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ABSTRACT OF THE DISSERTATION 

 

Assessing Urban Ecosystem Alternatives for 

Changing Land Use Dynamics in the 

Los Angeles Region 

 

by 

 

Ruth Aliza Engel 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2022 

Professor Thomas Welch Gillespie, Co-Chair 

Professor Dennis P. Lettenmaier, Co-Chair 

 

As the world has grown increasingly urbanized over the last half-century, management of 

regional metropolitan landscapes has become more complex. Planning and research efforts alike 

require an understanding of local conditions and variability within cities. In this study, I examine 

changing land cover, urban hydrology, and surface temperature within the Los Angeles region. 

Using a deep convolutional neural network, I disaggregated mixed Landsat pixels to track land 

cover change over a continuous 35-year record. I found relatively constant urban area but a 

higher abundance of irrigated tree cover than is commonly detected in long-term remote sensing 

data. I used the Distributed Hydrology Soil Vegetation Model to examine hydrology in two 

distinct neighborhoods within Los Angeles, and observed that new urban vegetation in primarily 
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impervious areas reduced precipitation-event runoff but universally increased evapotranspiration 

more substantially than it did in vegetated areas. Both the hydrologic baseline and the responses 

to land use change varied substantially across different localities. I assessed the contributions of 

streets to land surface temperature (LST), and found that localized urban morphology and 

vegetation, rather than road surface, determine LST. In many cases, large impervious or irrigated 

pockets dominated neighborhood-scale LST signatures. Together, these analyses demonstrate 

that disparate vegetation, irrigation strategies, and building footprints across an urban area have 

unique interactions that can make regional approaches impractical and ineffective. Rather, urban 

ecosystem services can be strengthened by local consideration and an understanding of scale.  
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Chapter 1. Introduction 

Increasingly, people across the world are moving to cities. By 2050, 67% of the global 

population is projected to live in urban areas (IOM 2015). Within the United States, cities are 

expanding in terms of both land area and density, leading to shifts in socio-ecological systems 

(US Census Bureau 2010; Rounsevell et al. 2012). In planning and science, analyses of urban 

dynamics and ecosystem services are critical in determining both how cities might continue to 

grow and how they can sustain increasingly large populations (Luederitz et al. 2015). 

Contemporary municipal managers strive for sustainable land use planning and resilience 

in the face of climate change and resource scarcity (Hersperger et al. 2018; Garcetti 2019). Not 

only are local planners expected to implement city-wide changes, they are reliant on large 

interconnected systems (e.g. water distribution, transportation networks) that increase the 

complexity of any discrete consideration (Graham and Marvin 2001). Consequently, plans are 

frequently created at a city level, applying land or ecosystem management strategies across a 

large urban area (Luederitz et al. 2015; Middell et al. 2020).  

In academic research, urban dynamics studies are often constrained in terms of detail by 

the availability and scale of data. In order to examine heterogeneity within cities, land use data 

must be high-resolution (~10 m), as changes can occur at a block-scale (Welch 1982). While 

such high-resolution datasets exist, they are limited to the last decade (EROS 2017; Planet Team 

2017). Urban change analyses, such as modeling studies examining regional hydrology or carbon 

cycles, rely on long temporal records (>30 years). Remotely sensed land cover data with 

sufficient time scales usually have moderate spatial resolutions (e.g. 30 m). Consequently, mixed 

pixels are a pervasive problem in urban analyses: minority-pixel features – such as trees – are 

masked, and urban areas look more homogeneous than they truly are (Mitraka et al. 2016; Wang 
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et al. 2019). In both long-term and more recent, short-term studies, large high-resolution datasets 

have proven unwieldy, requiring substantial processing power to analyze (Perkins et al. 2019). 

Moderate-resolution, regional studies, however, are practical and can be tailored to a city’s 

ecosystem and climate, and are frequently used to understand physical dynamics (Gould 2000; 

Imhoff et al. 2004; Myeong et al. 2006).  

Because cities vary by race and income as well as physical characteristics (e.g. building 

density, climate), regional-level studies often obscure differences among neighborhoods in ways 

that can exacerbate environmental injustices. Imperviousness, air pollution, soil contamination, 

and urban heat are all correlated with marginalized and historically redlined communities 

(Wilson 2020; Madrigano et al. 2021; Lane et al. 2022). These trends hold for predominantly 

Black and Latino neighborhoods, often due at least in part to a lack of vegetation (Schell et al. 

2020; Dialesandro 2021). Resource allocation is also distributed unequally; in water-scarce 

cities, wealthy communities use substantially more water (often for outdoor irrigation) than low-

income areas (Clarke et al. 2013; Litvak et al. 2017). Treating a city as an undifferentiated whole 

implicitly assumes that physical, social, and environmental characteristics are homogeneous 

enough to support a single set of scientific results or planning outcomes (Deziel et al. 2022). In 

cities with diverse socio-ecological conditions, these analyses can exclude neighborhoods that 

are more vulnerable to environmental change (Gallopín 2006; CalEPA 2015). Recent studies 

have made efforts to quantify environmental disadvantage, understand mechanisms of 

environmental racism at a local level, and conduct specific ecosystem services assessments in 

vulnerable neighborhoods (Transformative Climate Communities 2021; Deziel et al. 2022). 

Given the environmental and social importance of local context, scientific studies have 

increasingly sought to examine heterogeneous conditions and processes within cities. In 
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particular, remote sensing analyses now regularly capture or construct local land cover 

conditions. Some of these studies rely on traditional machine learning or statistical methods 

(Zhao et al. 2019; Coleman et al. 2020), while others employ deep learning approaches (Shao et 

al. 2019; Perikamana et al. 2021). Using combinations of high-resolution aerial photography 

(Gillespie et al. 2012; LARIAC 2015) and human or field surveys (Pincetl et al. 2013; Yao et al. 

2019), scholars are mapping urban forests. These analyses can facilitate both modeling and long-

term change scholarship and localized investigations into specific block-scale conditions.  

Studies of ecosystem services have begun to parse local interactions between vegetation, 

urban morphology, and climatology. Urban heat mitigation strategies are being designed to make 

use of existing local infrastructure, prioritize vulnerable communities, and reflect changes in 

topography and microclimates across diverse cities (Sodoudi et al. 2014; Wong et al. 2016; 

Mavrakou et al. 2018). Analyses of water management systems suggest mixing green and grey 

infrastructure in response to local conditions (McPhearson et al. 2014). Proposals for increasing 

urban biodiversity account for income and development differences across neighborhoods 

(Clarke and Jenerette 2015; Lin et al. 2015). These studies contribute to a growing body of 

literature analyzing diversity in intra-city dynamics. 

The goal of this study is to examine heterogeneity in urban space and to understand how 

urban ecosystem services vary locally within the greater Los Angeles Region. Los Angeles, a 

megacity with a growing metropolitan area that extends into San Bernardino and Orange 

Counties, makes an ideal case study for examination of changing urban dynamics. It has high 

neighborhood-scale heterogeneity, with an impervious downtown, irrigated urban area, chaparral 

mountains, and inland desert areas (Rashed et al. 2003). Tree cover is highly variable: tree 

canopy estimates range from 7-31% of land across city council districts (McPherson et al. 2011). 
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A coastal marine layer shades and cools most coastal neighborhoods (Edinger 1959). As a result, 

neighborhoods vary by land use, vegetation, evapotranspiration (ET), and heat on distinct diurnal 

and seasonal cycles (Hall et al. 2015). 

The built environment in the Los Angeles area is equally diverse. Los Angeles County 

contains 114 neighborhoods and over 10 million people (Rashed et al. 2003). A legacy of 

redlining and environmental injustice across the urban area is exacerbated by substantial income 

inequality and racial segregation (Mini et al. 2014; Su et al. 2018). Both the City and the County 

of Los Angeles have sustainability plans that prioritize reduced dependence on imported water 

(Garcetti 2019; OurCounty 2019). Accordingly, both governments actively manage water use 

and have restricted outdoor irrigation during periods of drought, though these restrictions were 

observed unequally among neighborhoods with different income levels (Litvak et al. 2017; Porse 

et al. 2017). Both land use and ecosystem services vary across these disparate areas of 

environment and development.  

Here, I assess urban dynamics and their interactions in different parts of the greater Los 

Angeles area. The science questions I will address are:  

1. How have urban land cover and irrigation in Los Angeles changed over the last 35 years 

(1984-2019)? 

2. What are the cumulative effects of small-scale land use changes on evapotranspiration 

(ET) and water balance, both across Los Angeles and within distinct neighborhoods? 

3. Is there a relationship between street area and land surface temperature (LST), either 

regionally or at a local scale, and is that relationship affected by urban morphology? 

In this dissertation, each question guides one of the subsequent three chapters. In Chapter 2, 

Examining urban land cover change using a deep encoder-decoder convolutional neural 
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network, I disaggregate mixed Landsat pixels (30 m) to understand distributed land cover 

change across a 35-year record in the Los Angeles Sedimentary Basin, which includes all of the 

City and most of the County of Los Angeles. In Chapter 3, The role of urban vegetation 

change in the basin-scale hydrology of Los Angeles, I integrate that land cover change data 

into the Distributed Hydrology Soil Vegetation Model across the Los Angeles River Basin and 

within two individual neighborhoods in order to examine ways in which irrigation and 

imperviousness affect ET and runoff in different parts of the city. In Chapter 4, Contributions of 

roads to surface temperature: evidence from Southern California, I use a statistical model to 

examine the role of street area in determining LST, both across the unified urbanized area of Los 

Angeles and San Bernardino Counties and within individual neighborhoods of varied 

morphology.  

Each chapter includes analyses encompassing both a regional view of the Los Angeles 

area and conditions within individual neighborhoods. In assessing changes to land cover, 

hydrology, and LST, I consider a wide range of physical processes across and within a megacity. 

Throughout the course of this dissertation, I contextualize results in contemporary urban 

management strategies and ongoing questions about climate adaptation, with the aim of making 

this research useful to researchers and planners working in the Los Angeles region and in 

megacities more generally. Together, these studies explore heterogeneity within the Los Angeles 

region from the perspectives of land use, hydrology, and surface temperature. They ask how 

physical systems and ecosystem services are distributed, and how spatial patterns within an 

urban area might guide locally driven research and planning efforts. 
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Chapter 2. Examining urban land cover change using a deep encoder-decoder 

convolutional neural network 

This chapter has been submitted in its current form to Remote Sensing and is now in revision as 

Engel, R.A., Colombia, N., Gillespie, T.W., and D.P. Lettenmaier, 2022: Examining urban land 

cover change using a deep encoder-decoder convolutional neural network, Remote Sensing (in 

revision). The supplementary materials for this chapter are provided in Appendix A. 

Abstract 

As the world continues to urbanize, studies of coupled human-environmental systems 

increasingly require access to heterogeneous, high-resolution land cover data. Currently, high-

resolution satellite imagery exists only for recent years, and often is difficult to acquire. 

Moderate-resolution (~30 m) images (e.g. Landsat) and pixel-based classifications are more 

readily available over a multidecadal period suitable for hydrologic modeling and change 

analyses, but lack the spatial resolution necessary to identify parcel-level features. We resolved 

these broad classifications using an application of Segnet, an encoder-decoder convolutional 

neural network, to produce a single 35-year land cover time series for the Los Angeles 

Sedimentary and Hydrologic Basin (LAB). In doing so, we disaggregated urban mixed pixels to 

understand changing distributions of non-irrigated vegetation, impervious surfaces, irrigated low 

vegetation, and urban trees over the period 1984-2019, achieving an overall accuracy of 90.9% 

compared to contemporary high-resolution (10 cm) data from 2017. We find that while the urban 

area within the Los Angeles has remained relatively constant over the last 30 years, drought-

driven vegetation changes are visible. We also find that commonly used moderate resolution 

(e.g., Landsat-derived) datasets significantly underestimate tree cover across the dense urban 

domain within the LAB. Because our methodology requires only freely available training data, a 
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digital elevation model, globally-available water cover information, and medium resolution (e.g., 

Landsat) imagery, the analysis can be reproduced anywhere. 

2.1 Introduction 

As the global population has rapidly urbanized over the last half-century, analyses of land 

cover change for growing urban centers have become more critical. Currently, 54% of the 

world’s population lives in cities (vs. 30% in 1950) and 67% of the world’s population is 

projected to live in cities by 2050 (IOM 2015). In the United States, urban areas grew over 10% 

(from ~234,000 km2 to ~275,000 km2) from 2000 to 2010 (US Census Bureau 2010). As urban 

areas expand and population density increases, land use and resource availability are changing.  

The Los Angeles region is an ideal case study for examinations of changing urban 

resource dynamics. Both the City and County of Los Angeles carefully plan for, legislate, and 

monitor land use and water consumption (Wiersema 2018). For instance, Los Angeles City water 

use restrictions during times of drought (most recently 2014-2017) have decreased irrigation 

unequally across the city, by anywhere from 6-35%, and water savings are often correlated 

strongly with median neighborhood income (Mini et al. 2014; Lund et al. 2018). Because 

processes like these are heterogeneously distributed across urban areas (e.g. specific to lawns or 

parks), long-term, high-resolution land cover data are needed for change detection and planning 

purposes.  

Our domain is the Los Angeles Basin (LAB), a hydrologic and sedimentary region 

encompassing most of Los Angeles County (and home to > 9.7 million people). The diverse 

topography, development, and ecology of the LAB make it a uniquely complex case study for 

examinations of urban land cover change (see 2.2.1). Within the LAB, the urban area is 

undergoing substantial land use change, but regional land cover analyses show little variation 
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(Homer et al. 2007; LA County 2015; Coleman et al. 2020). To evaluate the cumulative effects 

of small, local changes within our domain, high-resolution (< 10 m), long-term land cover data 

are essential. 

Currently, no such domain-wide high-resolution time series land cover data exist; land 

cover data that are available are limited to either approximately the last decade or to moderate 

resolution (Porse et al. 2017; Gallo et al. 2020). Recent high-resolution products include National 

Agriculture Imagery Program (NAIP) imagery (based on aerial imagery) every 5 years from 

2003-2008 and every 3 years from 2009 at 1 m resolution, and Planet satellite imagery at 3 m 

resolution from 2015 to present (EROS 2017; Planet Team 2017). However, these products do 

not have a long enough record to support hydrologic modeling or multidecadal change detection. 

More established moderate resolution datasets (e.g. Landsat) do not provide sufficient spatial 

detail to capture local land use changes. Furthermore, broad categories are insufficient; because 

of difference in their runoff generation and evapotranspiration characteristics, urban hydrologic 

models must distinguish among tree, grass, water, and impervious surfaces as well as land use 

(irrigated vs. non-irrigated).  

Mixed pixels are a pervasive problem in remote sensing, masking features and their 

spatial distribution (Wang et al. 2019). In urban environments, this problem is exacerbated, both 

because individual features exist at fine scales and because varied land cover types can exist in 

close proximity (Mitraka et al. 2016). Medium-resolution datasets, such as the Landsat-derived 

National Land Cover Database (NLCD; released in 1992, 2001, 2006, 2011, and 2016 at 30 m 

resolution), assign diverse landscapes – such as golf courses, parks, and tree-lined streets – to 

categories such as “Developed – Open Space” or “Low Intensity Development”. In Los Angeles 

County, NLCD groups over 60% of land area into one of these two categories (Fry et al. 2011). 
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Conventional resolution enhancement often has too low a signal-to-noise ratio or lacks sufficient 

spectral dimension to yield accurate disaggregation of these categories (Miao et al. 2007; Arun et 

al. 2018).  

We resolve these broad categories by disaggregating mixed pixels to understand 

distributed land cover changes across the Los Angeles Basin. We test a deep encoder-decoder 

convolutional neural network to examine multispectral imagery to produce a breakdown of each 

mixed pixel among four land cover types: non-irrigated vegetation, impervious surfaces, 

irrigated low vegetation, and urban trees. Specifically, we examine:  

1. What is the current land cover composition of the Los Angeles Basin (2020) and how has 

that composition changed over the last 35 years?  

2. How does the dataset we derive compare to contemporary, lower-resolution sources and 

cumulative totals for our domain? 

3. How accurate is the dataset we produce in comparison to independent high-resolution (10 

cm from 2017) and manually-collected ground truth data? 

2.2 Materials and Methods 

2.2.1 Study Area 

Our study is the Los Angeles Sedimentary Basin (LAB), a region between the San 

Gabriel, Santa Monica, and Santa Ana mountains (Jahns 1973) encompassing three Hydrologic 

Unit Codes 8 (HUC8) basins that drain into the Pacific (Figure 2.1; Jahns 1973). It excludes 

inland parts of LA County that do not sit within these watersheds. We examine changes to land 

use in the LAB between 1984 and 2020, the period covered by Landsat data (Homer et al. 2007). 

The 34-year record we produce is long enough period to support hydrologic modeling or change 

analysis studies.  
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(c) 

 

Figure 2.1: Study area. (a) The Los Angeles Basin covers urban Los Angeles and parts of the 
Santa Monica, Santa Ana, and San Gabriel mountains. (b) 2016 National Land Cover Database 
(NLCD) classes for Los Angeles (30 m) (Homer et al. 2007). (c) Location of the LAB within 
California (left), and compared to LA County (black line), the City of LA (shaded), and the Los 
Angeles, Santa Monica, and San Gabriel HUC8 watersheds (blue).  

The LAB includes 3.5 million housing units in > 5,600 km2 with elevations ranging from 

sea level to > 3,000 m (LA County 2015; US Census Bureau 2019). It includes national forest 

land, local and state beaches and parks, and a dense urban core (LA County Planning 2010). The 

LAB includes multiple administrative areas, among which the City of Los Angeles, with 114 

distinct neighborhoods and a population of ~4 million, is the largest (LA County Planning 2010).  

Los Angeles County, which covers 92% of the LAB, developed the first county-wide 

sustainability plan, with sections that address both water and landscape issues (OurCounty 2019). 

The City of Los Angeles also has a sustainability plan, which provides for the planting of 90,000 

new trees by 2021 and recycling 100% of wastewater by 2035 (Garcetti 2019). Its previous 

sustainability efforts included 400,000 new trees planted between 2006 and 2013 (McPherson et 

al. 2011). Given the explicit focus on land use and associated processes (i.e. irrigation, runoff 

recapture), we examine current land use as well as long-term changes and their distribution 

across the LAB. 
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2.2.2 Data 

 We used Landsat data (30 m) from 1984-2020 as our moderate resolution data source 

(Homer et al. 2007). Landsat images are collected every 16 days globally. Our analysis 

combined Red, Green, Blue, and Near Infrared (R, G, B, NIR) Surface Reflectance data from 

Landsat 5 for the period 1984-2011, corrected Landsat 7 from 2012-2013, and Landsat 8 for 

2014-2020, with inter-sensor calibration from Google Earth Engine. We employed a neural 

network in conjunction with water and irrigation masking to estimate the fraction of each pixel 

that is made up of each component class.  

 To train the neural network, we used the International Society for Photogrammetry and 

Remote Sensing Semantic Labeling Potsdam Dataset (Cramer 2010), which was intended to train 

networks to identify features in high-resolution data (Audebert et al. 2018). The Potsdam dataset 

consists of 38 scenes of 5 cm RGB urban imagery from aerial photography with corresponding 

categorized, labeled ground truth images. The data are divided into six categories: impervious 

surfaces, buildings, low vegetation, trees, cars, and clutter.  

2.2.3 Data Preprocessing 

We preprocessed the Landsat data for integration into the neural network by masking out 

natural (non-irrigated) vegetation and water using Google Earth Engine. For water, we used the 

Pekel et al. data set (2016), which contains individual pixels classified as water or non-water, 

1984-2019 (Figure A1). We found that this dataset, which covers our period of study, is 

consistent with other water datasets, Normalized Difference Water Index (NDWI) analyses, and 

a supervised classification, but notably contains fewer false positive values (Appendix A.1). The 

water polygons across the LAB (21 km2 in total) did not noticeably change over our study 

period. 
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We stitched together greenest pixel composites of all cloud-free Landsat scenes for each 

summer (June, July, August; JJA) and winter (December, January, February; DJF) to cover the 

entire domain with Landsat scenes for each year for the two seasons. To align our vegetation to 

the irrigated training data vegetation, we filtered out non-irrigated vegetation examining summer 

and winter Normalized Difference Vegetation Index (NDVI) for each year’s imagery. Based on a 

survey of summer/winter NDVI differences across non-irrigated vegetation and irrigated low 

vegetation, we used a binary threshold to mask areas where the seasonal difference is > 0.069, 

which was the midpoint between median irrigated and non-irrigated summer/winter differences 

(Appendix A.2). Following Gillespie et al. (2018), we further masked summer NDVI between 

0.3 and 0.6, the range for chaparral and coastal sage scrub in the LAB.  

We also masked undeveloped high-elevation areas. In doing so, we eliminated heavily 

coniferous areas that might not show seasonal NDVI changes to further mask out non-irrigated 

vegetation. Because the pixel sizes are 30 m, they are unlikely to be influenced unduly by 

conifers except in the higher mountains of the San Gabriel range (Mini et al. 2014). We applied 

an elevation mask of 1000 m to account for heavily forested areas, and considered any high-

elevation vegetation to be non-irrigated. For each year, we masked out fire perimeters to account 

for burned area that could otherwise register as impervious. We used the California Fire and 

Resource Assessment Program (FRAP) perimeters, coded annually (FRAP 2021). For input into 

the neural network, we applied all four masks (water, NDVI, elevation, fire) and then filtered for 

cloud cover and found the composite greenest pixel value for each time period, so as to provide 

the highest level of visual contrast to the network. We completed all preprocessing work in 

Google Earth Engine. Landsat, water, NDVI, and elevation data are free and open-source on the 
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platform, and we manually uploaded FRAP perimeters. We used the native JavaScript 

environment to mask and clean the data for integration into the neural network. 

2.2.4 Network Architecture 

To create the classified maps, we employed a semi-supervised spectral unmixing of 

mixed Landsat pixels. Following Arun et al. (2018), we employed deep learning to approach 

unmixing as a soft classification problem. Rather than increasing image resolution, we produced 

fractional abundance statistics for each mixed pixel. Traditional convolutional neural networks 

(CNNs) as well as other deep learning methods (e.g. convolutional long short-term memory 

networks, semantic segmentation networks) have demonstrated increasingly accurate results in 

unmixing, often performing better than traditional methods (e.g. Markov, Random Forest 

Classifiers) (Zhao and Du 2016; Badinarayanan et al. 2017; Liu et al. 2018; Yoo et al. 2019).  

We employed an application of Segnet, a deep convolutional encoder-decoder semantic 

segmentation neural network primarily used to discern objects in a field of view (Badrinarayanan 

et al. 2017; Audebert et al. 2018). A CNN is ideal for image analysis because it examines groups 

of data at once; rather than connecting each neuron in one layer to each neuron in another, it 

examines an n x n set of pixels to examine each pixel in the context of its neighbors (Sultana et 

al. 2020). Deep CNNs are therefore often employed for semantic segmentation, a process by 

which an image is divided into its components (Chen et al. 2016). Segnet, an encoder-decoder 

network, is a CNN that works in two phases. First it convolves and pools data, grouping clusters 

of pixels and taking the maximum value from each cluster into the next layer, resulting in a 

smaller layer. Then it unpools the data back to its original resolution and distribution, allowing 

for final predictive analysis at the original resolution (Chen et al. 2016). Between each pooling 

step is a batch normalization, to increase predictive stability and processing speed (Ioffe and 
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Szegedy 2015). Following Audebert et al. (2018), we used 5 convolutional blocks with first 2, 

then 3, layers of kernel 3 x 3 with a padding of 1. We then applied a rectified linear unit (ReLu) 

optimizer and a batch normalizer to each hidden layer, which returned a linear result for values > 

0 and 0 for values < 0 (Figure 2.2). Following encoding, our image had a width and height at 

1/32 its original value; the decoder restored its dimensions. Our last layer performed a 

logarithmic softmax categorization to predict the likelihood that each pixel is a given land cover 

type. We applied a softmax normalization to our output data to obtain normalized categorical 

probabilities for each pixel and each land cover type; these probabilities can be interpreted as 

categorical percentages for land cover type distribution within a pixel (Arun et al. 2018). 
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(a) 

 

 

(b) 

 

Figure 2.2: (a) Network architecture for our application of Segnet [30] showing the data 
structure: an input image, transforming and pooling layers (blue), unpooling and transforming 
layers (pink), a fully connected ReLu (orange), a classification softmax layer (light green), an 
unmixing softmax layer (dark green), and a classified image. Semantic segmentation components 
of figure and architecture follow Audebert et al. (2018). (b) Graphical description of network 
process. Training images and labels were input, and 20% of training data were reserved for 
validation (87% accuracy for our training run). The fully trained network was then applied to an 
input Landsat image, and produces a classified image with majority land cover types for each 
pixel as well as percentages of land cover types within each pixel. 

2.2.5 Model Training 

We trained our application of Segnet with 80% of images from the ISPRS Postsdam 

dataset, reserving 20% for validation. The Potsdam dataset, which covers only irrigated urban 



 23 

spaces, equipped the network to analyze images of irrigated urban spaces within the LAB. To 

account for the change in resolution, we condensed their six categories into three (as non-

irrigated vegetation was masked): impervious surfaces (including cars), buildings, and 

vegetation.  

 We then applied the trained network to Landsat data across the LAB to examine land 

cover type across and within pixels. Between the preprocessing and the neural network, we 

categorized land cover among four types: irrigated low vegetation (e.g. grass, shrubs), non-

irrigated vegetation, urban trees, and impervious surfaces (see 2.2.6). We trained and ran the 

neural network on a GPU server through Google Colaboratory, storing both training and Landsat 

data in Google Drive for ease of access. All Colaboratory code for this project was written in 

Python 3. 

2.2.6 Validation and Classification 

 We validated the neural network by reserving and testing 20% of the training images. 

The validation process assessed the pixel-level accuracy of the network, before the final 

calculation of categorical percentages. Our network classifies land cover types at 87% accuracy. 

The accuracy metric is based on a combined value of the six raw ISPRS training dataset 

categories designed for high-resolution analysis (trees, low vegetation [irrigated], buildings, 

roads, cars, and clutter). We validated the network in Google Colaboratory after training but 

before running the Landsat data. 

We aggregated the ISPRS as follows because our mixed pixel classification is at a lower 

spatial resolution than the ISPRS data. We included cars, buildings, and roads in an 

“impervious” class, as cars are not distinguishable enough at 30 m to make the class relevant and 

buildings and roads are not spectrally distinct from one another. In our study area, the ISPRS 
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“clutter” is almost exclusively mixed landscaping, with a densely arrayed variety of trees, shrubs, 

and grass. Accordingly, reflecting a visual analysis of 200 majority-clutter pixels, we divided this 

category between grass, low vegetation, and trees, which aggregated to ~66% low vegetation and 

33% trees. Therefore, we ultimately used four land cover classes: non-irrigated vegetation, urban 

trees, irrigated low vegetation, and impervious surfaces.  

To understand how our data compare to existing land cover datasets, we used three 

validation methods. First, we assessed correspondence between our 2016 basin-wide totals and 

the 2016 NLCD (Homer et al. 2007). NLCD maps are produced from Landsat data every 5 years 

between 2001 and 2016 at 30 m, and reflect 20 possible land cover types across the United 

States. Relevant to our study are Low-, Medium-, and High-Intensity development, which 

comprise the urban part of our domain; shrub/scrub and mixed forest, which reflect the natural 

hillsides; and deciduous and evergreen forest and barren land, which cover much of the higher 

mountainous areas. We computed kappa statistics with producer’s and consumer’s accuracy 

using ArcMap 10.6 (Smits et al. 1999). 

 We derived our primary accuracy measurement by comparing our urban area totals to 

2017 Los Angeles Image Acquisition Consortium (LARIAC)10 cm composite orthogonal 

imagery categorized across 218 individual city areas (Appendix A.3; LARIAC 2015). We 

clipped this dataset to reflect the area almost fully encompassed by the urban part of our domain. 

Within urban areas (omitting non-irrigated vegetation), we directly compared our trees, irrigated 

low vegetation, and impervious surfaces categories to LARIAC trees; grass and low vegetation; 

and buildings, roads, and other impervious surfaces in ArcMap 10.6. 

To assess the ground-truth accuracy of individual mixed pixel classifications at a granular 

level, we compared our categorical percentages to manually collected data over two areas of one 
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square kilometer each within the LAB reflecting (a) a dense, highly-developed region in East LA 

with no green space, and (b) a mixed-use residential area in the San Fernando Valley with a park. 

We used no selection criteria other than level of development, and selected a 1 km2 at random 

from within a relatively homogeneous area of the LAB. Across each study area, we manually 

digitized polygons using the ESRI collector app and a 0.5 m DigitalGlobe basemap (ESRI 2021).  

2.3 Results 

2.3.1 Land Cover Composition in the LAB, 1984-Present 

 Our analyses show that the LAB was approximately half non-irrigated vegetation, 

including forested areas, bare ground, and non-irrigated vegetation in 2020 (Figure 2.3). Of 

developed areas, 36% of space was impervious, ~6% was irrigated low vegetation, and ~6% was 

urban trees.  

 

Figure 2.3: Los Angeles Basin land cover, 1984 to 2020 showing natural non-irrigated 
vegetation, impervious surfaces, irrigated low vegetation, and urban trees. While land use has 
been relatively stable over time, there were noticeable increases in natural (non-irrigated) 
vegetation during drought years (2004-2006, 2011-2015). Impervious areas have declined over 
the last decade, as greening measures have taken place throughout the city (Pincetl et al. 2013).  
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The composition of the LAB over the last 35 years has been relatively stable (Figure 2.3). 

We provide here a time series of annual land cover data for the LAB, 1984-2019. These land 

cover distributions reflect the heterogeneity of the LAB, including isolated landscaping features 

that otherwise would be elided due to focus on more dominant features.  

2.3.2 Comparison to Lower-Resolution Datasets 

To understand the land cover predictions for each 30 m pixel, we compared 2016 basin-

wide totals to 2016 NLCD totals (Table 2.1). While both datasets were derived from Landsat 

data, their classification schemes differ. We aggregated their categories across the LAB to 

compare totals, and found that our data demonstrate slightly more non-irrigated vegetation and 

less impervious and irrigated area (Table 2.1). Our produced data aggregated land cover 

percentages within pixels; however, rough agreement between the datasets across the LAB was 

important. We found more non-irrigated vegetation and urban trees than in the NLCD data, 

perhaps because of parsing composition within the NLCD “open space” category. 

Table 2.1: Basin-wide land cover distribution vs. Landsat-based NLCD land cover distribution, 
2016. NLCD categories were aggregated as follows. Non-irrigated vegetation included evergreen 
and mixed forests, wetlands herbaceous, and shrub/scrub. Irrigated low vegetation included 
pasture and developed open space. Urban trees included deciduous forests and cultivated crops. 
Impervious surfaces included high-, medium-, and low-intensity development. Our comparison 
shows that NLCD underestimates non-majority land cover categories, most notably urban trees.  
 

Land Cover Produced Data (%) NLCD (%) 
Non-Irr Veg. 42.3 42.6 

Irr Low Veg. 7.9 10.4 

Urban Trees 6.8 0.26 

Impervious 43.1 48.1 
 

We also computed a kappa statistic with producer’s and consumer’s accuracy between 

NLCD and our majority pixel predictions, which show the primary land use categories in each 

pixel, throughout urban areas in 2016 (Table 2.2). The overall accuracy is 0.80 across 500 
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randomly selected points within classified pixels, which demonstrates a general spatial 

agreement between our predictions and NLCD. Our majority pixel predictions show strong 

agreement with NLCD in impervious areas (user’s accuracy is 0.95, producer’s accuracy is 

0.83). However, urban trees were more difficult to identify: only 3 of 500 random points within 

classified pixels were in areas where the majority area of pixels were trees, and those points had 

no agreement with our classified majority-tree pixels. 

Table 2.2: Kappa statistic with producer’s and user’s accuracy across urban areas for NLCD (30 
km) vs. our predicted maximum land cover type in each pixel, 2016. While impervious surfaces 
compare well, majority-tree pixels within urban areas are rare and do not compare well. Most 
trees in urban areas of the LAB are not dominant within a 30 km pixel. 

 NLCD 
Impervious 

NLCD 
Irr. Low Veg 

NLCD 
Trees Total U_Accuracy 

Impervious 393 16 3 412 0.9539 

Irr. Low Veg 79 9 0 88 0.1023 
Trees 0 0 0 0 0 
Total 472 25 3 500 0 

P_Accuracy 0.8326 0.36 0 0 0.804 

 
2.3.3 Comparison to High-Resolution Data 

 We compared our categorical percentages to classified 2017 10 cm LARIAC orthogonal 

imagery, aggregated across 69,201 ha of urban area (Table 2.3). The overall average percent 

error, weighted by land cover type, was 9.01%, demonstrating strong agreement between our 

calculated land cover and the high-resolution dataset. Our estimates of impervious surfaces were 

highly accurate, with an error of 4.75% (68% of calculated land cover vs 72% of LARIAC data). 

For vegetation, we achieved 29.08% error for low vegetation (calculated at 19% of land cover vs 

14% in the LARIAC dataset) and 9.36% error for tree distribution (12% calculated land cover vs 

13%). 
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Table 2.3: Accuracy for neural network derived land cover types within urban space compared 
to LARIAC’s classified 10 cm orthogonal imagery from 2017 (LARIAC 2015). Overall 
weighted error for the three land cover types combined is 9.01%. 

Land Cover  
Calculated % Land 

Cover 
LARIAC % Land 

Cover Percent Error 
Impervious 75.58 69.31 9.05 
Grass/Shrub 12.46 14.44 13.71 
Urban Trees 11.90 12.66 6.00 

 
We compared our classified mixed pixel data to two areas 1 km2 to examine how errors 

were distributed within different types of landscape. We masked the classified data using the test 

polygons and calculate totals for each land cover type within the small area (Appendix A.4). Our 

pixel breakdowns were extremely accurate with respect to impervious surfaces (0.21 and 0.06 

percent error). They overestimated tree cover (62.88 percent error), but within an extremely 

small area (0.54% vs 0.33% of the test region).  

2.4 Discussion 

2.4.1 Land Use Trends in the LAB 

Over the last 35 years, the developed region of the LAB has been relatively stable (Figure 

2.3). This stability reflects the abundance of redevelopment, lack of available land zoned for new 

development, and price of land in urban areas (Thomas 2009; LADRP 2021). Within the city, 

redevelopment, new housing, and increased green spaces were visible as both a greater density 

within the urban core of the city and increasing sprawl in the suburban parts of LA County. 

These trends are in line with LA’s development goals (Garcetti 2019).  

We also see a decrease in irrigated area and an increase in non-irrigated vegetation during 

drought years (e.g. 2006-2007, 2013-2016) (Keeley et al. 2009; Lund et al. 2018). During some 

of these years, non-irrigated vegetation was seen within urban areas as water restrictions 

discourage people from watering. Since 2016, irrigated grass has grown in area again as watering 
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has resumed (Figure 2.4). Though different years contain different error values because of 

variability among composite images, the overall trends were aligned with major drought events. 

 

Figure 2.4: Percent (within urban area) of irrigated low vegetation, urban trees, and impervious 
surfaces, 1984-2019. 

2.4.2 Accuracy and Interpretation of Methods 

Overall, our land cover data gave a more detailed depiction of the LAB than did 

traditional 30 m classifications. While we agreed with NLCD trends with respect to impervious 

surfaces, we found more irrigated low vegetation and many more urban trees than the NLCD 

datasets. These results were logical, considering the large number of Low-Medium Intensity 

Development NLCD pixels that we parsed for vegetation.  

Our calculated land cover distributions were highly accurate across heterogeneous urban 

areas: compared to the current best-available dataset, LARIAC’s 10 cm classified imagery from 

2017, we found an overall 91% agreement in developed regions. In comparison to traditional 

supervised classifications (e.g. CART, Random Forest) our approach required much less 

individual training and produced at least as accurate results in comparison to ground truth data 

(Zhu et al. 2012; Yoo et al. 2019). 
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Our work is lacking in its categorization within the impervious surface class because road 

surfaces tend to be comprised of diverse materials (asphalt, concrete, etc.) and we have found 

difficulty training the network to distinguish between buildings and roads (Lee et al. 2005). We 

therefore created a single category for impervious surfaces, which can combine in most 

distributed physical models with a road network. We also accounted for fine-scale mixed 

vegetation distribution with an estimate based on local observations that in studies encompassed 

other regions. This distribution might be different and should certainly be recalibrated. Some 

individual variability among annual results can be explained by these classification errors. 

2.4.3 Applications on work to other areas 

The efficacy of deep learning semantic segmentation in peri-urban and rural areas has 

been established (Grinias et al. 2016; Mortensen et al. 2016). Using infrared data and these 

established segmentation methods, our approach could be applied to classify mixed crop pixels 

or to distinguish among vegetation types within a pixel (Beninde et al. 2015; Chu et al. 2020). 

Distinguishing biodiversity in urban or agricultural regions could provide detailed forcing data 

for urban heat analyses, carbon cycling studies, and urban planning work (Pincetl et al 2013; Van 

Oijen et al. 2014; Vahmani and Ban-Weiss 2016). 

2.4.4 Limitations and Future Work 

 Certain features were necessarily erased because the input data for the network was at 30 

m resolution. Machine learning analyses usually mask out water (Powell et al. 2007; Coleman et 

al. 2020). We chose to do so because natural bodies of water are extremely stable throughout our 

study period (Pekel et al. 2016) and because, spectrally, water can be diverse enough to confound 

an algorithmic learning process. Similarly, we masked non-irrigated vegetation so as to isolate 

irrigated areas. However, these preprocessing steps limited our ability to discern mixed pixels 
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with, for instance, swimming pools, which our data grouped with impervious surfaces. We 

believe that, for many modeling assessments, this grouping will be sufficient (with regard to 

hydrologic models, for instance, there is no aquifer recharge from swimming pools) but future or 

more high-resolution efforts might address this issue.  

Our application of Segnet demonstrates a foundational capacity for deep encoder-decoder 

semantic segmentation of mixed pixels. As more (and increasingly sophisticated) training data 

become available, including classified high-resolution data at larger scales, we expect future 

work to improve both the accuracy and the localized categorizations of our approach (Planet 

Team 2017).  

2.5 Conclusions 

We present here a subpixel land cover classification of the LAB, covering >5,600 km2 

across the megacity of Los Angeles and its surrounding mountain ranges. Our approach 

demonstrates the efficacy of a sub-pixel land cover classification approach over a 30 year period 

at a regional spatial scale. The data produced can be easily assimilated into spatially distributed 

hydrological models (so long as they provide for specification of mixed pixel information), with 

sufficient historical record to support long-term analyses. We find little change in net urban area 

within the LAB: much of the development over the last 34 years has been redevelopment, rather 

than new building in previously mountainous areas. We do see fluctuations in irrigated vs. non-

irrigated vegetation with drought periods, a trend that can be investigated further in future 

modeling studies. In comparisons to medium-resolution datasets, notably NLCD, we find that 

our approach was able to identify minority-pixel features. When comparing our data to NLCD, 

we find ~356 km2 (6.6% of the LAB) more urban areas than were shown in the 30 m pixels. We 
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conclude that NLCD underestimates the number of trees in urban spaces due to majority 

estimates for mixed pixels (e.g. parks with grass and trees are classified as grass).  

Our sub-pixel classification was 91% accurate when compared to contemporary 10 cm 

composite imagery from 2017 across the urban portions of the LAB. In particular, our 

application of Segnet was able to identify small urban green spaces and landscape features that 

were missed by medium resolution data sets over a long record, rather than exclusively in recent 

years. Because our methodology requires only freely available training data, a Digital Elevation 

Model, globally-available water cover information, and medium resolution (e.g., Landsat) 

imagery, the analysis can be reproduced anywhere. Adjustment of the training data would allow 

for tailoring to local vegetation or particular features. 

Acknowledgments: We thank E. Natasha Stavros for discussions on utility and applications of 

the work.  
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Chapter 3. The role of urban vegetation change in the basin-scale hydrology of Los Angeles 

The supplementary materials for this chapter are provided in Appendix B. 

Abstract 

As development has matured in Los Angeles over the last 35 years, management of the 

urban landscape has become increasingly scrutinized. While imperviousness has increased, city 

managers have planted over 400,000 new trees and sought to increase urban green space. We use 

a novel implementation of the Distributed Hydrology Soil Vegetation Model (DHSVM), using 

time-varying land cover data to evaluate the cumulative effects of these land use changes on 

basin storage, streamflow, and evapotranspiration (ET) in the Los Angeles River Basin (LARB) 

and two different sample neighborhoods. We find that small-scale, discrete increases in urban 

green space reduce runoff in over 90% of modeled days overall and during 98% of days during 

non-drought years. However, increases in non-native urban vegetation increases ET substantially 

year-round, and especially during drought periods. Basin- and neighborhood-scale hydrology 

shows the effects of isolated, pixel-level (30 m) land use changes, indicating that local efforts to 

reduce imperviousness and cultivate drought-resistant vegetation could lead to long-term water 

savings.  

3.1 Introduction 

 As the global population has rapidly urbanized over the last half-century, analyses of 

urban hydrology have increasingly hinged on accurate, detailed land use data. Currently, 54% of 

the world’s population lives in cities, and that figure is projected to grow to 67% by 2050 (IOM 

2015). Within the United States (US), urban area grew over 10% between 2000 and 2010 (US 

Census 2010). In these expanding cities, land cover is more heterogeneously distributed than in 

suburban or rural areas, and changes occur at a finer scale, often block-to-block (Welch 1982). 
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For examination of urban dynamics, particularly hydrologic studies, granular and time-varying 

land cover data provide information on infiltration, evapotranspiration (ET), and runoff that can 

be invisible in medium-resolution analyses (Litvak and Pataki 2016; Usery et al. 2014). These 

challenges are particularly evident in Los Angeles, where suburban sprawl, undeveloped upland 

areas, and a dense urban core are mingled. Prolonged drought and income inequality have led to 

highly concentrated, unequal water use and landscape changes at the neighborhood level (Mini et 

al. 2014). 

 While high-resolution (< 30 m) land cover data is available in recent years, it is not 

readily available for long enough time periods to support multidecadal hydrologic modeling. For 

instance, the National Land Cover Database (NLCD), at 30 m, is only available in 8 epochs 

between 2001 and 2019 (Fry et al. 2011, Litvak and Pataki 2016). More detailed datasets, such as 

the National Agriculture Imagery Program (NAIP, available at 1 m resolution at 5-year intervals 

2003-2008 and 3-year intervals 2009-2019), are more labor-intensive to produce and have 

shorter record lengths (EROS 2017). In order to examine regional hydrologic effects of land use 

changes, we integrate a 34-year record of annual fractional land cover change (1985-2019) into 

the Distributed Hydrology Soil Vegetation Model (DHSVM), an offline physically-based model 

(Engel et al. in review; Wigmosta et al. 1994). 

 We take as our study area the Los Angeles River Basin (LARB), which drains ~2,110 

km2 from the San Gabriel Mountains through the urban core of Los Angeles to the port of Long 

Beach. The basin has been subject to extreme drought events during the period of study, notably 

during 2014-2018 (Porse et al. 2016). Overall water use has been slowly decreasing over the last 

half century, but only 14% of LA County’s water is sourced locally (LADWP 2018). Both the 

City and County of Los Angeles actively manage water use and have restricted outdoor irrigation 
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during droughts (Porse et al. 2017). Within the LARB, we further examine two neighborhoods 

that underwent substantial development during our study period: Long Beach, which grew with 

expansion of the aerospace industry in the 1980s-1990s and a more recent housing expansion in 

the 2010s (Addison 2017; Sabau 2020), and Woodland Hills, which saw residential and 

economic growth during the years since 1990 (ALFRED 2022). 

Throughout the LARB, land cover is highly variable: tree canopy coverage estimates 

range from 7-31% across city council districts, with an average density of ~100 trees per hectare 

(McPherson et al. 2011; Gillespie et al. 2012). Historical records show an overall decline in 

urban tree cover across the LARB between 2005 and 2009 and an increase in impervious 

surfaces, but city efforts resulted in a reported 400,000 new trees planted between 2006 and 2013 

(Nowack and Greenfield 2012; Mini et al. 2014). This number is relatively small when averaged 

across the whole basin, and trees were often planted in already-irrigated neighborhoods (Litvak 

and Pataki 2016). We therefore examine the effects of these relatively minimal land cover 

changes in two distinct neighborhoods – one highly green, the other primarily impervious – 

within the LARB. We specifically answer the following questions: 

1. What are the cumulative effects of small-scale (30m) land use changes across the LARB 

on local hydrology, and how are those effects distributed among heavily irrigated and 

primarily impervious neighborhoods? 

2. How do small-scale land cover changes affect summertime ET in irrigated and 

impervious neighborhoods? 
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3.2 Methods 

3.2.1 Study Area 

Our study area is the Los Angeles River Basin, a region between the San Gabriel, Santa 

Monica, and Santa Ana mountains that drains into the Pacific Ocean at the Port of Long Beach 

(Read et al. 2019). It excludes inland parts of LA County that do not flow to the Pacific Ocean 

(Figure 3.1). The LARB ranges in elevation from sea level to >3000 m, and includes national 

forests, state beaches, and local parks. It includes multiple administrative areas, notably the 

majority of the City of Los Angeles, which has a population of ~4 million (City of LA 2012). 

The LARB has a Mediterranean climate, with mild winter-dominant precipitation. Though the 

San Gabriel Mountains in the north of the Basin experience wintertime snowfall, spring runoff is 

minimal compared to runoff in winter from isolated precipitation events (Kesseli et al. 1942). 

The basin contains five reservoirs in the upstream, mountainous regions (Read et al. 2019). 
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Figure 3.1: Location of the LARB (red) within California and within Los Angeles County, with 
City of Los Angeles (shaded). 
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Both the City and the County of Los Angeles (which covers 98% of the LARB) actively 

manage water consumption. LA City residential water restrictions during droughts have reached 

35%, though both the restrictions and associated water savings are distributed unequally across 

the city and show strong correlations with median income (Mini et al. 2014). Uneven urban 

irrigation cutbacks have resulted from different pre-restriction water use, predominant land cover 

types, and ability to pay fines (Mini et al. 2014). Both the City and the County also have 

independent sustainability plans that address coupled land and water use (Garcetti 2019; 

OurCounty 2019). The City of Los Angeles in particular has focused on planting trees to lower 

surface temperature and increase shade, and historical records show increased tree presence on 

private lands since 2000 (McPherson et al. 2011; Gillespie et al. 2012). In light of the strong and 

overt focus on land and water use in regional planning, we examine the cumulative effects of 

local land cover changes on regional hydrology. 

3.2.2 Sample Neighborhoods 

 We selected two sample neighborhoods for which we examine land use and ET: 

Woodland Hills and Long Beach. These neighborhoods developed substantially during the study 

period: Woodland Hills has experienced significant residential growth since the 1990s, and Long 

Beach saw a boom through the late 1980s due to growth in the aerospace industry and then a 

redevelopment of its downtown in the 2010s (Sabau 2020; ALFRED 2022). While both 

neighborhoods saw development, neither experienced large-scale land use change: like the 

majority of the LARB, redevelopment was common and new projects were rare (Sabau 2020). 

Therefore, changes to irrigated vegetation were comparable between the neighborhoods. 

 The two neighborhoods are dissimilar in region and character. Woodland Hills, a part of 

the City of Los Angeles within the San Fernando Valley, abuts the Santa Monica Mountains. It is 
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affluent and green, with an NDVI in the top 20% of Los Angeles neighborhoods, four LA parks, 

and a large golf course (Bartholomew 2020; LA Parks 2021). Its climate is more variable than 

that of Long Beach, with summertime average daily air temperature at ~35° C. Because of its 

high income level and park area, Woodland Hills has a reputation as a heavy water consumer, 

even during times of drought (Mini et al. 2014). Long Beach is the seventh most populous city in 

California, and has an airport, port, and large commercial sector (US Census 2022). It is coastal, 

with a summertime marine layer (Edinger 1959). While it has residential areas, the landscape is 

dominated by large impervious areas, including an airport, a shipping port, a downtown, 

warehouses and supply chain management facilities, and oil refineries (Sabau 2020; Engel et al. 

in review). Long Beach per capita water use is consistently lower than both LA City and LA 

County values (2013-2020; CA DWR via Pacific Institute 2022). Long Beach also imports less 

water than surrounding areas due to a large aquifer that provides 60% of the city’s needs (LB 

Water 2022).  

3.2.3 Model Implementation  

 To assess water use, we implemented DHSVM3.2 across the LARB, Woodland Hills, 

and Long Beach (Wigmosta et al. 1994; Perkins et al. 2011). We compared results using time-

varying vegetation cover (hereafter called the time-varying model) and constant vegetation cover 

based on 2016 NLCD categorization (hereafter called the static model; Homer et al. 2007). For 

the time-varying model, we incorporated annual vegetation updates (Engel et al. in review). We 

ran both models at a 12-hour time step at a 30 m spatial resolution (5.8 million pixels) to assess 

the long-term hydrologic effects of local land cover changes.  
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3.2.4 Meteorological Forcing Data 

 DHSVM requires six meteorological inputs: precipitation (m), wind speed (m/s), 

temperature (°C), relative humidity (%), downward longwave radiation (W/m2), and downward 

shortwave radiation (W/m2). In order to format the station data for DHSVM, we first filled 

missing daily observation values using observations from the nearest reporting station. We then 

used MTCLIM algorithms to obtain relative humidity and incoming short/longwave radiation 

(Bohn et al. 2013).  

We assembled daily observations of precipitation, wind speed, and max/min temperature 

from 73 stations in and around the LARB (Figure 3.2). Our weather data were obtained from the 

Iowa State Environmental Mesonet collection (25 from the ASOS automated airport weather 

observations network and 50 from the NCEI Cooperative Observer Network). We used data from 

2 Mesonet stations with long (>30 year) records to assess the model’s accuracy against 

precipitation. 

 
 

Figure 3.2: Locations of weather stations used for DHSVM meteorological forcing (blue) and 
stream gauges used for data validation (green). 
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3.2.5 Spatial Data  

 We incorporated both static (NLCD) and time-varying (prescribed) vegetation changes 

into DHSVM 3.2 (Wigmosta et al. 1994; Fry et al. 2006; Engel et al. in revision). 

 We used the U.S. Geological Survey 3D Elevation Program’s 10 meter (1/3 arc-second) 

digital elevation model for our topography (US Geological Survey 2020). Elevation data is a 

direct input for DHSVM, and also serves as the basis for modeled flow routing and stream 

network calculations.  

 We merged two soil datasets to provide urban and wilderness inputs to DHSVM. For 

mountainous regions, we relied on the comprehensive 2018 U.S. Department of Agriculture 

National Resources Conservation Service (NRCS) Soil Survey (SSURGO), formatted as 

polygons throughout >95% of counties in the conterminous United States (Soil Survey Staff 

2018). However, comparisons of the NRCS data to samples of urban soils show a lack of 

comprehensive data in urban areas, particularly with respect to hydrologic properties (Effland 

and Pouyat 1997; Schifman and Shuster 2019). We therefore used 2018 Los Angeles County soil 

type polygons for all of LA County, which includes the urban section of the LARB (Public 

Works, LA County 2018). The polygons were derived from scanned soil maps created by the 

Water Resources Division. We rasterized the polygons at 30 m resolution.  

3.2.6 Vegetation Change 

 We spatially reclassified annual categorical percentages of impervious surfaces, irrigated 

trees, irrigated low vegetation, and non-irrigated vegetation within Landsat pixels from 

categorical percentages across our study areas (30 m). Our data were produced using a deep 

semantic segmentation neural network to decompose mixed pixels within the LARB and 

demonstrated 91% accuracy in comparison to contemporary classifications derived from 10cm 
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LiDAR data (Engel et al. in review). For the static vegetation model we used land cover 

classifications derived from the 2016 NLCD land cover dataset (30 m; Fry et al. 2006).  

 Due to model processing constraints, we applied minimal land cover changes: between 

1985 and 2020, there was an average annual change of 3.86% of total pixels within the LARB 

(Figure 3.3; Appendix B). Annual land cover change varied between 0.2% of pixels (2016-2017) 

and 14% of pixels (1990-1991). Changes were smallest after 2013, when drought conditions 

reduced the effect of irrigation across the LARB. Overall, the time-varying vegetation model 

contained more urban vegetated area than the static vegetation model.  

 
 

Figure 3.3: Percentage of LARB pixels with changes to irrigated vegetation. Plot shows years in 
which changes took effect. Vegetation change data based on sub-pixel classification of Landsat 
imagery (Engel et al. in review). 

3.2.7 Evapotranspiration 

 We modeled urban irrigation independently of the DHSVM implementation 

(Thanapakpawin et al. 2007; Perkins et al. 2022) to assess the role of anthropogenic watering. 

We used a combination of empirical models for turfgrass and trees (angiosperm, gymnosperm, 
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and palm) across Los Angeles to calculate neighborhood ET from irrigation (Litvak et al. 2017). 

We proportionally added the irrigated vegetation ET values for irrigated land area and DHSVM-

produced ET values for non-irrigated land area (Litvak et al. 2017; Engel et al. in review).  

3.2.8 Model Evaluation Data 

 To evaluate modeled streamflow, we used observed streamflow data from four stream 

gauges within the LARB (Figure 3.2). Our primary evaluation point was the basin outlet (LA 

Department of Public Works F319-R), which is managed by the Army Corps of Engineers 

(Cummings 2016; Public Works 2021b). The data were available daily between October 1988 

and October 1992, and annually between 1985-1996 and 2000-2012. During 1997-1999, no 

observations were available. The site is within the concretized channel of the lower Los Angeles 

River.  

In times of high streamflow, 20 cubic feet per second from the river can be diverted to the 

nearby Dominguez Gap Spreading Grounds, a ~15 ha wetland that also recharges the 1,088 km2 

aquifer (Johnson et al. 2001; Public Works 2021a). The spreading grounds first opened in 1957, 

but were converted into a multi-use wetland and indigenous species habitat in 2008 (LA County 

2021). Uncontrolled stormwater runoff from nearby impervious areas within the LARB also flow 

into the Dominguez Gap Spreading Grounds.  

 We also evaluated streamflow with observations from three other gauges within the 

LARB, including the most upstream gauge and the easternmost and westernmost gauges. Two 

gauges (USGS 11097000 and USGS 11101250) recorded streamflow at 15-minute intervals 

beginning in 10/1988, resulting in an evaluation period of 32 years (USGS 2021). The third 

(USGS 11092450) had 15-minute data beginning in 10/2002, resulting in an evaluation period of 

18 years (USGS 2021).  
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3.2.9 Evaluation Methods 

To assess model accuracy, we compared static and time-varying modeled streamflow to 

observed monthly streamflow at the basin outlet using Kling-Gupta Efficiency (KGE), a metric 

designed for assessment of accuracy of hydrologic models. The KGE is a single number 

reflecting correlation, bias, and ratios of variance (Liu 2020). Mathematically, the KGE indicates 

a reasonable model at > (1 − √2), but most literature uses 0 as a benchmark of adequate 

performance (Knoben et al. 2019). 

We compared root mean square error (RMSE) and relative bias for daily streamflow from 

each model and our four reference gauges throughout the LARB. These indicators show 

mismatches between the two datasets and can be useful in comparing magnitudes of flow over 

time (Moriasi et al. 2015). In examining basin-scale performance, we expect to find more 

accurate results at the pour point than at gauges with small drainage areas (Cao et al. 2019). 

3.3 Results  

3.3.1 Model Accuracy 

 We assessed model accuracy using KGE at the basin outlet (LA Department of Public 

Works F319-R) and found a value of 0.23 for both the time-varying and static vegetation models 

at an annual time step.  

We also compared RMSE and relative bias in cubic meters per second (cms) between 

each model and four stream gauges. We discuss here results for the time-varying model; there 

was only a negligible difference between accuracy assessments for the two models. Values for 

RMSE varied from 19.08-35.29 cms, and values for bias varied from 4.29-17.17 (Table 3.1). 

Values were lowest at the basin outlet. 
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Table 3.1: Streamflow in cubic meters per second (cms) and validations statistics. DA is 
drainage area, and starred gauge is basin outlet. Efficiency statics are monthly. Kling-Gupta 
Efficiency at basin outlet is 0.23. 

     Time-Varying Vegetation  
Gauge Manager Period of Record DA (mi2) Average Observed 

Streamflow (cms) RMSE (cms) Bias 

F319-R* US ACE 10/88-10/92 815 346.14 19.08 4.29 

11092450 USGS 10/02-12/20 158 121.29 35.01 16.98 

11097000 USGS 10/88-12/20 153 27.64 35.29 17.17 

11101250 USGS 10/88-12/20 91.2 49.92 34.37 16.54 
 
3.3.2 Precipitation and Streamflow 

The time-varying and static vegetation models showed very similar streamflow values; 

the effects of vegetation changes were primarily visible in ET values. The static vegetation 

model had slightly higher streamflow values in >90% of days; 80% instances of the time-varying 

vegetation model producing higher streamflow values in years of heavy drought (2007; 2013-

2018). In times without an active precipitation event, ET volumes were greater than streamflow: 

4 times greater during non-drought periods and over 11 times greater during periods of drought. 

Summertime streamflow is negligible due to lack of precipitation (Figure 3.4).  
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Figure 3.4: Streamflow (time-varying vegetation model) and precipitation in the LARB, 1985-
2020. 

Both the static and time-varying models showed differences between wintertime 

streamflow in increased- or decreased-vegetation years (Figure 3.5). Streamflow in the LARB is 

dominated by large wintertime events (Figure 3.4), and these differences are the effect of 

particular storms occurring in years with increasing or decreasing vegetation. There was no 

difference in streamflow driven by land use change. However, both overall streamflow and the 

total range of monthly wintertime streamflow were larger in Long Beach, which is primarily 

impervious, than in Woodland Hills, which is highly vegetated. 

3.3.3 Drought Events and ET 

 Land cover changes played a role in determining ET, which is primarily influenced by 

urban irrigation (Table 3.2). Woodland Hills, which has abundant irrigated vegetation, has higher 

ET across all seasons and conditions than Long Beach, which is primarily impervious. 



 52 

Differences between ET in years of increasing and decreasing vegetation were greater in Long 

Beach than in Woodland Hills. In the static model, which had no change due to vegetation, 

differences in precipitation patterns were visible, particularly during winter months. 

Table 3.2: Average ET in all years, wet years and dry years; percent of seasonal ET that changes 
between years of increasing and decreasing vegetation. All data shown for summertime (JJA) 
and wintertime (DJF) across the time-varying (TV) and static (S) models in Woodland Hills 
(WH) and Long Beach (LB). Wet years are above the 75th percentile in precipitation; dry years 
are below the 25th percentile. 

  Average Summertime ET Average Wintertime ET 

Summer % ET 
change (inc. vs. 
dec. vegetation) 

Winter % ET 
change (inc. vs 
dec. vegetation) 

Model 
all 

years 
wet 

years 
dry 

years 
all 

years 
wet 

years 
dry 

years 
wet 

years 
dry 

years 
wet 

years 
dry 

years 
WH 
(TV) 56.8 57.6 56.5 27.7 29.3 26.7 12.6 11.6 11.5 1.1 

LB (TV) 32.5 33.1 32.2 15.7 16.1 15.7 20.2 20.0 20.8 5.9 

WH (S) 65.0 65.7 64.8 33.6 37.0 30.2 0.9 0.1 0.5 -5.3 

LB (S) 40.6 41.2 40.3 21.3 22.8 19.6 -0.3 0.2 2.4 -7.1 
 

In Woodland Hills, which is greener, irrigation-driven ET was substantially higher than 

in Long Beach (Figure 3.5a-b). However, in Long Beach, the difference between ET in years 

with decreasing and increasing irrigated vegetation and was larger than in Woodland Hills. This 

difference was highest during summer months in Long Beach, where the increases in vegetation 

created new irrigated areas in a predominantly impervious neighborhood. In Woodland Hills, 

where much of the area is already irrigated, the difference between ET in years with increasing 

and decreasing irrigated vegetation was smaller. The static model showed the same annual 

pattern, but no difference between ET in years with increasing or decreasing vegetation. In 

monthly ET, the precipitation signal was negligible compared to the effect of urban irrigation 

(Figure 3.5c-d). 
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Figure 3.5: Comparison of average monthly ET (solid lines) and streamflow (dotted lines) 
during periods of increasing irrigated vegetation (green) and decreasing irrigated vegetation 
(black). Results shown for time-varying model (a-b) and static model (c-d). 
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 In the time-varying model results, we did not observe differences between wet and dry 

year summertime ET in either Woodland Hills or Long Beach. Urban irrigation was the primary 

contributor to ET, and summertime precipitation is negligible (Figure 3.6a-b). However, the 

static models for both regions showed slightly higher ET in wet years than in dry, demonstrating 

a minor precipitation signal (Figure 3.6c-d). In winter months, when precipitation occurs, 

Woodland Hills ET from the time-varying model was highest in wet years with increasing 

vegetation; wintertime ET was very similar for years with decreasing vegetation and dry years 

with increasing vegetation (Figure 3.6a). In Long Beach, however, wintertime ET was similar for 

years with increasing vegetation and dry years with decreasing vegetation (Figure 3.6b). Wet 

years with increasing vegetation had lower ET, likely due to runoff from impervious surfaces 

during precipitation events.  
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Figure 3.6: Average monthly ET for Woodland Hills (a) and Long Beach (b) in years with 
increasing irrigated vegetation (dark colors) and decreasing irrigated vegetation (light colors) 
that are above the 75th percentile for precipitation (blue) or under the 25th percentile (purple). 
Results shown for time-varying model (a-b) and static model (c-d). 

3.4 Discussion 

3.4.1 Model Accuracy, Precipitation, and Streamflow 

 Incorporation of land cover changes into a DHSVM improved interactions between urban 

vegetation and hydrologic fluxes. Time-varying vegetation results showed lower streamflow 

peaks in accordance with the overall higher proportion of urban vegetation, which can result in 

increased infiltration and ET (Litvak et al. 2017; Read et al. 2019). However, monthly 

streamflow was dominated by precipitation events rather than land cover change. While this 

model shows lower overall accuracy than lower-resolution regional applications (Zhao et al. 

2016; Cao et al. 2021), it is within the realm of accuracy enough to sufficiently support a study 

regarding local and regional ET. 
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3.4.2 Drought Events and ET 

In both the LARB and individual neighborhoods, the effects of minority-pixel urban 

vegetation are visible. Across both Woodland Hills and Long Beach, the time-varying vegetation 

model showed that periods with increased urban vegetation experienced higher ET than periods 

with decreased urban vegetation, a result that supports studies associating increased urban 

landscaping with higher ET during drought periods in dry climates (Litvak and Pataki 2016; 

Nouri et al. 2016). The static vegetation models did not show this effect. Rather, ET in all 

months looked nearly identical to the time-varying model’s ET during periods of increased 

imperviousness (Figure 3.5). While ET from the static model was highest in wetter years, 

showing a small precipitation signal, ET from the time-varying model was highest in years with 

increasing urban vegetation, demonstrating that irrigation is the dominant force in driving ET, 

even during winter months (Figure 3.6). These relationships suggest that the static model, based 

on NLCD land cover, is failing to capture increases in minority-pixel irrigated vegetation within 

largely impervious areas. Those increases to irrigated vegetation, visible in the time-varying 

model, are driving the drought-period increase in ET.  

The differences between the two homogeneous neighborhood-scale analyses support the 

idea that urban irrigation is the dominant factor in ET and associated water loss. In Woodland 

Hills, where vegetation is abundant enough to become a majority pixel feature and large areas 

are parks and golf courses, both the static and time-varying models showed higher ET values 

than in Long Beach, where large impervious surfaces (e.g. the Long Beach Airport, supply chain 

facilities, oil refineries) dominate the landscape and a coastal marine layer reduces summertime 

heat (Edinger 1959; Bartholomew 2014; Sabau et al. 2020; LA Parks 2021; Morguita 2022). 

However, the differences between increased-vegetation and increased-impervious ET were 
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highest in Long Beach, where new sources of irrigation stood out in a more impervious area. 

These results accord with studies showing that residential water use is unequally distributed 

across Los Angeles, with abundant landscaping irrigation in wealthy areas (Mini et al. 2014; 

Litvak and Pataki 2016).  

In looking toward water savings, the LARB results show that minority-pixel green spaces 

should not be discounted. While the effects of irrigation on ET were most visible in Long Beach, 

they were also visible in Woodland Hills. Long Beach is in the 35th percentile for NDVI among 

urban Los Angeles neighborhoods: it is impervious, but not without vegetation. The larger 

differences between increased-vegetation and increased-impervious ET in Long Beach than in 

Woodland Hills shows that small changes, applied in targeted or vulnerable neighborhoods, can 

produce more noticeable differences than small changes applied equally across an urban area or 

in neighborhoods where the changes will further increase majority land use.  

3.4.3 Limitations and Areas of Opportunity 

 We acknowledge several limitations of the study. Most notably, we do not account for 

reservoir storage and release within the LARB, a real shortcoming in such a heavily managed 

basin. With access to sufficient reservoir storage data from the LA Department of Public Works, 

future work could incorporate parts of DHSVM-res to evaluate the impacts of reservoirs in the 

LARB (Zhao et al. 2016).  

Our model also includes some error propagation from the time-varying land cover data. 

The land cover classification process achieved a 91% overall accuracy, but error varies among 

years and land use classes (Engel et al. in review). All input vegetation maps necessitate some 

error, and we find that the time-varying land cover data is a better approximation of ground truth 

conditions than a single static image.  
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Our results were modest due in part to small land cover changes across the LARB 

(Appendix B). Future studies might also examine areas with more radical land cover changes to 

deepen our findings and understand more granular interactions between land use and hydrologic 

processes. 

3.5 Conclusions 

 Changing land use in Los Angeles does impact the overall water balance of the LARB. 

However, our results were most visible at a neighborhood scale, and land use changes primarily 

affected impervious areas. Across the LARB, increased urban green spaces modestly reduced 

surface runoff in >90% of modeled days, with larger reductions during precipitation events. 

Currently, LA City and County planners are striving to increase low-impact development and 

allocate resources toward spreading grounds and other infiltration mechanisms (Read et al. 2019; 

LA County 2021). In this context, our results are promising: flood mitigation and aquifer 

recharge are visible even through disparate, small-scale land use changes. Even small 

investments in flood control could be effective at a neighborhood scale. In particular, impervious 

areas, which are almost exclusively low-income, could see flood control and infiltration benefits 

from increased urban green space (Ladochy et al. 2021).  

 Throughout the LARB, urban landscaping increased irrigation-related ET, leading to 

more water loss during summer months and periods of drought. Coupled with data showing that 

>50% of residential water use is landscaping-related, these results confirm that irrigated, non-

native plants lead to water loss across a large urban area (Mini et al. 2014). In areas like Long 

Beach, where new green spaces amid a mostly impervious neighborhood stood out, a 

combination of green and grey stormwater management techniques could reduce runoff without 

increasing ET. In neighborhoods like Woodland Hills, with existing vegetation, more systemic 
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approaches to turf-replacement or water reduction could prove beneficial. Across the LARB, a 

combination of techniques for managing local hydrology within individual neighborhoods could 

combine to form a regional strategy.  
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Chapter 4. Contributions of roads to surface temperature: evidence from Southern 

California 

This chapter was be submitted in its current form to Landscape and Urban Planning as Engel, 

R.A., Millard-Ball, A., and V.K. Turner (2022). Contributions of roads to surface temperature: 

evidence from Southern California. Landscape and Urban Planning (in review). The 

supplementary materials for this chapter are provided in Appendix C. 

Abstract 

Planners often regard streets as targets for mitigating urban heat across cities by virtue of 

being abundant, publicly-owned, low-albedo, low-vegetation surfaces. Few studies, however, 

have assessed the role streets play in contributing to urban heat, and the scale of their effect 

relative to the built environment around them. We examine the relationship between road area 

and land surface temperature across a variety of biophysical regions through the urban areas of 

Los Angeles and San Bernardino Counties in Southern California. Our results show that wide 

streets have little effect on urban heat. Rather, vegetation is the primary cooling mechanism for 

urban areas. In the absence of trees, concrete highways are the coolest surfaces, though particular 

hot or cool pockets (e.g. airports, industrial centers, parks) can dominate neighborhood 

temperature signatures. In considering LST mitigation strategies, these hotspots might outweigh 

the cumulative effects of road surface changes.  

4.1 Introduction 

Cities are hot in part because of impervious surfaces like buildings, roads, and parking 

lots. In most regions, urbanization replaces vegetated land with impervious surfaces, which 

decreases two key cooling factors: albedo and evapotranspiration. Urban heat planning, 

therefore, focuses on ways to increase albedo and vegetation to mitigate the effects of 
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impervious surfaces on urban land. Heat produced by urban land cover is typically characterized 

as the surface urban heat island (SUHI), a regional phenomenon that causes cities to be, on 

average 1.5° C warmer than surrounding undeveloped areas and is most pronounced at night 

(Oke 1982, Peng et al. 2012).  

The SUHI as conventionally characterized has several limitations for urban planning. 

One shortcoming is that the direction of the relationship between urban land and surface 

temperature depends on background land and climate conditions. Arid regions may experience 

an inverse heat island whereby irrigated vegetation cools land compared to reference 

undeveloped dryland and the most pronounced temperature differences overnight (Mohammed et 

al. 2020). Moreover, the relationship between urban land and temperature is heterogeneous 

within cities. This is problematic because cities must consider the unique morphology and uses 

of urban land at a sub-city scale when assessing potential heat mitigation strategies.  

One potential source of heat in urbanized regions is streets – large-scale, mostly low-

albedo impervious surfaces that lack vegetation and shade (Taleghani et al. 2016). The 

contribution of streets to urban heat is amplified by the large amount of land that they occupy – 

up to 30% in US cities such as New York (Manvel, 1968, summarized in Meyer & Gomez-

Ibañez, 1981; Millard-Ball 2022). At the same time, however, streets offer prime opportunities to 

mitigate urban heat – they are publicly owned resources upon which cities can site interventions 

without the need to incentivize private developers or land holders (Pomerantz et al. 2003; Lee et 

al. 2018; Gago et al. 2013). For this reason, several cities have begun experimenting with cool 

pavement and urban tree planting programs to leverage streets as a public resource for mitigating 

the urban heat (Ko et al. 2022; Turner et al. 2021; Maxwell et al. 2018).  
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This study examines the relationship between street width and Land Surface Temperature 

(LST) across a variety of urban forms to examine how and where mitigation strategies might be 

best applied. We focus on communities in Los Angeles and San Bernardino Counties, California, 

which contain a mix of background biophysical conditions and built forms, and where 

policymakers have piloted the use of road surfaces to reduce urban heat through changes to 

vegetation or albedo (US EPA 2012; Garcetti 2021). These proposals follow a global trend of 

investment in cool pavement: Western Europe is pushing cool pavements, and pilot programs 

can be found in Tokyo, Athens, and Rome (Santamouris 2013; C40 2017; Moretti et al. 2021). 

The United States government is also incentivizing cool pavement programs and several cities 

have followed suit (Wiltshire-Gordon 2020; FHA 2021; Garcetti 2021; SmartCities Connect 

2021). We test the hypotheses that roads contribute to urban heat and that wider roads amplify 

those contributions. We further hypothesize that the impact of streets will vary based on the local 

physical context; hotter, more arid conditions will suppress the contribution of road widths to 

urban heat as will more intensively developed areas. 

4.2 Mitigating Urban Heat on Roads: Vegetation, Impervious Surfaces, and Land 

Morphology 

As conventionally described, a vegetation disparity across the urban environment creates 

a SUHI by producing hotter conditions in urban areas, especially developed downtown sectors, 

than surrounding undeveloped areas. The temperature disparity is largely driven by impervious 

surfaces like roads and buildings that absorb and slowly release heat throughout the day (Oke 

1982; Rizwan et al. 2008) and, depending on regional conditions, usually peaks during the early 

afternoon due to dependence on shortwave radiation (Shastri et al. 2017; Lai et al. 2018). In hot 

desert climates, however, the typical urban heat pattern can be inverted: urbanized areas are often 
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cooler than the background reference desert during the daytime, but warm up at night (Lazzarini 

et al. 2015). Desert cities have substantially less dense vegetation and higher LST than temperate 

or forested cities, and a shallower diurnal heat cycle (Imhoff et al. 2010). The inverse urban heat 

island is largely attributable to differences in vegetation and canopy cover: bare soil or sand in 

undeveloped desert areas is warmer than shaded or irrigated landscape in city centers (Shastri et 

al. 2017; Mohamed et al. 2021). These studies demonstrate that the direction and characteristics 

of the SUHI depend on the background land and climate conditions of the reference system. 

Vegetation is also a primary mechanism for cooling spaces within cities: impervious 

surfaces and bare land are significantly warmer than vegetated areas, particularly in hot areas 

(He et al. 2018). Shaded surfaces, and the air above those surfaces, are cooler than nearby 

unshaded impervious surfaces (Taleghani et al. 2016). Tree cover, in particular, is effective in 

reducing surface temperature, but the mere presence of vegetation is sufficient to reduce 

localized surface and air temperature in comparison to a paved surface (Adams and Smith 2014; 

Susca 2011). In addition to shade, vegetation provides heat reduction through transpiration: as 

water is released into the atmosphere, sensible heat is converted to latent heat, reducing overall 

air temperature (Ballinas and Barradas 2016). This effect is heightened in arid climates with a 

high vapor pressure deficit that increases transpiration.  

Urban heat varies with race and income as well as physical characteristics, in ways that 

exacerbate environmental injustices. For example, historically redlined neighborhoods show 

elevated surface temperatures of ~2.6°C across the U.S. (Hoffman et al. 2019; Wilson 2020). 

This trend holds for predominantly Black or Latino neighborhoods, primarily due to a lack of 

vegetation (Harlan et al. 2006; Dialesandro 2021). 
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Many cities have considered street trees as a strategy to mitigate urban heat given their 

large impacts on LST and their other benefits such as visual amenity and improved air quality 

(Mullaney et al. 2015). Though tree planting is shown to be effective in reducing LST, many 

urban trees in Southern California are non-native and require constant irrigation, increasing 

water imports (Roman et al. 2021). Indeed, angiosperm (broad-leaf) species comprise only 71% 

of trees in Los Angeles but contribute over 90% of tree transpiration (Litvak et al. 2017). 

Landscaping comprises ~54% of residential water use in Southern California, and irrigation is 

both more prevalent and less responsive to mandatory drought-related water rationing in wealthy 

neighborhoods, which are shadier and cooler than low-income areas (Mini et al. 2014; Clarke et 

al. 2013). Because trees – particularly leafy, traditionally “shady” trees – come with a cost, 

planners seek out alternate strategies for reducing LST.  

Given these challenges, planners have also turned to road surface paint as a low-cost, 

easily-implemented method for mitigating LST. Roads, which are often constructed from dark 

asphalt, are logical targets for intervention: as continuous, often wide, impervious areas, they 

logically increase LST and radiant air temperature (Cheena et al. 2021; Pomerantz et al. 2003). 

Studies have tested potential reductions in LST from cool pavements, and found that higher-

albedo surfaces are indeed cooler (Sodoudi et al. 2014; Sen et al. 2019). Citywide effects of cool 

pavement are mixed, however: as with any urban heat strategy that relies on increasing albedo, 

radiant temperature and midday temperature can increase even as incoming solar radiation 

decreases (Middell et al. 2020; Erell et al. 2013).  

Cool pavements are often introduced inadvertently without regard to their albedo-

increasing properties. For example, in Southern California, many of the widest roads are already 

concrete, which is classified as a cool pavement – studies have found that concrete with a higher 
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cement content increases albedo regardless of the remaining composition (Lee et al. 2002; 

Levinson and Akbari 2002; Sen et al. 2019). This practice is likely to continue: concrete sets 

rapidly and can include recycled tires at little extra cause, so it remains the primary surface used 

in newly-repaired freeways (Caltrans 2002; CalRecycle 2020). Concrete is less prone to cracking 

than painted asphalt, and its construction can incorporate reflective materials to increase albedo 

(Cheena et al. 2021).  

While much has been made of the potential benefits and pitfalls of increasing cool 

pavement presence throughout cities, little research has evaluated the current effects of street 

abundance and width on LST. Microscale studies have compared road surfaces to one another, 

finding evidence of LST reduction with reflective pavements and shaded surfaces (Lee et al. 

2018; Sadoudi et al. 2014). Others have evaluated the effects of building morphology, 

demonstrating that canyons and airflow can improve cooling at block and citywide scales 

(Giridharan et al. 2007; Johannson 2006). Hoehne et al. (2020) found increased sensible heat 

from combined car emissions and road surfaces across Phoenix. However, their LST readings 

seemed to correlate with imperviousness or bare ground, as opposed to irrigation. Yamazaki et 

al. (2009) used very high-resolution imagery (2 m) to examine LST, and found higher 

temperatures on impervious and road surfaces than in vegetated areas or water. However, they 

did not evaluate the effects of roads across a neighborhood or city scale, or in areas that are 

either highly vegetated or impervious.  

There is substantial literature examining possible LST mitigation strategies across 

particular cities or neighborhoods (Mohammed et al. 2020; Deilami et al. 2018). However, few 

studies examine the relative impacts of vegetation or cool pavement strategies in distinct 

neighborhoods, rather than as a citywide panacea. Urban morphology can change at a 
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neighborhood, or even a block scale within a city, affecting localized and citywide temperatures 

(Yuan et al. 2020). Sodoudi et al. (2014) examined a hybrid cool pavement and vegetation 

cooling model in Tehran, and found it to be more effective than either strategy in isolation. 

Middel et al. (2020) found that cool pavement was not appropriate as a one-size-fits-all model, 

and should be applied with consideration of local context. To our knowledge, no studies have 

considered which areas might benefit from varying forms of LST mitigation.  

 In the Los Angeles area, the potential for neighborhood-scale heterogeneity is high: the 

urban environment is very different from native vegetation, which is primarily coastal or 

chaparral scrubland, with mountainous or desert regions in the more inland areas (Rashed et al. 

2003). As a result, developed areas, irrigated landscaping, and indigenous vegetation have 

distinct diurnal and annual NDVI, heat, and evapotranspiration cycles (Mini et al. 2014; Hall et 

al. 2015). Notably, Los Angeles has a summertime marine layer, providing an overall cooling 

effect in many coastal areas (Edinger 1959).  

 These diverse physical conditions combine with some of the most diverse built urban 

landscape in the country: Los Angeles County alone is home to over 10 million people in 114 

distinct neighborhoods, with a substantial range of income disparity and a legacy of 

environmental injustice (Rashed et al. 2003; Mini et al. 2014; Su et al. 2018). Los Angeles also 

enforces a highway dedication ordinance requiring developers to physically widen streets to 

accommodate more traffic in exchange for building permits (Manville 2017). At the same time, 

the city considers streets to be a primary avenue for mitigating LST; in 2021 the Mayor’s office 

announced an initiative to bring 200 blocks of cool pavement and 2,000 new trees to eight 

residential areas (Garcetti 2021). 
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4.3 Data and Methods 

4.3.1 Study Area and Sample Selection 

 We examined the urbanized portion of Los Angeles and southwest San Bernardino 

Counties, California. We choose these counties because of their size, variety of climatic 

conditions and urban forms, and growing urban heat island (Dialesandro et al. 2019; Ladochy et 

al. 2021). Together, the counties are home to ~12 million people and contain over 100 

incorporated cities (US Census 2020). Our study area spans an east-west transect of California, 

covers elevation from sea level to >1000 m, and encompasses mediterranean and desert Koppen 

climate zones (Kesseli 1942). The built form encompasses single-family homes, apartments, 

high-rise residential and office buildings, and industrial uses, and streets that range from large 

arterials to narrower streets built before the private car became dominant. The primary urban 

area in our study region is the City of Los Angeles, which is classified as a global megacity and 

contains a dense urban core, sprawling residential areas, and low-rise industrial zones.  

 In Southern California, we examine areas with both traditional and inverted SUHI. In 

coastal Los Angeles, heavily impervious urban areas (e.g. South and East LA) are warmer than 

the more vegetated mountainous or coastal neighborhoods (Hulley et al. 2019; Dousset 1989). 

However, the eastern part of the state shows a reverse urban heat effect consistent with other hot 

desert cities (Shifflett et al. 2017). 

4.3.2 Data Sources and Calculations 

 We calculated LST at 30 m resolution using Landsat 8, parameterized with water vapor 

and emissivity from NCEP/NCAR reanalysis and ASTER imagery (Ermida 2020). To check our 

calculations, we validated our LST data using an alternative algorithm (Landsat Provisional 

LST) and data source (NASA ECOSTRESS LST readings). All three approaches are widely used 
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in the literature, and we found agreement among the datasets. Thus, the remainder of the analysis 

uses the Landsat 8 imagery, so as to use a standard Landsat base for all variables and because of 

the ease of calculation in Google Earth Engine. Because we observed thermal LST, we were in 

effect observing the radiant temperature of tree canopy, shrubs, and grass in vegetated areas, 

rather than the temperature of the shaded pavement. Studies show, however, that shaded surfaces 

are significantly cooler than those in direct sunlight (Barbierato et al. 2019, Middel et al. 2020).  

 Our data on street area, width, and class (highway, arterial, and residential street) use a 

novel method derived by Millard-Ball (2022), which derives street area and width from the voids 

between tax assessment parcels, and matches each void to OpenStreetMap (OSM) ways.  

We integrated additional data sources on urban form, vegetation, and demographics in 

order to incorporate other factors that prior studies show to have a strong influence on LST. We 

used building footprint polygons (Microsoft 2021) to calculate the largest building footprint 

within each 30 m pixel. 

 We also examined Local Climate Zones (LCZ), a product created to show categories of 

land use, vegetation, and development for urban temperature studies (Stewart and Oke 2012). To 

explore questions of environmental justice, we classified pixels as a Disadvantaged Community 

or not according to the California EPA’s designation, which considers pollution burden, health 

outcomes, and vulnerability (CalEPA 2015).  

To assess vegetation and land use, we examined Soil Adjusted Vegetation Index (SAVI) 

and Albedo at 30 m using Landsat 8 data in Google Earth Engine (Roy et al. 2014). A higher 

SAVI value indicates more greenness, with middling values corresponding to low vegetation and 

high values corresponding to forest. For each pixel’s centroid, we calculated latitude, longitude, 

elevation, and distance from the Pacific Ocean (IHO 1953; Farr et al. 2007).  
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For more specific information on data sources and calculations, see Appendix C. 

4.3.3 Regression 

 We use a linear regression model to test the association between LST (our dependent 

variable) and street area, while controlling for other predictors that may confound the 

relationship. Our primary control variables are largest building footprint; SAVI; and albedo 

(each which we standardize to a mean of zero and a standard deviation of one in order to be able 

to compare the magnitudes of the coefficients). We also include disadvantaged community status 

(as a binary variable) and Local Climate Zone, as well as elevation and distance from the Pacific 

Ocean (each of which we discretize into 10 bins in order to allow for nonlinear relationships).  

4.3.4 Samples 

Our primary results are based on the urbanized areas of the two counties in our dataset. 

We complemented these results with a more focused analysis of 14 sample communities (Table 

4.1; Figure 4.1) in order to better understand the mechanisms that link street widths with urban 

heat. To do so, we compiled total street area and median LST, albedo, and SAVI in each 

neighborhood. We then selected a sample based on an extreme value strategy, choosing the areas 

with the maximum and minimum values for each variable. There was some overlap: the Pacific 

Palisades had the lowest median albedo and LST; Vernon had the lowest SAVI and highest LST; 

Colton had the highest albedo and lowest SAVI; and Grand Terrace had the least street area and 

lowest LST (Figure 4.2).  
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Table 4.1: Sample neighborhoods. 

Neighborhood County 
Median 

LST 
Median 
Albedo 

Median 
SAVI 

Percent Street 
Area 

Primary 
LCZ 

Median Family 
Income 

Chino Hills SB 45.28 0.159 0.160 0.52 open lowrise 117,452 
Colton SB 45.56 0.194 0.125 0.60 open lowrise 60,372 

Grand Terrace SB 43.07 0.184 0.163 0.70 open lowrise 75,378 
Hidden Hills LA 33.33 0.183 0.275 0.91 large lowrise 165,336 

Lancaster LA 38.64 0.218 0.160 11.44 bush, scrub 60,799 
Long Beach LA 34.34 0.166 0.146 26.41 large lowrise 64,813 

Ontario SB 47.65 0.189 0.146 0.69 open lowrise 71,374 
Pacific Palisades LA 28.95 0.129 0.288 6.54 bush, scrub 220,362 

Pacoima LA 37.66 0.171 0.119 28.48 large lowrise 64,688 
Rolling Hills LA 29.75 0.158 0.297 4.00 large lowrise 186,818 

Upland SB 44.14 0.180 0.179 0.74 open lowrise 85,235 
Vernon LA 38.82 0.190 0.031 14.98 large lowrise 45,647 
Watts LA 36.16 0.164 0.136 30.03 large lowrise 44,470 

Yucaipa SB 46.90 0.176 0.170 12.30 open lowrise 84,654 
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Figure 4.1: Spatial distribution of sample neighborhoods (a), LST (b) and selected contributing 
variables within the study area: Elevation (c), CalEPA Environmentally Disadvantaged 
Communities (d), Street networks (e), SAVI (f), and LCZs (g). Cooler areas are more 
mountainous and less developed, and often are coastal. Warmer areas are farther inland, and 
often are within large lowrise developments. Disadvantaged neighborhoods are, on average, 
hotter than non-disadvantaged neighborhoods. 

We also included in our sample selection the three California Transformative Climate 

Communities (TCCs) within our study area: Ontario, Watts, and the San Fernando Valley 

(Transformative Climate Communities 2021). For the purposes of this study, the San Fernando 

Valley area is called Pacoima, as almost all of the TCC zone is within that neighborhood. The 

TCCs are part of a California State initiative to reduce the legacy of redlining and environmental 

racism on underserved communities throughout the state via community-led action plans 

(Transformative Climate Communities 2021). We include the three TCCs because they represent 

long-marginalized areas with substantial environmental disadvantages.  
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Figure 4.2: Temperature; SAVI and streets; and satellite imagery (Google 2021) for three 
sample neighborhoods. Pacoima is largely impervious and sits inland, in the San Fernando 
Valley. Highways are the coolest surfaces in the neighborhood. Long Beach is a diverse, coastal 
area, and generally cooler than other neighborhoods because of the summertime marine layer. 
Chino Hills is wealthier and more vegetated, though it sits inland, in San Bernardino County. 
Several large warehouses, technically just outside the neighborhood, show the higher LST 
commonly visible in heavily industrial areas. 

4.4 Results 

4.4.1 Effects of Vegetation 

 We found that more vegetation, as expressed by higher SAVI, is universally correlated 

with lower LST. Notably, SAVI was the only tested variable without a sign change across all 

sample areas – that is, in each case, the regression coefficient is negative (Table 2). Across the 

study area, SAVI also showed the strongest scaled correlations of any variable. We examined the 
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signless magnitude of scaled correlations for street area, SAVI, albedo, and large building 

footprints, and found that SAVI’s mean correlation was 1.8% higher than the correlation of the 

next largest variable. 

Table 4.2: Scaled regression coefficients for study area and all samples from model including 
normalized street area, SAVI, albedo, and building footprint as well as bins for elevation and 
ocean proximity (R2 = 0.767). Variables are normalized so as to be directly comparable with one 
another. Coefficients between street area and LST tend to be small, and they do not demonstrate 
a particular pattern. SAVI is the most noticeable predictor of LST, with cooling effects across all 
areas. 

 Scaled Correlations vs Temperature 

Neighborhood County Street Area SAVI Albedo 

Largest 
Building 
Footprint 

All Urbanized Areas  -0.05 -1.83 0.36 0.18 
Ontario SB -0.19 -0.86 -0.06 0.44 
Yucaipa SB -0.60 -2.10 0.07 -0.93 
Colton SB -0.09 -0.51 -0.13 0.29 

Chino Hills SB -0.15 -1.03 0.05 0.09 
Upland SB 0.10 -2.23 0.10 0.57 

Grand Terrace SB -0.06 -1.05 0.19 -0.11 
Vernon LA -0.12 -0.82 -0.22 0.70 

Lancaster LA 0.13 -0.98 -0.04 0.44 
Pacoima LA 0.34 -0.96 0.67 -2.96 

Watts LA -0.11 -0.72 0.59 0.06 
Long Beach LA 0.09 -1.18 1.07 -0.23 
Hidden Hills LA 0.37 -1.69 2.01 1.07 
Rolling Hills LA -0.14 -1.40 0.82 -2.05 

Pacific Palisades LA 0.05 -1.53 1.48 -0.38 
 
 In examinations of specific areas, we found that higher SAVI correlated strongly with 

lower LST, but lower SAVI did not necessarily imply higher LST. Rather, areas with lower 

SAVI were more diverse, with a wider range of LST (Figure 4.3). In some coastal areas (e.g. 

Long Beach) the effect of SAVI on LST was less visible, likely because of the 10:30 am 
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collection time: Los Angeles experiences a summertime morning marine layer in coastal areas 

that can reduce LST (Edinger 1959). 

 

Figure 4.3: Most common street width (m) within each pixel and SAVI for each sample 
neighborhood. Colors represent summertime LST within a given pixel, and dashed lines are 
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mean values for width and SAVI. Points for “all urban area” plot come from a random selection 
of pixels to show a clear distribution without overcrowding. In both the study area as a whole 
and individual neighborhoods, SAVI is the primary moderator for LST: temperatures change 
along a vegetation gradient, but do not substantially differ in areas with narrow or wide streets. 
Areas with more vegetation (higher SAVI) are cooler, but areas with less vegetation (lower 
SAVI) are more diverse; low-SAVI areas are not universally warmer. In coastal neighborhoods 
(e.g. Hidden Hills, Long Beach, Pacific Palisades, and Rolling Hills) LST is lower across the 
board, a result of the summertime marine layer. 

4.4.2 Effects of roads 

As a whole, roads had no effect on LST in either the full sample or our 14 

neighborhoods. The null effect is apparent in both our regression results, where correlations 

between street area and LST were minimal and demonstrated no overall pattern or trend, and 

graphically, where the plots in Figures 4.2 and 4.3 show no relationship between street width and 

LST. 

Within residential neighborhoods, vegetation was the dominant signature, and road area 

was a negligible factor in affecting LST (Table 2). In highly impervious neighborhoods, road 

surface was often dwarfed by the presence of large buildings, which had a much more substantial 

impact on LST, with stronger correlations visible in Table 2. 

Highways were consistently the coolest road class, with lower LST values than arterials 

or residential streets. Across the study area, the median LST of highways was >1° C cooler than 

other road surfaces (Figure 4.4). In highly impervious areas with low SAVI, this effect is 

heightened; in Vernon, highways were 2.5° C cooler than other road surfaces. In more highly 

vegetated areas such as the Pacific Palisades or Chino Hills, the effect is flattened, and most road 

surfaces have similar LST values. 
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Figure 4.4: Distribution of LST (°C) of pixels with no roads (green), residential streets (yellow), 
arterials (orange), and highways (red) in each sample neighborhood. Rolling Hills and Watts 
have no highways. In wealthier neighborhoods with substantial vegetation (e.g. Chino Hills, 
Hidden Hills, Lancaster, and Pacific Palisades) the residential, high-SAVI areas are cooler than 
streets, and arterials with tree-lined medians can be especially cool. However, highways are the 
coolest streets in neighborhoods with diverse ground cover. In particularly impervious areas (e.g. 
Colton, Pacoima, and Vernon) highways are often the coolest areas overall. 

In desertified or impervious sample areas, highways were often cooler than all other 

surrounding surfaces. Median highway temperature was 0.94° C cooler than areas without roads 

across the study area, though this effect is skewed by the highly desertified San Bernardino 

areas: in the greener LA County, highways were 0.3° C warmer than non-road surfaces. In 

extremely unvegetated areas, though, the effect is especially pronounced; Vernon’s highways 

were 2.4° C cooler than surrounding areas. In the sample area, the (concrete) highways showed a 

lower albedo than buildings (predominantly large warehouses) but a higher albedo than other 

roads. Most vegetated regions (e.g. Pacific Palisades, Rolling Hills) showed lower non-road LST 

than highway LST, but industrial or desertified regions (e.g. Pacoima, Colton) had lower 

highway LST (Figure 4.4). 

4.4.3 Hotspots 

The primary cooling factor in most sample areas was vegetation. Most LST patterns, and 

correlations with albedo or road area, were visible in areas that lacked the overwhelming effects 

of vegetation. Without vegetation, albedo can become a strong factor. This pattern was visible on 

road surfaces, where higher-albedo concretized highways showed lower LST than arterials and 

residential streets.  

In some areas, large hotspots – specific locations with strong SAVI or albedo signatures – 

skewed neighborhood effects. In homogeneous residential areas without major parks or barren 

sites (e.g. Upland, Watts, Pacoima), the relationship between albedo and LST was negative, as 

logic dictates. Lighter, more reflective surfaces had lower temperatures. In sample areas with 
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hotspots, some lower-albedo vegetation reduced overall LST (as in parks) or higher-albedo 

warehouses increased LST (Figure 4.2).  

4.5 Discussion 

Across urban regions and within individual neighborhoods, road area was not a 

contributing factor to LST. Rather, our finding that SAVI predicted lower LST at pixel and 

neighborhood scales supports findings pointing to the dominant role of vegetation in mitigating 

urban heat (Ballinas and Barradas 2016; Deilami et al. 2018). Our results support studies 

showing that increased urban vegetation, even in highly developed areas, mitigate SUHI across 

large cities (Deilami et al. 2016; Feng et al. 2021). Future studies should examine if this 

relationship is a function of scale, shade, evapotranspiration, vegetation’s albedo, or other 

factors. 

 In Southern California’s mediterranean and desert climates, a universal increase in urban 

forest is not a simple proposition: factors like irrigation and species suitability are necessary 

considerations (Mini et al. 2014). Many neighborhoods in our study area are dry and hot; grass 

and tree cover would not be feasible without a heavy investment in watering systems (Gober et 

al. 2010). In Los Angeles, only 14% of the city’s water is sourced locally, and sustainability 

plans at both the city and county levels aim for reductions in water imports (LADWP 2018). A 

locally-driven LST mitigation program in Los Angeles could look similar to the model currently 

being piloted in Athens, Greece, using large, open, impervious spaces to improve 

“microclimates” (C40 2022). Strategies for SUHI mitigation rely on a highly targeted approach; 

planners and scientists alike are identifying areas of high LST or low heat resilience and 

addressing local conditions (Skoulika et al. 2014; Mavrakou et al. 2018; Mavrakou and 

Polydoros 2021). In diverse cities where regional changes might be expensive or impractical, a 
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suite of small-scale approaches can provide an achievable strategy. Future research could 

examine investments in native plant cover and in the efficiency of green and grey shade as 

options for reducing LST in different parts of the urban area. 

 To the extent that increasing vegetation is infeasible, would narrowing streets or 

introducing cool pavements be a useful urban heat strategy? Here our results are more surprising: 

we found no evidence that road surfaces in the study area increased LST relative to their 

surroundings. Large unbroken areas, such as warehouses or parking lots, played a bigger role in 

determining neighborhood-scale LST, echoing locally a result shown in citywide SUHI across 

other urban areas (Liu et al. 2021). In homogeneous residential neighborhoods with no parks, 

malls, or industrial sites, higher albedo was associated with lower LST. This effect was 

consistent regardless of climatic conditions. The presence of large warehouses, transportation 

centers, parks, or forested areas in many greener neighborhoods, however, led to a positive 

relationship between albedo and LST. The mechanism was imperviousness or building material 

rather than albedo: large white warehouses and bare ground are LST hotspots, while parks and 

green spaces are cooler than their surroundings. Although we did not measure the effect of 

shade, we hypothesize that shade from nearby structures like buildings contributed to lower LST 

on some surfaces like warehouse roofs. Future research might consider LiDAR or 3D building 

datasets to further investigate the role of shade in moderating LST. While mitigation strategies 

on road surfaces can be effective, addressing LST hotspots might also create change across a 

neighborhood or city.  

In many neighborhoods, there was not a single dominant factor (e.g. vegetation, albedo) 

affecting LST. Rather, individual vegetated or industrial hotspots skewed variables like SAVI or 

albedo heavily, suggesting that a context-specific approach to mitigating LST might prove 
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beneficial for neighborhoods with mixed composition (Sodoudi et al. 2014; Feng et al. 2021). In 

considering mitigation strategies for LST in areas with very little vegetation, lighter pavement 

surfaces could help break up these large hotspots. We found that highways consistently had the 

lowest LST of all road surfaces, a result that confirms materials studies (Cheela et al. 2021; Sen 

et al. 2019). In impervious or desert neighborhoods, they had the lowest LST of all surfaces. 

Efforts to increase concrete or cool pavements in non-vegetated areas could be more effective at 

reducing LST than implementation in shadier neighborhoods.  

Local climatic and socioeconomic conditions also varied among neighborhoods. Across 

Los Angeles County, we found that coastal areas had below-average LST and a weaker 

relationship between LST and SAVI due to a morning marine layer (Figure 4.3). Local changes 

in vegetation and land use were equally important. Although the Pacific Palisades and Lancaster 

are both primarily classified within the “brush, scrub” LCZ, the wealthy Palisades is heavily 

irrigated, while Lancaster has almost no irrigated urban canopy (Nowack et al. 1996; Galvin et 

al. 2019). LST mitigation strategies reflecting urban heterogeneity have been examined most 

notably in Hong Kong, where studies show that hotspots driving high LST are heterogeneously 

distributed throughout the city. Proposed mitigation strategies are aimed at reducing LST in the 

areas of highest contribution or social vulnerability, rather than seeking to improve conditions 

citywide (Wong et al. 2016; Hua et al. 2021). Greening high-rise developments, providing shade 

for the elderly, and strategic additions of pocket parks in coastal areas are all potential means of 

addressing a regional problem with targeted, local solutions (Giridhran et al. 2008; Peng and Jim 

2013; Peng and Maing 2021). Additionally, Hong Kong’s varied topography and unique climate 

have led researchers to develop locally-determined “seasons” for examination based on highly 
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local conditions (Giridhran et al. 2007; Chan 2011). In desert climates, strong seasonal effects 

might also be considered in constructing neighborhood-based LST mitigation strategies. 

4.6 Conclusions 

We examined LST across urban areas in Los Angeles and San Bernardino Counties with 

respect to mitigation potential along road surfaces, but found no consistent statistical relationship 

between road area and LST suggesting that wide streets are a major contributor to urban heat. 

Rather, we observed that vegetated areas are universally cooler than unvegetated areas, and that 

concrete highways can be cooler than other impervious surfaces. Our findings suggest that 

policies may be based on assumptions and results that ignore the social, material, and land use 

context of areas in which they are being implemented. In particular, streets are often 

overemphasized. In comparison to large features – parking lots, warehouses, or parks – streets do 

not show a statistical relationship with LST at either a neighborhood or a citywide level. 

 A more thoughtful approach might consider microclimates and local conditions, 

including shade, coastal effects, and dominant neighborhood land use. While streets comprise a 

large share of land use, they are often dwarfed by green spaces, parking lots, or buildings. There 

may be marginal gains from moving to cooler pavements, but the bigger drivers of high LST are 

often large, unbroken areas (e.g. parking lots or large buildings). Our local sample areas show a 

diverse view of LST, with various neighborhoods affected by climate, urban morphology, and 

land cover. As LST and SUHI mitigation become higher policy priorities, cities should avoid 

focusing on publicly-owned streets without considering neighborhood context.  
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Chapter 5. Conclusions and recommendations for further work 

I assessed urban dynamics and their impacts on one another in different parts of the 

greater Los Angeles area. The science questions I addressed were: 

1. How have urban land cover and irrigation in Los Angeles changed over the last 35 years 

(1984-2019)? 

2. What are the cumulative effects of small-scale land use changes on evapotranspiration 

(ET) and water balance, both across Los Angeles and within distinct neighborhoods? 

3. Is there a relationship between street area and Land Surface Temperature (LST), either 

regionally or at a local scale, and is that relationship affected by urban form? 

Each chapter included analyses encompassing both a regional view of the Los Angeles area and 

conditions within individual neighborhoods. In assessing changes to land cover, hydrology, and 

LST, I considered a wide range of physical processes across and within a megacity. 

In Chapter 2, Examining urban land cover change using a deep encoder-decoder 

convolutional neural network, results showed that land cover changes across the Los Angeles 

Sedimentary Basin were moderate, with little new development over between 1984-2019. A deep 

learning approach to mixed pixel disaggregation demonstrated 91% accuracy when compared to 

classifications derived from contemporary 10 cm composite imagery. Relative to moderate-

resolution datasets, the new land cover time series identified more small minority-pixel urban 

green spaces and how they changed over time.  

The results can be used to support further studies in regional hydrology, carbon cycles, or 

urban land use (Thanapakpawin et al. 2007; Churkina 2008; Pataki et al. 2013). In particular, this 

new land cover dataset can facilitate more localized modeling studies, providing detail about 

small features that matter more within a small area than across a region. As research moves 
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toward understanding ecosystem services at the neighborhood scale, these land use 

classifications could play a role. Additionally, this approach contributes to the growing body of 

literature on deep learning for segmentation of remotely sensed data (Mitraka et al. 2016; Shao et 

al. 2019; Sultana et al. 2020). Considering the increasing availability of high-resolution training 

data, similar approaches can be readily applied to a variety of datasets. 

Chapter 3, The role of urban vegetation change in the basin-scale hydrology of Los 

Angeles, demonstrated that changes to land cover have a small regional effect, and instead 

primarily impact individual neighborhoods. Increased vegetation modestly reduced runoff in 

>90% of modeled days, with larger reductions during precipitation events. These results were 

most dramatic in Long Beach, which is mostly impervious, and weaker in Woodland Hills, 

which is heavily irrigated. Long Beach also experienced higher changes in ET with variations in 

vegetation; summertime ET in particular was higher in years with increasing vegetation. Across 

all seasons and conditions, though, Woodland Hills saw higher ET than Long Beach due to 

irrigation.  

In combination with data showing that over half of residential water use in Los Angeles 

goes to landscaping, my results indicate that irrigation varies substantially among 

neighborhoods, and that changes to minority-area land cover can have an outsize effect on local 

hydrology (Mini et al. 2014). Accordingly, small-scale land use changes in heavily impervious 

areas might increase aquifer recharge and disrupt stormwater runoff, but emphasis on locally 

driven solutions (e.g. indigenous vegetation or grey systems) could achieve similar ends without 

increasing ET and raising water use (McPhearson et al. 2014). Simultaneously, reductions in 

year-round irrigation in green neighborhoods make a smaller neighborhood-scale difference in 

ET due to the continued impact of the surrounding vegetation. Systemic measures (e.g. irrigation 
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limits and turf replacement programs) might be more effective in these areas, where larger 

changes would lead to more substantial water savings (Mini et al. 2014; Porse et al. 2017).  

Because of variations in both neighborhood composition and local responses to land use 

change, ongoing research and solutions might be examined at smaller scales. Within Los 

Angeles, future work could extend neighborhood-scale modeling to assess opportunities for 

targeted land use change and water savings. These analyses could also integrate projections for 

both land cover and climate to understand how different parts of Los Angeles – particularly the 

Transformative Climate Communities and other environmentally disadvantaged areas – will 

respond to projected heat waves and increasing drought conditions (Transformative Climate 

Communities 2021; CalEPA 2022). Given the increasing abundance of high-resolution land 

cover data, these analyses could guide policies and plans for reducing ET and increasing aquifer 

recharge across the Los Angeles area.  

Chapter 4, Contributions of roads to surface temperature: evidence from Southern 

California, showed that road area was not a driver of LST at either a regional or a neighborhood 

scale. Rather, the presence of vegetation – and, accordingly, shade and ET – was a factor in 

decreasing LST. In heavily impervious or desertified areas, highways were often the coolest 

surfaces: their concrete pavement was cooler than large warehouses or uninterrupted impervious 

spaces like parking lots. Responses to LST mitigation strategies varied across neighborhoods. 

The cooling effect of vegetation was tempered in cloudy or coastal neighborhoods, and 

individual large features (e.g. parks, shipping facilities, airports) often dominated neighborhood 

LST signatures.  

The effects of vegetation and urban morphology on LST suggest a consideration of 

microclimates and local conditions, including coastal effects, shade, and building patterns. While 
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streets cover entire cities, their potential as a panacea for LST mitigation is minimal. Rather, 

individual large features in distinct neighborhoods offer provide more substantial cooling effects 

across neighborhoods. Similar strategies are proposed in other diverse megacities. In Hong 

Kong, researchers suggest highly targeted heat mitigation strategies in areas where they would 

have the greatest local effect or where the population is most vulnerable (Giridhran et al. 2008; 

Peng and Miang 2021). In Tehran, a “hybrid” style of green and grey cooling measures has been 

proposed to reduce regional heat through a combination of local changes (Sodoudi et al. 2014). 

These approaches, and others like them, demonstrate that individual neighborhood characteristics 

matter in regional planning.  

Going forward, this chapter’s research suggests potential for increased investigation into 

the mechanisms of heat within individual neighborhoods. Building morphology, vegetation, and 

microclimates all play a role in determining LST, and understanding their interactions across Los 

Angeles could help guide a series of local mitigation strategies. The research could also be 

expanded to understand local air temperature or thermal comfort, which also vary substantially 

with local conditions.  

This dissertation examines disparities in land use, hydrology, and surface temperature 

across the Los Angeles area. I highlight the effects of urban vegetation and irrigation in different 

neighborhoods and examine drivers of LST in varying conditions. Each chapter parses an aspect 

of heterogeneity in the urban form of Los Angeles, and explores ways in which spatial patterns 

might influence future research and planning efforts. My results demonstrate that differences in 

landscaping, urban morphology, and climate can change the outcomes of physical systems and 

ecosystem services at a local scale. As sustainable cities become ever-increasing policy 

priorities, researchers and managers should consider neighborhood context in proposing change.  
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Appendix A 

Examining urban land cover change using a deep encoder-decoder convolutional neural network 

– Supplementary Material 

A.1 Examination of water  

We used the Global Surface Water (GSW) dataset (1984-2019) because it shows natural 

water bodies in the Los Angeles Basin across our time period without selecting false positive 

water pixels (Pekel et al. 2016). To choose the water mask, we tried a supervised Random Forest 

Classifier, a Normalized Difference Water Index (NDWI) threshold, and the GSW analysis.  

For the Random Forest Classification we used a training dataset of 243 swimming pools 

and 67 lakes across Southern California. The training polygons were manually selected from 

National Agriculture Imagery Program (NAIP) data from 2016 at 1m. We trained the Random 

Forest Classifier across 7 bands (Red, Green, Blue, Near Infrared, Shortwave Infrared 1 and 2). 

Ultimately, it selected most highways as water when applied to the 30 m data, and failed to 

recognize any of 20 manually selected test swimming pools. While the classification was 

effective when applied to 1 m data, it did not reproduce accuracy at a moderate resolution. 

The NDWI threshold uses Near Infrared and Shortwave Infrared to identify water also 

failed to identify any of the test swimming pools, and also selected a number of false positive 

points (primarily shadows).  

The GSW dataset can be selected for each year within our time period, though bodies of 

water do not change substantially within our study area. It does not include swimming pools, but 

it also does not classify downtown areas as water (Figure A1). Accordingly, we implemented a 

GSW mask in our preprocessing. 
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Figure A1: Water in the Los Angeles Basin (2019), shown in red (Pekel et al. 2016). 

A.2 Distinguishing irrigated and non-irrigated vegetation 

To distinguish between irrigated and non-irrigated vegetation, we applied a binary mask 

to the summer-winter Normalized Difference Vegetation Index (NDVI) difference. In order to 

establish the threshold, we manually selected 16 polygons of irrigated and non-irrigated non-

forested vegetation (grass, shrub/scrub). We examined Landsat 8 summer (June, July, August) 

and winter (December, January, February) NDVI across the regions using a cloud-free median 

value composite from 2013-2019. Because Los Angeles has a Mediterranean climate with very 

dry summers and winter-dominant precipitation, we tested to ensure that natural areas had higher 

wintertime NDVI (Gillespie et al. 2018).  

We found that that NDVI is higher (greener) in irrigated areas than non-irrigated areas 

generally. In irrigated areas, winter NDVI is only slightly higher (greener) than summer NDVI 

(median difference 0.016). In natural areas, winter NDVI is much higher (greener) than summer 

(median difference 0.154). Accordingly, we set a non-irrigated vegetation threshold in urban 

areas at 0.069, the midpoint of the two numbers (Table A1).  
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Table A1: NDVI values. 

 Irrigated Non-Irrigated 

Winter NDVI 0.666 0.532 

Summer NDVI 0.650 0.378 

Difference 0.016 0.154 

 
We further masked non-irrigated vegetation by removing summertime NDVI regions 

between 0.3 and 0.6, which reflects both our survey and the time series of Gillespie et al. (2018) 

surveying the Santa Monica Mountains. The summertime mask eliminated areas of vegetation 

that were not being watered, but still were alive, during the warmest and driest part of the year. 

A.3 Data validation 

To validate our data, we compared our land cover percentages to manually-classified data 

over both the urban parts of Los Angeles and two small-scale regions. We provide here an 

overview of those two validation datasets. 

 We primarily used the 2017 Los Angeles Region Image Acquisition Consortium 

(LARIAC) 10 cm composite orthogonal imagery dataset for citywide validation. The LARIAC 

data are categorized across 218 individual city areas within Los Angeles County (LARIAC 

2015). The 10 cm pixels were cleaned and classified into 8 categories: tree canopy, grass, bare 

soil, water, buildings, roads/rail, other paved surfaces, and shrubs (Figure A2). We used these 

data to assess the accuracy of our land cover estimates across the entire urban area. 

 To additionally validate our land cover estimates regarding specific land cover, we chose 

two small-scale areas (1 km2) for comparison. We used one in a residential neighborhood, with 

houses and lawns, and one in Downtown LA, with almost 100% impervious surfaces (Appendix 

A.4). To acquire the data, we traced polygons using the ESRI Collector app. We first traced 
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polygons in a test area, around the UCLA campus, with field surveys (Figure A3). All 30 field 

test points computed as statistically significant (95% confidence interval). 

 

Figure A2: LARIAC land cover data (2017) in East Los Angeles. Data is classified orthogonal 
LiDAR imagery (10 cm). 
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Figure A3: Ground truth polygons of land cover classes in the test area. The dataset comprises 
165 polygons and was constructed from a combination of field survey and manual categorization 
of 0.5m October 2019 imagery (ESRI 2021).  

A.4 Local validation 

To examine the distribution of the calculated data over different regions within the urban 

area, we compared calculated and manually-collected land cover for two randomly-selected test 

areas of one square kilometer each. We selected area (a) at random from the dense urban 

downtown and area (b) at random from the more residential San Fernando Valley. We outlined 

features within each area using the ESRI collector app. For a locally-accessible test case we used 

the ESRI Collector app, which tracks the user’s location in the field and provides a basemap of 

0.5 m DigitalGlobe imagery collected October 30, 2019 (ESRI 2021). To verify features traced 

on the imagery, 30 test points were visited, and the GPS accuracy was determined to be, on 

average, 10.4 + 0.45 m using an average of 11.7 satellites to compute location. All test points 

computed as statistically significant (95% confidence interval). For the inaccessible validation 
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Paved Surfaces 
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areas, we digitized polygons using the same 2019 DigitalGlobe imagery, but with no physical 

validation. 

In the dense downtown area (a), which we treated as an extreme case that nevertheless 

still included mixed pixels, the neural network accurately captured the complete lack of grass. 

Our results overestimated tree cover (62.88 percent error) but over an extremely small region 

(we reported that 0.54% of the area was trees compared to 0.33% in the ground truth data). In the 

more diverse, residential area with the classic mixed pixels of houses and yards, we assessed 

grass/shrubs with 14.46 percent error and trees with 21.80 percent error. Overall, we slightly 

overestimated grassy area and underestimated trees (Table A2). 

Table A2: Accuracy for neural network derived land cover types within urban space in two 
validation areas of one square kilometer each. Each table shows calculated percent of area, actual 
percent of area, and percent accuracy for impervious surfaces, irrigated low vegetation, and 
urban trees. (a) Accuracy within a highly impervious commercial area. (b) Accuracy within a 
mixed-use residential area. 
 
(a) 

Land Cover 
Calculated % 
Land Cover 

Actual % Land 
Cover Percent Error 

Impervious 99.46 99.67 0.21 

Irr. Low Veg 0 0 0 

Urban Trees 0.54 0.33 62.88 
(b) 

Land Cover 
Calculated % 
Land Cover 

Actual % Land 
Cover Percent Error 

Impervious 95.05 94.99 0.061 

Irr. Low Veg 3.27 2.85 14.46 

Urban Trees 1.69 2.16 21.80 
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Appendix B 

The role of urban vegetation change in the basin-scale hydrology of Los Angeles – 

Supplementary Material 

The two Los Angeles Basin (LAB)-wide runs of the Distributed Hydrology Soil 

Vegetation Model (DHSVM) – one time-varying and one static – encompassed ~5.8 million 

pixels (30 m resolution over ~211,000 ha). This scale is more than 500 times larger than the 

next-largest instance of DHSVM we have anecdotally heard run. In order to facilitate future 

projects, we would like to include here some notes on the use of DHSVM at this scale. 

B.1 Parallelization 

We ran identical versions of our static vegetation model in the sequential (traditional) and 

the parallel versions of DHSVM3.2 (Wigmosta et al. 1994; Perkins et al. 2019) on the UCLA 

Hoffman2 Cluster. The parallel implementation of the model was slower and used more memory 

than the sequential. The parallel documentation notes that speed is limited by large inputs; we 

found here that speed is reduced substantially as input size increases (Perkins et al. 2019). Table 

B1 shows the processing statistics for each model run. 

Table B1: Processing time and memory demands for various implementations of DHSVM with 
identical size (~5.8 million pixels) and timespan (01/01/1980-12/31/2020) 
 

Model Parallelization 
Vegetation 
Changes 

CPU Time 
(hours) 

Maximum 
Memory (GB) 

DHSVM3.2 Parallel Static 115.3 8.2 

DHSVM3.2 Sequential Time-Varying 65.72 6.4 

DHSVM3.1.2 Sequential Static 62.61 4.0 

 
B.2 Preprocessing 

Data preparation for DHSVM is not overly affected by scale in its essentials: masking by 

hydrologic regions is an easily automated process, and the increasing ubiquity of physical and 
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remotely sensed datasets on cloud platforms (e.g. Google Earth Engine) further reduce the 

burden of preparing individual raster files. 

However, a major step in the preprocessing workflow is the generation of stream network 

and stream map files. Currently, a series of Python scripts for ArcGIS Desktop (ArcPy) automate 

the process in theory. In practice, any large-scale dataset (>100,000 pixels) will cause these 

programs run slowly and to crash entirely at several points. Crashes occur consistently but not 

exclusively during: 

- Generation of stream network 

- Conversion of stream network to watershed 

- Joining of row and column rasters (used to create grid) 

- Conversion of large row column raster to polygon 

For most datasets, crash points can be resolved by running the command manually within 

ArcGIS, saving the output, and modifying the ArcPy accordingly. For the joining of row and 

column rasters, we recommend running the tool in Model Builder, which by default uses 

foreground processing. We also recommend waiting to let the tool finish processing even though 

it might seem stuck at 99% complete.  

 The inability of the ArcPy scripts to handle large datasets is a function of ongoing 

shortcomings in ArcMap in dealing with large datasets (ESRI 2016). Given the availability and 

sophistication of GDAL, we recommend updating the stream network scripts if future projects 

continue to increase project scale.  

B.3 Time-Varying Land Cover 

 In large runs of DHSVM with land cover changes, segmentation faults are common. 

These usually occur when a new land cover dataset is being read, but sometimes they occur 
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without an obvious cause (e.g. on the 3rd day of the model run). Conservative land cover changes 

(proportional to overall land use change but across a smaller number of pixels) can resolve the 

issue; future versions of the model might address memory allocation for large-scale changes.  

  



 115 

B.4 References 

ESRI. (2016). Bug: Spatial join with large datasets fails to complete. 
https://support.esri.com/en/technical-article/000009130 

 
Perkins, W. A., Duan, Z., Sun, N., Wigmosta, M. S., Richmond, M. C., Chen, X., & Leung, L. R. 

(2019). Parallel Distributed Hydrology Soil Vegetation Model (DHSVM) using global 
arrays. Environmental Modelling & Software, 122, 104533. 
https://doi.org/10.1016/j.envsoft.2019.104533 

 
Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation 

model for complex terrain. Water Resources Research, 30(6), 1665–1679. 
https://doi.org/10.1029/94WR00436 

  



 116 

 
Appendix C 

Contributions of roads to surface temperature: evidence from Southern California – 

Supplementary Material 

C.1 LST 

 Following Ermida (2020), we calculated thermal LST at 30 m in Google Earth Engine 

using a statistical mono-window algorithm. We derived a Normalized Difference Vegetation 

Index (NDVI) and fractional vegetation cover from Landsat 8 cloud-free mosaics (Roy et al. 

2014). We obtained total column water vapor from 2.5 degree NCEP/NCAR reanalysis (Kalany 

et al. 1996) and bare ground emissivity from 100 m ASTER imagery (Hulley et al. 2015). We 

then calculated thermal infrared emissivity and LST at Landsat 8 resolution. 

 To validate our calculations, we compared our summer 2020 LST to Landsat Provisional 

LST (30 m) and ECOSTRESS LST (38 x 69 m) from similar times of day (~6pm UTC) (Cook et 

al. 2014; Hulley et al. 2019). Our data showed similar data distribution to both datasets.  

C.2 Physical Data 

 We calculated Soil Adjusted Vegetation Index (SAVI) and Albedo from Landsat 8 (30 

m) using Google Earth Engine (Roy et al. 2014). Because we examined specific, localized 

examples – often highly arid ones – in addition to the area as a whole, we selected SAVI to 

provide the most accuracy within semi-arid or arid regions (Vani and Mandala 2017). 

 We derived elevation from a 30 m Shuttle Radar Topography Mission DEM (Farr et al. 

2007) in Google Earth Engine. Using a polygon of the Pacific Ocean’s boundaries, we calculated 

distance from the coast (IHO 1953). We calculated latitude and longitude for each pixel centroid 

in Google Earth Engine.  

C.3 Street and Building Data 
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We used street data from Millard-Ball (2022), obtained using GIS to derive road area 

from the spaces between plots of land. Each road segment corresponded to an OpenStreetMap 

(OSM) identifier, which was used to obtain street width and category. We aggregated OSM road 

categories into three: highway, arterial, and residential street. To calculate street area per 30 m 

pixel, we used Google Earth Engine to first rasterize the street polygons at 1m, and then to 

aggregate them within each 30 m pixel. We obtained building footprints from Microsoft (2021), 

and identified the area of the largest building that intersected each 30 m pixel.  

C.4 Land Use Data 

 To define our study area, we selected neighborhoods within city limits in San Bernardino 

County’s Southwest corner, adjacent to Los Angeles County (SB County 2020). The majority of 

San Bernardino County is not urbanized, and we excluded small, individual cities (e.g. Barstow, 

Needles) surrounded by desert so as to examine a cohesive urban area. Within Los Angeles 

County, we selected incorporated neighborhoods; most of the excluded area is in the Angeles 

National Forest (USC 2017). 

To examine land use, we used Land Cover Zones (LCZs) classified at 30 m for urban 

temperature analyses (Stewart and Oke 2012). The LCZs break down urban form based on 

vegetation and building density. In our study area, many of the less-developed urban areas are 

either chaparral or desert environments.  

 We obtained polygon data for Environmentally Disadvantaged Areas from CalEPA 

(2015), and rasterized them at 30 m. Environmentally Disadvantaged Areas represent the top 

25% of the CalEnviroScreen 3.0 Assessment, which scored census tracts based on their 

economic condition as well as their climatic and pollution burdens. Several areas with very low 

populations but high pollution burdens are also included as Disadvantaged.  
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