zmsl is the height of mean sea level, and Zgl is the 

height of ground level, so that s is normalized to be a fraction of the total model depth. If a 

trajectory leaves the top of the domain during the sequence, that trajectory is terminated whereas 

if the trajectory contacts the ground during the run, it continues. When describing trajectories and 

along trajectory characteristics, the term ‘parcel’ is sometimes used as a frame of reference for 

understanding environmental conditions during a trajectory, consistent with other HYSPLIT AR 

studies (e.g. Moore et al 2012; Neiman et al. 2013). Parcels are best thought of as points with 

constant volumes following the course of the trajectory that do not interact with the environment. 

Please see Draxler and Hess (1997) regarding HYSPLIT’s construction and/or additional formulas 

used within the model. 
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Table 3.1 Landfall regions, information, and numbers of identified landfalling ARs with backward 
trajectories calculated by means of HYSPLIT for Oct-Mar seasons from Dec. 2004 to Dec. 2015. 
Trajectory numbers are the number of individual trajectories calculated at each level 

Name Abbr. Lat. Covered 
(˚N) Landfalling ARs Trajectories per 

Level 
Southern 
California SCA 32.0 ˚-37.0 ˚ 30 270 

Northern 
California NCA 38.0 ˚-43.0 ˚ 70 630 

Pacific 
Northwest PNW 44.0 ˚-49.0 ˚ 59 531 

All ARs - 32.0 ˚-49.0 ˚ 159 1431 

 

 

3.3 HYSPLIT results 

We find differences in trajectory distances as well as along trajectory parcel measurements between 

the three landfall regions. Differences are most pronounced at the 1000 m MSL level although we 

also discuss the 2000 m and 3000 m MSL levels when applicable. Figs. 3.1-3.12 depict variables at 

1000 m and 2000 m MSL only as AR cores tend to occur below 2500 m and various studies show 

the bulk of moisture flux around 1000 m (e.g. Ralph et al. 2005). We calculate differences between 

landfall area groups using a Sign-Test (Anderson and Finn 1996) which compares the distributions 

of two groups based on medians. The Sign-Test involves merging together the two groups of 

interest, determining the median of the combined group (M), and then using a 2-Proportion Z-

Test calculated as 

𝑧 =
𝑝1−𝑝2
𝑝𝑞 1

𝑛1
+ 1
𝑛2

                                                               (Eq. 3.4) 

Where 𝑝N (𝑝O) is the proportion of the first (second) sample group that is greater than M from the 

combined group. Value 𝑝 (𝑞) is the proportion of the combined group that is greater (less) than 
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M (as M is the median value of the combined group, by definition these proportions must be ½ 

and ½), with 𝑛N (𝑛O) as the number in the first (second) sample group. The test is two-tailed with 

larger z values indicating distributions that have greater differences from one another with critical 

values of ±1.96 at the 95% (a=0.05) significance level (Anderson and Finn 1996). 

 

3.3a Trajectory pathways and distances 

We calculate median trajectory pathways along with interquartile ranges for all ARs landfalling 

within specified regions to determine overall movements of these AR events. For trajectories 

ending at 1000 m MSL (Fig. 3.1), median trajectories for all regions are quasi-zonal and exhibit 

cyclonic curvature. Trajectories become less zonal with less cyclonic curvature at 2000 m (Fig. 3.1) 

and 3000 m MSL (not shown) and extend in a northeastward direction. Qualitatively, ARs 

landfalling farther south appear to have the most cyclonic curvature at 1000 m MSL, although 

they display the most ‘zonal’ orientations at 2000 m MSL which is consistent with previous North 

American AR studies (e.g. Harris and Carvalho 2017). SCA AR trajectory locations 72 hours 

before landfall are farther eastward than for comparable trajectories of ARs landfalling farther 

north and, as expected, SCA AR trajectories also appear farther south (Harris and Carvalho 2017). 

Over the course of 72 hours, all trajectories remain north of 25°N with only a few trajectories in 

the 25th quartile traveling south of 30°N. As moisture within an AR is from a combination of local 

sources, such as convergence along a cold front, as well as from horizontal transport of moisture 

over distances (Bao et al. 2006), this suggests that moisture sources for many of these events may 

not be tropical in nature within 72 hours from landfall. 
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Fig. 3.1 Median (solid lines), 25th (dashed lines), and 75th (dotted lines) quartile trajectories over 
72-h according to landfall region and level. 3000 m MSL plot not shown 
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At all levels SCA ARs have the shortest median trajectories but the interquartile range (Fig. 

3.2) indicates that trajectory distances vary. For trajectories ending at 1000 m MSL (Fig. 3.2), SCA 

(median=1877.79km IQR=1275.58km) AR trajectories are significantly shorter than both NCA 

(median=2328.45km IQR=1233.11km) and PNW (median=2497.10km IQR=1131.29km) ARs 

but they have the highest interquartile range. At 2000 m MSL (Fig. 3.2), SCA (median=2625.03km 

IQR=1420.74km) ARs are significantly shorter than both NCA (median=2897.58km 

IQR=1423.41km) and PNW (median=2955.83km IQR=1296.97km) ARs with similar dispersions 

between SCA and NCA ARs. For trajectories ending at 3000 m MSL (not shown), SCA 

(median=3324.98km IQR=2220.235km), NCA (median=3588.85km IQR=1886.13km), and 

PNW (3497.14km IQR=1601.92km) ARs are not significantly different from one another, 

although SCA ARs still have the shortest median trajectories. Since over the course of 72-h SCA 

ARs do not travel as far as their northern counterparts, they are slower moving. This difference in 

speeds implies that extratropical cyclones are not likely to affect SCA ARs in the same manner as 

NCA and PNW ARs. For example, SCA ARs may tend to be more stationary and thus, several 

extratropical cyclones may affect a single SCA AR event such as with the case study event 

discussed in section 3.4. 
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Fig. 3.2 Boxplots depicting AR trajectory distances (km) according to landfall region and level. 
Box depicts interquartile range (IQR) (25th-75th percentile) and whiskers depict values within 
1.5´IQR of the IQR with median (black lines) and mean (red dots) distances. Outliers are depicted 
as open circles. 3000 m MSL not shown 
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3.3b Along trajectory characteristics 

We calculate median and interquartile along trajectory values for all ARs landfalling within 

specified regions to gain insight into the conditions present during AR progression. All trajectories 

ending at 1000 m and 2000 m MSL experience either some parcel moistening (1-3 g kg-1) or 

moisture holds constant (Fig. 3.3), except for the hours directly before (0-15 hours) landfall. 

Moistening tends to occur at higher rates in the earlier trajectory hours, farther from landfall. 

Additionally, at all levels most trajectories experience subsidence (£1.75hPa hr-1) before landfall 

(Fig. 3.4) (15-72 hours). This increase of moisture along with subsidence can be explained by either 

evaporation (e.g., from the ocean surface or from precipitation) or moisture advection by the 

winds (Trenberth 1999). With temperatures (Fig. 3.5), for parcels ending at 1000 m MSL we see 

warming (1-3 K) over the course of the trajectory, most likely due to subsidence (Fig. 3.4), whereas 

at 2000 m MSL temperatures stay nearly constant until the hours before landfall. Additionally, we 

see a gradual rise of relative humidity (Fig. 3.6) over the course of the trajectories. Towards landfall 

for all regions, specific humidity levels drop and air rises with corresponding drops in temperature 

as well as rises in relative humidity values to greater than 70% indicating orographic uplift resulting 

in condensation and precipitation. 
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Fig. 3.3 Time series of median (solid lines), 25th (dashed lines), and 75th (dotted lines) quartile 
values of hourly specific humidity (g kg-1) according to landfall region and level. 3000 m MSL plot 
not shown. 
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Fig. 3.4 Same as Fig. 3.3, but for pressure (hPa). 3000 m MSL plot not shown 
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Fig. 3.5 Same as Fig. 3.3, but for temperature (K). 3000 m MSL plot not shown 
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Fig. 3.6 Same as Fig. 3.3, but for relative humidity (%). 3000 m MSL plot not shown 
 

40
50

60
70

80
90

10
0

Relative Humidity  1000m  per hour

Hours prior to landfall

R
el

at
ive

 H
um

id
ity

 (%
)

70 65 60 55 50 45 40 35 30 25 20 15 10 5

SCA
NCA
PNW

40
50

60
70

80
90

10
0

Relative Humidity  2000m  per hour

Hours prior to landfall

R
el

at
ive

 H
um

id
ity

 (%
)

70 65 60 55 50 45 40 35 30 25 20 15 10 5

SCA
NCA
PNW



64 

 

 Boxplots show differences in along trajectory measurements of temperature and specific 

humidity between different landfall regions. For parcels ending at 1000 m MSL, the maximum 

temperatures recorded along trajectories (tmax) (Fig. 3.7) are significantly higher with a smaller 

interquartile range for SCA (median=288.1K IQR=4.8K) than either NCA (median=286.3K 

IQR=5.6K) and PNW (median=285.0K IQR=5.6K) ARs. For trajectories ending at 2000 m MSL, 

there are no statistically significant differences in tmax values between SCA (median=286.4K 

IQR=5.1K) and NCA (median=285.9K IQR=6.5K) ARs, although both SCA and NCA ARs are 

significantly warmer than PNW (median=284.5K IQR=5.8K) ARs. This signifies that at lower 

levels, SCA ARs tend to reach temperatures that are warmer than both NCA and PNW ARs and 

that temperatures vary the least but that differences diminish higher in the atmosphere. SCA ARs 

also have significantly higher temperatures recorded at landfall (tland) (Fig. 3.8) at both 1000 m 

and 2000 m MSL with SCA ARs having median values of 283.2K (IQR=4.8K) (min.=274.1K) at 

1000 m MSL with no values below freezing (273K) and 279.1K (IQR=3.8K) at 2000 m MSL. 

NCA ARs have median tland values of 281.3K (IQR=4.6K) (min.=265.5K) as well as 278.2K 

(IQR=3.4K) and PNW with 280.5K (IQR=4.0K) (min.=269.8K) and 277.3K (IQR=4.0K), at 

1000 m and 2000 m MSL respectively. At both levels, NCA ARs are also significantly warmer than 

PNW ARs for both tmax as well as tland. This is somewhat as expected, as SCA is closer to the 

equator and the environment in which ARs evolve is generally warmer. This increase in 

temperature with decrease in latitude is also an indicator that SCA ARs are more likely to 

originate/travel through warmer latitudes. Furthermore, warmer temperatures indicate events that 

are more likely to lead to precipitation rather than snow. While AR-induced events with 

temperatures below freezing (273K) are more common farther north and provide integral inputs 

to water budgets (e.g. Guan et al. 2013), warmer ARs have been linked to several extreme events 

resulting in flash flooding (e.g. Ralph et al. 2006) throughout much of the U.S.’s west coast. 
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Fig. 3.7 Boxplots depicting maximum along-trajectory temperature (tmax) (K) values for ARs 
according to landfall region and level. Box depicts interquartile range (IQR) (25th-75th percentile) 
and whiskers depict values within 1.5´IQR of the IQR with median (black lines) and mean (red 
dots) values. Outliers are depicted as open circles. 3000 m MSL not shown 
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Fig. 3.8 Same as Fig. 3.7 but for landfall temperatures (tland) (K) 
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To understand changes of along trajectory characteristics, we calculate differences between 

each trajectory’s maximum measurement and their respective landfall measurement (i.e. delta = 

max – land). With the differences of temperature (tdelta) (Fig. 3.9), at 1000 m MSL statistically 

significant differences exist between SCA (median=4.1K IQR=4.3K) and NCA (median=4.6K 

IQR=4.6K) ARs as well as NCA and PNW (median=4.2K IQR=4.2K) ARs but not between SCA 

and PNW ARs. At 2000 m MSL tdelta for SCA (median=6.9K IQR=5.6K), NCA (median=7.2K 

IQR=5.3K), and PNW (median=7.0K IQR=4.7K) ARs are not significantly different. This 

indicates that SCA and PNW ARs at 1000 m MSL experience less cooling over the course of their 

trajectories than NCA ARs which experience more cooling. For trajectories ending at 2000 m 

MSL all ARs regardless of landfall location experience similar temperature changes. The higher 

values for tmax and tland at low levels as well as lower cooling values throughout the trajectory 

give SCA ARs the potential to hold more moisture, particularly at landfall. 
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Fig. 3.9 Same as Fig. 3.7 but for differences of temperature (tdelta) (K). Where tdelta = tmax – 
tland 
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 In regards to specific humidity, differences between regions are most prominent for 

trajectories ending at 1000 m MSL. SCA ARs at this level have significantly higher maximum along 

trajectory specific humidities (qmax) (Fig. 3.10) (median=8.4gkg-1 IQR=3.0gkg-1) as well as specific 

humidities at landfall (qland) (Fig. 3.11) (median=6.9gkg-1 IQR=2.5gkg-1) than both NCA (qmax 

median=7.7gkg-1 IQR=2.9gkg-1; qland median=6.5gkg-1 IQR=2.3gkg-1) and PNW (qmax 

median=6.9gkg-1 IQR=2.7gkg-1; qland median=5.8gkg-1 IQR=2.0gkg-1) ARs. These higher 

moisture values may be partially explained by the corresponding higher temperatures (Figs. 3.7-

3.9) as warmer temperatures increase air’s capacity to hold water vapor. At 2000 m and 3000 m 

MSL (not listed), SCA (qmax median=7.8gkg-1 IQR=3.1gkg-1; qland median=5.8gkg-1 

IQR=2.0gkg-1) and NCA (qmax median=7.7gkg-1 IQR=3.4gkg-1; qland median=5.8gkg-1 

IQR=1.8gkg-1) ARs have significantly higher qmax and qland values than PNW (qmax 

median=6.7gkg-1 IQR=3.2gkg-1; qland median=5.0gkg-1 IQR=1.8gkg-1) ARs but SCA and NCA 

ARs are comparable to one another. 
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Fig. 3.10 Same as Fig. 3.7 but for maximum specific humidity (qmax) (g kg-1) 
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Fig. 3.11 Same as Fig. 3.7 but for landfall specific humidity (qland) (g kg-1) 
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With the differences of maximum and landfall specific humidity values along trajectories 

(i.e. qdelta = qmax – qland) (Fig. 3.12), for trajectories ending at 1000 m MSL, SCA 

(median=1.0gkg-1 IQR=2.0gkg-1) ARs have the highest median values and IQR but are not 

statistically different from NCA (median=0.9gkg-1 IQR=1.6gkg-1) or PNW (median=0.8gkg-1 

IQR=1.5gkg-1) ARs. There are also no significant differences of qdelta at 2000 m MSL (not listed). 

This indicates that for trajectories ending at 1000 m and 2000 m MSL, ARs regardless of landfall 

region are experiencing similar losses of moisture along the course of their trajectories. As SCA 

ARs often have high qmax and qland values, they are capable of transporting large amounts of 

moisture to an area resulting in high-intensity storms. 
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Fig. 3.12 Same as Fig. 3.7 but for differences of specific humidity (qdelta) (g kg-1). Where qdelta 
= qmax – qland 
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In an attempt to differentiate the atmospheric characteristics of SCA AR events compared 

to ARs landfalling farther north, we create day of landfall composites using additional CFSR fields 

for each landfall region. To determine if events with high specific humidity values differ in their 

atmospheric qualities, composites are created for events exceeding the 75th percentile for both 

qmax and qland at 1000 m and 2000 m MSL. Figure 3.13 show composites for events exceeding 

the qland 75th percentile for trajectories ending at 1000 m MSL. Composites for events exceeding 

the qmax 75th percentile (not shown) as well as trajectories ending at 2000 m MSL (not shown) 

show similar results. 

 Overall for all regions, on the day of landfall there is a plume of enhanced TPW (³20mm) 

extending to the coast from lower latitudes, between areas of low and high sea level pressure (SLP) 

(Fig. 3.13). There is an offshore trough and onshore ridge with strong winds funneling moisture 

towards the coast. Yet, for SCA ARs there is a continuous track of higher (³25mm) TPW values 

extending from south of 30°N compared to ARs landfalling farther north which have lower 

and/or discontinuous TPW values. Along with a weaker SLP gradient and a shallow onshore 

trough, there is increased zonal flow for SCA ARs. Whereas the SLP gradient is strongest and the 

onshore ridge most amplified for PNW ARs. All of this is consistent with the median AR trajectory 

orientations discussed earlier (Fig. 3.1). 
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Fig. 3.13 Composite atmospheric conditions for AR landfall days according to landfall region. 
(Left) Sea level pressure (hPa) (contours) and total precipitable water (kg m-2) (fill). (Right) 700mb 
geopotential heights (gpm) (contours), total precipitable water (fill), and winds (m s-1) (barbs). 
Note that the minimum value for total precipitable water is 20 and wind is 5, with smaller values 
not shown. 
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3.4 Case Study Analysis 

In this section, we describe a powerful AR event to affect SCA on February 17, 2017 (021717). 

After years of persistent drought, the 2016-2017 water season brought significant precipitation to 

California. The 021717-event delivered torrential rainfall and strong winds to several coastal SCA 

cities including Santa Barbara, Ventura, and Los Angeles leading to flooding of low lying areas 

(dailynews.com3) as well as tree and structural damage (ktla.com4) costing the state millions in 

reported repairs (fortune.com5). This event was a well forecasted AR that by the time of landfall 

in SCA, had strengthened from initial forecasts. Additionally, this event occurred during a period 

of enhanced Madden-Julian Oscillation (MJO) activity according to NOAA’s Climate Prediction 

Center6. On and days before 021717, the MJO was in phase eight6 with the MJO signal evident in 

the central Pacific Ocean and into the Western Hemisphere (Zhang 2005). MJO activity is linked 

to high-intensity rainfall values throughout the western coast of North America (Jones and 

Carvalho 2012). Also, Payne and Magnusdottir (2014) conclude that higher frequencies of 

landfalling ARs to North America’s west coast occur during phase 8 of the MJO. 

 We use previously described CFSR reanalysis fields to examine the synoptic conditions on 

the day of and in the hours leading up to 021717’s landfall. We also use Global Precipitation 

Mission (GPM) data from the National Aeronautics and Space Administration to illustrate the 

event’s rainfall. Specifically, we use 30-minute Integrated Multi-satellitE Retrievals for GPM 

(IMERG) available on a 0.1° ́  0.1° spatial resolution spanning 60°N-S. Briefly, IMERG is a multi-

satellite algorithm that uses estimates computed from various passive microwave sensors 

																																																								
3 Web article at dailynews.com/general-news/20170217/chp-works-to-shut-down-5-freeway-after-chaotic-

rain-floods-lanes-in-sun-valley 
4 Web article at ktla.com/2017/02/17/storm-forecast-as-strongest-of-season-prompts-flash-flood-

watches-mudslide-concerns 
5 Web article at fortune.com/2017/02/25/california-storm-damage-costs 
6 NOAA CPC Update at 

cpc.ncep.noaa.gov/products/precip/CWlink/MJO/ARCHIVE/PDF/mjo_evol-status-fcsts-20170220.pdf 
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combined with microwave geo-IR fields that are then modified with monthly rain gauge surface 

data (Huffman et al. 2017). More information about IMERG can be found in Huffman et al. 

(2017). We use HYSPLIT to create backward trajectories for this event to determine how this AR 

compares to average SCA ARs. Like before, we force HYSPLIT with 1° GDAS, calculating 72-h 

backward trajectories ending at February 17, 2017 1800 UTC. We choose 1800 UTC as this hour 

aligns well with the precipitation and synoptic conditions discussed below. We calculate nine 

backward trajectories at each level for three levels, 1000 m, 2000 m, and 3000 m MSL. 

 

3.4a Synoptic Conditions 

IMERG precipitation data for 021717 1800 UTC (Fig. 3.14) depicts light precipitation values 

(£5mm) throughout California including areas offshore. Rainfall corresponds to a comma 

formation typical to extratropical cyclones. A narrow band of high precipitation (³11mm) occurs 

ahead of the presumed cold front location, impinging on the Santa Ynez Mountains. This area of 

strong rainfall is associated with the defined AR event, consistent with Dettinger et al. (2015) and 

Eiras-Barca et al. (in review) who state that AR moisture transport related to extratropical cyclones 

occurs in the pre-cold frontal area, and is separate as well as distinct from precipitation within the 

warm conveyor belt area closest to the center of the extratropical cyclone. These narrow bands of 

moisture and subsequent precipitation reach a maximum if an AR contacts an orographic barrier 

such as a mountain range (Eiras-Barca et al. in review) as seen with this AR and the Santa Ynez 

Mountains. 
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Fig. 3.14 Gridded (0.1° ´ 0.1°) Global Precipitation Measurement rainfall data (in mm) for the 
021717 case study event at 1800 UTC 
 

 

Reanalysis (Fig. 3.15) on February 16, 2017 (021617) 0600 UTC depicts a corridor of 

strong westerly / southwesterly 850mb flow associated with a low-pressure system offshore from 

Washington / British Columbia and a corresponding TPW plume with values ³20 mm extending 

from the Hawaiian Islands to northern California / southern Oregon. At 500mb there is a wide 

offshore trough along with vorticity maximums offshore from the Washington / Oregon coast. 

There are strong geopotential height gradients between both offshore troughs and onshore ridges 

at 850mb and 500mb. After initial AR landfall, TPW values migrate southward and weaken along 
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with winds. By 021617 1800 UTC we see the development of a frontal wave at 850mb. This wave 

strengthens on 021717 0600 and 1800 UTC and develops into a low-pressure system which can 

be seen in both geopotential height as well as absolute vorticity fields. This leads to the shifting in 

the offshore trough’s axes, encouraging movement of strong wind and moisture towards SCA and 

it allows for the augmentation of TPW seen in 021717 0600 UTC, due to increased convergence 

along the cold front (e.g. Bao et al. 2006). This mesoscale frontal wave and development of a 

second low-pressure system are the primary reasons for this storm’s high-intensity. 
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Fig. 3.15 Atmospheric conditions for the 021717 case study event from reanalysis. Each figure 
consists of two images. (Top) 500mb geopotential heights (gpm) (contours), absolute vorticity 
(10-5 s-1) (fill), and winds (m s-1) (barbs). (Bottom) 850mb geopotential heights (contours), total 
precipitable water (kg m-2) (fill), and winds (barbs). Note that the minimum value for absolute 
vorticity is 10, wind is 5, and TPW is 20, with smaller values not shown. Titles state observation 
times with 021617 0600 UTC (top left), 021617 1800 (top right), 021717 0600 (bottom left), and 
021717 1800 (bottom right) 
	

	

3.4b HYSPLIT Analysis 

 For the variations of spatial location and temporal along trajectory characteristics, we use the 

medians of the nine trajectories at each level. According to the temporal characteristics (Fig. 
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3.16a-d), trajectories ending at each level are mostly consistent with the regional characteristics 

examined earlier. There are decreases in pressure (Fig. 3.16a) ~12 hours before and during landfall 

for all three levels along with increases of relative humidity (Fig. 3.16b) with values reaching over 

90%, decreases of temperature (Fig. 3.16c), and increases of specific humidity (Fig. 3.16d), which 

are all consistent with orographic uplift and subsequent precipitation. In the 72 hours before 

landfall, pressure remains relatively constant whereas in the regional averages there is an increase 

of pressure indicative of subsidence. The trajectories ending at 1000 m MSL remain close to the 

sea surface until lifting begins while trajectories ending at 2000 m and 3000 m MSL remain at low 

altitudes (>900hPa) until lift. Relative humidity is high (>75%) in the hours before landfall with 

increases in relative humidity towards landfall. Temperatures before landfall stay relatively 

constant at each level. For specific humidity, at 1000 m and 2000 m MSL there are increases over 

the course of the trajectory but at 3000 m MSL specific humidity decreases. 
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Fig. 3.16 Hourly time series of median along-trajectory values for the 021717 case study event 
according to landfall level. Observed characteristics include a pressure (hPa), b relative humidity 
(%), c temperature (K), and d specific humidity (g kg-1) 
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Overall, this AR has much higher specific humidity values and slightly higher temperatures 

than the previously examined ARs including those that made landfall in SCA. In terms of qmax 

(Fig. 3.17), this event has higher median values (9.8gkg-1 at 1000 m MSL, 8.9gkg-1 at 2000 m MSL, 

and 9.7gkg-1 at 3000 m MSL) at all levels than all regional ARs with values surpassing SCA’s 75th 

percentile for qmax moisture at 1000 m and 3000 m MSL. An analysis of CFSR reveals that the 

climatological mean specific humidity values during February (1979-2015) for (ocean) grid cells 

between 220°-240°E and 20°-35°N at 925mb is 6.6gkg-1, 3.6gkg-1 at 850mb, and 1.8gkg-1 at 700mb 

(not shown). Thus, specific humidity for this event was far above regional moisture averages for 

the season. At all levels this AR has the highest qland values (Fig. 3.17) (qland medians: at 1000 m 

MSL 8.1gkg-1, 2000 m MSL 7.1gkg-1, and 3000 m MSL 5.7gkg-1) and surpasses the 75th percentile 

for qland measured moisture for SCA ARs at all levels as well. Additionally, this AR also has higher 

tmax values (Fig. 3.18) (medians: at 1000 m MSL 290.2K, 2000 m MSL 287.3K, and 3000 m MSL 

289.1K) at all levels but, median tland temperature values (Fig. 3.18) (medians: at 1000 m MSL 

283.5, 2000 m MSL 280.7K, and 3000 m MSL 276.6K) are comparable to other SCA ARs (Figs. 

3.7-3.8). This may be due to this event originating from much lower in the troposphere (Fig. 

3.16a) and unlike regional averages, these trajectories do not experience long duration subsidence. 

These very high specific humidity values and high temperatures account for the high-intensity 

rainfall (Fig. 3.15) seen during this event. We also see that over the course of 72-h these trajectories 

have shorter trans-Pacific pathways (Fig. 3.19) indicating a very slow-moving system, but are 

consistent with previous results in that 1000 m MSL (median=1282.85km) trajectories are the 

shortest followed by 2000 m (median=1478.51km) and then 3000 m MSL (median=2122.66km) 

trajectories (Fig. 3.20). Although, in the 72 hours before landfall these trajectories travel from 

south of 30°N, indicating more tropical sources of moisture and high overall temperatures. 
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Fig. 3.17 Boxplots of trajectory maximum (qmax) and landfall (qland) specific humidity values for 
the 021717 case study event according to landfall level. Box depicts interquartile range (IQR) 
(25th-75th percentile) and whiskers depict values within 1.5´IQR of the IQR with median (black 
lines) and mean (red dots) values. Outliers are depicted as open circles 

●

●● ●

●●

qland

1000m qmax

qland

2000m qmax

qland

3000m qmax

4 6 8 10 12 14 16

CS Specific Humidity 

q (g/kg)

●

●

●

●

●

●



86 

 

 

Fig. 3.18 Same as Fig. 3.17, but for maximum (tmax) and landfall (tland) temperatures 
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Fig. 3.19 Median trajectories over 72-h for the 021717 case study event according to landfall level 
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Fig. 3.20 Boxplots depicting AR trajectory distances for the 021717 case study event according 
to landfall level. Box and whiskers depict interquartile range with median (black lines) and mean 
(red dots) distances. Outliers are depicted as open circles 
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In the 72 hours before landfall, differences arise in trajectory distances as well as measured along 

trajectory characteristics. 

 In general, ARs landfalling in the western U.S. and ending at 1000 m MSL exhibit quasi-

zonal orientations and cyclonic curvatures. They become less zonal and begin to extend in a 

northeastward orientation typical to ARs landfalling in North America (e.g. Neiman et al. 2008a) 

at higher altitudes with SCA AR trajectories displaying more zonal orientations (e.g. Harris and 

Carvalho 2017). SCA ARs trajectories appear farther south and trajectory locations 72-h before 

landfall are farther eastward in Pacific which is consistent with previous North American AR 

studies (Harris and Carvalho 2017). In the 72 hours before landfall very few AR trajectories travel 

below 30°N which indicates that water vapor origins (within 72-h of landfall) of many ARs may 

not be tropical in nature as ARs gather their water vapor through direct horizontal transport as 

well as local convergence (Bao et al. 2006). SCA AR have the shortest trajectories at all levels, thus 

in the 72-h before landfall, these ARs are slower. This implies that these ARs are likely to have 

differing relationships with extratropical cyclones than their more northern counterparts. 

 With along trajectory characteristics at all regions, parcels ending at 1000 m and 2000 m 

MSL show moistening (1-3 g kg-1) as well as subsidence (£1.75hPa hr-1) along the course of their 

trajectories. In the hours directly before landfall (0-15 hours) there is a decrease in pressure, high 

(~70%) relative humidity values, and drops in temperature indicating orographic uplift. SCA AR 

trajectories ending at 1000 m and 2000 m MSL tend to be warmer both with maximum along 

trajectory temperatures as well as landfall temperatures. This may be in part due to lower latitudes 

but indicates that these ARs have an increased potential to hold more moisture and are more likely 

to result in rainfall as opposed to snow. In regards to specific humidity, for trajectories ending at 

1000 m MSL SCA ARs have higher maximum specific humidities values as well as higher specific 

humidities at landfall than both NCA and PNW ARs. At 2000 m MSL this difference is only seen 
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with SCA and PNW. Although the difference between maximum specific humidities and specific 

humidities at landfall (qdelta) show no differences between ARs in different landfall regions 

indicating that ARs regardless of landfall location are likely losing similar amounts of moisture due 

to condensation and precipitation along the course of their trajectories. As SCA ARs tend to have 

very high qmax and qland values, when these events make landfall they result in high-intensity 

storms. These differences help to account for the variances seen with SCA ARs which landfall less 

frequently than their more northern counterparts but are still capable of extreme storms and 

destruction. 

 An analysis of a strong February 2017 AR reveals a high-intensity storm with some 

characteristics that vary from typical ARs indicating that this was an extreme event. IMERG 

precipitation data show rainfall throughout the state of California with a narrow band of high 

values corresponding with the AR in the pre-cold frontal area of the storm (Eiras-Barca et al. in 

review). Reanalysis fields show that the day before SCA landfall, there is strong 850mb flow and 

a corresponding plume of high TPW extending from Hawaii to southern Oregon and northern 

California. A frontal wave emerges and develops into a cyclone, shifting the axes of the offshore 

trough as well as augmenting moisture due to increased convergence. This channels moisture and 

winds to SCA. With the HYSPLIT analysis, this event differs from other SCA ARs in that 

trajectories remain at low altitudes and do not experience subsidence in the hours before landfall. 

This event has increased moisture values that surpass the 75th percentile of the other SCA ARs 

examined as well as higher maximum temperatures although temperatures at landfall are 

comparable to other SCA ARs. Over the course of 72-h, these trajectories travel short distances 

indicating that this event moved rather slowly in the hours before landfall. This combination of 

warm temperatures, slow movement, and high specific humidity values resulted in one of the most 

extreme regional storms seen in years. It also brings into question the future of other AR storms 
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affecting SCA and how their intensity and duration may change under climate change scenarios 

(e.g. Dettinger 2011). 

 Understanding the differences of trajectories between ARs landfalling in various areas is 

imperative to understanding AR manifestation and lifecycles. This is especially true for SCA ARs 

which are infrequent but responsible for high-intensity storms as well as large proportions of the 

regional annual precipitation totals. Knowing how the environment affects these events and how 

these episodes progress will be vital for future forecasts and hazard mitigation.  
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Chapter 4 

Conclusions 

 

Atmospheric rivers are important components of west coast hydrological cycles. In North 

America, they often lead to extreme rainfall events resulting in hazards such as flooding. For SCA 

where annual precipitation totals are often met from only a handful of events per season, 

understanding and forecasting ARs is of critical importance as any changes to the frequency or 

intensity of local rainfall events may have devastating consequences. Yet, few studies focus on AR 

events leading to precipitation in SCA and instead concentrate on latitudes farther north. A better 

understanding of SCA ARs is imperative for forecasting as well as hazard mitigation. This 

dissertation provides a novel perspective to AR research by improving the understanding 

of mechanisms and characteristics of AR events that landfall in SCA through the following 

research objectives: 

1. Design an algorithm that identifies historical AR events landfalling along the western 

coast of North America within reanalysis fields (Chapter 2); 

2. Organize and categorize said AR events according to landfall regions and determine 

the climatological atmospheric characteristics during SCA ARs. Differentiate SCA 

ARs from ARs landfalling farther north on the day of as well as the days leading to AR 

landfall (Chapter 2); 

3. Determine the relationships of defined AR groups with modes of variability known to 

affect western North America (Chapter 2); 

4. Investigate the movement and change of AR groups and their along trajectory 

characteristics in the hours before landfall using a backward trajectories model 

(Chapter 3). 
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 In chapter two we introduce a new method for AR detection within CFSR reanalysis fields 

of TPW. This algorithm builds off an already established procedure for AR detection but differs 

in that it uses a fit ellipse approach and a finer spatial resolution reanalysis. This provides a more 

selective identification method for AR detection as shown in the validation. We use the algorithm 

to identify ARs landfalling on the western coast of North America (landfalling between latitudes 

of 30.0°-55.0°N) during Oct-Mar seasons between 1979 and 2013. The algorithm identifies 719 

independent AR events that we separate and categorize according to landfall region designated by 

landfall latitude. We create composites of various atmospheric features from additional reanalysis 

fields for each landfall area. Daily composites are created for the ten days before, day of, and three 

days after landfall to determine the common atmospheric characteristics present throughout an 

AR event and to identify the differences between ARs landfalling in different regions. We also 

statistically investigate AR occurrences with several modes variability known to affect the 

background atmospheric characteristics important to precipitation in North America. 

Through daily composites of atmospheric variables, we see that on landfall days all ARs 

regardless of landfall region have anomalously high TPW anomalies flanked by regions of 

anomalously low TPW. This plume of moisture represents the AR event and corresponds to 

regions with high temperatures and an offshore 500mb trough. These features vary in location, 

shifting north/southward in accordance to where an AR makes landfall and are consistent with 

baroclinic wave train systems. Several days before AR landfall (~5 days), a 500mb trough develops 

over eastern Asia with a corresponding ridge over Alaska. The deepest troughs and most amplified 

ridges occur for SCA ARs whereas shallower troughs are consistent with ARs landfalling farther 

north. This trough-ridge couplet affects the merger and eastward extension of the upper-level 

(200mb) jet core (≥60ms-1) with deeper troughs leading to increased zonal flow of wind and 

moisture farther eastward in the Pacific basin. For ARs landfalling farther north, the jet core 
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retracts westward and has decreased zonal flow, consistent with previous AR studies. This 

indicates that wave phase, position, and amplitude are important components of ARs landfalling 

in western North America and are the primary drivers behind an AR’s landfall location. 

We also compare AR regional frequencies to occurrences and phases of variability modes 

that affect North America’s west coast to establish conditions most likely to encourage AR 

manifestation and progression. The specific modes examined are the PNA, ENSO, and the MJO. 

We find that ARs are more frequent for all landfall areas during PNA+ but the difference between 

PNA+ and PNA- for SCA ARs is not significant. Additionally, SCA ARs have atmospheric 

features more consistent with PNA- conditions. This indicates that the PNA may not be a strong 

driver of AR conditions, especially for ARs landfalling in SCA. With ENSO, SCA AR conditions 

occur evenly between warm, cold, and neutral phases whereas NCA, SPNW, and NPNW ARs are 

more frequent during neutral conditions which is consistent with the occurrence of ENSO phases. 

For the MJO, all regions experience greater AR frequency during active MJOs yet, for most areas 

the frequency differences between active and inactive MJO are not significant. Also, while there 

are more ARs during certain phases of the MJO lifecycle, this relationship does not exist when 

ARs are separated according to landfall region. These varying relationships hint at the complexity 

of ARs that landfall on the western coast of North America. They suggest that while SCA ARs 

share some commonalities with other AR events, that there are also important differences in their 

occurrence and that these modes of variability may not be the sole drivers behind AR events 

landfalling in certain regions. 

The following identifies the main conclusions from the methods and results presented in 

chapter two. First, although there are several modes of variability that affect the atmospheric 

conditions in North America, there are no defined relationships between any one variability mode 

and AR development, progression, or landfall in a specified region. This indicates that these modes 
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of variability are not the main drivers behind AR development or their landfalling locations. On 

the other hand, wave train characteristics such as phase, position, and amplitude in the days before 

AR development are the main drivers behind AR landfall location in western North America. 

Wave train dynamics over eastern Asia and western Pacific Ocean basin lead to the extension or 

retraction of upper-level jet core winds which drive wind and moisture towards North America’s 

west coast with variations in the initial dynamics leading to ARs landfalling at different latitudes. 

The methods along with conclusions drawn in chapter two fulfill the first three objectives of this 

dissertation: Design an algorithm that identifies historical AR events landfalling along the 

western coast of North America within reanalysis fields; Organize and categorize said AR 

events according to landfall regions and determine the climatological atmospheric 

characteristics during SCA ARs. Differentiate SCA ARs from ARs landfalling farther north 

on the day of as well as the days leading to AR landfall; Determine the relationships of 

defined AR groups with modes of variability known to affect western North America. 

 

In chapter three we investigate AR movements and lifecycles using the Lagrangian model 

HYSPLIT. We force HYSPLIT with GDAS 3D meteorological fields and calculate backward 

trajectories for 159 AR events landfalling on the western U.S. coast for the Oct-Mar seasons of 

Dec. 2004 to Dec. 2015. We apply the previously defined algorithm (chapter 2) using CFSR fields 

of TPW to identify these AR events. Each AR has a total of 27 calculated trajectories, 9 at each of 

the three levels investigated, 1000 m, 2000 m, and 3000 m MSL. Trajectories are calculated for the 

hour of landfall and hourly for 72 hours before landfall with outputs of air parcel locations as well 

as along trajectory characteristics including specific humidity and temperature. 

According to average locational trajectories for all landfall regions, trajectories ending at 

1000 m MSL, are shortest and are quasi-zonal. Trajectories lengthen and become less zonal, 
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adhering to the southwest-to-northeast orientation typical to ARs landfalling in North America at 

higher altitudes with SCA AR trajectories remaining the most zonally oriented. Within 72-h, very 

few trajectories travel south of 30°N and no trajectories travel below 25°N hinting at possible 

local moisture sources (within the 72-h) and pathways particularly as local convergence is a strong 

AR moisture source. All levels and landfall areas exhibit trajectories with cyclonic curvature. SCA 

ARs have significantly shorter 72-h trajectories than either NCA or PNW ARs for trajectories 

ending at 1000 m and 2000 m MSL. This indicates that SCA AR events move slower and/or may 

be more stationary implying differing behaviors with extratropical cyclones than their more 

northern counterparts. 

With temporal variations before landfall (15-72 hours) for all regions, air parcel trajectories 

experience an overall moistening (1-3 g kg-1) and subsidence (£1.75 hPa hr-1) which can be from 

evaporation or moisture advection. Directly before landfall (0-15 hours) variables consistent with 

orographic uplift and subsequent precipitation for all regions occur including decreases in 

pressure, increases in relative humidity, decreases of temperature, and decreases of specific 

humidity. Along-trajectory variables for trajectories ending at 1000 m and 2000 m MSL show that 

SCA ARs tend to be warmer both at the maximum recorded temperature along the trajectory as 

well as at landfall with less cooling over the course of the trajectory as indicated by tdelta. This 

demonstrates that SCA AR air parcels have greater potential to hold moisture than ARs landfalling 

farther north which are cooler. SCA ARs are also more likely to result in rainfall as opposed to 

snow events. Additionally, increased temperatures suggest that SCA ARs are more likely to 

originate and/or move through more tropical (i.e. warmer) air masses. SCA ARs also have higher 

maximum and landfall specific humidity values for trajectories ending at 1000 m and 2000 m MSL 

demonstrating that these ARs do indeed contain more moisture than other ARs. However, the 

average qdelta values for SCA ARs are comparable to the other landfall groups indicating that 
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although SCA ARs have higher overall moisture values that ARs in general experience similar 

moisture losses along the course of their trajectories regardless of landfall location. The movement 

of warm temperatures and moisture results in high-intensity precipitation upon landfall through 

orographic forcing. With greater moisture values, SCA ARs are capable of producing very high-

intensity rainfall. 

 A case study of a particularly intense AR event affecting SCA on February 17, 2017 is also 

investigated. We use IMERG precipitation data as well as CFS reanalysis fields to visualize this 

event and its conditions. Backward air parcel trajectories are calculated using HYSPLIT to 

determine air characteristics and movement. At the time of landfall, low precipitation values 

(£5mm) consistent with an extratropical cyclone exists throughout much of the state of California. 

There is a narrow plume of high rainfall values (³11mm) in the pre-cold frontal region of the 

storm bearing onto mountains along the California coastline. Reanalysis fields at the 850mb and 

500mb levels reveal that before AR landfall around the coast of SCA there are strong offshore 

winds associated with a low-pressure system along with a narrow band of high TPW and an 

offshore trough resulting in strong flow of wind and moisture towards SCA. Also prior to SCA 

landfall a mesoscale frontal wave develops and progresses into a low-pressure system. This 

augments moisture within the already existing AR as it landfalls in SCA through increased 

convergence along the cold front. With HYSPLIT commonalities appear between this event and 

the average temporal trajectory qualities related to orographic uplift at landfall. Although, there 

are also differences in parcel behavior. In the 72-h before landfall air parcels occur at low altitudes 

and there is very little vertical movement of parcels until uplift occurs. This differs from average 

regional parcels that experience subsidence in the 72-h hours before landfall. Also these air parcels 

travel shorter distances in the course of 72-h demonstrating the slow-moving nature of this event. 

Finally, this event has maximum and landfall along trajectory specific humidity values that are 
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much higher than all ARs at all levels and at some levels surpass the 75th percentile of moisture of 

other SCA ARs. Maximum temperature values for this event are higher than all other landfall 

regions although, temperatures at landfall are similar to other SCA ARs. The overall low altitudes 

of the parcels and lack of vertical movement may help to explain why this event retained much of 

its heat and moisture throughout the trajectory and the very high specific humidity accounts for 

the event’s extreme intensity upon landfall. 

The analyses in chapter three demonstrate the following main conclusions. That ARs 

landfalling in SCA share similar characteristics with ARs landfalling farther north along the U.S. 

west coast. SCA ARs display temporal trajectory variations before and during landfall similar to 

NCA and PNW ARs indicating that ARs regardless of landfall locations undergo similar lifecycle 

development. Additionally, all ARs regardless of landfall region move high temperatures and 

moisture values to their designated landfall area with similar losses of moisture (qdelta) and cooling 

(tdelta) along the course of their trajectories. This movement of high heat and moisture along with 

orographic uplift leads to high-intensity precipitation common to most AR events regardless of 

landfall region. Yet, some important distinctions between SCA ARs and ARs landfalling farther 

north do arise. SCA ARs have higher maximum temperature values along their trajectories as well 

as higher temperatures at landfall which increases their potential to hold moisture as well as 

indicates they are more likely to result in rainfall events. Additionally, they have higher maximum 

specific humidity values along their trajectories and also at landfall indicating that these events 

have greater moisture contents. The higher heat and moisture values of SCA ARs explain why 

these events have some of the most extreme rainfall episodes even though they tend to occur less 

frequently compared to ARs landfalling farther north. These methods and their conclusions fulfill 

the fourth and final research objective: Investigate the movement and change of AR groups 
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and their along trajectory characteristics in the hours before landfall using a backward 

trajectories model. 

These findings suggest that although SCA ARs share commonalities with other ARs 

affecting western North America, that there are also differences in how they manifest and 

progress. They differ in their pre-landfall as well as day-of landfall atmospheric characteristics and 

dynamics as well as their trajectory lifecycles and connections with other modes of variability. This 

information can be used to improve modeling and forecasts of AR events affecting the western 

coast of North America which in turn is important for hazard mitigation as well as long-term water 

management. Additionally, while this research focuses on a specific area, certain aspects of this 

work such as the detection algorithm may be applied to other regions of the world affected by 

similar events. 

 

Suggestions for Future Work 

These findings help to identify the characteristics of SCA ARs before and during landfall, 

and are important to understanding the progression and dynamics of SCA ARs. Yet, there are still 

areas of AR research and SCA AR research that need development. In the following section we 

identify possibilities for future research endeavors. 

This research relies on the AR detection algorithm presented in chapter 2. While the 

validation studies conclude this is robust method for AR detection within reanalysis fields, it is by 

far not the only reliable method. Other studies such as Guan and Waliser (2015) use integrated 

vapor transport vapor (IVT) instead of TPW as a proxy for AR detection as IVT is believed to 

better capture the movement of AR moisture. Neiman et al. 2008a and Dettinger et al. 2011 are 

examples of studies that show SSM/I data to be very useful for AR detection, although there is 

not yet an automated AR detection method using SSM/I data. While these and the presented 
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algorithm provide valuable tools for historical AR detection and identification, they are in part 

flawed and subjective. They will require modifications to improve detection and future algorithms 

will most likely combine a series of data and procedures to create more accurate AR detectors. 

Additionally, the research presented in this dissertation does not discern differences 

between ARs of varying strengths. Extreme AR events may have unique atmospheric 

characteristics and dynamics. An analysis by Payne and Magnusdottir (2014) concludes that there 

are differences between high-intensity and low-intensity AR events that affect North America’s 

west coast. They investigate ARs affecting 20°-60°N during Nov.-Mar. between 1979 and 2011 

and compare some the highest-intensity AR events (³95th percentile moisture flux and rainfall) to 

less extreme events and the climatological averages. They conclude that high-intensity events occur 

in conjunction with the formation of Rossby Wave Breaking in the eastern Pacific and changes in 

the 200mb jet. The highest-intensity events may also have alternative relationships with modes of 

variability. An analysis by Guan et al. (2010) looks at 45 ARs affecting the Sierra Nevada between 

2004 and 2010. Upon investigating ARs with the highest SWE conditions they find that several of 

the highest SWE events in this region occur during La Niña seasons which is inconsistent with 

findings from these studies (chapter 2). Neither of these studies focus on SCA ARs which behave 

differently from their more northern counterparts. Even though extreme events (such as the case 

study presented in 3.4) provide a small proportion of the events experienced, they are 

climatologically significant to the SCA landscape and are worth understanding in greater detail. 

Finally, the studies presented in this dissertation do not make any predictions about future 

AR frequencies or storm intensities which are expected to vary and are of interest due to changing 

climatic conditions. Dettinger (2011) determines that ARs are projected to warm in a warming 

climate, although not at the same rate. This increases their potential to hold moisture by 7% for 

each 1K increase of temperature. The frequencies of AR days and years with increased AR activity 
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are also projected to increase in a changing climate (Dettinger 2011). A study by Hagos et al. (2016) 

uses Community Earth System Model Large Ensemble simulations to predict future AR 

frequencies. They find that comparing the last two decades of the 20th and 21st centuries, there is 

a 35% ± 8% increase in the number of AR landfall days in western North America (32°-60°N). 

The number of AR days with extreme precipitation also increases by 28% ± 7%. Additionally, it 

is expected that changing climate conditions will modify dynamical characteristics of the 

atmosphere known to affect ARs. Shields and Kiehl (2016) use the fully coupled half-degree 

version of the Community Climate System Model, version 4 to show an equatorward shift in the 

subtropical jet which results in the southward shift of AR events affecting North America’s west 

coast during a warming climate scenario. Specifically, there is an increased number of AR events 

affecting the latitudes of 32°-35°N, consistent with a previous study by Payne and Magnusdottir 

(2015) who also show an equatorward shift in ARs affecting the U.S. west coast in climate change 

projections. These changes may affect how AR storms manifest and progress as well as how they 

interact with extratropical cyclones and modes of variability. Proper forecasting and preparation 

requires understanding the modifications of AR events in changing climate scenarios. 

While this dissertation provides valuable information regarding the development and 

landfall of atmospheric rivers in western North America, it is only one piece to a large puzzle. A 

comprehensive understanding of high-intensity precipitation including causes, linkages with 

various phenomena, climatic changes, and mitigation against its impacts requires communication 

between various disciplines and across management sectors. The main goal of this research is to 

provide information that may be used by the scientific and water management communities to 

improve our current understanding of and help prepare for atmospheric events leading to high-

intensity precipitation in North America.  
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