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Abstract
This review article provides an overview of a range of recent technical
developments in advanced arterial spin labeling (ASL) methods that have
been developed or adopted by the community since the publication of a
previous ASL consensus paper by Alsop et al. It is part of a series of
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review/recommendation papers from the International Society for Magnetic
Resonance in Medicine Perfusion Study Group. Here, we focus on advancements
in readouts and trajectories, image reconstruction, noise reduction, partial vol-
ume correction, quantification of nonperfusion parameters, fMRI, fingerprint-
ing, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL.
We aim to provide a high level of understanding of these new approaches and
some guidance for their implementation, with the goal of facilitating the adop-
tion of such advances by research groups and by MRI vendors. Topics outside
the scope of this article that are reviewed at length in separate articles include
velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL
recommendations.
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1 INTRODUCTION

Since its introduction in the early 1990s, arterial spin
labeling (ASL) has proved to be a powerful noninvasive,
noncontrast alternative to conventional perfusion imaging
methods.1,2 The publication of a consensus paper on the
clinical implementation of ASL in 20153 was instrumen-
tal in the adoption of ASL brain imaging in the clinic and
provided a common reference for researchers. Also, it pro-
vided expert guidelines for ASL sequence implementation
for the major MR manufacturers, who now all offer the
same labeling strategy (pseudo-continuous ASL [PCASL])
and similar readouts (3D spiral or gradient and spin echo
[GRASE]). Consequently, clinical applications of ASL have
significantly increased, and a benchmark for comparison
of future developments was established.

Nevertheless, new variants and improvements in ASL
acquisition design (see Figure 1) and ancillary measure-
ments have been developed since 2015, aiming to improve
image quality, provide more accurate cerebral blood flow
(CBF) quantification or measure additional physiological
parameters, and extend applications of ASL beyond the
brain.

This paper will review new capabilities of ASL includ-
ing vessel selective ASL, quantification of parameters
beyond perfusion, the use of fingerprinting and deep learn-
ing (DL) techniques, ASL-based fMRI, and postprocessing
techniques to improve image quality. We will describe
these new techniques to provide a high-level intuition
and some suggestions for their implementation, which are
based on the experience of the authors, with endorsement

by the perfusion study group of the International Society
for Magnetic Resonance in Medicine (ISMRM). Our goal
is to facilitate and promote the adoption of such advances
by research groups and by MR scanner vendors.

Some topics will be out of the scope of this overview
and will be reviewed in separate articles. For example,
velocity selective ASL is one of the most significant inno-
vations in the area of ASL as it eliminates arterial transit
time confounds and can provide a significant boost in
SNR. Also, quantitative ASL using multiple timepoints
allows more accurate estimation of perfusion as well
as additional parameters, particularly the arterial tran-
sit time. Furthermore, great advances have also been
made in body ASL due to innovative technical develop-
ments. These topics are quite extensive; each merits a
review article in itself and thus will not be covered in this
article.

2 READOUT AND
TRAJECTORIES

The consensus paper recommended 3D segmented imag-
ing sequences with stack of spiral with fast spin echo (FSE)
or Cartesian GRASE. 2D multi-slice methods based on
EPI or 2D spirals with or without simultaneous multi-slice
excitation are also possible4–6 and may be useful at high
field strengths where power deposition limits prohibit the
use of multiple refocusing pulses, but 3D methods tend to
be advantageous in terms of SNR and the effectiveness of
background suppression, allowing full brain coverage in
acceptable scan times.
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F I G U R E 1 The above diagram depicts the typical components of ASL pulse sequences, highlighting some advancements that have
been made in recent years.

However, both GRASE and FSE readouts use long
echo trains to encode all the slices in the volume. T2
decay along the echo train results in blurring in the slice
direction, whereas T2* decay between refocusing pulses
introduces in-plane blurring. Blurring can be mitigated
to some extent by splitting the readout into more seg-
ments, but at the cost of a longer time to acquire each
volume (reducing the temporal resolution) and increased
sensitivity to intershot motion. Recently, several technical
developments have been proposed to overcome some of
these issues using novel acquisition schemes and image
reconstruction techniques.

2.1 Improvements in 3D segmented
readouts

2.1.1 Variable flip angle design

In conventional 3D readouts, the refocusing flip angle is
constant and the resulting signal decays from one echo to
the next, leading to through-slice blurring. Variable flip
angle designs can result in a more consistent signal across
the echo train, reducing the signal modulation and thereby
the blurring effect. For example, an extended phase graph
approach can be used to design a flip angle schedule for
3D-GRASE, greatly reducing the width of the blurring
point spread function.7 This approach can also be com-
bined with echo amplitude scaling of the k-space data to
target a specific signal response.8 In addition to improving
image quality, this approach also offers the possibility of

significantly reducing the power deposition arising from
the FSE echo-train.

2.1.2 Improvements to spiral readouts

Spiral trajectories can be quite sensitive to poor mag-
netic field homogeneity, eddy currents, and imperfections
in gradient performance, resulting in significant
image blurring and distortion, especially when using
high gradient slew-rates.9 One solution is to mea-
sure the actual gradient trajectory and use this to
improve image reconstruction.10–12 Another approach
relies on improvements to spiral trajectories using a
combination of 3D spiral in/out (referred to as cylin-
drical distributed spiral) to reduce signal dropout
and image blurring when compared to standard
stack-of-spirals.

2.1.3 Accelerated 3D readouts

The TR of ASL is mainly limited by the labeling duration
and postlabel delay since the data acquisition time is only a
small fraction of the TR, so accelerated sampling schemes
do not significantly reduce the TR. However, undersam-
pled 3D trajectories have been explored to reduce the echo
train duration and/or the required degree of segmentation,
which can be leveraged to improve temporal resolution
and robustness to motion as well as mitigating blurring
artifacts.
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In Cartesian imaging, for example, parallel imaging
reconstruction using an improved GRAPPA kernel13 pro-
vided higher SNR and reduced blurring due to the short-
ened TE and readout times.14,15 For non-Cartesian sam-
pling, 1D acceleration in the slice direction combined with
variable-density spirals can be used to reduce the echo
train length, resulting in a significant reduction in blur-
ring.16,17

Controlled Aliasing In Parallel Imaging Results In
Higher Acceleration (CAIPIRINHA) trajectories can fur-
ther improve image quality for 3D-GRASE by reducing
g-factor noise amplification.18 A time-dependent CAIPIR-
INHA sampling pattern has additional advantages of
allowing coil sensitivity maps to be generated from the dif-
ferent k-space data acquired over time, as well as being bet-
ter suited to more sophisticated reconstruction approaches
using spatiotemporal regularization.19

2.2 Cartesian FSE

Segmented FSE acquisitions with Cartesian encoding,
where 1 line of k-space is acquired after each refocus-
ing pulse, are workhorses of volumetric imaging, having
excellent off-resonance robustness and anatomical fidelity.
Whereas this makes FSE particularly attractive for body
ASL and high-resolution ASL, long acquisition times are a
major limiting factor if large volume coverage is required.

Using a reduced Field of view (FOV) with selective
excitation allowed the benefits of volumetric Cartesian
encoding for renal imaging to be demonstrated.20 More
time-efficient acquisitions with spiral re-ordering on a
Cartesian grid,21 variable-density sampling combined with
compressed sensing reconstruction for body,22 and brain
imaging23 have also been demonstrated.

2.3 Radial trajectories

Whereas conventional trajectories (e.g., 2D/3D EPI or spi-
rals) are very efficient at covering large amounts of k-space
quickly, they generally have a fixed spatial/temporal reso-
lution and suffer from artifacts due to off-resonance effects
and motion between shots. Radial k-space trajectories,
which acquire a single line of k-space at a time through
its center with different orientation, sample fewer k-space
points but allow the retrospective choice of spatial and
temporal resolution for reconstruction when using golden
ratio sampling24,25; are intrinsically robust to motion; do
not suffer from significant distortion, blurring, or signal
dropout artifacts; and tolerate relatively high levels
of undersampling, particularly when combined with
advanced reconstruction techniques (see below).

Radial trajectories have been used fairly extensively
for ASL angiography (see below), and more recently for
assessing the labeling efficiency of velocity-selective ASL
preparations26; however, a few new methods have also
explored their use for ASL perfusion imaging. In the
Combined Angiography and Perfusion using Radial Imag-
ing and ASL (CAPRIA) approach,27 a PCASL prepara-
tion is followed by a continuous golden ratio readout.
Dynamic angiographic images are reconstructed using a
small number of radial spokes from early timepoints, while
the labeled blood still resides within the arteries. This
results in a high temporal resolution and a high under-
sampling factor, but the sparse nature and high SNR of
the angiographic signal means good quality images can
still be reconstructed. Using the same raw data, perfusion
images can be reconstructed from later time points once
the labeled blood arrives at the tissue.

A golden ratio readout can also be combined with a
time-encoded ASL preparation: this means fewer excita-
tion pulses are needed to span a range of effective post-
labeling delays,28 allowing higher flip angles to be used
without causing excessive signal attenuation. This boosts
the SNR, in addition to the noise-averaging benefit of
time-encoding. Although potentially more time-efficient
than separately acquired angiography and perfusion imag-
ing, further studies are required to refine these techniques
and test them in clinical cohorts.

2.4 Cardiac triggering

The variability of blood flow velocity in the brain-feeding
arteries affects the ASL labeling efficiency (in CASL
and PCASL) and arterial transit time. These effects
have been tested with cardiac gating in pulsed,29,30

pseudo-continuous,31 and velocity/acceleration-selective
ASL.32 For example, shorter bolus arrival time and a 16%
higher perfusion signal in gray matter (GM) were found
when triggering a pulsed ASL (PASL) labeling module at
systole compared to diastole, although the signal was simi-
lar at long TIs.29 Larger signal variations across the cardiac
cycle have been demonstrated for velocity selective ASL
(36%) and acceleration selective ASL (64%) compared to
PCASL (25%).32 Similarly, stability gains were found in
vessel-selective ASL by triggering.33

A PCASL study31 triggered the end of the labeling
period to a specific cardiac phase with a long labeling
duration (> 7 s) and found no significant differences
in vivo in the mean ASL signal and its stability. How-
ever, a second study34 tested a nontriggered- versus a
cardiac-triggered standard PCASL sequence with the
parameters suggested in the consensus paper.3 The non-
triggered PCASL sequence showed signal fluctuation
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near large vessels in single-shot acquisitions and also
more artifacts in segmented acquisitions, whereas
the cardiac triggered sequence demonstrated higher
temporal SNR.

Cardiac triggering improves stability at a cost of
increased dead-time in the sequence while waiting for
the next cardiac trigger. Triggers should be applied to the
start of labeling because triggering of the readout would
lead to differences in postlabeling delay (PLD) between
acquisitions and thus imperfect subtraction of static signal
between label and control condition.

2.5 Suggestions

The use of moderately segmented 3D readout schemes
continues to be recommended for ASL due to their high
efficiency and SNR, as well as their ability to achieve spa-
tially uniform background suppression. The use of parallel
imaging with relatively low acceleration factors (e.g., 2 or
3) is also recommended when available (e.g., for Carte-
sian trajectories), particularly when combined with low
g-factor methods such as CAIPIRINHIA. We encourage
the further development and validation of newer tech-
niques before they are used for clinical research applica-
tions. At this time, there is not a sufficient amount of evi-
dence to recommend the general use of cardiac triggering
with ASL.

3 ADVANCES IN IMAGE
RECONSTRUCTION AND
PROCESSING

3.1 Advanced reconstruction
techniques

ASL-perfusion imaging has some inherent properties that
make it well suited for acceleration and reconstruction
using compressed sensing methods. Particularly, com-
pressed sensing has been shown to perform well when
applied to ASL difference images by leveraging sparsity
across the averages22 or using a total generalized variation
constraint in combination with a time-dependent CAIPIR-
INHA sampling pattern.35 Multi-delay ASL images can
be further improved by additionally exploiting the redun-
dancy among images (temporal sparsity) with differ-
ent labeling duration and postlabel delays. For example,
an over-complete dictionary was built from the per-
fusion model and was used to sparsify the acquired
ASL signal.36 This helped reject noise and motion arti-
facts that could not be described by the perfusion
signal model.

3.2 Noise reduction

Many strategies have been developed to improve ASL
SNR using image-processing techniques. Spatial smooth-
ing is a routine procedure for suppressing random noise
in MRI and has been used frequently for ASL14; how-
ever, this further reduces the already low spatial resolution
and blurs perfusion differences between tissue types. This
can be partly addressed by using Wavelet denoising37 or
by a spatial kernel as part of partial volume correction
approaches.38,39 High-pass filtering can remove temporal
noise36 as the perfusion signal encoded in the label-control
acquisition paradigm is located in the high-frequency
band.40,41

Outliers, caused by physiological fluctuations or sub-
ject motion, are a major challenge for ASL MRI, especially
due to the limited number of samples.39 Robust fitting42

can address outliers at the voxel-level, although it does
not take spatial information into account. Several empiri-
cal algorithms were introduced to remove outlier volumes
or slices before calculating the final CBF map, which can
be identified based on motion parameters and variation
in the CBF time series39 or using a M-estimator.43 An
adaptive outlier cleaning algorithm (see Figure 2) can iter-
atively identify outlier volumes based on the correlation of
each remaining volume to the current mean image.44 This
approach can be improved using structural information
regularization,45 using a prior-guided slice-wise adaptive
outlier cleaning method,46 or by accounting for relative
motion.47

Alternatively, spatial priors can be used on the result-
ing CBF and/or arterial transit time (ATT) maps48,49

to reduce the effect of outliers, or a total general-
ized variation regularized spatial–temporal filtering
algorithm can be used for directly denoising the raw
ASL images.19

Another strategy to denoise ASL data is to decom-
pose the signal into components and then regress out the
“noise” components. One approach is to use independent
component analysis with manual or automatic classifica-
tion of components (e.g., by assessing if the spatial/tempo-
ral variations match the expected perfusion signal), which
results in improved SNR and repeatability50–52 (Figure 3).
Similarly, the component-based noise correction method
extracts principal components from noise regions of no
interest, which can be used as covariates in a general linear
model and improve the stability of the perfusion signal.53,54

Alternatively, a low-rank and sparse decomposition can
separate the ASL image series into slowly changing perfu-
sion and spatially sparse noise component.55

Recently, DL has been utilized for simultaneous
denoising and resolution improvement in ASL,56–58

and various approaches have allowed a significant
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(A)

(B)

(C)

F I G U R E 2 ASL CBF images of a
cocaine addicted patient processed (A)
without outlier cleaning, (B) using the
original adaptive outlier cleaning algorithm,
(C) using the prior-guided slicewise outlier
cleaning algorithm. Outlier cleaning provided
substantial CBF quality improvement in this
case. Green boxes and red arrows were used to
mark the places with significant CBF
differences. (Figure reproduced from Ref .44

with permission from the author.)

F I G U R E 3 Independent Component
Analysis-based denoising: some example data
from the study by Carone et al.50 before (top
row) and after (bottom row) denoising using
FSL FIX. In this study of acute stroke patients,
ASL data were acquired at 5 different PLDs in
4.5 min. Each image above shows the average
subtraction image after motion correction at 1
PLD (6 label-control pairs), where the effect of
denoising is most apparent. This approach
gives a considerable reduction in artifacts
related to motion and other sources, such as
ghosting. Data kindly provided by Davide
Carone and the AMICI study team.

acquisition time reduction without sacrificing CBF quan-
tification quality.59,60 Unsupervised DL ASL denoising
algorithms using autoencoder networks have also been
proposed,61 reducing the burden of generating large
amounts of training data. Deep convolutional neural
networks have been used to enhance image quality of
multi-timepoint ASL data acquired with a low number
of averages,59 showing a 40% higher accuracy than the

conventional averaging method when tested on ASL data
of stroke patients.

Different ASL acquisition strategies introduce differ-
ent noise patterns, making it necessary to fully evaluate
the capability of a model to transfer from one type of
ASL data or population to another. However, it is impor-
tant to be careful not to “over-denoise” functional ASL
images, as sometimes the activation itself is correlated with
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components identified as noise, and suppressing too many
temporal components may artificially increase functional
connectivity.

3.3 Partial volume correction

ASL spatial resolution is typically much lower than the
cortical thickness (average value ∼2.5 mm vs. typical ASL
resolutions of 4 × 4 × 4 mm3). In superficial brain regions,
individual voxels are therefore highly likely to contain a
mixture of GM, white matter (WM), and cerebrospinal
fluid (CSF), which is known as the partial volume (PV)
effect. Given that GM perfusion is approximately 2–5 times
greater than WM perfusion62,63 PV will have a large effect
on CBF quantification. In ASL, the primary focus is often
on GM-CBF. PV effects bring 2 issues here: 1) actual GM
content is still variable in nominally “GM voxels” caus-
ing potential GM-CBF underestimation; and 2) the spatial
distribution of predominantly GM voxels varies between
subjects, causing a potential evaluation bias (Figure 4).
The importance of PV effects grows in longitudinal and
cross-section studies where cortical thickness varies in

time and across groups.64,65 Several algorithms have been
proposed to correct for PV-effects at the voxel level using
fractional GM and WM maps obtained from segment-
ing structural images. These algorithms either assume a
locally homogeneous GM and WM CBF,62 leveraging the
different kinetics in GM and WM (along with spatial reg-
ularization),38 or use GM volume as a covariate in the
statistical analysis.66

The quality of the fractional GM and WM maps, along
with coregistration, distortion correction, and resolution
errors67 also propagate into the PV correction. However,
these errors would have a similar influence on non-PV cor-
rected GM-CBF evaluation using a GM mask,68 or alterna-
tive approaches using tissue classification from inversion
recovery or a similar readout sequence.69 It is important
to note that the partial volume effect is a methodological
artifact. Correcting for it allows the investigator to examine
changes in perfusion and GM volume as separate effects,
even in patients where both are changing concurrently. For
the latter, GM volume could be a covariate in statistical
analyses; for the former, PV correction is more appropri-
ate. These 2 issues are currently usually not separately
addressed.

F I G U R E 4 Demonstration of the need
for PVC in ASL using 3 subjects: (1) a healthy
adult, (2) an older adult with atrophy, and (3)
an older adult with a unilateral infarct. (A)
Native space structural T1-weighted (T1w)
images. (B, C) T1w images overlaid, in red,
with the GM tissue segmentations. The GM
segmentation was smoothed to the resolution
of ASL images to express the partial volume of
GM in each voxel of the ASL images. This GM
image was then thresholded at b) 50% and c)
70% to create a mask of voxels with a GM
content above the threshold. The 70%
threshold on GM images is typically used for
calculating the mean CBF in GM. These
images show that, especially in clinical cases
and thin cortical regions, only a fraction of
ASL voxels contain sufficient GM to pass the
thresholding for GM CBF calculation, thus
introducing a spatial bias in the resulting
mean GM CBF. Use of PVC to obtain
corrected GM CBF values is thus
recommended, and using this in conjunction
with a 50% threshold GM mask for the
calculation of mean GM CBF results in
reasonable spatial coverage while minimizing
PV effects (Figure reproduced from Ref .174

with permission from the authors). GM, gray
matter; PVC, partial volume correction.

(A) (B) (C)
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3.4 Suggestions

When processing ASL data, we recommend the use of
motion correction (unless very strong background sup-
pression is performed) and consideration of at least
1 denoising technique (such as adaptive outlier clean-
ing or component-based methods) if there are sufficient
measurements to support them. Partial volume correc-
tion as an additional analysis is strongly recommended
for studies focusing on specific tissue types, such as
GM, especially if a difference in tissue volumes, for
example, due to atrophy, is expected between participants
or cohorts.

4 OTHER PARAMETERS BEYOND
PERFUSION

ASL data can also be used to quantify a number of other
hemodynamic parameters, such as arterial transit time,
arterial blood volume, arterial and venous blood oxygena-
tion, and the metabolic rate of oxygen consumption.

4.1 Blood oxygenation and oxygen
consumption

Spin labeling methods can be creatively applied to measure
venous oxygen saturation (SvO2, or Yv are commonly used
in the literature), from which Oxygen Extraction Fraction
(OEF) and cerebral metabolic rate of oxygen (CMRO2) can
be subsequently estimated. All 3 parameters are impor-
tant indicators of brain health and function and are often
perturbed in states of disease.

One class of methods to estimate Yv first measures
the T2 of venous blood, which is then calibrated to Yv
using empirical or theoretical relationships because blood
T2 is directly related to the blood oxygenation fraction.70

OEF can then be estimated using the derived venous oxy-
genation (Yv) along with a measured or assumed value
of arterial oxygenation (OEF is defined as the ratio of
the extracted oxygenation to arterial oxygenation). Rate of
metabolism is calculated as the product of the assumed
arterial oxygenation, OEF, and CBF.

An effective way to measure T2 values of blood in vivo
is to apply T2 weighting “preparation modules,” which
consist of ±90◦ hard pulses enclosing a train of refocus-
ing pulses with different TEs, immediately before image
acquisition.71 This approach has been applied to deter-
mine blood T2 of coronary veins,72 brain sagittal sinus,73,74

and internal jugular veins.75–77 For abnormal blood com-
position such as sickle cell anemia, T2-based oximetry may
require disease-specific calibrations.77,78

The main challenge of this approach, however, is iso-
lating signal solely from venous blood without contamina-
tion from tissue, CSF, or blood from other vascular com-
partments. Spin labeling methods provide a natural option
to isolate vascular signal because the intrinsic subtraction
can eliminate signal from unwanted voxel constituents.

T2-Relaxation Under Spin Tagging (TRUST) was the
first spin labeling technique to target venous blood sig-
nal.73,79 TRUST modifies the pulsed ASL experiment
by placing the inversion band above the imaging slab
(instead of below) to invert venous spins flowing inferi-
orly. Control-label subtraction yields high signal exclusive
to medium-to-large size veins within the imaging slab. A
T2 preparation module or FSE readout generates multi-
ple echoes to fit for venous blood T2, ultimately yielding
high-SNR global oxygenation measurements in short scan
times.

The Quantitative Imaging Of Extraction Of Oxygen
And Tissue Consumption (QUIXOTIC) method expands
on TRUST by employing velocity-selective pulse trains to
label blood accelerating from capillaries into the venous
system. This allows T2 measurement of venous blood on
a voxel-by-voxel basis, and generation of Yv, OEF, and
CMRO2 maps. QUIXOTIC, however, is limited by low SNR
and error introduced by CSF contamination.80 The Veloc-
ity Selective Excitation and Arterial Nulling (VSEAN)
technique mitigates these limitations by applying a unique
velocity-selective excitation to acquire signal directly from
slow-moving venous spins, thereby improving SNR and
reducing CSF contamination.81

4.1.1 Suggestions

TRUST MRI uses a straightforward spin labeling approach
to robustly measure global venous oxygenation and is rec-
ommended for most applications. It is easily translated to
clinical and research settings due to high SNR, short imag-
ing times, and simple data analysis methods. Furthermore,
TRUST has been extensively tested and validated, includ-
ing across multiple sites and in several disease states.79,82–86

More advanced approaches such as QUIXOTIC or VSEAN
allow voxel-wise oxygenation measurements and reflect
the next generation of spin labeling oxygenation methods.
However, these are currently reserved for the expert user
in specialized scenarios, given limited SNR and complex
acquisition and analysis strategies.

4.2 MR fingerprinting ASL

A dynamic time series of images, in which the acquisi-
tion settings are varied in a pseudo-random (but known)
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pattern, can be used to identify the underlying MR param-
eters of the tissue (e.g., its relaxation times).87–90 The spe-
cific combination of tissue MR parameters at each voxel
produces a unique dynamic MR signal for that specific
acquisition, and this signal can be predicted in simulation.
In MR fingerprinting, the parameter fits are carried out
by identifying the signal from a precomputed database, or
“dictionary,” of signals that matches the observed signal
most closely. The entry that is most correlated with the
observation corresponds to the appropriate combination of
MR parameters.

The key features and advantages of the fingerprinting
approach are that it produces joint parameter estimates
from a given signal and is robust to spurious signals as long
as their effect is not correlated with the parameter of inter-
est. Joint parameter estimation of variables, like T1 and T2
relaxation, eliminates coregistration and other biases from
separate measurements or assumptions. The dictionary
matching process is generally very fast, but generating the
dictionary is a computationally expensive process and can
result in coarse granularity of the parameter estimates.

Fingerprinting is an appealing strategy in the con-
text of quantitative ASL for several reasons. Primarily,
ASL is intrinsically low SNR,91 and the robustness of
fingerprinting to noise offers a major benefit. Second,
quantification of ASL requires multiple parameters to be

measured or assumed a priori. This can introduce biases
into the measurement if assumed, or coregistration errors
and additional scanning time if those additional param-
eters are measured separately. In contrast, ASL finger-
printing has been successfully implemented by collecting
a single time series of PCASL prepared images in which
the labeling duration varies according to a pseudo-random,
predetermined schedule, and the control/label condition
of the PCASL preparation train is also randomized. A post-
labeling delay is not necessary because the control PCASL
periods serve as variable postlabeling delays for model-
ing as reduced flip angles are used to preserve some ASL
signal from previous TRs. From this time series, multiple
parameters can be estimated by matching the signal to a
precomputed dictionary, usually T1 relaxation, perfusion,
arterial blood volume, and bolus arrival time.

In several studies, ASL fingerprinting with dictio-
nary matching was able to estimate the hemodynamic
parameters of interest, showing good agreement with
more established ASL techniques.92–96 Recently, how-
ever, DL methods have been shown to be a power-
ful alternative to dictionary matching.94,96 Whereas the
data acquisition portion of the method remains the
same, the parameter estimation portion can be accom-
plished more efficiently using neural network regression
(Figure 5).

F I G U R E 5 Example workflow of ASL fingerprinting using a neural network. Synthetic fingerprint signals are created from
combinations of tissue parameters (perfusion, blood volume, bolus arrival time, magnetization transfer rate, T1, and flip angle in this case).
These are used to train a set of neural networks that produce the parameter of interest as their output. Once trained, each network can
estimate the underlying tissue parameters, given an experimental fingerprint time series. The diagram contains the results of simulations
using synthetic parameter maps
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4.2.1 Suggestions

ASL fingerprinting is a promising technique. Dictionary
matching has been shown to be an effective way to esti-
mate parameters, and neural network regression has been
shown to offer clear advantages in terms of processing
speed and granularity. However, ASL fingerprinting acqui-
sition and processing methods are still evolving, so we
refrain from making specific design suggestions at this
point.

4.3 ASL angiography (ASL-MRA)

ASL angiography (ASL-MRA) has many advantages
over conventional contrast-enhanced MR/CT methods97:
it allows vessel-selective labeling (especially useful for
assessing arterial supply to, for example, arteriovenous
malformations/fistulas98–104) and has excellent flexibility
in temporal and spatial resolution because the labeling
and associated imaging readout can be repeated until the
desired resolution is reached, unconstrained by the neces-
sity to image the first passage of a contrast bolus.

To achieve high spatial resolution, however, the entire
scan time is often used to acquire a large k-space matrix
without signal averaging. When vessel-selective label-
ing is employed targeting multiple arteries, the total
scan time can become very long. Therefore, the use
of acceleration techniques should be considered: for
example, undersampled golden-angle stack-of-stars105 and
3D radial “koosh-ball” acquisitions,106,107 in conjunction
with advanced image reconstruction techniques such as
CS and k-space weighted image contrast.108 Fortunately,
ASL-MRA is well-suited for undersampled reconstruction
because of its high sparsity in the image domain after
subtraction, particularly when it is vessel-selective.109

Both PASL and PCASL can be used for ASL-MRA.
PASL with a Look-Locker readout has already proved its
clinical usefulness in several studies101,104,110,111 and is par-
ticularly good at visualizing the early inflow phase of
the proximal arteries. However, vessel-selective PASL has
some difficulties (see below), which makes PCASL a pre-
ferred option for vessel-selective MRA. PCASL can also be
combined with subtraction techniques to visualize blood
inflow.112–114

For static 3D-MRA, in contrast, PCASL’s long labeling
duration is more advantageous for visualizing the whole
arterial tree, and a hybrid of PCASL and PASL helps
to minimize the signal loss in proximal vessels caused
by fresh unlabeled blood flowing into the imaging vol-
ume.107,115

Recently, velocity selective static 3D-MRA116–119

has also been demonstrated by utilizing Fourier

transform-based velocity selective saturation pulse trains,
which set the flowing spins in the pass-band and static
spins in the saturation-band before acquisition as a
nonsubtractive method.

The typical readout for ASL-MRA is based on 3D
gradient-echo sequences. However, with a Look-Locker
readout, the repetitive excitation pulses can strongly atten-
uate the ASL signal when the flip angle is high. This can
be mitigated through the use of a balanced steady-state
free precession readout (Figure 6) that recycles the trans-
verse magnetization for the next excitation,113,120 or the
use of a segmented EPI readout to reduce the number
of excitation pulses while making the interval between
RF-pulses longer.97,114 However, off-resonance effects can
cause loss of vessel depiction with balanced steady-state
free precession,113 so high B0 homogeneity is required
(e.g., using a small FOV or lower B0 field strength) and
segmented EPI can suffer from ghosting due to strong
pulsatile flow,121 typically at the M1 section of the mid-
dle cerebral artery, although this is reduced when using
right–left phase-encoding.

ASL-MRA can be combined with perfusion imaging
in a single sequence by sharing the labeling module,

F I G U R E 6 Example transverse maximum intensity projection
frame from a vessel-encoded dynamic angiography sequence
acquired with a balanced steady-state free precession readout (Okell
et al., 2016). Color shows which proximal artery the blood signal
originated from: the RICA/LICA or RVA/LVA RICA/LICA, right/left
internal carotid artery; RVA/LVA, right/left vertebral artery.
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providing both macrovascular and microvascular informa-
tion: besides CAPRIA27 (described earlier), time-encoded
PCASL can be combined with a segmented EPI 4D-MRA
readout, minimizing the number of excitation pulses
required and preserving magnetization for a separate
perfusion-weighted readout.122

4.3.1 Suggestions

For static 3D-MRA, PCASL (ideally with PASL hybrid
labeling) is recommended for visualizing the whole arte-
rial tree. For 4D-MRA, PASL with a Look-Locker read-
out performs well for visualization of arterial blood as it
flows into the brain. For vessel-selective MRA, PCASL is
the preferred option to avoid the difficulties associated
with slab-selective PASL. When employing PCASL, inflow
subtraction should be considered to visualize the early
inflow phase. Undersampled acquisitions in conjunction
with advanced image reconstruction should be consid-
ered to minimize scan time. Readouts utilizing balanced
steady-state free precession or segmented EPI (with a fac-
tor of 3–7) help alleviate saturation of the ASL signal.
However, in cases where B0 inhomogeneity or pulsatile
ghosting are problematic, spoiled gradient-echo sequences
with low flip angles are recommended.

4.4 ASL functional MRI (fMRI)

Although hampered by its low SNR and acquisition
speed, early work demonstrated that ASL offered several
important advantages over blood oxygen level-dependent
(BOLD) fMRI. These include its quantitative nature
and the temporal stability of the measurement—that
is, it is not subject to 1/f noise that plagues BOLD
fMRI.40,41,123–126 These features make it more suitable
for fMRI experimental paradigms that span longer peri-
ods of time (e.g., blocked designs with durations greater
than a minute), such as applied in pharmacological
fMRI or when studying conditions like sleep deprivation.
For example, in an extreme case, images of the control
and active conditions were taken 30 days apart and reli-
able activation maps of the motor cortex could still be
obtained.124

Another advantageous feature of perfusion-based
(and blood volume-based) fMRI is that CBF and cere-
bral blood volume changes are more specific to the
parenchyma where the neural activity takes place, rather
than the draining veins. This feature makes it particu-
larly appealing for layer-specific fMRI, where BOLD imag-
ing is unable to differentiate activity between cortical
layers.127–130

ASL is also advantageous for fMRI in regions of high
susceptibility-induced static field inhomogeneities, such
as the orbito-frontal cortex, the amygdala, or the medial
temporal lobe, where BOLD techniques are prone to sig-
nal loss because ASL does not depend on susceptibility
contrast, and thus ASL images can be acquired using
sequences with low T2* sensitivity.131 This feature of the
technique makes it attractive for fMRI studies of spo-
ken language because it is less sensitive than BOLD to
speech-related motion and susceptibility confounds.132–134

ASL-based fMRI sequences typically avoid acquiring
segmented readouts to ensure a sufficient temporal reso-
lution. Besides the traditional 2D multislice EPI readout,
3D stack of spirals135 and 3D-GRASE readouts136 are effi-
cient approaches to collect all of k-space after a single
labeling/control period. An attractive acquisition strategy,
using a pseudo golden-angle stack-of-spirals 3D Rapid
Acquisition with Relaxation Enhancement (RARE) read-
out and CS reconstruction, has been recently proposed that
yields high spatial resolution time-averaged CBF maps
and low spatial resolution measurements of CBF fluctu-
ations.137 More recently, velocity selective labeling pulses
have been shown to allow faster sampling and improved
sensitivity138 and could become more widely adopted for
perfusion-based fMRI.

ASL has also found some use for assessing resting-state
functional connectivity. Early on, it was shown that con-
nectivity of the sensorimotor network could be detected
with ASL by evaluating fluctuations in the CBF sig-
nal.139 Since then, several studies performed to identify
resting state networks, applying different analysis meth-
ods, such as seed-based connectivity,140–142 independent
component analysis143–147 and whole-brain voxel level
connectivity,143,148 have found similar brain networks as
those observed in resting state BOLD studies. As in the
case of task activation studies, resting-state functional
connectivity measured with ASL can potentially pro-
vide better localization of resting state networks than
BOLD, despite the lower spatial resolution of the ASL
images. The lower temporal resolution of ASL is not so
much of a disadvantage because resting state connectiv-
ity is based on the correlation of low frequency signal
fluctuations.

4.4.1 Suggestions

ASL-based fMRI can be achieved by combining a label-
ing scheme with a fast volumetric readout, such as a stack
of spirals, combined with parallel imaging acceleration
schemes. Background suppression and time-series denois-
ing techniques (see previous sections) can be extremely
helpful for detecting activation. Velocity selective ASL
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has been shown to be advantageous because it allows
faster sampling, given the negligible bolus arrival delays.
ASL-based techniques hold great promise in layer-specific
fMRI.

5 VESSEL-SELECTIVE ASL

Often the total amount of blood perfusing a particular
region of tissue is the main parameter of interest, but in
some situations it is also desirable to know which artery
the blood signal originated in. One of the great advan-
tages of ASL over other perfusion imaging modalities
(e.g., positron emission tomography, single photon emis-
sion computed tomography) is the ability to image the
perfusion territory of a specific artery. The perfusion ter-
ritories of the brain-feeding arteries demonstrate a wide
variability due to anatomical variations in the cerebral
vasculature and hemodynamic changes caused by cere-
brovascular disease.149 Clinical applications of territorial
perfusion imaging include assessment of collateral flow
patterns in steno-occlusive disease and identifying the
blood supply to ischemic lesions, arteriovenous malforma-
tions, or tumors.150

5.1 Slab-selective single artery labeling

Some of the original techniques for vessel-selectivity
restricted the spatial region over which an ASL inver-
sion pulse acted, thereby only labeling a single vessel at a
time. The most common approach is to use a conventional
slab-selective inversion pulse but to angle it in such a way
as to only cover the artery of interest.151–153 Efficient postla-
beling saturation must then be used to remove any effect of
the angled labeling pulses on tissue magnetisation within
the imaging region. However, orientating the slab to cover
only the artery of interest, which is often tortuous, is chal-
lenging. In addition, if only a limited vessel segment can
be covered, then the bolus of labeled blood created is rel-
atively small, the SNR of the resulting images is impaired,
and perfusion quantification is challenging.

5.2 Superselective methods

Vessel-selective labeling based on (P)CASL avoids some of
the drawbacks of the slab-selective PASL-based methods
by using a secondary gradient perpendicular to the main
labeling gradient axis. If the gradient is rotated dynami-
cally during the labeling period instead of applying this
gradient in a continuous fashion, one can achieve a small
labeling region. Early vessel selective work using CASL

essentially created a labeling plane that was not perpen-
dicular to the flow direction and rotated about a target
artery such that only the spins flowing through that artery
would experience the adiabatic inversion that underlies
CASL.154,155

A similar idea can be applied to PCASL methods by
inserting in-plane gradient pulses between the individual
RF labeling subpulses that make up a balanced PCASL
labeling train (see Figure 7). The effect is a phase dis-
tribution of the spins determined by their location along
the in-plane gradient direction. Matching the phase of the
individual pulses in the labeling train to the phase of the
spins at a specific vessel location allows the creation of a
“labeling stripe” that tags spins flowing through that loca-
tion by adiabatic inversion similar to nonselective PCASL.
The periodic nature of phase accrual means that if the
in-plane gradient pulses were the same each time, these
conditions would be met at a number of stripes within the
labeling plane. In superselective PCASL, the in-plane gra-
dient is rotated at varying increments between RF pulses in
the PCASL train (in a continuous or pseudo-random fash-
ion), and the RF phase adjusted such that only the spins
flowing through 1 location in the plane will experience the
adiabatic inversion process.156,157

The amplitude of the in-plane gradient blips deter-
mines the effective “labeling spot” size and must be chosen
as a compromise between labeling efficiency/insensitivity
to motion (larger spot size) and the potential for label-
ing other nearby arteries (smaller spot size). Moreover, the
labeling plane needs to be oriented approximately perpen-
dicular to the artery, intersecting at a straight part of the
artery and without intersecting the tissue in which the
relevant imaging is performed.

Superselective PCASL has already shown some
promising results in patients with a range of cerebrovas-
cular diseases, including steno-occlusive disease and
arteriovenous malformation.150,158 Recent work on cor-
recting for off-resonance effects and pulsatility is likely to
further improve robustness.33

5.3 Vessel-encoding

Given a limited scan time, labeling methods with higher
time efficiency are preferred, that is, methods that can
label several feeding arteries simultaneously either by
pulsed159 or (pseudo-) continuous labeling methods.160,161

In this type of approach, perfusion images are acquired in
a few “encoding” steps. As described earlier (see Figure 7),
including an additional gradient blip within the PCASL
labeling plane in a consistent direction, along with associ-
ated RF phase modulations, creates spatial labeling bands
within the plane without labeling the blood in other
regions. The encoding of arteries is achieved by labeling
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F I G U R E 7 Vessel-selective PCASL methods: The pulse sequence diagrams (left) of superselective (top) and vessel-encoded (bottom)
PCASL are very similar. For superselective labeling, the in-plane gradient blips (Gx, Gy) are rotated every RF pulse in a continuous or
pseudo-random fashion, generating a single labeling “spot” (middle). Dotted RF lines represent the control condition. For vessel-encoding,
the gradient blips are applied in a consistent direction, creating bands of label and control conditions across the labeling plane that are are
varied across a number of encoding cycles. For superselective labeling, each artery of interest is labeled separately (middle) and then
combined (right). For vessel-encoding, each encoding cycle generates images with different combinations of arteries in (ideally) label or
control conditions, which are combined in postprocessing to identify the signal arising from each artery. Color is used here to represent the
origin of the blood signal (red = right internal carotid; green = left internal carotid; blue = right vertebral; magenta = left vertebral). PCASL,
pseudo-continuous arterial spin labeling.

different subregions of the labeling plane over a series of
readouts. For PASL-based approaches, this involves posi-
tioning the labeling slab to cover more than 1 artery at
a time, although the difficulties in positioning this slab
to cover tortuous arteries still remain, so PCASL-based
approaches are generally preferred.

In each of several readouts, the feeding arteries are
labeled and encoded differently, for example, inverted
(label) and unperturbed (control) arterial magnetization
are encoded as −1 and 1, respectively. With the tissue
signal always encoded as 1, an encoding matrix can be
constructed to describe the signals acquired for all the
encoding steps at the imaging slices,160 for example,
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where the measured signal vector, y = [y1 y2 y3 y4 ]T and
yi is the signal acquired in step i; the signal source vec-
tor x = [L R B T ]T ; and L, R, B, and T are the signals from

the left carotid, right carotid, basilar arteries, and brain
tissue, respectively. The observed signals (y) are a linear
combination of the contributions (x), mixed by the encod-
ing matrix, A, made of 1 and− 1. The contribution from
each feeding artery can then be calculated by x = A−1y,
where A−1 is the inverse or pseudo-inverse of the encoding
matrix A.

Using columns from a Hadamard encoding matrix
(with elements of 1 or− 1) to construct the encod-
ing matrix,160 such as the one shown above, maxi-
mizes encoding and SNR efficiency.159 This leads to
vessel-encoded ASL, sometimes being referred to as
Hadamard-encoded ASL, although this should not be
confused with time-encoded methods, which also use
Hadamard encoding.162 To distinguish N vascular territory
regions, the SNR for each feeding artery using Hadamard
encoding is improved by a factor of

√
N compared to label-

ing each feeding vessel individually,159 given the same total
acquisition time.

Due to variation in the geometry of the feeding
arteries and scanner hardware limitations, Hadamard
encoding schemes may not always be feasible, or the plan-
ning/calculation process could be slow, although some
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automated methods to optimize the encodings have been
proposed.163–165 Optimization of the labeling parameters
can also improve the separation of arteries selected to be
in label or control conditions.161,166

Due to field inhomogeneities such as B1 variation or
off-resonance at the labeling sites, the actual labeling sta-
tus of the feeding arteries may deviate from the designed
values (e.g., encoded as 0 if the signal is saturated) and
should be estimated from the data to accurately decode the
vascular territory information.160 This can be done by esti-
mating the encoded labeling efficiency of the ASL signal
in each perfusion territory by k-means clustering and lin-
ear analysis,160 or by using Bayesian inference framework
with improved accuracy.167

Some applications of vessel-encoded ASL include
detecting/assessing collaterals,168 or producing vessel-
encoded angiograms169 that can be used to assess the blood
supply to arteriovenous malformations.170

5.4 Suggestions

PCASL is the recommended method for vessel-selective
ASL. When choosing between the vessel-encoded and
superselective labeling schemes, the purpose of the
scan should guide the decision: when there is need
to have insight into all (or the main) flow territories,
vessel-encoded labeling using a Hadamard scheme is
the most efficient method and will yield the highest
SNR. However, when there is specific interest in the
flow territory of a single or a few arteries, especially in
cases where these arteries are located intracranially or
are part of an unusual vascular anatomy, superselective
labeling is the method of choice: it allows the labeling
plane to be optimally positioned for each artery and is
perhaps the simplest to implement. However, in both
methods, imperfect labeling efficiency must be accounted
for when trying to quantify CBF or mixed perfusion
fractions.

6 DEEP LEARNING IN ASL

Machine learning (ML) applications are on a steep rise in
the domain of medical imaging. Special attention should
be given to deep convolutional neural networks, which
have shown excellent performance in medical image anal-
ysis tasks.171 These methods are further supported by
growing initiatives for public data sharing, which enables
building of large multi-center datasets that are key in the
effort to reliably train and validate a machine-learning
model. Historically, multi-site ASL data sets have been

notoriously difficult to combine due to intervendor imple-
mentation differences and a lack of protocol standardiza-
tion; the previous consensus paper3 has helped to address
these issues, and current efforts to standardize parameter
notation as part of the new ASL Brain Imaging Data Struc-
ture (BIDS) extension172 and the Open Science Initiative
for Perfusion Imaging also aim to improve harmonization.

This is a rapidly developing area, and we expect many
new innovations to occur in the coming years. So far, 4
main types of tasks are typically solved using ML methods:
parameter estimation, image denoising (described above),
predicting images with different contrast, and directly pre-
dicting diagnosis or disease severity.

6.1 ASL quantification

DL provides a powerful way for solving complex nonlinear
inverse problems, such as the one posed by ASL, partic-
ularly in the fingerprinting application (described above).
In the case of ASL fingerprinting, neural network regres-
sion can be used to estimate multiple parameters indepen-
dently, 1 at a time, without assuming the value of the other
parameters.

The general strategy is to generate a database of
synthetic signals based on a physics-based model, the
pulse sequence parameters (e.g., labeling duration sched-
ule, PLD, TR), and many parameter combinations. This
database of signals is then used to train a set of neural
networks to output the desired parameters. Once trained,
each of the networks will take the observed signal as input
and yield a parameter estimate as its output. Alternatively,
experimental ASL data from a high-quality data set in
which the underlying parameters were known a priori can
be used to train the neural networks instead of using purely
synthetic data from Bloch simulations.96

Training the neural networks requires a large database
of signals, which is computationally expensive to syn-
thesize and store. However, the network needs only to
be trained once. After training, computation of the out-
put (i.e., the parameter estimates) is extremely fast. This
approach offers an important advantage over dictionary
learning: it allows for much finer granularity of the param-
eter estimates, whereas the dictionary entries are com-
puted on a coarser grid of parameter values because the
size of the dictionary grows exponentially with the grid
size and the number of parameters (dimensions) that one
wishes to estimate.

In terms of ASL, this strategy has been demonstrated
to estimate hemodynamic parameters from ASL finger-
prints quite effectively,94,96 although a fingerprint’s sen-
sitivity to perfusion and other hemodynamic parameters
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can be limited in some cases.94 Optimizing the finger-
print readout schedule to maximize the sensitivity to per-
fusion (using an objective metric of sensitivity, such as
the Cramer-Rao bound) is crucial to obtaining reliable
estimates. As a result, perfusion, arterial transit time, and
arterial blood volume can be estimated reliably in addition
to T1 relaxation time and the effective flip angle, giving
good agreement with standard measurements.94,96

6.2 Machine learning and ASL
for diagnosis

ML and DL give us the means to study regional and
voxel-wise patterns of pathological perfusion changes
in more detail than a simple evaluation at specific
pathology-related regions. Two distinct approaches are
generally used for ASL: (i) evaluation of regional mean
CBF in anatomical regions based on atlases and then
working in the vector space defined by these regions
to, for example, separate healthy controls from patients
with a major depressive disorder173; and (ii) process the
full voxel-wise CBF maps either using DL based on
neural networks, or using a feature space reductions
methods (such as PCA) and traditional ML algorithms
(such as a support vector machine). Although DL-based
methods can achieve higher performance and are not
bound to predefined anatomical regions, such methods
have numerous shortcomings: Much larger datasets are
needed for training, and they suffer from interpretabil-
ity issues, can cue on nonperfusion-based artifacts such
as motion, and are computationally more demanding.
The major hurdle is, however, the sensitivity of the
ASL protocol: variations in acquisition parameters (com-
monly present in ASL) can render a well-performing
machine learning method useless on another acquisition
protocol.

Despite the first examples of ML/DL applications
emerging, they are still pilot studies conducted on a lim-
ited number of patients from a single cohort without an
external validation and are thus far from wider adoption
in clinical research. Standardizing image processing to
decrease the between-center differences in data174 is a way
to gather larger datasets, necessary for both the ML and DL
training.

6.3 Suggestions

Whereas ML offers great promise, this field is still evolving.
We anticipate the continued development and validation
of these techniques for ASL, particularly those that are
robust to differences between sites, scanners, and acquisi-
tion protocols.

7 ULTRAHIGH FIELD: ASL AT 7 T

ASL should benefit at higher B0 field strengths from both
the intrinsic SNR increase and the longer T1 relaxation
time of blood. This large boost in SNR could be traded off
for shorter scan times, higher spatial resolution, and/or
increased sensitivity to low levels of perfusion (e.g., in the
WM of the brain). The potential for improved SNR can be
seen in PCASL images collected at 3 tesla (T) and 7 T in
Figure 8. PCASL images collected at 3 T and 7 T can be seen
in Figure 8. However, a number of technical challenges
have prevented the widespread use of ASL at ultrahigh
field (UHF).175 These include: (i) increased main field (B0)
inhomogeneity; (ii) increased transmit RF (B1

+) inhomo-
geneity, often with limited coverage; (iii) increased power
deposition; (iv) more rapid T2/T2* decay; and (v) increased
physiological noise.

Much of the early work on UHF ASL made use of
a pulsed ASL preparation and imaging of only a lim-
ited region of the brain.176–178 More recent work utilizing
optimized PASL inversion pulses179 as well as dielectric
pads and simultaneous multi-slice EPI,6 has demonstrated
improved labeling efficiency, brain coverage, and temporal
resolution. Such techniques show great promise, particu-
larly for high spatial resolution functional imaging,129,180

such as laminar fMRI, without the confound of draining
veins that can bias conventional BOLD-based methods.

F I G U R E 8 Example PCASL CBF maps (in mL/100 g/min)
generated in the same subject using the same protocol at 3 T and
7 T. At this resolution (2 × 2 × 4 mm) the 3 T data is relatively noisy,
but the SNR increase at 7 T gives a considerable improvement in
image quality. However, in order to achieve reasonable quality
perfusion images at 7 T, the labeling plane had to be positioned
within the brain to avoid severe B0 and B1 inhomogeneities,
meaning whole brain coverage was not possible. In addition, the
label duration had to be kept short (1400 ms), and it was only
possible to use presaturation for background suppression because
additional inversion pulses would have exceeded SAR limits. Other
imaging parameters: PLD = 2000 ms, TR = 4000 ms, readout
scheme = 2D multi-slice EPI, number of slices = 10, TE = 13 ms,
parallel imaging (GRAPPA) factor = 2, scan time = 5 min. SAR,
specific absorption rate; T, Tesla.
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Although promising, the main limitation of PASL at UHF
is that labeling can only occur within a spatial region
defined by the transmit RF coil: at 7 T, this is typically a
head-only transmit coil, unlike the body coils used at lower
field strengths. Therefore, there is a tradeoff between brain
coverage and the remaining region within the head coil
that is available for generating the bolus of labeled blood,
which directly impacts the achievable SNR.

PCASL has the potential to overcome this obstacle
because only the thin labeling plane must be located
within the sensitive region of the transmit coil: gener-
ation of long boluses of labeled blood should therefore
still be possible while maintaining whole-brain coverage.
However, PCASL is also particularly sensitive to all of
the technical issues mentioned above, so much of the
work in this area has focused on tackling these. B0 inho-
mogeneity can be mitigated using a prescan to estimate
field offsets at each vessel location, which can then be
corrected using transverse gradient blips between PCASL
pulses181 or phase correction schemes.182 Reduced B1

+

amplitude in the labeling region can be partially com-
pensated using high-permittivity pads,183 whereas trans-
mit homogeneity at the labeled vessel locations can be
improved using B1

+ shimming.184,185 Both approaches also
help to improve transmit efficiency, reducing power depo-
sition, particularly when variable rate selective excitation
is applied,184,186 although this often appears to remain a
limiting factor. Fast Low Angle Shot-based readouts show
promise for limiting the impact of short T2 decay at 7 T
and are potentially more robust to physiological fluctua-
tions.187,188

Despite these advances, it has proven difficult to real-
ize the full theoretical potential of ASL at UHF. Future
work to further reduce power deposition, allowing opti-
mal labeling durations and background suppression to be
achieved and perhaps utilizing full parallel transmission
capabilities, is likely to help push this field forward in the
future.

7.1 Suggestions

UHF PASL using appropriately optimized inversion pulses
could be considered when very high spatial resolution is
required, particularly for layer-specific functional imag-
ing, although this becomes more challenging in inferior
brain regions. Whereas UHF PCASL shows great promise,
technical challenges such as B1 inhomogeneity and power
deposition have thus far hindered its implementation, so
further work in this area is encouraged to allow opti-
mal labeling durations and background suppression to
be achieved, perhaps utilizing full parallel transmission
capabilities.
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