
Lawrence Berkeley National Laboratory
Recent Work

Title
AN INTERACTIVE PARALLEL PROCESSOR FOR DATA ANALYSIS

Permalink
https://escholarship.org/uc/item/39p2d21v

Author
Meng, J.

Publication Date
1983-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39p2d21v
https://escholarship.org
http://www.cdlib.org/

LBL- 15958

I

Lawrence Berkeley LabomatQgy
LAWRENCE

UNIVERSITY OF CALIFORNIA 	BFLEVIAp

Engineering & Technical•
Services Division 	 DOCUMENTS

Presented at the IEEE Nuclear Science Symposium,
San Francisco, CA, October 19-22, 1983; and to be
published in the IEEE Transactions on Nuclear
Science

AN INTERACTIVE PARALLEL PROCESSOR FOR
DATA ANALYSIS

J. Meng, D. Weaver, C. Maples, W. Rathbun,
and D. Logan

October 1983

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 6782.

-

cfl

rU1
Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

	 çOQ

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

AN INTERACTIVE PARALLEL PROCESSOR
FOR DATA ANALYSIS

J. Meng, D. Weaver, C. Maples, W. Rathbun, and D. Logan

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

LBL-1 5958

Abstract

A parallel array of eight minicomputers has been
assembled in an attempt to deal with kiloparameter
data events. By exporting computer system functions
to a separate processor, we have been able to achieve
computer amplification linearly proportional to the
number of executing processors.

Introduction

Empirically, it is true that much of todays nu-
clear science results in multi-parameter data recorded
verbatim on line to be later replayed for complete and
detailed analysis. Furthermore, whereas a decade ago
such data would have typically been fewer than eight
parameters per event, todays data tends to have more
than eight parameters per event and in some cases is
hundreds or even thousands of parameters per event.
The results of this trend for data analysis systems
are two fold. First, collection of more parameters
per event implies a search for very complex correla-
tions. This in turn implies that to be 'truly effec-
tive, data analysis will often require some interactive
intervention on the part of the experimenter. Second,
the physical volume of data with which such interaction
is desirable becomes very large. 	These two results
are conflicting. 	Effective interaction requires fast
response times, but large raw data volumes imply
longer data perusal times for the data analysis
system. The response of many experimenters to this
conflict is a continuous and expensive subsidy to
computer manufacturers in the form of ongoing pur-
chases of more and more machines used by fewer and
fewer experimenters with poorer and poorer results.
Data analysis requirements remain many paces ahead of
the ultimate capacity of available sequential compu-
ting machines.

In an attempt to solve this dilemma, we have para-
lleled eight stripped-down minicomputers in a config-
urati on* which demonstrably gives the resulting sys-
tem greater than eight times the processing speed of a
single minicomputer. Furthermore, the array is highly
modular, allowing repair, replacement or upgrading of
major components without major downtime periods or
major system overhauls. It is planned to assemble the
8-processor array into an array which shares a common
interactive processor; one programmed to interface with
several users simultaneously. The system is expected
to defy obsolescence by virtue of its ability to have
its relatively inexpensive high-speed processing modu-
les upgraded as new ones appear, and by virtue of its
use of a separate processor dedicated to.user inter-
action. The user-interaction processor, its main vir-
ture being its program instead of its hardware, is not
expected to become rapidly obsolete.

* The processor described is a prototype of a module
intended to eventually be part of an array of such
modules. The project has been named MIDAS, for
Modular Interactive Data Analysis System, and all
its various parts are referred to as such in much of
the literature.

This paper is a description of our initial eight-
processor array and some results based on the data
analyses presently being run through the system.

Hardware

As Fig. 1 illustrates, the heart of the configura-
tion is the crossbar-like connection of sixteen memor-
ies to any system processor. System processors include
pipelined processors for inputting and outputting data,
the array of minicomputer central processors, a special
sorting module (not yet implemented), and each memory
is given its own zero processor, allowing it to be
cleared rapidly.

The crossbar configuration allows data to be
switched through the system in blocks. After being
filled from the input pipeline, the memory (4096 words
by 32 bits in the present system) is switched to become
part of the address space of an available minicomputer
central processor, after which it is switched to be
unloaded by the output pipeline processor. Rather
than being centralized, the gating which effects the
crossbar is distributed among the sixteen memory
modules, thus relieving interconnect congestion.

Control of the crossbar is centralized, however,
illustrated schematically in Fig. 2. A microprocessor
is used to remember the desired sequence of processors.
It also remembers when data must exit from the system
in the same sequence in which it entered. Using these
remembrances, it empties and then loads the First-In-
First-Out (FIFO) memory devices used to control the
crossbar connections during a processing pass.

Before the system is started, the sequence proces-
sor loads a list of four-bit numbers into the FIFO
associated with the first process to be executed. For
example, codes representing memories zero through
fifteen would normally be loaded into the FIFO control-
ling the memory-zeroing operation. Since memory-zero-
ing is independent of all other operations, this pro-
cess would initiate for each memory in rapid sequence.
As a memory finishes being zeroed, its unique tag is
passed into its exhaust FIFD where its presence flags
the sequence processor. The sequence processor, using
its pre-loaded list of processor sequence, removes the
memory code from the zero-processor exhaust FIFO and
puts it into the next-prescribed processor FIFO; usual-
ly the input pipeline processor FIFO. Upon finishing
with a memory, the input pipeline processor causes the
memory code to be passed to its exhaust FIFO, once
again flagging the sequence processor. In this way,
the memory passes circuitly throughout all the pre-
scribed processors. If the sequence processor has
been told that the sequence of data entering the
system must be the same as that of data exiting the
system, it remembers the sequence of memory tags going
into the connect FIFO for the input pipeline proces-
sor, and uses this to quarantee the same sequence of
memories passing into the connect FIFO for the output
processor pipeline. Within the system, since eight
minicomputer central processors are processing eight
different blocks of data simultaneously and since the
analysis time may be dependent on the data, there is

1

no guarantee that the sequence of data going into this
processing block will be retained on release.

The crossbar in the prototype system is 5 x 16. If
each minicomputer central processor were given one
axial element of the crossbar, it would have become 12
x 16 and we felt the volume of gates and interconnec-
tions would be impractically large, so we compromised
by using only one crossbar axial element for all eight
minicomputer central processors. This is a reasonable
compromise because the central processors use the
crossbar only when accessing data. Program memory is
local to each processor and does not share the crossbar
memory interface. Also, average central processor
access time is about 600 ns, whereas data memory cycle
time is 200 ns. Consequently, memory accesses are
relatively far apart and take a relatively short time
to complete, making a shared access route functionally
practical with very little sacrifice in performance.
Connection of the eight central processors to a single
crossbar axial bus is achieved using a high-speed time-
slicer which asynchronously samples all eight memory
requests every 170 ns, pausing 50 ns for a transfer
when a request is active (see Fig. 3).

The input pipeline processor is a shift register
running on a 4 MHz clock. In the 250 ns between clock
edges, discrete logical operations are performed.
Thirty two of the forty entering bits are reserved for
data and pass through the pipeline unaltered. The
remaining eight bits are used as control or status
lines. Each stage contains some logic peculiar to the
assigned function of the stage. 	For example, one
stage is used to detect the beginning of an event. 	It
contains logic to select which bits of the data stream
to monitor for the event-beginning tag, and a high-
speed Random Access Memory (RAM) preprogrammed with the
truth-table for logic required to detect the specified
code. Results of the test may be put onto one of the
eight status lines, to be counted when setting up
memory storage addresses in the final stage of the
pipeline. The final stage of the pipeline contains a
4096 x 12-bit high speed ram used to generate storage
addresses for data. The twelve bits of ram address
may be driven either from an event counter or from a
selected part of the data word or from some combination
of the two. The RAM is programmed to put each
incoming event on one of a set of preselected fixed
address boundries, thus greatly enhancing the speed of
data analysis when the memory arrives at its central
processor unit.

The output pipeline processor is not a pipeline in
the prototype unit (see Fig. 5). It is a counter used
to generate memory addresses and some logic used to de-
tect codes added to the data by the central processor
units and used to select either a destination for the
data or an end of the data buffer. Future plans call
for a genuine pipeline as the output processor to en-
hance the flexibility of the system. Data from the
system may be sent either to a histogramnhing memory or
to a choice of two bulk storage devices, or to any
combi nation simultaneously.

Programs which run in the parallel CPUS are com-
piled on a separate computer system, and only the re-
quired run-time code is down-loaded into the parallel
CPU's. Since this separate computer looks like an
operator at the control panel of each of the parallel
CPUs, it has absolute control. After downloading a
proqram, the separate computer system puts the start
address into the appropriate hardware register and
turns on the RUN switch. Implementing the computer -
CPU connection in this manner makes it unnecessary to
have any resident code in any of the parallel CPU's.
This prevents overhead functions--those normally

associated with operating systems and computer input/
output--from robbing us of actual computing power.
The result is a system whose actual computing power
increases linearly with the number of parallel CPUs
running.

To date, our user programs have generally been
written in Fortran, and most of them are copies of
Fortran programs running on other nonparallel proces-
sors.

Actual data analyses are being run through the
system. Early results, based on comparing analysis
time on an independent minicomputer with the time
required to do the same analysis on our parallel
processing system indicate a speed amplification
greater than nine. Analysis results have been compared
and verified. The independent minicomputer uses the
same make and model of central processor as that being
used in the parallel -processor array. This particular
data analysis was fairly well matched to the capacity
of the system. The system was mostly compute limited.

Endpoint tests have been run on the system. 	By
running programs which guarantee the system will be
limited by compute time, and then turning on central
processors one at a time, we have plotted a linear
function of data throughput rate versus number of
running central processors(3) (Fig. 6). We have run
the system with very short programs in the central
processors, and have observed the data input rate
limiting at the capability of our bulk storage device:
a 300 Mbyte disk. At the other end, the system limits
at the incrementing rate of our histogramming
memory--about 1 ps per increment.

Concl us ions

By connecting processors in a parallel array
within a structure that excludes the normal overhead
associated with running operating systems in
independent processors, we have demonstrated our
ability to multiply processing capacity by the number
of processors executing in the parallel array.

Acknowl edgments

Principal members of the dedicated group who
helped develop, build and test this system are Fong
Gin, Bill Jackson, Tom Merrick, and Tom Shimizu.

This work was supported by the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098. Refer-
ence to a company or product name does not imply
approval or recommendation of the product by the
University of California or the U.S. Department of
Energy to the exclusion of others that may be suitable.

References

Meng, J. D., 	Controlling a Radially-Connected
Array of Minicomputers,' Conference Record, Six-
teenth Asilomar Conference on Circuits, Systems
and Computers, pp. 280-284, Nov., 1982. 	Also

Lawrence Berkeley Laboratory Report No. LBL-14471.

Maples, C., Rathbun, W., Weaver, D., and Meng, ,J.,
"A Design of MIDAS - A Modular Interactive Data
Analysis System," Conference Record, Topical Con-
ference on Computerized Data Acquisition in Parti-
cle and Nuclear Physics, 1981. 	Also Lawrence
Berkeley Laboratory Report No. LBL-12504.

Maples, C., Weaver, D., Meng, ,J., Rathbun, W., and
Logan, 0., "Utilizing a Multiprocessor Architecture
- The Performance of MIDAS,'. To be published in
the IEEE Trans. Nucl. Sci. NS-31, No. 1, Feb. 1984.

V

2

CONTROLLING
CPU

PUT/OUTPUT BUS

40 BITS WIDE 	-PROCESSOR
250n WORD

2010 BYTES SECOND

MINICOMPUTER CPUS
8 TIME-SLICED ONTO
THE BIDIRECTIONAL

CROSSBAR BUS

CONTROLLING
CPU

INPUT OUTPUT BUS

I SPECIAL SORTING
MODULE

	

r 	SPARE FOR

	

I 	EXPANSION

OUTPUT PIPELINE

	

- j 	PROCESSOR

16 MEMORIES
EACH 4K'32 BITS

TO HISTOGRAMMING
MEMORY

TO DISK
STORAGE

- 	SPARE
(TO TAPE STORAGE)

ZERO PROCESSORS
ONE PER MEMORY) 	 il*BtI:BK

	

Fig. 1 	The processor array consists of an input pipeline, output pipeline, special sorting module (not yet
built) and zero—processors used to clear each memory. 	A crossbar connects processors to memories.

	

- 	The crossbar control processor sequences the connections, guaranteering no interference.

CONNECT DECODERS
REGISTERS

CO'

Fig. 2 	The crossbar control processor is a microprocessor/discrete—logic hybrid. 	The microprocessor
remembers desired and actual sequences and uses FIF0s to save its decisions until the hardware
executes a switch. An actual switch requires less than 50 ns.

0

CROSSBAR

MEMORY MEMORY 	MEMORY MEMORY

I/O BUS FOR
CONTROLLING

PROCESSOR

Fig. 3 	Central processor units require relatively very little memory access compared with the 200 ns cycle

of the memory chips. 	The time—slicer distributes one crossbar connection among all eight mini-
computer central processors with very little processor performance degradation.

CONNECTIONS TO ASSOCIATED PROCESSOR

TO CROSSBAR

PIPELINE STAGE I 	PIPELINE STAGE I] 	 FINAL PIPELINE STAGE

X8L 839-11831

Fifl. 4 	The input pipeline is a shift register containing simple processing logic between stages. 	Logic is
iied to detect and divert headers and comments. 	It finds event boundries and places them at pre-
defined locations in the memory into which it empties.

TO CROSSBAR

BULK STORAGE
TAPE)

HISTOGRAMMING
LOGIC

BULK STORAGE
(DISK)

STAGE TO 	 SWITCHES TO

COMPRESS OUTPUTS 	 CONTROL DATA FLOW

Fig. 5 	At the output processor, only valid data is selected for passage either to histogramming memory or
to bulk storage.

40

/

Fig. 6

PROCESSED
DATA

D
MINICOMPUTER

CENTRAL
PROCESSORS

FOCTORS
INDICATES DIFFERENCE BETWEEN

OPTIMIZED AND UNMODIFIED P000RAMS
11

10

a ioo - • 9R

o 	I 	 I 	 I 	 I 	 I 	 I 	 o 	I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

1 23456789 	 01 2 3456 789

NUMBER OF PROCESSORS 	 NUMBER OF PROCESSORS

	

EXECUTING IN PARALLEL 	 EXECUTING IN PARALLEL

- 	 ZEL 839-11136

Data running the loop as shown is analyzed 8-10 times faster than the same data being run through the
same program in a single processor. Multiple processors find it relatively easy to out perform our
commercial 300 MByte disk controller, as shown on the left graph.

DOWNLOAD &
CONTROL

PROCESSOR

SATURATION CAUSED BY
COMMERCIAL DISC CONTROLLER -

801 	I 	 I 	 I 	 I

700 	 620 	640

640 - 10

- 42/0

314
300

191

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

tI

US

'-I

1t

tZ 1

I

