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DEDICATION	
	

	
To	the	kid	who	so	often	looked	to	this	moment		

With	trepidation,	but	then	resolve		
For	so	many	long	years		

	
These	pages	are	for	you		

And	your	Kind		
	

And	all	those	who	suffer	and	have	suffered		
neurodegenerative	diseases	of	abnormal	aging	

	
To	my	sister	Sarah,	

I’ve	looked	up	to	you	so	much		
In	these	past	few	years			

___________________________________________________________________________		
	
	

 In	jungles	of	poisonous	plants	strut	the	peacocks,	
Though	medicine	gardens	of	beauty	lie	near.	

The	masses	of	peacocks	do	not	find	gardens	pleasant,	
But	thrive	on	the	essence	of	poisonous	plants.	

	
	In	similar	fashion	the	brave	Bodhisattvas	
Remain	in	the	jungle	of	worldly	concern.	

No	matter	how	joyful	this	world's	pleasure	gardens,	
These	Brave	Ones	are	never	attracted	to	pleasures,	

But	thrive	in	the	jungle	of	suffering	and	pain.	
-The	Wheel	of	Sharp	Weapons,	Verses	1-2	

	
WHEN	ONE	CHOOSES	TO	WALK	THE	WAY	OF	THE	MANDALORE,		

YOU	ARE	BOTH	HUNTER	AND	PREY.		
HOW	CAN	ONE	BE	A	COWARD	IF	ONE	CHOOSES	THIS	WAY	OF	LIFE?	

—The	Armorer,	The	Mandalorian	(2019)	
	

Get	beyond	love	and	grief:	
Exist	for	the	good	of	Man		

-Miyamoto	Musashi,	The	Book	of	Five	Rings	(1643)	
	

	
GATE,	GATE		

PARAGATE,	PARASAMGATE		
BODHI	SOHA!			

-Prajnaparamita	Mantra		
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ABSTRACT	OF	THE	DISSERTATION	
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Alzheimer’s	disease	(AD)	has	proven	remarkably	refractory	to	proposed	and	

approved	therapies,	none	of	which	has	strongly	demonstrated	the	capability	to	halt,	

sustainedly	decelerate,	or	reverse	cognitive	decline	in	emerging	disease.	Although	much	

translational	research	in	AD	has	targeted	amyloid	plaque	and	tau	proteopathies,	

burgeoning	metabolomics	technologies	in	the	past	decade	have	enabled	the	large-scale	

survey	of	the	peripheral	plasma	metabolome	in	these	vulnerably	aging	individuals.	This	is	

advantageous	because	substantial	evidence	exists	that	AD	can	be	described	as	a	complex	

biological	system	of	peripherally	evident,	metabolic	dyshomeostases	in	the	process	of	

abnormal	cognitive	aging.	It	is	substantially	less	clear,	however,	how	personalized-

medicine-relevant	individual	differences	in	AD	etiology	and	cognitive	staging	map	(as	

jeopardized	CNS-peripheral	axes)	onto	this	diversity	of	interconnected	and	embedded	

metabolic	networks.	

To	explore	this	question,	sporadic	late-onset	AD	(LOAD)	participants	at	the	

preclinical	stage	of	disease	were	profiled	using	genome-scale	metabolic	network	modeling	

over	features	of	the	plasma	metabolome	altered	relative	to	controls.	This	revealed	a	
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dysmetabolic	signature	(including	lipids)	which	significantly	overlapped	with	that	of	an	

independent	cohort	of	preclinical	LOAD	participants.	Further	experiments	in	Down	

syndrome	AD	(DS-AD)	suggested	a	similar	alteration	of	lipids	in	manifest	disease,	but	also	

central	carbon	metabolites	vital	to	cellular	bioenergetic	homeostasis.	To	more	closely	

examine	this	peripheral	dysmetabolic	heterogeneity	in	more	comparable	cognitive	terms,	

Preclinical	LOAD	and	preclinical	familial,	autosomal	dominant	AD	(ADAD)	plasma	were	

compared	and	found	to	demonstrate	modest,	significant	overlap.	To	assess	the	specificity	

of	this	finding,	preclinical	plasma	was	also	compared	to	that	of	those	with	objective	

cognitive	deficits	across	both	LOAD	and	ADAD.	This	again	demonstrated	significant,	modest	

pathway	overlap,	and	similar	metabolic	pathways	emerged	from	correlational	analyses	

between	metabolomic	features	and	estimated	mutation	carrier	years	until	diagnosis.		

Because	of	this	highly	complex	degree	of	residually	non-shared,	semantically	dense	

information	in	the	plasma	metabolome	across	individual,	clinical	differences	in	AD,	these	

biochemicals	were	mapped	to	inferred	metabolic	topics	from	de	novo	metabolic	network	

modeling	using	natural	language	processing	(NLP)	approaches.	Through	these	same	topics,	

pairwise	AD	phenotypic	comparisons	were	thus	proportionally	associated	with	clusters	of	

biochemicals	and	enzymes.	The	fitted,	metabolic	Topic	4	intriguingly	implicated	

hexosamine/aminoglycan	metabolism,	which	was	particularly	pronounced	in	comparisons	

involving	“supernormal,”	older	adults	in	the	highest	percentiles	of	resilient	cognitive	aging.	

In	continuing	to	explore	these	clinical	phenotypic-	peripheral	metabolic	mappings	in	the	

peripheral	metabolome,	these	efforts	will	afford	increasingly	precise,	semantic	level	

insights	into	the	biochemical	diversity	of	AD	pathobiology.	In	addition	to	informing	further,	
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targeted	mechanistic	research,	this	will	also	translationally	nominate	contextually	rich,	

empirically	ascertained	biomarker	and	therapeutic	target	candidates.																	
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INTRODUCTION	

Alzheimer’s	 disease	 (AD)	 remains	 a	 chronic,	 progressive,	 age-associated	

neurodegenerative	 illness	 poorly	 controlled	 or	 remediated	 by	 currently	 FDA-authorized	

pharmaceuticals	 [1,	 2].	 This	 includes	 recently	 approved	 amyloid-attenuating	 antibody	

therapies	 which	 will	 require	 further	 clinical	 investigation	 in	 coming	 years.	 	 	 Unless	

successfully	abated	by	effective	therapeutics	nominated	by	the	field,	AD	threatens	to	affect	

13.8	 million	 Americans	 alone	 by	 2050	 at	 an	 estimated	 cost	 of	 1.1	 trillion	 dollars	 [3].	

Predominantly	 gene-centric,	 proteopathic	 models	 of	 AD	 have	 proven	 limited	 in	 their	

capacity	 to	 address	 this	 unmet	 need	 through	novel	 avenues	 of	 translational	 research.	 	 It	

remains	 unclear,	 however,	 	 if	 normalizing	 the	 disordered	 metabolism	 of	 these	 protein	

aggregates	can	bring	about	the	reliable	attenuation	of	emerging	cognitive	deficits	in	AD	[4].	

Key	amongst	these	organizing	frameworks	has	been	the	amyloid	cascade	hypothesis	of	AD	

originally	proposed	by	Hardy,	Selkoe,	Higgins,	and	colleagues	[5-8].		

Engineered	antibody	therapeutics	informed	by	this	model	and	directed	against	beta-

amyloid	can	attenuate	its	cortical	deposition	over	trajectories	of	abnormal	cognitive	aging.	

Rigorous,	randomized	controlled	clinical	trials	have	also,	however,	demonstrated	the	limited	

efficacy	of	these	compounds	to	halt,	reverse,	or	stabilize	cognitive	decline	in	emerging	and	

manifest	 AD	 [1,	 4,	 9].	 The	 field	 continues	 to	 await	 further,	 imminent	 data	 clarifying	 the	

efficacy	of	these	therapies	within	the	protracted,	early	preclinical	phase	of	AD	progression	

[4].	These	findings	accompany	increasing	and	historical	arguments	within	the	field,	however,	

that	AD	represents	a	systemically	pervasive,	complexly	heterogeneous	pathophysiological	

process	 in	 abnormal	 cognitive	 aging	 substantially	 involving	 dysmetabolism	 [10].	 In	 this	

capacity,	 data-intensive,	 high-throughput	 “-omics”	 methodologies	 (e.g.,	 transcriptomics,	
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proteomics,	 metabolomics)	 broadly	 surveying	 peripheral	 biofluids	 may	 prove	

disproportionately	useful	to	inform	and	direct	an	actionable	translational	systems	biology	of	

AD	[11-14].	Critically,	such	aims	may	soon	prove	vital	to	the	successful	 identification	and	

biological	contextualization	of	effective	AD	biomarkers	and	therapeutic	targets	[15-17].		

Moreover,	the	distribution	of	these	targets	across	vulnerably	aging	physiology	may	

involve	metabolism	at	multiple,	hierarchical	biological	scales	of	organization	[18-23].	The	

growing	 need	 to	 better	 translationally	 profile	 this	 complexity	 aligns	 substantially	 with	

recent	 proposals	 for	 new,	 agile	 mechanisms	 for	 accelerated	 translational	 biomedical	

research	 leveraging	 these	 “-omics”	 technologies	 to	 further	 personalized/precision	

healthcare	[24].		It	is	thus	not	surprising	that	dynamic	and	sensitive	changes	to	peripheral	

blood	 plasma	 biochemistry	 associated	with	 AD	 (and	 appreciable	 through	metabolomics)	

suggest	 promising,	 minimally	 invasive	 biomarker	 candidates	 informing	 upon	 emerging	

dementia	 [11-13,	 25-32].	 In	 parallel,	 metabolically	 targeted	 therapeutics	 (including	

inexpensive	and	minimally	risk-prone	lifestyle	and	dietary	interventions)	may	provide	novel	

avenues	to	support	cognitively	healthy	aging	[33,	34].		

Cortical	 amyloid	and	 tau	proteopathies	historically	better	 studied	 in	AD,	however,	

remain	definitional	of	the	disease	at	autopsy	and	increasingly	inform	upon	its	antemortem	

monitoring	(e.g.,	through	CSF/	peripheral	blood	proteomics,	neuroimaging)	[35-45].	These	

dissociable	patterns	of		neuropathology	in	relation	to	systemic	dysmetabolism	and	attributes	

of	the	AD	cognitive/	clinical	phenotype,	however,	remain	unclear	and	understudied	to	date	

[46].	 	 Concretely,	 the	 stratification	 of	 peripheral	 blood	plasma	metabolomic	 composition	

according	 to	 AD	 clinical	 phenotype	 (in	 terms	 of	 its	 progressive	 development,	 discrete	

predisposing	etiologies)	may	suggest	novel	biomolecular	inferences	regarding	the	disease	in	
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explicitly	 systems	 biological	 terms	 of	 translational	 value.	 If	 these	 differing	 metabolomic	

profiles	can	be	linked	to	dissociable	clinical	phenotypic	attributes	of	AD,	these	mappings	can	

then	be	contextualized	and	translationally	targeted	as	discrete	elements	of	known	biological	

networks.		In	doing	so,	this	strategy	will	rationally	and	semantically	advance	candidate	AD	

biomarkers	and	therapeutic/interventional	targets.	In	all	cases,	such	findings	would	result	

from	the	antemortem	characterization	of	emerging	AD	in	vulnerably	aging	adults	themselves	

and	exist	posed	 in	relation	 to	corresponding,	dissociable	attributes	of	 the	clinical	disease	

phenotype	(e.g.,	progressing	cognitive	status,	differing	predisposing	etiologies).							

1.1	The	Amyloid	Cascade	Hypothesis:	A	Historically	Dominant	Translational	Model		

	 Central	to	the	initial	descriptions	of	the	disease	by	Alois	Alzheimer	himself,	neuritic,	

dense-core	beta	amyloid	plaques	and	neurofibrillary	tangles	(NFTs)	within	the	cortex,	by	

definition,	characterize	AD	in	addition	to	its	antemortem	trajectory	of	cognitive	decline	[47,	

48].	In	the	second	half	of	the	20th	century,	cortical	plaque	proteopathies	in	AD	were	identified	

as	amyloids	 through	ultrastructural	microscopy	 [49].	This	broader	class	of	pathologically	

disordered	 protein	 aggregates	 also	 associate	 with	 (if	 not	 drive)	 disease	 across	 diverse	

human	tissues	and	organ	systems	(many	of	them	intensively	metabolic)	[50-63].	It	was	not	

until	the	findings	of	Glenner,	Wong,	and	colleagues	in	the	mid	1980s	that	the	composition	of	

these	plaques	was	identified	molecularly	as	beta	amyloid	[64-66].	Parallel	efforts	in	diverse	

clinical	populations	at	substantially,	genetically	elevated	risk	of	primary	cortical	amyloidosis	

(autosomal	dominant	Mendelian	AD,	ADAD;	Down	syndrome	AD,	DS-AD)	soon	thereafter	

implicated	several	genes	possessing	amyloid	processing	functions	in	AD.	Productive	genetic	

linkage	mapping	experiments	in	the	late	1980s	and	early	1990s	associated	ADAD	with	highly	

penetrant	 Mendelian	 coding	 mutations	 of	 the	 amyloid	 precursor	 protein	 (APP)	 and	
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presenilin	1-2	(PSEN1-2)	genes	[67-73].	These	amyloid-specific	perspectives	gained	support	

from	 independent	 observations	 that	 those	 with	 Down	 syndrome	 (most	 often	 caused	 by	

trisomy	of	chromosome	21)	experience	AD	earlier	and	disproportionately	more	compared	

to	 euploid,	 same-aged	 peers	 [46,	 64,	 74-78].	 	 Because	 the	 human	 APP	 gene	 localizes	 to	

chromosome	21	and	many	of	these	genes	are	expressed	at	an	approximately	3:2	trisomic	

dosage	in	Down	syndrome	(DS),	genetically	amyloid-centric	hypotheses	of	AD	proposed	a	

compelling	 rationale	 for	 the	 shared	 burden	 of	 early-onset	 cortical	 amyloidosis	 and	

progressive	cognitive	deficits	experienced	by	both	 familial	 (ADAD)	and	DS	(DS-AD)	aging	

cohorts	[46].		

Hardy,	Higgins,	Selkoe,	and	colleagues	thus	advanced	a	distinctly	molecular	and	gene-

centric	 model	 of	 AD	 proposing	 that	 aging-associated	 pathological	 alterations	 of	 amyloid	

metabolism	 causatively	 precipitate	 subsequent	 neurofibrillary	 tauopathy,	 with	 these	

proteopathies	further	resulting	in	neurodegeneration	[5-8,	79].	From	a	systems	biological	

perspective,	 the	 amyloid	 cascade	 hypothesis	 represents	 a	 feedforward	 pathobiological	

sequence	 which	 progresses	 linearly	 in	 both	 its	 mechanistic	 and	 temporal	 sequence.	

Dementia	critically	represents	the	terminal	outcome	of	this	proposed,	neuropathologically	

cascading	process.	Although	highly	biologically	finite	and	parsimonious,	the	amyloid	cascade	

hypothesis	 has	 proven	 limited	 in	 its	 ability	 to	 nominate	 effective	 AD	 therapeutic	 targets	

promoting	distinct	cognitive	benefits	even	when	amyloidosis	is	successfully	attenuated	[1,	

4,	 59,	 61,	 80-87].	 This	 suggests	 substantial	 opportunities	 for	 AD	 translational	 systems	

biology	 to	 more	 broadly	 ask	 novel	 questions	 regarding	 pathological	 aging	 in	 AD	 as	

ascertained	 from	 cognitively	 vulnerable,	 aging	 populations	 themselves	 and	 quantified	

through	emerging,	 “-omics”-scale	experiments.	 In	multiple	respects,	 translational	systems	
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biology	 is	uniquely	equipped	 to	 	 leverage	 the	clinical	diversity	of	AD	much	as	some	have	

recently	called	for	the	future	of	“-omics”-driven	AD	research	to	be	“extraordinarily	diverse”	

in	its	own	multidisciplinary	bases,	biological	approaches,	and	research	methods	[88].									

	 The	biological	 relationship	of	 amyloid	 cascade	 attributes	 to	 antemortem	cognitive	

functioning	remains	an	active	area	of	research	[38-40,	89];	however,	its	conceptualization	

strictly	in	terms	of	the	amyloid	cascade	presents	at	least	two	challenges.	First	and	because	

the	amyloid	cascade	contextualizes	dementia	as	the	terminal	outcome	of	AD	proteopathies,	

this	perspective	belies	 the	disease’s	 extended	biological	 and	phenotypic	dynamism	as	 an	

evolving	pathological	process	during	the	antemortem	period	of	emerging	illness	[6,	35,	37,	

90,	91].	Second,	although	the	amyloid	cascade	draws	support	from	multiple,	distinct	clinical	

populations	 at	 elevated	 risk	 of	 early-onset	 disease	 (ADAD,	 DS-AD),	 these	 populations	

nonetheless	 constitute	 limitedly	 representative,	 highly	 penetrant	 genetic	 etiologies	

predisposing	 relatively	 few	 aging	 adults	 to	 elevated	 dementia	 risk.	 In	 this	 capacity,	 the	

amyloid	cascade	hypothesis	does	not	directly	account	for	the	greater	than	95%	of	individuals	

who	 will	 develop	 AD	 due	 to	 no	 other	 singular	 risk	 factor	 than	 advanced	 age	 itself	 (i.e.,	

sporadic,	late-onset	AD;	LOAD)	[46,	92].		

Despite	 the	 ultimate	 ubiquity	 of	 amyloid	 and	 tau	 proteopathies	 in	 AD,	 a	 marked	

diversity	of	causatively	upstream	etiologic	burden	(i.e.,	LOAD,	DS-AD,	ADAD)	confers	jointly	

elevated	 risk	 of	 AD-associated	 pathological	 hallmarks	 and	 cognitive	 decline	 in	 abnormal	

aging	 [46].	 This	 suggests	 that	 multiple	 systems	 pathobiological	 processes	 implicated	 in	

abnormal	 cognitive	decline	 (which	might	be	enumerable	and	experimentally	dissociable)	

somehow	 converge	 upon	 cortical	 beta	 amyloidosis	 and	 neurofibrillary	 tauopathy	 in	 the	

ultimate	 course	 of	 AD	 [38-40,	 89].	 The	 systems	 biologically	 organizing	 principle	 (or	
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principles)	accounting	for	these	observations	currently	remain	unclear	to	the	detriment	of	

translational	biomarker	and	therapeutic	discovery	efforts	within	the	field.	If	this	pattern	of	

ultimately	 convergent	 etiopathological	 burden	 cannot	 be	 taken	 for	 granted	 in	 the	

progressive	 sequence	of	AD	cognitive	decline,	 the	amyloid	 cascade	model	 alone	provides	

limited	 insight	 into	 the	basis	 for	 its	observation	across	a	 range	of	diverse,	 at-risk	clinical	

populations	aging	vulnerably.	

AD	 might	 instead	 be	 described	 as	 a	 complex,	 hierarchically	 distributed	 disease	

process	of	unclear	biological	scope	and	extent	in	abnormal	aging.	If	so,	then	such	biological	

change	 systemically	 anticipating	 frank	 cognitive	 decline	 may	 be	 quantitatively	 and	

semantically	 interpretable	 in	terms	of	antemortem	clinical	phenotype	within	aging	adults	

themselves,	where	“-omics”	methods	make	possible	and	enrich	these	efforts	[93-95].	Such	

dissociations	 in	 terms	 of	 discrete,	 predisposing	 etiologies	 (LOAD,	 DS-AD,	 ADAD)	 and	

cognitive	 status	 will	 ideally	 inform	 upon	why	 (in	 biochemical	 and	molecular	 terms)	 AD	

represents	a	process	of	systems-biologically-collapsing	diversity	through	progressing	illness	

despite	the	 initial	diversity	of	 its	drivers.	Critically	and	distinct	 from	the	amyloid	cascade	

hypothesis,	the	contemporary	National	Institute	on	Aging-	Alzheimer’s	Association	(NIA-AA)	

model	proposes	an	alternative	 framework	which	explicitly	 frames	AD	as	an	antemortem,	

dynamic	 systems	 biological	 process	 in	 abnormal	 aging	 [35,	 37,	 39,	 40,	 91,	 96,	 97].	 As	

empirically	pursued	in	this	dissertation,	the	NIA-AA	model	of	advancing	disease	considers	

the	 progressive	 cognitive	 change	 in	 AD	 as	 a	 systems	 biological	 phenomenon	 to	 be	

understood	 in	 terms	 of	 discrete,	 dementia-associated	 biological	 processes.	 This	 will	 be	

enabled,	 if	 not	 made	 possible	 because	 of,	 emerging	 translational	 systems	 biological	

approaches	and	methods	including	“-omics”	methods	including	metabolomics.				
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1.2	The	NIA-AA	Model:	AD	as	an	Antemortem,	Dynamical	Systems	Biological	Process	

In	 contrast	 to	 the	 amyloid	 cascade	 hypothesis,	 the	 NIA-AA	 model	 describes	 the	

ultimate	 occurrence	 of	 frank	 dementia	 in	 AD	 as	 the	 outcome	 of	 substantially	 extended	

“metastable”	 biological	 change	 antemortem	 [98,	 99].	 Specifically,	 the	 dynamics	 of	 these	

emerging	 deficits	 are	 characterized	 by	 clinical	 phenotypic	 resilience	 to	 cognitive	 decline	

despite	accompanying	systems	biological	instability	in	emerging	AD.	In	the	progression	of	

abnormal	 age-associated	 cognitive	 impairment,	 this	 may	 suggest	 a	 disease	 process	

organized	around	incomplete	and	ultimately	abortive	compensations	for	emerging	failure.	

These	patterns	of	systems	biological	compromise	may,	in	turn,	contribute	to	pathological,	

feedforward	 failures	 of	 homeostatic	 and	 functional	 compensation	 in	 a	 compoundingly	

antagonistic,	 increasingly	 futile	 cycle	 characterizing	 the	 frank	 cognitive	 deterioration	 of	

manifest	 AD	 [15,	 100-104].	 	 Dissociable	 from	 the	 large-effect-size	 genetic	 factors	 (i.e.,	

trisomy	 21,	 autosomal	 dominant	 protein-coding	 mutations)	 which	 inform	 the	 amyloid	

cascade	 hypothesis	 (through	 DS-AD	 and	 ADAD	 respectively),	 these	 pathologically	

constrained	trajectories	of	attempted	compensation	suggested	by	the	NIA-AA	model	do	not	

represent	processes	categorically	distinct	from	aging	itself.	As	initially	described	by	Sperling	

and	colleagues,	the	NIA-AA	model	instead	understands	AD	as	a	continuous	and	pathological	

trajectory	departing	from	healthy	cognitive	aging	to	an	accelerating	degree	with	progressing	

decline	 [90,	 91].	 That	 the	 NIA-AA	 model	 specifically	 underscores	 protracted	 biological	

change	substantially	anticipating	 frank	cognitive	change	 in	disease	progression	reiterates	

the	significance	of	this	antemortem	period	to	AD,	particularly	for	the	development	of	early	

biomarkers	and	effective	therapies.		
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The	 fact	 that	 AD	 constitutes	 a	 substantially	 dynamical	 and	 complex	 antemortem	

systems	biological	process	 thus	represents	an	 important,	unique	emphasis	of	 the	NIA-AA	

model	strongly	supported	by	more	than	a	decade	of	research	in	living	human	participants	

employing	 CSF	 proteomics,	 diverse	 neuroimaging	 measures,	 and	 peripheral	 blood	

biomarkers.	 Phenotypically	 stratified	 according	 to	 detailed	 neuropsychological	measures	

ascertained	 from	 these	 same	 individuals,	 translational	 AD	 research	 informed	 by	 NIA-AA	

aims	 to	 understand	 the	 disease	 in	 a	 top-down	 capacity	 (e.g.,	 from	 attributes	 of	 clinical	

phenotype	 to	 dissociably	 implicated	 pathobiology)	 within	 vulnerably	 aging	 adults	

themselves.	This	confers	a	unique	advantage	compared	to	efforts	primarily	informed	by	the	

amyloid	cascade	hypothesis,	particularly	as	it	has	historically	driven	biologically	bottom-up	

investigations	of	ADAD-informed	transgenic	rodent	models	(e.g.,	5xFAD,	3xTg).	These	have	

unfortunately	 proven	 limited	 in	 their	 capacity	 to	 suggest	 durable	 and	 actionable	

translational	 inferences	 directly	 transferrable	 with	 clinical	 benefit	 to	 vulnerably	 aging	

human	populations	[105].	Acknowledging	these	limitations,	recent	efforts	to	develop	more-

representative	rodent	models	of	LOAD	are	ongoing	and	have	substantially	involved	systems	

biological	experimentation	and	“-omics”	[106,	107].				

The	 human	 participants	 emphasis	 of	 NIA-AA,	 in	 contrast,	 attenuates	 many	 such	

threats	to	reproducibility	and	translational	potential,	where	ongoing	investigation	within	the	

field	 continues	 to	 clarify	 the	 specific	 applicability	 of	 these	 limitedly	 invasive	 research	

methods	in	practice.	Even	where	specifically	human	neuropathology	has	been	considered	in	

AD	 research,	 the	 historical	 absence	 of	 minimally	 invasive	 measures	 of	 antemortem	 AD	

pathology	 (i.e.,	 amyloid,	 tau)	 has	 limited	 the	 evaluation	 of	 cognitive-pathologic	 clinical	

correlations	 to	 the	autopsy	 setting	 [108,	109].	The	 integration	of	 antemortem	biomarker	
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findings	 with	 detailed	 clinical	 phenotyping	 (including	 cognitive	 assessment)	 in	 in	 aging	

adults	with	AD	thus	poses	a	powerful,	emerging	research	paradigm	necessary	to	study	the	

full,	dynamic	complexity	of	this	multifactorial	disease.		

The	development	 of	 the	NIA-AA	model	 has	 also	 suggested	 gaps	 in	 our	 knowledge	

surrounding	even	the	amyloid	and	tau	pathologies	definitionally	characterizing	the	disease	

postmortem.	 Despite	 substantial	 recent	 efforts,	 antemortem	 studies	 in	 AD	 have	

demonstrated	minimal	 evidence	 for	 a	 uniformly	 and	 ordinally	 fixed	 sequence	 of	 cortical	

amyloid,	 tau,	 and	 neurodegenerative	 biomarker	 findings	 as	 advanced	 by	 the	

pathobiologically	linear	amyloid	cascade	[39,	40,	110-113].	Whether	this	itself	exists	subject	

to	further	biological	dissociation	according	to	moderating	demographic	variables	(specific	

predisposing	etiologies,	sex,	estimated	polygenic	risk)	remains	uncertain	within	the	field.	In	

contrast,	 ordinally	 agnostic	 scoring	 of	 amyloid,	 tau,	 and	 neurodegenerative	 (A/T/N)	

biomarker	 findings	 in	 the	 presence	 of	 ongoing	 or	 anticipated	 cognitive	 instability	 has	

become	 frequently	 employed	 [39,	 40].	Whether	 this	 exists	 sufficient	 to	 capture	 relevant	

antemortem	 biological	 change	 in	 AD	 leading	 to	 translationally	 effective	 biomarkers	 and	

therapies	remains	unclear	[114].	It	remains	similarly	unclear	whether	the	proteopathic	focus	

of	A/T/N	in	defining	AD	facilitates	novel	translational	insights	into	disease	biology,	where	

this	may	 instead	 conceptually	 recapitulate	 limitations	 of	 the	 amyloid	 cascade	 hypothesis	

itself	[109].	Although	all	such	antemortem	biological	and	cognitive	changes	codified	in	NIA-

AA	 represent	 continuous	 trajectories	 preceding	 ultimately	 frank	 decline	 [40],	 this	

temporally	 evolving	 pathological	 sequence	 can	 be	 approximately	 discretized	 into	 three	

clinical	phenotypic	stages	shared	across	clinically	distinct	populations	(LOAD,	DSAD,	ADAD)	

at	 elevated	 risk	 of	 eventual	 dementia.	 This	 fixed	 sequence	 thus	 contributes	 a	 shared	
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phenotypic	space	(i.e.,	a	shared	phenotypic	criterion)	useful	for	deconvolving	peripherally	

evident,	 systems	 biological	 change	 in	 advancing	 AD	 conditional	 upon	 differentially	

predisposing	sources	of	etiologic	risk	[35,	37,	90,	91,	96].		

1.3	 Clinical	 Phenotypic	 Staging	 of	 AD:	 An	 Instrumentally	 Fixed	 Sequence	 for	 Pursuing	

Translational	Systems	Biology	Aims	in	Vulnerably	Aging	Adults	Themselves	

	 The	 process	 of	 advancing	 AD	 itself	 implicates	 patterns	 of	 complexly	 systemic	

biological	 change	 substantially	 preceding	 objective	 cognitive	 and	 ultimately	 functional	

decline,	as	has	been	demonstrated	abundantly	by	the	past	decade	of	antemortem	biomarker	

research	in	at-risk	aging	adults.	The	NIA-AA	model	thereby	advances	the	stage	of	preclinical	

AD	as	the	earliest	point	at	which	empirically	assessable	biological	change	(i.e.,	biomarkers)	

associated	 with	 ultimate	 dementia	 anticipates	 the	 occurrence	 of	 objective	 clinical	

impairment	 in	 disease	 progression	 [90,	 91].	 The	 preclinical	 phase	 of	 AD	 consists	 of	 a	

correspondingly	unclear	duration	which	may	 span	multiple	decades	depending	upon	 the	

specific	 pathobiology	 in	 question.	 In	 terms	 of	 dynamically	 evolving	 complex	 systems,	

preclinical	 AD	 represents	 a	 definitionally	 “metastable”	 state	 in	 that	 cognition	 remains	

objectively	 unimpaired	 concurrent	 with	 (and	 perhaps	 despite	 and	 because	 of)	 diverse	

underlying,	disease-associated	biological	instability	[60,	95,	98,	115-121].		

	 Mild	 cognitive	 impairment	 (MCI)	 constitutes	 the	 ordinally	 subsequent	 phenotypic	

stage	 following	 preclinical	 disease	 in	 the	 NIA-AA	 model	 [96],	 where	 this	 definition	

substantially	 parallels	 prior	 phenotypic	 constructs	 of	 MCI	 [122,	 123].	 At	 this	 stage	 of	

progressing	illness,	at	least	one	objective	deficit	compared	to	non-impaired,	normative	peers	

becomes	 apparent	 (i.e.,	 ≥	 1.5	 standard	 deviation	 discrepancies	 in	 relevant	 cognitive	

domains).	 Amnestic	 deficits	 in	 long-term	 verbal	 memory	 represent	 attributes	 of	 the	 AD	
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clinical	phenotype	which,	while	not	necessary	features	of	AD,	possess	specific	relevance	to	

the	 role	of	medial	 temporal	 lobe	 (MTL)	 structures	within	 the	disease	 (i.e.,	 amnestic	MCI,	

aMCI)	 [96,	 124,	 125].	 It	 should	 be	 emphasized,	 however,	 that	 recently	 evolved,	 primate	

specific	 (if	 not	 human	 specific)	 cortical	 speciation	 and	 change	 (including	 the	 MTL)	

represents	anatomy	broadly	and	diversely	susceptible	in	AD	[52,	126-150].	Because	of	its	

transient	role	in	the	clinical	sequence	of	AD,	MCI	represents	a	challenging	component	of	the	

AD	cognitive	phenotype	to	assess,	particularly	in	susceptible	populations	with	co-occuring,	

premorbid,	developmental	cognitive	deficits	(i.e.,	Down	syndrome)	[151-153].	This	difficulty	

is	further	complicated	by	the	fact	that	MCI	may	genuinely	present	as	either	stable	or	rapidly	

transient,	where	 the	 underlying	 biological	 correlates	 of	 these	 alternative	 profiles	 remain	

poorly	understood	[154,	155].	Importantly	and	definitionally,	MCI	does	not	imply	decline	in	

functional	status	and	skills	of	daily	living.	In	contrast,	only	clinically	manifest	AD	suggests	

frank	decline	in	at	least	two	distinct	cognitive	domains	where	this	status	proves	functionally	

limiting	in	daily	life	within	the	NIA-AA	taxonomy	[35,	37,	97].			

	 The	past	decade	of	AD	antemortem	biomarker	research	has	demonstrated	the	value	

of	 biologically	 stratifying	 the	 sequence	 of	 clinical	 phenotypic	 change	 associated	 with	

progressing	 dementia	 in	 vulnerably	 aging,	 human	 clinical	 populations	 themselves.	 With	

respect	to	this	axis	of	phenotypic	variability	alone,	ongoing	efforts	within	the	field	continue	

to	 detail	 and	 refine	 clinical-pathobiological	 associations	 and	 dissociations	 of	 potentially	

substantial	 translational	 value	 [39,	 40,	 156].	 It	 remains	 unclear,	 however,	 if	 the	 ordinal	

sequence	 of	 dementia	 progression	 in	 AD	 represents	 the	 sole	 or	 principal	 aspect	 of	 the	

broader	 clinical	 phenotype	 to	 be	 dissociated	 according	 to	 now-emerging	 translational	

systems	biology	approaches	 leveraging	 large	 “-omics”-scale	data	 including	metabolomics.	
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Because	 the	 amyloid	 cascade	 hypothesis	 has	 only	 limitedly	 considered	 this	 upstream	

etiologic	heterogeneity	involved	in	AD,	the	dissociation	of	these	factors	itself	represents	an	

understudied	and	under-systematized	area	of	research	in	translational	AD	systems	biology	

[46].	 Despite	 and	 perhaps	 paradoxically	 because	 AD	 definitionally	 results	 in	 ultimately	

shared	 pathological	 features	 within	 the	 cortex	 (e.g.,	 neuritic	 Aβ	 plaques,	 neurofibrillary	

tauopathy,	synapse	loss,	neuronal	death,	cortical	atrophy),	systems	biological	perspectives	

on	AD	can	propose	novel	methodological	approaches	to	consider	and	deconvolve	peripheral	

blood	pathobiological	correlates	of	these	disparate	etiologic	drivers.	

		

1.4	Causatively	Upstream	Etiopathological	Heterogeneity	in	AD	Susceptibility:	LOAD,	DS-

AD,	and	ADAD		

Core	pathological	attributes	of	AD	(e.g.,	amyloid	plaques,	neurofibrillary	tauopathy)	

definitionally	become	apparent	in	the	ultimate	progression	of	the	disease,	yet	recent	findings	

have	suggested	that	the	specific	distribution	of	these	features	in	neuroanatomical	space	and	

time	may	prove	 complexly	dependent	upon	 further	dissociable,	preceding	etiologies	 (i.e.,	

LOAD,	 DS-AD,	 ADAD).	 These	 potentially	 dissociable	 patterns	 of	 systems	 biological	

vulnerability	in	AD	according	to	differing,	predisposing	etiologies	has	been	only	indirectly	

considered	by	prior	research	informed	mainly	by	the	amyloid	cascade	hypothesis.	Even	at	

the	level	of	amyloid	pathology	itself,	a	lower	density	of	Aβ	plaques	has	been	reported	in	the	

DS-AD	 cortex	 compared	 to	 LOAD,	 where	 those	 plaques	 in	 DS-AD	 may	 possess	 a	

comparatively	 more	 amorphous	 morphology	 and	 larger	 average	 size	 [46].	 Emerging	

antemortem	 imaging	 findings	 have	 also	 suggested	 that	 alterations	 of	 amyloid	 (DS-AD,	

ADAD)[157-159]	and	glucose	(DS-AD)	[160]	metabolism	within	the	striatum	may	represent	
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early	events	 in	 the	onset	of	AD.	 Intriguingly,	 similar	patterns	have	not	been	described	 in	

LOAD.	 	 Attributes	 of	 the	 AD	 clinical	 phenotype	 and	 co-occurring	 illness	 (e.g.,	

metabolic/vascular	burden,	diverse	seizure	liability,		affective/behavioral	change)	may	also	

be	subject	to	important	and	clarifying	dissociations	on	the	basis	of	differing	etiologies	and	

the	extent	of	developing	dementia	[46].	Because	AD	cannot	be	considered	as	unidimensional	

in	 phenotypic	 or	 biological	 terms,	 the	 translationally	 informative	 deconvolution	 of	 this	

complexity	 according	 to	 differing,	 upstream	 etiologies	 has	 become	 a	 recent	 priority	 to	

facilitate	precision	medicine	and	personalized	healthcare.	There	exist	at	least	three	clearly	

biologically	 and	 clinically	 distinct	 populations	 at	 shared,	 elevated	 risk	 of	 ultimate	 AD:	

sporadic,	 late-onset	 AD	 (LOAD);	 Down	 syndrome	 AD	 (DS-AD);	 and	 familial,	 autosomal	

dominant	AD	(ADAD).	

1.4.1	Sporadic,	Late-Onset	AD:	LOAD	

The	specific	 investigation	of	LOAD	 in	dedicated	rodent	model	systems	and	clinical	

cohorts	represents	only	a	distinct	and	emerging	subset	of	all	AD	research	historically;	yet,	

this	belies	the	fact	that	LOAD	encompasses	greater	than	95%	of	all	abnormally	aging	adults	

who	will	develop	AD	[92].	In	contrast	to	both	DS-AD	and	ADAD,	the	genetic	liability	for	LOAD	

presents	as	highly	polygenic	in	a	manner	which	has	proven	translationally	challenging	(i.e.,	

many	 small-effect-size,	 yet	 cumulative	 contributions	 to	 risk	 distributed	 throughout	 the	

human	genome)	[161-166].	The	ε4	allele	of	the	apolipoprotein	E	gene	(APOE	ε4)	represents	

the	largest	single	common	genetic	source	of	LOAD	risk	in	those	otherwise	chromosomally	

typical,	with	one	copy	elevating	the	odds	of	AD	two	to	threefold	and	APOE	ε4	homozygosity	

elevating	this	risk	as	much	as	twelvefold	[167-169].	Advanced	age	itself	constitutes	the	only	

other	singular	factor	substantially	predisposing	individuals	to	LOAD.		
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Consistent	 with	 the	 focus	 of	 this	 dissertation,	 much	 emerging	 biomarker	 and	

therapeutic	 literature	 in	 LOAD	 has	 pursued	 the	 hypothesis	 that	 AD	 exists	 as	 a	 disorder	

demonstrating	metabolic	and	bioenergetic	dyshomeostasis.	The	description	initially	made	

by	 de	 la	 Monte	 and	 colleagues	 of	 AD	 as	 “Type	 III	 Diabetes”	 recasts	 many	 of	 the	

neuroendocrine,	histopathological,	molecular,	and	biochemical	attributes	of	the	disease	as	

intrinsically	 metabolic	 in	 their	 limiting	 constraints	 precluding	 healthy	 trajectories	 of	

successful	 cognitive	 aging	 [16,	170-174].	This	 accords	with	 findings	 suggesting	 that	 viral	

infection	and/or	resurgence	[175-180]	in	addition	to	cancer	history	[181-188]	may	inform	

upon	the	primary	pathogenic	event	or	events	at	the	earliest	preclinical	stage	of	AD.	Although	

perhaps	 suggesting	 other	 relationships	 in	 human	 disease,	 all	 of	 these	 pathobiological	

processes	demonstrate	extensive	alterations	to	systemic	metabolism.			

Critically,	many	 intrinsically	metabolic	 factors	 (e.g.,	 sleep	quality,	diet,	exercise)	 in	

addition	to	biopsychosocial	wellness	exist	modifiable	in	aging,	 in	many	cases	at	relatively	

low	 cost	 and/or	 risk	 to	 participants	 [17,	 34,	 189-207].	 Current	 research	 aims	 to	 better	

understand	 which	 attributes	 of	 the	 AD	 clinical	 phenotype	 exist	 modifiable	 by	 these	

integrative	therapeutic	approaches	according	to	differing	extents	of	cognitive	decline	and/or	

specific,	upstream	etiologies.	As	a	similarly	systemic	and	integrative	biological	phenomenon	

over	unclear	scales	of	systems	biological	organization,	the	intersection	of	adaptive	molecular	

functioning	and	metabolic	homeostasis	in	healthy	cognitive	aging	likely	mediates	many	of	

the	systemically	diffuse	effects	of	health-promoting,	modifiable	lifestyle	choices	[208-211].	

Here	too	“-omics”	methodologies	will	prove	instrumental	in	advancing	specific	and	discrete	

biological	correlates	(if	not	candidate	mechanisms)	associated	with	these	global	benefits	as	
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a	function	of	individual-specific	factors	consistent	with	the	aims	of	precision	healthcare	for	

AD.				

1.4.2	Down	Syndrome	AD:	DS-AD	

	 As	a	common	genetic	disorder	(approximately	1	in	700	births),	Down	syndrome	is	

one	strongly	genetically	penetrant	source	of	both	AD	risk	and	premorbid	intellectual	deficits	

[75,	76,	78,	212].	Down	syndrome	is	most	often	caused	by	trisomy	of	chromosome	21,	which	

encodes	the	amyloid	precursor	protein	(APP)	gene	linked	to	both	DS-AD	and	ADAD	through	

protein	coding	mutations	within	this	same	gene	[71,	73].	Established	perspectives	suggest	

that	overexpression	of	APP	in	DS	neurons	at	the	3:2	trisomic	gene	dosage	ratio	effectively	

initiates	pathological	attributes	of	the	amyloid	cascade	in	vulnerable	neurons	and	ultimately	

leads	to	cognitive	decline	[46,	74-76,	213].	More	conservatively,	gene	dosage	effects	of	APP	

in	 DS-AD	 (and	 APP	 coding	 mutations	 in	 ADAD)	 explain	 the	 precocious	 and	 substantial	

cortical	 amyloid	 deposition	 in	 these	 populations.	 	 	 Recent	 findings	 have	 alternatively	

challenged	whether	overabundant	APP	production	alone	exists	 sufficient	or	necessary	 to	

drive	 the	 broader	 pathogenesis	 of	 DS-AD	 [214,	 215],	 suggesting	 that	 its	 genetic	 basis	 in	

relation	 to	 trisomy	 21	 remains	 subject	 to	 necessary	 clarification.	 With	 noteworthy,	

exceptional	 individuals	 demonstrating	 minimal	 age-associated	 cognitive	 decline,	

approximately	 70%	of	 all	 individuals	with	DS	will	 develop	AD	 prior	 to	 age	 65	 following	

substantial	cortical	amyloid	and	tau	pathology	by	age	40	[46,	74-76,	78].	Consistent	with	

biologically	systemic	perspectives	on	AD,	DS	(as	a	syndrome)	broadly	reflects	an	accelerated	

aging	phenotype	not	limited	to,	but	including,	the	CNS	and	other	metabolically	vulnerable,	

aging	 tissues	 (e.g.,	 due	 to	 elevated	 oxidative	 stress)	 	 [78,	 216-220].	 How	 these	 latter	

biochemical	and	metabolic	 factors	result	 from	or	mutually	drive	 the	dementia-promoting	
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risk	 of	 trisomy	 21	 and	APP	 triplication	 remain	 open	 questions	 addressable	 through	 the	

unique	strengths	of	systems	biology	and	“-omics”	methods.					

1.4.3	Familial,	Autosomal	Dominant	AD:	ADAD		

	 Only	1-2%	of	all	those	who	develop	AD	will	do	so	because	of	autosomal	dominant,	

Mendelian	 mutations	 heritable	 within	 family	 pedigrees	 [92,	 221].	 These	 protein	 coding	

mutations	within	amyloidogenic	genes	(e.g.,	APP,	presenilin	1-2/	PSEN1-2)	have,	however,	

disproportionately	 informed	 both	 the	 amyloid	 cascade	 hypothesis	 and	 amyloid-centric	

therapeutic	 strategies	 in	 translational	 AD	 research	 for	 decades.	 	 Specifically,	 ADAD	

mutations	transgenically	 incorporated	 into	rodents	(e.g.,	5xFAD,	3xTg)	represent	some	of	

the	most	established	model	 systems	 in	 translational	AD	research,	whereas	LOAD-specific	

rodent	models	have	only	very	recently	been	developed	and	initially	characterized	[105-107,	

222].	Even	in	this	population	which	has	long	directly	informed	genetic	perspectives	on	the	

amyloidogenic	 basis	 of	 AD	 pathogenesis,	 dysmetabolism	 (of	 lipids	 and	 lipoprotein	

complexes)	 may	moderate	 the	 sequential	 pathologies	 described	 by	 the	 amyloid	 cascade	

hypothesis	[223,	224].	Like	DS-AD,	the	relationship	of	these	metabolic	factors	and	cognitive	

decline	to	the	cortical	proteopathies	more	directly	arising	from	amyloid-associated,	protein-

coding	 mutations	 remains	 uncertain,	 but	 very	 likely	 broader	 than	 the	 linear,	 molecular	

dysfunction	described	by	the	amyloid	cascade	hypothesis	proper.					

1.4.4	Proposed	AD	Etiopathogenic	Dissociations:	Summary	and	Significance	

	 In	 all,	 the	 systematic	 pursuit	 of	 peripheral	 blood	 plasma	 metabolic	 dissociations	

based	 on	 distinct,	 predisposing	 AD	 etiologies	 has	 not	 been	 reported	 in	 the	 translational	

literature	to	date.	The	differential	association	of	such	distinct	etiologies	to	cognitive	staging	

and	 status	 in	 explicitly	 systems	 biological	 terms	 has	 been	 pursued	 even	 less	 so.	 This	 is	
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unfortunate,	as	stratification	of	this	peripheral	plasma	metabolomic	variability	according	to	

attributes	 of	 the	 AD	 clinical	 phenotype	 may	 suggest	 novel	 biomolecular	 inferences	 and	

insights	into	the	illness.	If	these	instrumental	clinical	phenotypic	dissociations	(i.e.,	based	on	

cognitive	staging,	differing	etiologies)	can	nominate	and	contextualize	the	discrete	elements	

of	 wider	 biochemical	 networks,	 then	 these	 efforts	 will	 more	 systematically	 advance	

precision	AD	 biomarkers	 and	 therapeutic	 targets	 in	 a	 rational,	 data-driven	manner.	 This	

hypothesis	presumes,	however,	that	cognitive	staging	and	antecedent	etiologic	status	in	AD	

exist	 sufficient	 to	parametrize	 the	disease	process	phenotypically	and,	 thus,	guide	 robust	

dissociations	of	implicated	biological	processes	(at	the	molecular	class	and	pathway	levels)	

within	peripheral	blood	plasma	metabolism.	While	the	present	dissertation	argues	that	this	

is	effectively	the	case	(particularly	for	specifically	metabolic	investigations	of	AD)	[12,	13,	

27-29],	 further	 qualifications	 have	 been	 proposed	 recently	 within	 the	 field.	 These	 bear	

further	 discussion	 and	 consideration	 regarding	 their	 implications	 for	 the	 effective	

advancement	of	much-needed	translational	research	investigating	AD.			

1.5	Defining	AD	Clinico-Phenotypically	for	Systems	Biology:	Which	AD	and	Why?		

	 Substantial,	productive	efforts	have	been	made	by	the	AD	field	in	the	past	decade	to	

harmonize	definitions	of	the	disease	nosologically.	This	has	better	facilitated	its	integrative	

understanding	 across	 differing	 scales	 of	 biological	 analysis,	 research	 methodological	

paradigms,	 early	 translational	model	 systems,	 and	 sub-disciplinary	 vernaculars.	 In	many	

cases,	these	distinct	constructs	in	relation	to	abnormal	trajectories	of	cognitive	aging	have	

jointly	been	described	as	“AD”	in	different	capacities	and	to	differing	purposes	in	research	

[109].	This	has	substantially	complicated	their	reconciliation	into	a	durably	unified	clinical	

phenotype	useful	in	directing	focused	translational	systems	biology	efforts	in	AD	[35,	37-40,	
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89].	 The	 past	 decade	 of	 antemortem	 biomarker	 research	 in	 those	 abnormally	 aging	 has	

clearly	demonstrated	that	not	all	such	individuals	strictly	present	with	the	cortical	amyloid	

plaque	and	tau	pathologies	most	clearly	indicative	of	AD	[39,	40,	108,	109,	114].	In	this	sense,	

these	neuropathological	findings	suggestive	of	AD	are	sufficient	to	explain	co-evident,	age-

associated	cognitive	deficits,	although	they	are	not	necessary	to	do	so.	Mixed	pathological	

findings	 in	 cognitively	 abnormal	 aging	 have	 proven	more	 frequent	 than	 was	 previously	

thought	[39,	40].	Strikingly	in	the	phenomenon	of	asymptomatic	AD	(ASYMAD),	substantial	

cortical	neuritic	amyloid	and	NFT	pathology	only	becomes	apparent	postmortem	following	

no	documented	history	of	objective,	antemortem	cognitive	decline	exceeding	that	of	healthy	

same-aged	 peers	 [225-228].	 Posterior	 cortical	 atrophy,	 logopenic	 primary	 progressive	

aphasia,	 age-associated	 dysexecutive	 syndrome,	 and	 often	 corticobasal	 syndrome	 share	

neuritic	amyloid	and	tau	pathologies	with	each	other	and	AD.	They	do	not,	however,	involve	

memory-centric,	amnestic	cognitive	deficits	 colloquially	associated	with	AD	dementia.	All	

the	same,	these	neuropathological	features	satisfy	Jack	and	colleagues’	recent	antemortem	

neuropathological	 definition	 of	 AD	 by	 definition—"no	 more	 and	 no	 less”	 [109].	 	 These	

clinical	and	pathobiological	descriptions	of	the	disease	as	both	A)	age-associated	cognitive	

decline	 and	 B)	 a	 distinctive	 pattern	 of	 associated	 amyloid	 and	 tau	 proteopathies	 clearly	

illustrates	its	elusive	and	multifactorial	description	in	abnormal	aging.			

	 For	 these	 reasons,	 the	 present	 dissertation	 will	 instead	 prioritize	 the	

neuropsychological	 cognitive	 staging	 of	 AD	 as	 definitional	 of	 clinical	 phenotypic	 status,	

directing	translational	systems	biological	investigation	independent	of	further	qualification	

by	amyloid	or	tau	protein	biomarkers	[39,	40,	109,	151].	Although	this	poses	some	possible	

limitations	 to	 resulting	 translational	 inferences,	 the	 definition	 of	 AD	 in	 principally	
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proteopathic	terms	may	prove	equally	problematic	in	AD	systems	biology.	One	aspect	of	the	

disease	or	 the	other	 is	not	 clearly	 a	 sole	priority	 for	 translational	 research,	 yet	 cognitive	

change	 itself	suggests	a	multifactorial	 lens	to	contextualize	AD	and	 its	associated	biology.		

Modern	and	robust	cognitive	findings	of	probable	AD	indeed	correspond	to	a	non-zero	(but	

small)	 probability	 of	 false	 positive	 diagnosis	 which	 has	 benefitted	 from	 modern	

psychometrics	 and	 clinical	 neuropsychology	of	 aging	 [109,	 151,	 229,	 230].	 In	 the	 case	of	

clinically	 and	 biologically	 distinctive	 populations	 (DS-AD	 and	 ADAD)	 experiencing	

genetically-driven	 risk	 specifically,	 any	 false	 positivity	 would	 likely	 prove	 even	

proportionally	less	than	for	LOAD.	If	only	for	these	former	populations	at	substantial	genetic	

risk	of	AD,	this	would	support	the	cognition-focused	aims	of	the	present	dissertation	as	it	

considers	the	complex	biology	underpinning	these	diverse	dementia	etiologies.			

	 In	addition,	other	age-associated	neurological	diseases	demonstrating	characteristic	

proteopathies	 and	 co-occuring	 cognitive	 deficits	 (e.g.,	 Parkinson’s	 disease,	 Huntington’s	

disease,	amyotrophic	lateral	sclerosis/	frontotemporal	dementa)	may	also	be	investigable	

by	 translational	 systems	biology	 approaches.	 Future	 experiments	may	 even	productively	

advance	comparisons	of	these	conditions	against	attributes	of	the	multifactorial	AD	clinical	

phenotype	reviewed	in	this	introduction.	In	the	context	of	the	present	dissertation,	however,	

deliberately	 focused	 dissociations	 of	 AD	 clinical	 phenotypic	 attributes	 through	 systems	

biology	and	“-omics”	may	alone	prove	translationally	valuable	and	informative.	For	example,	

the	 ordinally	 ascending	 ranking	 of	 LOAD	 to	 DS-AD	 to	 ADAD	 approximately	 describes	 a	

pattern	of	escalating	genetic	burden	for	cortical	amyloid	deposition	in	aging	[46].	Systems	

biological	dissociations	according	to	differing	AD	etiologies	may	thus	metabolically	identify	

correlates	of	this	differentially	incremental	susceptibility	to	this	pathologic	burden.	In	doing	
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so,	the	systems	biological	investigation	of	metabolism	in	AD	may	also	suggest	further,	novel	

relationships	 amongst	 these	 unique	 human	 clinical	 populations	 potentially	 unrelated	 to	

amyloid	and	tau	pathologies	themselves	[12,	13].						

Other	 current	 perspectives	 within	 the	 field	 do	 strongly	 emphasize	 hallmark	

proteopathies	 in	 their	 antemortem	 definition	 of	 AD.	 Jack	 and	 colleagues	 have	 recently	

proposed	 an	 amyloid,	 tau,	 and	 neurodegeneration	 (A/T/N)	 framework	 to	 score	 evident	

neuropathology	 and	 parametrize	 a	 biological	 definition	 of	 AD	 [39,	 40].	 It	 remains	

substantially	unclear,	however,	if	this	taxonomy	alone	exists	sufficient	to	describe	the	range	

of	 pathobiological	 change	 characterizing	 (if	 not	driving)	 the	disease	 [114,	 231].	Both	 the	

amyloid	 cascade	 hypothesis	 and	 the	 A/T/N	 framework	 largely	 consider	 glucose	

dysmetabolism	in	AD	to	represent	neurodegeneration	across	multiple	biological	scales	(e.g.,	

tissue	 atrophy,	 neuronal	 death,	 synapse	 loss)	 [6,	 39,	 40,	 232-235].	 	 This	 contrasts	 with	

emerging	perspectives	 increasingly	portraying	AD	as	a	 temporally	dynamic	and	systemic	

biological	process	with	complex,	multifactorial	dependencies	upon	metabolic	homeostasis	

disproportionately	constraining	(but	not	limited	to)	the	aging	brain	in	particular	[16,	114,	

132,	133,	231,	236-240].	In	this	sense,	it	remains	currently	unclear	if	the	A/T/N	taxonomy	

sufficiently	reflects	or	contextualizes	the	specifically	metabolic	pathobiology	apparent	in	AD	

of	interest	to	this	dissertation.	This	only	reiterates	the	importance	of	employing	AD	cognitive	

staging	 (rather	 than	 amyloid	 and	 tau	 alone)	 to	 define	 the	 clinical	 dementia	 phenotype	

considered	by	this	dissertation	independent	of	further	qualifications	(e.g.,	A/T/N).		Indeed,	

it	may	be	the	case	that	antemortem,	neuropathologically	qualified	definitions	of	AD,	in	the	

worst	case,	introduce	underappreciated	bias	into	purportedly	“unbiased”	systems	biological	

investigations	of	large	“-omics”	data.	How	the	field	semantically	associates	AD	amyloid	and	
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tau	 proteopathies	 in	 relation	 to	 the	 clinical	 disease	 phenotype	 clearly	 implies	 analytical	

consequences	in	translational	AD	systems	biology.			

Although	only	preliminarily	addressed	in	this	dissertation,	these	considerations	have	

increasingly	 challenged	 the	 field	 to	 consider	 whether	 AD	 represents	 a	 condition	 of	 A)	

progressive	proteopathies	with	dysmetabolic	 spectators	or	B)	metabolic	dyshomeostases	

with	 associated,	 progressive	 proteopathies.	 This	 contrasts	 with	 the	 amyloid	 cascade	

hypothesis	 and	 A/T/N	 taxonomy	 in	 their	 characterization	 of	 AD	 cortical	 glucose	

dysmetabolism	as	a	principally	neurodegenerative	read-out	[6,	35,	39,	40,	91,	96,	232-235].	

In	 recapitulating	 these	 pathobiological	 attributions	 inherited	 from	 the	 amyloid	 cascade	

hypothesis	(regarding	amyloid,	tau,	glucose	hypometabolism),	it	remains	unclear	if	A/T/N	

will	ultimately	better	describe	AD	in	a	manner	which	more	successfully	advances	effective	

biomarkers	 and	 therapeutic	 targets.	 This	 is	 to	 say	 that	 how	 the	 field	 attributes	 AD	

pathobiology	 has	 critical	 bearing	 on	 definitions	 of	 clinical	 phenotype	 and	 how	 these	

definitions,	 in	 turn,	 statistically	 direct	 systems	 biological	 investigations	 pursuing	

translational	deliverables	(i.e.,	biomarkers	and	rationally	targeted,	precision	therapies).	The	

definition	of	AD	clinical	phenotype,	in	this	context,	remains	highly	non-trivial	in	relation	to	

any	 derived,	 systems	 biological	 inferences	 including	 those	 pursued	 by	 experiments	

proposed	here.		

These	considerations	critically	do	not	alter	the	observation	central	to	this	dissertation	

that	an	upstream	diversity	of	biologically	and	clinically	dissociable	etiologic	risk	converges	

(with	 disease	 evolution)	 to	 pathobiology	 which	 is	 virtually	 identical	 in	 the	 ultimate	

progression	 of	 AD.	 If	 this	 cannot	 be	 taken	 for	 granted	 and	 remains	 poorly	 explained	 by	

models	such	as	the	amyloid	cascade	hypothesis	and	A/T/N,	translational	AD	systems	biology	
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must	question	what	types	of	biological	processes	participate	in	these	dynamics	in	the	course	

of	progressing	cognitive	decline.	Of	still	unclear	relationship	to	amyloid	and	tau	pathologies,	

AD-associated	dysmetabolism	of	the	kind	commonly	attributed	to	neurodegeneration	may	

instead	 suggest	 broader,	 organizing	 constraints	 upon	 the	 brain	 in	 abnormal	 aging.		

Specifically,	 its	 physiological	 progression	 accompanying	 cognitive	 decline	may	 somehow	

both	 A)	 drive	 and	 B)	 proceed	 as	 a	 function	 of	 this	 eventual	 uniformity	 across	 clinically	

diverse,	at-risk	populations.	Translational	AD	systems	biology	carried	out	empirically	in	this	

dissertation	can	peripherally	dissociate	these	dysmetabolic	constraints	in	terms	of	a	well-

parametrized	AD	clinical	phenotype.	If	these	dissociations	in	peripheral	metabolism	show	

differential	metabolism	 (by	 etiology,	 degree	of	 cognitive	decline),	 then	 this	may	 reflect	 a	

physiologically	 extended	 CNS-peripheral	 axis	 mediating	 a	 “final	 common	 metabolic	

pathway”	in	the	etiopathogenesis	of	AD.		

1.6	 A	 “Final	 Common	 Pathway”	 in	 AD	 Etiopathogenesis?	 Systemic	 Dysmetabolism	 as	 a	

Candidate	Driving	Process			

For	 graphical	 and	 heuristic	 purposes,	 one	 can	 consider	 some	 systems	 biological	

distribution	of	various	biochemical	states	in	time	over	the	progression	of	incipient	AD	(i.e.,	

from	preclinical	to	MCI	to	finally	AD).	Empirically,	this	state	space	could	be	quantified	and/or	

parametrized	through	“-omics”	methods	(i.e.,	metabolomics)	(Figure	1).	This	initially	broad	

state	space	distribution	in	advancing	disease	must	(by	definition)	narrow	towards	exactly	

the	 occurrence	 of	 neuritic	 Aβ	 plaques,	 neurofibrillary	 tauopathy,	 and	 neurodegeneration	

ultimately	 definitional	 of	 AD.	 This	 invites	 an	 etiologically	 central	 question:	 How	 do	

dissociably	predisposing	AD	etiologies	(LOAD,	DS-AD,	ADAD)	map	to	the	systems	biological	

state	 space	 in	 disease	 progression	 at	 all	 points	 prior	 to	 the	 pathological	 ubiquity	
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characterizing	 fully	 manifest	 dementia?	 This	 dissertation	 aims	 to	 propose	 several	 such	

dissociative	 mappings	 to	 metabolic	 pathways,	 consistent	 with	 AD	 being	 increasingly	

recognized	as	a	metabolic	disorder.			

	

	

	

	

	

	

	

	

	

One	possibility	may	be	that	precarious	metabolic	homeostasis	in	vulnerable	cognitive	

aging	 reflects	 a	 biological	 system	 under	 dynamically	 increasing	 constraint	 in	 advancing	

disease,	 where	 many	 of	 these	 same	 constraints	 themselves	 implicate	 metabolism.	

Innovations	 in	metabolomics	 and	 a	 resurgence	 of	 translationally	 biochemical/	metabolic	

perspectives	 over	 the	 past	 decade	 have	 indeed	 increasingly	 underscored	 that	 “the	

physiological	state	of	cells	and	tissues	reflects	both	the	cell’s	regulatory	systems	and	its	state	

of	 intermediary	metabolism.”	To	this	point,	McKnight	and	others	have	discussed	how	the	

dominance	of	gene-centric,	molecular	models	of	complex,	multifactorial	human	disease	has	

historically	obscured	their	frequently	biological	interdependencies	with	metabolism	[241].	

The	amyloid	cascade	hypothesis	of	AD	also	represents	a	quintessentially	molecular	model	of	

complex	human	disease	and	the	molecules	it	prioritizes	also	represent	metabolic	products	

Figure	0.1	A	schematic	diagram	depicts	the	narrowing	
distribution	of	systems	biological	state	space	in	AD	with	the	
clinical	phenotypic	sequence	of	progressing	dementia.				
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and	 substrates.	 In	 this	 way,	 metabolic	 constraints	 involving	 (if	 not	 driven	 by)	 these	

molecules	could	also	prove	functionally	and	homeostatically	limiting	in	biological	systems	

associated	with	abnormal	cognitive	aging.		

	This	pattern	of	unsustainably	 incurred	“compensations	 for	 failure”	 in	pathological	

aging	 emerging	 from	untenable	 “failures	 of	 compensation”	 indeed	 resembles	 the	NIA-AA	

model	of	antemortem	change	in	AD	defined	in	terms	of	incremental	biological	and	cognitive	

change	 [35,	 37,	 40,	 91,	 96].	 As	 speculated	 by	 McKnight	 in	 biology	 generally,	 AD	 may	

represent	 one	 such	 disease	 in	 translational	 biomedicine	 which,	 barring	 greater	

consideration	of	metabolism,	proves	“simply	intractable”	in	translational,	clinical	phenotypic	

terms	where	the	biological	duality	of	molecular	function	and	metabolic	homeostasis	therein	

remains	 under-investigated	 [241].	 	 Observable	 independent	 of	 (but	 possibly	 related	 to)	

amyloid	 and	 tau	 pathologies,	 complex	 patterns	 of	 cortical	 glucose	 dysmetabolism	

inconsistent	with	 frank	neurodegeneration	appear	ubiquitously	 in	early	LOAD	 [132,	133,	

233,	235,	242-244],	DS-AD	[160,	245-248],	and	ADAD	[249].		

Within	 the	 aging	 brain,	 these	 AD-associated	 changes	 instead	 implicate	 primate-

specific	(if	not	human-specific)	neocortical	metabolism	via	aerobic	glycolysis	[132,	133,	146,	

147,	239,	243,	250],	induce	dynamically	hypo	and	hyper-metabolic	states	in	the	sequence	of	

advancing	disease	 [160,	240,	251-253],	 spare	 (if	not	 favor)	ketone	body	 fuel	metabolism	

[231,	237,	238,	254],	and	exist	in	white	matter	tracts	apart	from	neuronal	cell	bodies	[236].	

This	 suggests	 that	 AD	 involves	 substantial	 dysmetabolism	within	 the	 brain.	 It	 does	 not,	

however,	necessarily	 support	 the	 interpretation	of	 these	 findings	as	a	neurodegenerative	

read-out	[40,	232].	Because	of	our	better	appreciation	of	its	complexity	in	recent	years,	these	
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findings	strongly	challenge	the	prevailing	interpretation	of	cortical	FDG	dysmetabolism	in	

AD	as	an	indicator	principally	of	neurodegeneration	or	synaptic	dyshomeostasis	[40,	232].		

Recent	synaptic	vesicle	glycoprotein	2A	(SV2A)-directed	PET	(i.e.,	 synaptic	density	

PET,	[11C]	UCB-J	PET)	in	euploid	AD	participants	has	indeed	demonstrated	reduced	tracer	

retention	consistent	with	FDG-PET	hypometabolism	in	the	medial	 temporal	 lobes.	Within	

these	 regions,	 the	 correlated	 attenuation	 of	 glucose	 metabolism	 and	 synaptic	 density	

suggests	 degeneration-associated	 metabolic	 hypoactivity.	 This	 occurred,	 however,	 in	

contrast	 to	 weaker	 inter-tracer	 relationships	 in	 the	metabolically	 avid	 neocortex,	 which	

demonstrated	glucose	hypometabolism	consistent	with	prior	findings,	but	in	excess	of	that	

suggested	 by	 synaptic	 density	 loss	 alone	 [255].	 Similar	 glucose	 hypermetabolism	

inconsistent	with	neurodegeneration,	yet	related	to	cortically	global	Aβ	deposition,	has	also	

been	recently	described	in	the	aging	putamen	in	DS	[160],	which	resembles	prior	findings	of	

compensatory	 temporal	 lobe	 hypermetabolism	 and	 metabolically	 involved	 neurite	

sprouting	in	this	same	aging	population	[252,	256].		

Intriguingly,	this	dysmetabolism	(much	like	systems	biological	phenomena	such	as	

homeostatic	adaptation	to	aerobic	exercise,	cancer,	diet/	lifestyle	choices,	and	the	response	

to	 infectious	 pathogens)	 is	 evident	 in	 peripheral	 tissues	 including	 blood	 [11-13].	

Furthermore,	 the	 extent	 of	 these	 disease	 effects	 includes	 developmentally	 mesodermal-

lineage	 cells	 (i.e.,	 peripheral	 blood	mononuclear	 cells,	PBMCs)	 altered	 in	 those	with	 AD	

versus	cognitively	stable	controls.	This	suggests	 that	 these	systemic	effects	of	AD	are	not	

limited	to	CNS	(i.e.,	neuroectodermal	and	yolk	sac/	myeloid	origin)	cells	and	tissues,	despite	

apparently	much	biological	symmetry	between	CNS	and	peripheral	tissues	as	a	function	of	

the	 disease	 process	 [98].	 Instead,	 the	 brain	 may	 experience	 disproportionate	 metabolic	
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constraints	and	failure	due	to	AD	only	compounded	and	accelerated	by	systems	biological	

network	disconnection	 involving	the	periphery	and	proceeding	with	 illness[19-23].	Many	

consequences	and	drivers	of	this	pathophysiological	disconnection	in	AD	may	fundamentally	

reflect	metabolically	and	biochemically	 feedforward	processes,	 the	 integrity	of	which	can	

index	trajectories	of	cognitive	decline,	stability,	and	resiliency.					

Accumulating	evidence	increasingly	suggests	that	dysmetabolism	manifests	in	AD	as	

systemically	perturbed	process	where	its	manifestations	or	correlates	within	the	periphery	

remain	incompletely	considered,	particularly	as	these	vary	according	to	dissociable	factors,	

namely	differing	predisposing	 etiologies	 and	 extents	 of	 disease	development.	 In	 the	past	

decade,	 resurgent	metabolic	perspectives	 surrounding	 the	biological	basis	of	disease	and	

increasingly	 powerful	 “-omics”	 (i.e.,	 metabolomics)	 approaches	 have	 provided	 the	

opportunity	 to	 characterize	 and	 evaluate	 the	 systemic	 extent	 of	AD-associated	metabolic	

change	in	peripheral	blood	[11-13,	28].	These	platforms	can	inform	basic	disease	research	

and	 deep	 putative-target	 investigation;	 however,	 they	 can	 also	 function	 as	 a	 discovery	

platform	 for	 the	 highly	 applied	 identification	 of	 rational,	 data-driven	 biomarker	 and	

therapeutic	 candidates	 in	 AD.	 These	 potentially	 dynamic	 and	 sensitive	 changes	 evident	

peripherally	in	the	course	of	AD	are	well-matched	to	the	strengths	of	modern,	“-omics”-scale	

biochemical	measurement	 platforms	 surveying	 fluid	 specimens	 such	 as	 peripheral	 blood	

plasma.	 Metabolomics	 contributes	 a	 key	 methodology	 well-suited	 to	 the	 field’s	 recent	

biochemical	and	bioenergetic	thinking.	It	affords	complementarily	systemic	and	metabolic	

readouts	of	complexly	distributed,	progressive	disease	processes	such	as	those	hypothesized	

by	this	dissertation	to	be	dissociable	according	to	attributes	of	the	AD	clinical	phenotype.		
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1.7	Metabolomics:	Measuring	the	Precursors	and	Products	of	Metabolism	at	“-omics”	Scale	

	 Metabolomics	 describes	 the	 emerging	 “-omics”	 approaches	 to	 quantifying	 and	

characterizing	 low-molecular-weight,	 biochemical	 species	 (<	 1.5	 kDa)	 present	 in	 easily	

accessed	human	biofluids	such	as	peripheral	blood	plasma.	It	employs	analytical	chemistry	

instrumentation	 such	 as	 nuclear	 magnetic	 resonance	 (NMR)	 spectroscopy	 and	 mass	

spectrometry	(MS),	the	latter	of	which	represents	the	platform	used	to	empirically	measure	

metabolite	 feature	 abundances	 considered	 in	 this	 dissertation.	 Metabolomics	 currently	

affords	 greater	 uncertainty	 in	molecular	 annotation	 compared	 to	 proteomics	 or	modern,	

RNA-seq	 transcriptomics.	 The	 assignment	 of	 MS-detected	 mass	 fragments	 to	 parent	

molecules	 of	 biological	 significance	 in	 metabolomics	 proves	 specifically	 challenging	 [14,	

257].		

Hundreds	 to	 thousands	 of	 metabolite	 features	 may	 be	 measured	 in	 a	 single	

metabolomics	 experiment,	 yet	 this	 large	 quantity	 of	 data	 exists	 practically	 limited	 by	

constraints	upon	metabolite	annotation.	In	practice,	substantial	proportions	(~30%)	of	MS	

candidate	mass	features	will	not	be	annotatable	[14,	257].	To	maximize	knowledge	derived	

from	metabolomics	 experiments,	 alternative	 approaches	 to	 analysis	 employing	 genome-

scale	metabolic	models	 and	 relying	only	upon	un-annotated	 feature-wise	mass-to-charge	

ratios	have	also	been	reported.	Unique	in	their	hybridization	of	empirical	metabolomics	with	

prior	 knowledge	 of	 biochemical	 pathway	 interrelationships,	 this	 dissertation	 relies	

substantially	on	these	computational	metabolomics	methods	(i.e.,	Mummichog)	to	interpret	

phenotypic	contrasts	in	relation	to	associated	biology	at	the	level	of	pathways	rather	than	

putative,	single	molecules	[258].			



 

28 
 

	 Peripheral	 blood	 plasma	 metabolomics	 enables	 the	 dynamic	 and	 sensitive	

measurement	of	 systemically	ongoing	disease	processes	at	 the	molecular	 level.	 In	Crick’s	

Central	Dogma,	these	molecules	represent	some	of	the	most	functionally	downstream	from	

DNA	 and	 proximal	 to	manifest	 disease	 biology.	 At	 the	 same	 time,	 this	 oversimplification	

neglects	 the	 many	 feedback	 loops	 interconnecting	 the	 metabolome	 with	 the	 proteome,	

transcriptome,	genome,	and	epigenome	[30].	Metabolomics	can	 this	directly	 inform	upon	

peripherally	systemic,	biochemical	changes	related	to	active	disease	processes	differentially	

according	to	attributes	of	the	AD	clinical	phenotype	(e.g.,	differing	upstream	etiologies)	[25,	

26].	 In	 this	 way,	 a	 better	 understanding	 of	 AD-associated	 dysmetabolism	 may	 yield	

inordinate	value	for	A)	basic,	mechanistic	research	in	dementia	and	B)	the	development	of	

biomarker	and	therapeutic	candidates.	From	a	clinical	and	practical	perspective,	peripheral	

blood	metabolomics	also	serves	as	a	relatively	inexpensive,	minimally	invasive,	routine,	and	

serially	 tolerable	methodology	 to	 better	 understand	 AD	 biology	within	 vulnerably	 aging	

human	 populations	 themselves.	 This	 contributes	 substantial	 advantages	 compared	 to	 A)	

invasive	 studies	 using	 lumbar	 puncture	 to	 ascertain	 CSF	 specimens	 or	 B)	 costly	

neuroimaging	 approaches	 using	 specialized	 instrumentation/facilities	 which	 expose	

participants	to	ionizing	radiation	(in	the	case	of	positron	emission	tomography,	PET)	[27].			

	 CNS-peripheral	 blood	metabolomic	 relationships	 remain	 a	 productive	 area	 under	

current	 investigation	 in	AD	 [228,	 259].	 	 It	 has	 previously	 been	proposed	 that	 peripheral	

circulating	 cells	 act	 as	 “sentinels”	 of	 emerging	 disease	 or	 otherwise	 that	 peripheral	

circulation	 distally	 reflects	 the	 downstream	 metabolites	 of	 brain	 parenchymal	 A/T/N	

pathologies	[41,	42,	45,	260-262].	This	explanation,	however,	neglects	decades	of	consistent	

findings	suggesting	that	AD	manifests	as	cell	biological	changes	to	peripheral	tissues	both	
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neuroectodermal	and	not	in	embryologic	origin	[263-271].	Peripheral	blood	mononuclear	

cells	 and	 skin-derived	 fibroblasts	 from	 those	 with	 AD	 demonstrate	 differential	

dysmetabolism	according	to	predisposing	etiologies	(e.g.,	ADAD	versus	LOAD),	where	direct,	

mechanistic	pathophysiological	relationships	between	these	tissues	and	AD	remain	unclear	

[272,	273].	This	exists	at	least	partially	dissociable	from	similar	findings	implicating	the	age-

associated	 dysfunction	 of	 peripheral,	 intensively	 metabolic	 organs	 and	 tissues	 in	 AD-

associated	 cognitive	 decline	 (e.g.,	 pancreas,	 liver).	 Strikingly,	 pathologies	 associated	with	

abnormal	aging	and	metabolic	compromise	within	these	non-CNS	tissues	strongly	resemble	

AD	amyloid	and	tau	proteopathies	in	addition	to	recapitulating	patterns	of	pathobiological	

liability	observed	in	AD	[19-23,	53,	57,	58,	274-280].			

As	with	 dysmetabolism	overall,	 it	 remains	 unclear	 if	 specific	 peripheral	 biological	

perturbations	in	AD	exist	as	either	incidental,	epiphenomenal	systems	biological	“bugs”	or	

“features”	with	respect	 to	elements	of	 the	associated	clinical	phenotype	[281,	282].	 If	 the	

latter	proves	correct,	the	phenomenon	of	pathophysiological	dysmetabolism	over	disparate	

biological	 scales	 exists	 as	 an	 organizing	 principle	 possibly	 informing	 multiple	

neurodegenerative	diseases	(e.g.,	AD,	Parkinson’s	disease,	Huntington’s	disease),	the	human	

host	response	to	viral	infection,	and	multiple	cancers	[98,	115,	283].	This	directly	intersects	

with	existing	theory	surrounding	the	role	of	dynamical	biological	network	dyshomeostasis	

in	 complex	 human	 disease	 [98].	 It	 furthermore	 implicates	 dysmetabolism	 as	 a	 basis	 for	

considering	the	nosologic	interrelationships	amongst	diseases	of	abnormal	aging	in	terms	of	

complex	 systems	 science	 [284-286].	 Indeed,	 the	 empirically	 driven	 nomination	 of	

pathobiological	 disease	 correlates	 subject	 to	 these	 complex	 dynamics	 in	 the	 clinical	

phenotypic	 evolution	 of	 AD	 represents	 the	 primary	 aim	 of	 the	 present	 dissertation.	
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Metabolomics	 affords	 unique	 experimental	 designs	 in	 translational	 antemortem	 human-

participants	AD	research	which	are	not	without	caveats;	yet,	the	systemic	scope	of	peripheral	

plasma	metabolomics	may	 also	 afford	 insight	 into	AD-associated	pathobiology	otherwise	

largely	unconsidered	 in	relation	to	advancing	dementia.	Exactly	 this	possibility	motivates	

the	distinctly	peripheral	and	systemic	metabolomic	scope	of	this	dissertation.	The	following	

empirical	 chapters	 explore	 the	 hypothesis	 that	 these	 dynamics	 can	 be	 quantified	within	

peripheral	 blood	 using	metabolomics	 dissociated	 in	 terms	 of	 biochemical	 pathways	 and	

processes	according	to	different	predisposing	etiologies	and	extents	of	disease	development.		
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CHAPTER	1.		Late-Onset,	Sporadic	Alzheimer’s	Disease:	LOAD	

More	 than	 95%	 of	 individuals	 who	 ultimately	 experience	 AD	 develop	 its	

idiopathically	 and	 sporadically	 occurring,	 late-onset	 form	 (LOAD).	 Its	 only	 singular,	

substantial,	 and	 non-APOE	 predictor	 is	 advanced	 age	 itself	 [46,	 92]	 .	 The	 peripheral	

biochemical	 changes	 associated	with	 LOAD	 are	 highly	 heterogeneous	 and	 remain	 under-

contextualized	 in	 terms	 of	 associated	 disease	 biology	 proximal	 to	 the	 clinical	 dementia	

phenotype.	This	is	 inadequate	to	identify	disease-modifying	individual	differences	vital	to	

the	implementation	of	precision	healthcare,	where	this	information	will	disproportionately	

inform	care	for	most	adults	experiencing	AD	[24,	27,	30,	94].	Both	increasing	evidence	and	

historical	 findings	 support	 the	 substantial	 role	 of	 dysmetabolism	 accompanying	 the	

evolution	of	LOAD	both	within	and	beyond	the	brain,	as	reviewed	extensively	in	the	previous	

introductory	 section.	 To	 underscore	 several	 examples,	 LOAD	 may	 prove	 particularly	

responsive	to	lifestyle,	sleep,	dietary,	and	exercise	interventions	where	all	these	biologically	

systemic	 factors	 affect	 or	 are	 affected	by	metabolism	 [34,	 196,	 197,	 205,	 287-289].	Also,	

components	of	metabolic	syndrome	(i.e.,	 insulin	resistance/diabetes,	dyslipidemia)	confer	

modifiable	 LOAD	 risk	 associated	 with	 abnormal	 cognitive	 aging	 [170,	 290].	 Both	

dyslipidemia	 and	 insulin	 resistance	 have	 also	 been	 identified	 as	 CNS	 and	 peripheral	

correlates	(if	not	potential	drivers)	of	AD	from	the	earliest	stages	of	disease	pathogenesis,	

even	preceding	objective	psychometric	deficits	compared	to	healthy	peers	[171,	291].		

These	 manifestations	 of	 AD	 as	 gross	 metabolic	 dyshomeostases	 accompanying	

abnormal	 cognitive	 aging	 are	 historically	 well-established	 and	 can	 be	 observed	 using	

conventional	clinical	laboratory	measures	and	nuclear	imaging	[235,	242,	292-298].	Liquid	

chromatography-mass	 spectrometry	 (LC-MS)	 untargeted	 metabolomics	 profiling	
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approaches	can,	however,	provide	much	greater	molecular	resolution	to	identify	previously	

overlooked	biology	implicated	according	to	the	extent	of	developing	AD	(i.e.,	preclinical,	MCI,	

clinical	 AD)	 across	 at-risk,	 aging	 adults	 [25,	 258,	 299].	 This	 includes	 many	 of	 the	

approximately	13.7%	of	individuals	worldwide	who	carry	at	least	one	copy	of	the	APOE	ε4	

allele,	 the	 vast	 majority	 of	 whom	 possess	 this	 as	 their	 most	 significantly	 predisposing,	

singular	genetic	 risk	 factor	 [168,	300].	Considering	 the	 recent	approval	of	FDA-approved	

amyloid	modifying	therapies,	these	aims	may	be	particularly	important	to	better	understand	

the	early	preclinical	stage	of	AD	where	A)	such	compounds	may	be	most	efficacious	and	B)	

biomarker	and	therapeutic	targeting	may	be	of	correspondingly	high	priority.	Mapstone	and	

colleagues	have	reported	in	LOAD	both	a	10-lipid	(and	subsequently	a	24-metabolite)	blood	

plasma	panel.	These	demonstrated	excellent	classification	performance	(receiver	operating	

characteristic-area	under	the	curve,	ROC	AUC	>	.90)	in	detecting	imminent	cognitive	decline	

(within	2.1	years	on	average)	in	individuals	healthy	at	blood	draw	[28,	29].		

These	 initial	 experiments	 in	 the	 Rochester-Orange	 County	 Aging	 Study	 (R/OCAS)	

cohort	of	genetically	typical	aging	adults,	however,	focused	primarily	on	the	identification	of	

predictive	biomarker	panels	tracked	for	translational,	clinical	use.	Subsequent	studies	have	

since	replicated	and	biologically	considered	the	substantial	association	of	peripheral	blood	

lipids	with	 cognitive	 instability	 in	 early	AD	 [301].	The	pursuit	 of	 systemically	 elaborated	

metabolic	relationships	 in	preclinical	AD	within	R/OCAS	peripheral	plasma,	however,	has	

not	 been	 undertaken.	 The	 extrapolation	 of	 any	metabolic	 inferences	 from	R/OCAS	 alone	

poses	distinct	pitfalls,	namely	that	these	plasma	measurements	might	not	be	representative	

of	 individuals	experiencing	LOAD	overall	 (i.e.,	 that	site-specific	 false	 findings	could	exist).	

Instead,	 some	 amount	 of	 measured	 metabolomic	 variation	 may	 also	 reflect	 background	
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spectrometer	noise	or	confounding	variability	in	the	implementation	of	site-specific	study	

protocols	 [14,	 31].	 To	 directly	 address	 these	 limitations,	 additional	 biobanked	 blood	

specimens	 from	 preclinical	 LOAD	 participants	 were	 obtained	 from	 the	 UCI	 Alzheimer’s	

Disease	 Research	 Center	 (UCI	 ADRC).	 Specifically,	 these	 participants	 were	 selected	 to	

maximize	demographic	similarity	(in	years	of	education,	sex,	age,	and	ethnicity)	with	those	

individuals	 reported	 in	 R/OCAS.	 This	 proactive	 research	 design	 thus	 anticipates	 and	

mitigates	 the	 possibility	 of	 false	 positive	 associations	 resulting	 from	measurement	 noise	

inherent	in	modern	untargeted	LC-MS	metabolomics	profiling.	This	is	accomplished	in	part	

by	projecting	the	results	of	empirical	metabolomics	experiments	onto	known	biochemical	

pathways	using	computational	approaches	[258,	299].		

These	analyses	can	address	several	questions	vital	to	better	understanding	the	very	

early	metabolic	 underpinnings	 of	 LOAD	 as	 evident	within	 peripheral	 circulation.	 First,	 it	

remains	unclear	what	metabolic	 pathways	 and	processes	beyond	 lipid	metabolism	differ	

between	 cognitively	 stable	 older	 adults	 and	 preclinical	 individual	 in	 R/OCAS.	 Recent	

computational	 approaches	 (i.e.,	 Mummichog)	 which	 integrate	 prior	 knowledge	 of	

biochemical	relationships	with	empirical	metabolomics	measurements	can	address	exactly	

this	 question.	 Second,	 it	 remains	 unclear	 if	 highly-demographically-comparable	 plasma	

samples	 from	UCI	 ADRC	 submitted	 to	 this	 same	 analysis	 pipeline	would	 suggest	 similar	

biochemical	perturbations	as	a	function	of	their	shared	preclinical	LOAD	status	relative	to	

cognitively	stable,	matched	control	participants.		

If	a	core	consensus	set	of	biochemical	pathways,	processes,	or	molecular	classes	are	

common	across	these	independently	ascertained	R/OCAS	and	UCI	ADRC	LOAD	cohorts,	then	

these	may	suggest	prioritized	biomarker	and	therapeutic	targets	for	further	investigation.	If	
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indeed	observable	in	this	largest,	genetically	typical	population	of	older	adults	experiencing	

early	AD,	 these	peripheral	 changes	 could	 suggest	 evidence	of	 a	physiologically	 extended,	

CNS-peripheral	 metabolic	 axis	 dyshomeostatically	 altered	 early	 in	 disease	 pathogenesis.	

Implicated	(and	perhaps	highly	distributed)	biological	systems	might	become	progressively	

incompatible	with	and	constrained	apart	from	neurobiological	and	cognitive	trajectories	of	

successful	aging	in	preclinical	LOAD.		

METHODS					

Rochester/	Orange	County	Aging	Study	(R/OCAS)	

Participants	and	Cognitive	Assessment.		A	total	cohort	of	525	aging	adults	participated	in	

this	five-year,	longitudinal	study	of	AD	cognitive	decline	in	individuals	otherwise	genetically	

typical.	The	University	of	Rochester	Research	Subjects	Review	Board	and	the	University	of	

California,	Irvine	Institutional	Review	Board	each	approved	a	common	research	protocol	for	

this	 investigation.	All	participants	were	community-dwelling	older	adults	 from	 the	broad	

Rochester,	NY	and	 Irvine,	 CA	areas	 ascertained	by	 local	media,	 senior	organizations,	 and	

word	of	mouth.	Participants	were	included	if	they	were	age	70	or	older,	could	proficiently	

read	 and	 write	 English,	 and	 had	 corrected	 vision	 and/or	 hearing	 sufficient	 to	 complete	

clinical	 assessment	materials.	 Participants	 were	 excluded	 if	 they	 A)	 demonstrated	 other	

major	 neurological	 or	 psychiatric	 illness	 or	 B)	 had	 recent	 (<	 1	 month)	 usage	 of	

anticonvulsants,	neuroleptics,	HAART,	antiemetics,	and	antipsychotics.	All	participants	were	

followed	yearly	for	the	duration	of	the	five-year	study	or	until	manifest	cognitive	impairment	

became	evident.			

	 A	battery	of	cognitive	tests	was	administered	by	a	single	investigator	(MM),	where	

this	 was	 intended	 to	 quantify	 major	 cognitive	 domains	 (attention,	 executive	 functions,	
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language,	memory,	 and	 visuo-perceptual	 skills)	 impaired	 by	 emerging	 LOAD.	 These	 test-

level	assessment	scores	were	aggregated	 into	composite	z-scores	reflecting	each	domain,	

where	a	z-score	 less	 than	1.35	below	the	cohort	median	was	considered	 impaired.	These	

low-scoring	individuals	were	considered	to	demonstrate	incident	amnestic	mild	cognitive	

impairment	 or	 early	 AD	 (aMCI/AD).	 Participants	 demonstrating	 stable	 (>	 1	 contiguous	

visits)	 impairment	 following	 initial	 cognitive	 health	 were	 retrospectively	 considered	 to	

demonstrate	 preclinical	 LOAD	 at	 this	 baseline	 timepoint.	 	 Older	 adults	 who	 remained	

cognitively	stable	during	the	duration	of	the	study	were	considered	as	healthy	controls.		

Phlebotomy	 Protocol,	 Blood	 Processing,	 and	 Long-Term	 Storage.	 All	 participants	

underwent	blood	draws	between	8:00	am	and	10:00	am	on	a	yearly	basis.	All	morning	blood	

draws	were	completed	under	fasting	and	medication	withholding	conditions.	Whole	blood	

specimens	 were	 initially	 placed	 on	 wet	 ice	 and	 fractionated	 into	 their	 components	 (i.e.,	

plasma)	according	to	standard	procedures	within	24	hrs.	All	specimens	were	stored	at	-80°C	

prior	 to	 metabolomics	 analysis	 at	 the	 Lombardi	 Cancer	 Center	 Metabolomics	 Shared	

Resource	 Facility	 at	 Georgetown	 University.	 All	 plasma	 specimens	 submitted	 to	

metabolomics	 analysis	 underwent	 no	 more	 than	 one	 freeze/thaw	 cycle.	 This	 ensured	 a	

minimum	of	metabolomics	analysis	artefact	due	to	sample-age-related	degradation.				

	

UCI	Alzheimer’s	Disease	Research	Center	Cohort		

Participants	 and	 Cognitive	 Assessment.	 Participant	 blood	 specimens	were	 accessioned	

from	the	University	of	California,	Irvine	Alzheimer’s	Disease	Research	Center	(UCI	ADRC).	

Donors	were	at-risk,	genetically	typical	adults	enrolled	in	a	longitudinal	aging	study	in	which	

participants	completed	recurring	visits	at	approximately	9	to	12-month	intervals.	In	addition	
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to	routine	phlebotomy	and	cognitive	assessment,	some	participants	at	varying	durations	of	

follow-up	 also	 underwent	 neuroimaging	 and/or	 lumbar	 puncture	 for	 CSF	 proteomics.	

Implemented	 test	 batteries	 for	 profiling	 age-associated	 neuropsychological	 decline	

conformed	 to	 minimal	 standards	 established	 by	 the	 National	 Alzheimer’s	 Coordinating	

Center	Uniform	Data	Set	 (NACC	UDS).	Like	measures	 in	R/OCAS,	 the	minimal	NACC	UDS	

neuropsychological	 battery	 intended	 to	 quantify	 major	 cognitive	 domains	 (attention,	

executive	functions,	language,	memory,	and	visuo-perceptual	skills)	impaired	by	emerging	

LOAD.	These	 tests	 included	(but	were	not	 limited	 to)	 the	Montreal	Cognitive	Assessment	

(MoCA),	immediate	and	delayed	story	recall,	trail	making,	forwards/backwards	digit	span,	

named	category	fluency,	and	complex	figure	recall	in	addition	to	overall	clinical	appraisal.				

A	single	investigator	(MM)	reviewed	longitudinal,	participant-level	cognitive	findings	

to	identify	preclinical	status.	Specifically,	test-level	assessment	scores	were	aggregated	into	

composite	z-scores	reflecting	each	domain,	where	a	z-score	less	than	1.35	below	the	cohort	

median	 was	 considered	 impaired.	 These	 low-scoring	 individuals	 were	 considered	 to	

demonstrate	 incident	 amnestic	 mild	 cognitive	 impairment	 or	 early	 AD	 (aMCI/AD).	

Participants	 demonstrating	 stable	 (>	 1	 contiguous	 visits)	 impairment	 following	 initial	

cognitive	health	were	retrospectively	considered	 to	demonstrate	preclinical	LOAD	at	 this	

baseline	timepoint.		Older	adults	who	remained	cognitively	stable	during	the	duration	of	the	

study	were	considered	as	healthy	controls.		

Phlebotomy	Protocol,	Blood	Processing,	and	Long-Term	Storage.	Participants	

underwent	phlebotomy	according	to	standard	procedures.	Participants	were	not	instructed	

to	withhold	medications	prior	to	blood	draw,	nor	were	they	instructed	to	fast.	Collection	

occurred	at	participants’	convenience	and	was	not	standardized	with	respect	to	daily	time	
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of	draws.	Peripheral	plasma	was	isolated	at	the	UCI	ADRC	according	to	standard	protocols	

for	EDTA-treated	whole	blood	within	24	hrs.	All	specimens	were	stored	at	-80°C	prior	to	

metabolomics	analysis	at	the	Lombardi	Cancer	Center	Metabolomics	Shared	Resource	

Facility	at	Georgetown	University.	

Metabolomics	Methods		

Untargeted	LC-MS	Metabolomics.	Ultra-performance	liquid	chromatography	electro-spray	

ionization-quadrupole-time	 of	 flight-mass	 spectrometry	 (UPLC-ESI-QTOF-MS;	 Xevo-G2	

QTOF,	 Waters	 Corporation)	 was	 used	 to	 conduct	 untargeted	 metabolomic	 profiling	 as	

described	in	previous	work	[12,	13,	28].		Briefly,	plasma	samples	were	prepared	for	MS	by	

solvent	extraction	and	resolved	using	reverse	phase	chromatography	on	an	Acquity	UPLC	

(Waters	Corp.)	online	with	a	QTOF-MS	 in	positive	and	negative	electrospray	modes	with	

optimized	run	parameters.	LC-MS	peaks	were	determined	 from	resulting	raw	 instrument	

data	using	XCMS	software	[302].	XCMS	processing	of	LC-MS	data	within	R/OCAS	resulted	in	

a	 total	of	4721	small-molecule	(<	1.5	kDa)	chemical	 features;	2738	 in	 the	negative	mode	

(ESI-)	and	1983	in	the	positive	mode	(ESI+).	Similar	analyses	of	plasma	specimens	from	UCI	

ADRC	identified	a	total	of	5720	putative	metabolites;	negative	mode	(ESI-):	2413,	positive	

mode	 (ESI+):	3307.	 These	 features	 resulting	 from	 LC-MS	metabolomics	were	 defined	 in	

terms	 of	 physicochemical	 properties	 (Mass-to-Charge	 Ratio:	 m/z;	 chromatographic	

retention	time:	RT).		

Statistical	Methods		

Differential	Abundance	Analysis	 and	 Integrative	Modeling	Pipeline.	 	 Considering	 only	

control	participants	and	those	individuals	with	preclinical	LOAD,	the	final	untargeted	data	

matrix	 for	 R/OCAS	 included	 71	 unique	 participants	 by	 4721	 metabolic	 features.	 The	
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corresponding	 untargeted	 data	matrix	 for	 UCI	 ADRC	 included	 54	 unique	 participants	 by	

5720	metabolite	features.	This	resulted	from	the	exclusion	of	those	features	which	did	not	

vary	 in	 their	 abundances	 across	 participants.	 	 These	 were	 submitted	 to	 differential	

metabolite	 abundance	 (DA)	 analysis	 contrasting	 their	 relative	 abundances	 in	 the	 blood	

plasma	 of	 those	 experiencing	 preclinical	 LOAD	 versus	 those	 who	 remained	 cognitively	

healthy	(Figure	1.1).		

	
Figure	1.1	A	schematic	diagram	details	the	untargeted	LC-MS	metabolomics	pipeline	and	
downstream	 statistical	 analyses	 to	which	R/OCAS	 and	UCI	ADRC	preclinical	 LOAD	blood	
plasma	specimens	were	submitted.				
	 	

Zero	abundance	and	missing	LC-MS	measurements	were	replaced	as	“NAs.”	Features	

which	 survived	 variance	 thresholding	 were	 then	 submitted	 to	 k-nearest-neighbors	

imputation	(K	=	10)	to	generate	a	data	matrix	free	of	missing	and	artefactual	values.	These	

were	subsequently	base-2	logarithm	transformed	to	improve	symmetry	and	reduce	positive	
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skewness	 of	 metabolite	 mass	 features.	 These	 data,	 however,	 almost	 certainly	 reflect	

biochemical	variability	in	the	blood	plasma	metabolome	unrelated	to	that	which	stratifies	

control	versus	preclinical	LOAD	participants.	Surrogate	variable	analysis	(SVA)	methods	can	

parametrize	 this	 heterogeneous	 confounding	 variability	 into	 a	 modest	 number	 of	 latent	

sources	 of	 noise	 (i.e.,	 the	 estimated	 surrogate	 variables).	 While	 SVA	 parametrizes	 true	

experimental	 signal	 as	 orthogonal	 to	 that	 represented	 by	 surrogate	 variables,	 multiple	

surrogate	variables	can	correlate	with	each	other.	To	assess	the	effects	of	differing	surrogate	

variable	 estimation	 methods	 (Buja	 &	 Eyuboglu	 [303]	 versus	 Leek	 [304])	 on	 resulting	

biochemical	modeling	and	inferences,	both	methods	were	evaluated	where	they	suggested	a	

non-zero	number	of	surrogate	variables.			

Overall,	methods	such	as	SVA	can	 facilitate	 reproducibility	 in	 the	analysis	of	high-

dimensional	 “-omics”	 data	 including	 metabolomics	 [305].	 More	 concretely,	 the	 initially	

unlabeled,	latent	variables	discovered	by	SVA	can	and	should	be	further	contextualized	in	

terms	of	observed	demographic	variables	(e.g.,	sex,	age,	APOE4+	genotype).	To	accomplish	

this,	the	discretized	scores	[306]	of	individual	participants	on	each	of	the	surrogate	variables	

were	 submitted	 to	 Bayesian	 network	 modeling	 [307].	 This	 allowed	 the	 relationships	

amongst	these	latent	and	observed	variables	to	be	visualized	and	considered	in	an	integrated	

manner.	 Fitted	 surrogate	 variable	 scores	 for	 each	 participant	 were	 then	 included	 as	

covariates	in	linear	models	which	estimated	the	abundance	of	each	observed	metabolite	as	

a	 function	 of	 cognitive	 status	 (control	 versus	 preclinical	 LOAD)	 [308].	 The	 nominal,	

unadjusted	p-values	associated	with	 this	phenotypic	 contrast	 for	each	metabolite	 feature	

(indexed	 by	 m/z	 ratio,	 RT)	 were	 then	 submitted	 to	 integrative	 pathway	 analysis	 using	

Mummichog	 2.0	 software	 [258].	 For	 canonical	 pathway	 analyses	 in	 Mummichog,	 the	
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significance	of	the	overlap	across	these	DA	metabolic	pathways	for	both	R/OCAS	and	UCI	

ADRC	LOAD	cohorts	was	determined	using	Tanimoto-Jaccard	 statistics	and	bootstrapped	

significance	testing	(⍺	=	.05).				

Software.	Analyses	employed	R	version	4.0.5.	Imputation	was	completed	using	the	impute	

package.	 SVA	was	 carried	 out	 using	 the	 sva	 package.	 	 Empirical	 Bayes-moderated	 linear	

models	and	metabolite-wise	phenotypic	contrasts	were	evaluated	using	the	limma	package.	

Mummichog	2.0	was	used	 to	model	 systems-scale,	 coordinated	changes	 in	 the	peripheral	

metabolome	due	 to	either	control	or	preclinical	AD	status:	mummichog.org.	 	The	bnlearn	

package	contributed	functions	for	constructing	Bayesian	networks,	which	ingested	features	

jointly	 discretized	 by	 the	 package	 GridOnClusters.	 Tanimoto-Jaccard	 statistics	 and	

significance	testing	were	completed	using	the	jaccard	package.		

	

RESULTS	

R/OCAS	and	UCI	ADRC:	Participant	Characteristics	

Participant	characteristics	for	R/OCAS	control	and	preclinical	participants	are	shown	

in	Table	1.1.		Chi-squared	tests	of	independence	demonstrated	that	neither	participant	sex	

nor	 APOE4+	 status	 proportionally	 differed	 to	 statistical	 significance	 in	 control	 versus	

preclinical	 aging	 adults	with	 LOAD,	p’s	 >	 .60.	 Participant	 age	 at	 blood	 draw	 also	 did	 not	

significantly	differ	by	Mann-Whitney	U	test	according	to	control	or	preclinical	AD	status	in	

R/OCAS,	p	>	.40.	Participant	characteristics	for	UCI	ADRC	control	and	preclinical	participants	

are	 also	 shown	 in	Table	1.1.	 In	 this	 cohort,	 the	 relative	proportions	 of	male	 and	 female	

participants	did	not	differ	due	to	control	versus	preclinical	AD	status,	chi-squared	test	of	

independence	p	=	1.	Carriers	of	the	APOE4	LOAD	risk	allele,	however,	were	overrepresented	
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amongst	preclinical	participants,	chi-squared	test	of	independence	p	=	.04.	As	in	R/OCAS,	

participant	age	at	blood	draw	in	UCI	ADRC	did	not	significantly	differ	due	to	preclinical	AD	

status,	p	>	.42.	Across	both	cohorts,	it	was	also	possible	that	the	interaction	of	cognitive	status	

(control	or	preclinical	AD)	and	cohort	(R/OCAS	or	UCI	ADRC)	mediated	age	at	blood	draw,	

sex,	APOE4+	genotype,	and	total	years	of	education.	Logistic	generalized	linear	models	found	

no	such	significant	relationships	except	 for	APOE4+	genotype.	 Individuals	possessing	this	

risk	 allele	were	 over	 three-fold	 overrepresented	 in	 preclinical	 participants	 from	 the	 UCI	

ADRC	cohort,	p	=.028.					

	
	
Table	1.1	Participant	Characteristics	for	the	R/OCAS	and	UCI	ADRC	LOAD	Cohorts		

	 n	(M/F)	 APOE4+	
Individuals	

Mean	Years	of	
Education	(SD)	

Mean	Age	at	Blood	
Draw	(SD)	

R/OCAS	 	 	 	 	
Control	 53	(19/34)	 14	 15.6	(2.4)	 81.6	(3.5)	

Preclinical	AD	 18	(8/10)	 3	 15.3	(3.1)	 80.7	(3.0)	

UCI	ADRC	 	 	 	 	
Control	 28	(11/17)	 3	 15.9	(2.5)	 80.5	(6.8)	

Preclinical	AD	 26	(11/15)	 10	 16.3	(2.0)	 81.9	(6.2)	
		

R/OCAS:	 Differentially	 Abundant	 Peripheral	 Metabolite	 Features	 Differentiate	

Control	and	Preclinical	LOAD	Plasma					

		 Following	initial	metabolomics	data	pre-treatment	(including	imputation	and	log2-	

transformation)	 (see	METHODS),	4721	 small-molecule	LC-MS	mass	 features	 (ESI-	mode:	

2738,	ESI+	mode:	1983)	were	subjected	to	surrogate	variable	analysis	(SVA).	This	method	

addresses	the	often-substantial	capacity	of	LC-MS	to	quantify	nuisance	variability	unrelated	

to	AD	status	in	the	plasma	metabolome.	This	undesired	experimental	noise	can,	however,	be	
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anonymously	parametrized	by	a	set	of	potentially	correlated	“surrogate	variables”	(SVs)	in	

downstream	 analyses	 [304,	 309].	 These	 empirical	 estimation	 methods	 can	 improve	

reproducibility	 in	 large-data	 “-omics”	 experiments	 by	 specifically	 considering	 those	

molecules	in	the	peripheral	metabolome	associated	with	the	control	versus	preclinical	AD	

contrast	[305].	Estimation	of	the	appropriate	number	of	significant	surrogate	variables	to	

include,	however,	depends	upon	the	choice	of	SVA	algorithm:	Buja-Eyuboglu	(BE)	[303]	or	

Leek	[304].	To	minimize	bias	 in	downstream	analysis	due	to	algorithm	choice,	both	were	

used	to	fit	respective	sets	of	surrogate	variables	to	R/OCAS	metabolomics	data	(SVs	Leek	=	2,	

SVs	BE	=	4).		

	 SVs	are	latent	variables	derived	from	high-dimensional	“-omics”	measurements	and	

those	observed	clinical,	demographic,	and	experimental	variables	which	relate	to	them	are	

not	 self-evident.	 To	 address	 this	 question	 in	 an	 integrative	manner,	 participant	 sex	 and	

APOE4+	status	in	addition	to	discretized	years	of	education	and	baseline	age	were	submitted	

to	Bayesian	network	modeling.	These	observed	variables	were	considered	with	participant-

level	 discretized	BE	 and	 Leek	 SV	 scores,	 respectively	 [306,	 307].	 For	 Both	BE	 and	 Leek-

derived	 SVs,	 these	models	 did	 not	 support	 significant	 associations	 between	 age	 at	 blood	

draw,	APOE4	status,	years	of	education,	and	sex	with	estimated	SVs.					

	 LC-MS	 mass	 feature	 abundances	 were	 then	 estimated	 from	 linear	 models	 as	 a	

function	of	A)	AD	status	(control	versus	preclinical)	and	B)	fitted,	participant-level	surrogate	

variable	scores.	Analysis	of	DA	metabolite	 features	was	carried	out	 in	parallel	using	both	

Leek	and	BE	methods	of	surrogate	variable	estimation.		Of	the	4721	features	submitted	to	

DA	modeling	using	the	Leek	method,	1321	features	in	the	ESI+	mode	of	detection	and	1734	

in	 the	 ESI-	mode	 significantly	 differed	 due	 to	 AD	 status,	 nominal	p’s	 <	 .05.	 Using	 the	 BE	
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method	of	SV	estimation,	similar	proportions	of	features	were	DA	in	peripheral	plasma	with	

preclinical	status	(ESI+:	1516,	ESI-:	2149).			

R/OCAS:	Differentially	Abundant	Peripheral	Metabolite	Features	between	Preclinical	

and	Control	Plasma	are	Enriched	within	Known	Metabolic	Pathways		

	 Mass	features	identified	by	m/z	and	RT	were	ranked	according	to	nominal	p-value	

and	 taken	 as	 input	 to	 integrative	 Mummichog	 2.0	 metabolomic	 network	 modeling.	

Peripheral	metabolic	 change	 characterizing	 preclinical	 versus	 control	 LOAD	 participants	

significantly	 implicated	 multiple,	 known	 biochemical	 pathways	 (Table	 1.2).	 Specifically,	

(Leek-ESI+)-identified	processes	including	the	metabolism	of	tyrosine,	galactose,	and	folate	

(vitamin	B9)	were	significantly	altered	in	preclinical	dementia	plasma,	as	were	the	formation	

of	 both	 inflammation	 resolving	 (eicosapentaenoic-acid-derived,	 EPA-derived)	 and	 pro-

inflammatory	lipid	(arachidonic	acid-derived)	signaling	molecules,	p’s	<	.05.	Analyses	using	

Leek-ESI-	parameters	similarly	found	that	the	metabolism	of	several	biogenic	amines	(e.g.,	

aspartate,	arginine,	asparagine),	vitamin	B3	(nicotinate	and	nicotinamide),	and	nucleotide	

metabolism	were	altered	in	those	with	preclinical	LOAD	relative	to	controls,	p	<	.05.		

	 Analyses	using	BE-ESI+	parameters	suggested	again	that	the	metabolism	of	biogenic	

amines,	 vitamin	 B3,	 nucleotides,	 and	 folate	 was	 altered	 in	 preclinical	 versus	 control	

participant	 plasma.	 This	 accompanied	 significant	 pathway	 enrichments	 for	 sialic	 acid,	

glutathione,	and	glycerophospholipid	metabolism,	p’s	<	.05.	Corresponding	BE-ESI-	analyses	

again	 indicated	the	significance	of	biogenic	amine,	vitamin	B3,	and	galactose	metabolism.	

These	findings	also	suggested	the	importance	of	both	signaling	and	fuel	 lipid	metabolism,	

including	saturated	fatty	acid	beta-oxidation	and	the	formation	of	 inflammation-resolving	

(EPA-derived),	polyunsaturated	fatty	signaling	molecules,	p’s	<	.05.		
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Table	1.2	Canonical	Biochemical	Pathways	Differing	between	Control	 and	Preclinical	AD	
Plasma	in	R/OCAS	by	Mummichog	2.0	Analyses		

Pathways  Overlap Size Pathway Size p-value ESI 
Mode 

SV 
Mode  

Alanine and Aspartate 
Metabolism 

4 6 0.01227 NEG BE 

Alanine and Aspartate 
Metabolism 

4 4 0.00118 POS BE 

Alanine and Aspartate 
Metabolism 

4 4 0.00218 POS LEEK 

Androgen and estrogen 
biosynthesis and metabolism 

2 2 0.02067 POS BE 

Androgen and estrogen 
biosynthesis and metabolism 

2 2 0.0268 POS LEEK 

Arginine and Proline Metabolism 9 10 8.00E-05 POS BE 
Arginine and Proline Metabolism 9 10 8.00E-05 POS LEEK 

Aspartate and asparagine 
metabolism 

6 10 0.00781 NEG BE 

Aspartate and asparagine 
metabolism 

8 8 8.00E-05 POS BE 

Aspartate and asparagine 
metabolism 

8 8 8.00E-05 POS LEEK 

Beta-Alanine metabolism 4 4 0.00118 POS BE 
Beta-Alanine metabolism 4 4 0.00218 POS LEEK 

Carbon fixation 3 5 0.04495 NEG Leek 
Carbon fixation 4 5 0.00597 NEG BE 
Carbon fixation 2 2 0.02067 POS BE 
Carbon fixation 2 2 0.0268 POS LEEK 

Drug metabolism - other enzymes 4 6 0.01328 POS BE 
Galactose metabolism 3 4 0.01672 NEG Leek 
Galactose metabolism 3 4 0.01563 NEG BE 

Glutamate metabolism 4 4 0.00118 POS BE 
Glutamate metabolism 4 4 0.00218  POS LEEK 

Glutathione Metabolism 2 2 0.02067 POS BE 
Glutathione Metabolism 2 2 0.0268 POS LEEK 

Glycerophospholipid metabolism 6 13 0.04294 POS BE 
Glycine, serine, alanine and 

threonine metabolism 
6 7 0.00076 POS BE 
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Glycine, serine, alanine and 
threonine metabolism 

6 7 0.00092 POS LEEK 

Histidine metabolism 3 4 0.01563 NEG BE 
Methionine and cysteine 

metabolism 
4 6 0.01328 POS BE 

Methionine and cysteine 
metabolism 

5 6 0.00294 POS LEEK 

Nitrogen metabolism 4 4 0.00118 POS BE 
Nitrogen metabolism 4 4 0.00218 POS LEEK 

Prostaglandin formation from 
arachidonate 

3 5 0.04495 NEG Leek 

Purine metabolism 8 11 0.00084 POS BE 
Purine metabolism 8 11 0.00101 POS LEEK 

Putative anti-Inflammatory 
metabolites formation from EPA 

2 2 0.02143 NEG Leek 

Putative anti-Inflammatory 
metabolites formation from EPA 

2 2 0.01865 NEG BE 

Putative anti-Inflammatory 
metabolites formation from EPA 

2 2 0.0268 POS LEEK 

Pyrimidine metabolism 6 7 0.00076 POS BE 
Pyrimidine metabolism 6 7 0.00092 POS LEEK 

Saturated fatty acids beta-
oxidation 

2 2 0.01865 NEG BE 

Sialic acid metabolism 3 5 0.04243 POS BE 
Tryptophan metabolism 3 5 0.04495 NEG Leek 

Tyrosine metabolism 8 17 0.01622 NEG Leek 
Tyrosine metabolism 7 12 0.00613  POS BE 
Tyrosine metabolism 7 12 0.0105 POS LEEK 

Urea cycle/amino group 
metabolism 

5 10 0.03529 NEG BE 

Urea cycle/amino group 
metabolism 

8 13 0.00302 POS BE 

Urea cycle/amino group 
metabolism 

8 13 0.00513 POS LEEK 

Vitamin B3 (nicotinate and 
nicotinamide) metabolism 

3 5 0.04378 NEG BE 

Vitamin B3 (nicotinate and 
nicotinamide) metabolism 

7 8 0.00042 POS BE 
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Vitamin B3 (nicotinate and 
nicotinamide) metabolism 

7 8 0.00034 POS LEEK 

Vitamin B9 (folate) metabolism 3 4 0.01672 NEG Leek 
Vitamin B9 (folate) metabolism 2 2 0.02067 POS BE 
Vitamin B9 (folate) metabolism 2 2 0.0268 POS LEEK 

	

	R/OCAS:	Differentially	Abundant	Peripheral	Metabolite	Features	between	Preclinical	

and	Control	Plasma	are	Enriched	within	De	Novo	Metabolic	Pathways		

	 In	 addition	 to	 the	 evaluation	 of	 canonical	 metabolic	 pathways,	 Mummichog	 can	

reconstruct	 de	 novo	 metabolic	 pathway	 networks	 (spanning	 multiple	 a	 priori	 known	

individual	 pathways)	 specifically	 implicated	by	 the	 control-preclinical	 LOAD	 comparison.		

Where	these	novel	metabolic	network	“modules”	and	activity	networks	are	relatively	sparse,	

they	 can	 suggest	 highly	 specific	 biochemical	 signatures	 stratifying	 associated,	 clinical	

phenotypic	 comparisons.	 These	 may	 also	 indicate	 the	 biochemical	 rudiments	 of	 specific	

metabolic	pathobiology	in	AD.	Consistent	with	this,	the	ESI+	analyses	employing	either	the	

BE	or	Leek	procedures	jointly	implicated	a	de	novo	module	centered	on	elaborated	glutamate	

metabolism	 resembling	 glutaminolysis,	module	 significance	p’s	 <	 .05	 (Figure	1.2A).	 This	

suggests	 that	 both	 BE	 and	 Leek	 methods	 capture	 plasma	 metabolomic	 variability	 truly	

associated	with	the	control-preclinical	phenotypic	contrast	versus	model-specific	artefact.	

Analyses	using	BE-ESI-	parameters	also	identified	a	de	novo	module	very	suggestive	of	the	

preparatory	phase	of	glycolysis,	p	=	.04	(Figure	1.2B).			
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Figure	1.2	Significant	Mummichog	de	novo	metabolic	modules	correspond	to	control	versus	
preclinical	status	statistical	contrasts	in	R/OCAS.	Reconstructed	metabolic	networks	using	
both	Leek	(top)	and	BE	(bottom)	SVA	methods	in	Panel	A	resemble	glutaminolysis.	Panel	B	
includes	hexose	metabolic	processes	shared	with	the	preparatory	phase	of	glycolysis.							
	
UCI	 ADRC:	 Differentially	 Abundant	 Peripheral	 Metabolite	 Features	 Distinguish	

Control	and	Preclinical	LOAD	Peripheral	Plasma		

	 Participant	plasma	specimens	from	UCI	ADRC	also	underwent	differential	abundance	

analysis	employing	surrogate	variable	estimation	methods	(SVs	BE	=	10).	To	contextualize	

these	fitted	surrogate	variables	in	terms	of	observed	clinical	and	demographic	variables	(e.g.,	

sex,	APOE4+	status,	age),	a	Bayesian	network	model	was	estimated	(Figure	1.3)	[307].	This	

suggested	probabilistic	dependencies	of	A)	SV4	on	age	and	of	B)	sex	on	SV1.	In	total,	5720	

LC-MS	metabolite	mass	features	(ESI-:	2413,	ESI+:	3307)	were	submitted	to	downstream	

modeling	as	a	function	of	estimated,	participant-level	surrogate	variable	scores	and	control	
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versus	preclinical	AD	status.	Of	all	5720	UCI	ADRC	features	submitted	to	DA	analysis,	linear	

modeling	 revealed	 that	1632	 ESI+	 and	1284	 ESI-	 features	 significantly	 differed	 in	 their	

plasma	abundances	due	to	preclinical	AD	status,	nominal	p’s	<	.05.					

	
Figure	1.3	Bayesian	network	modeling	associates	surrogate	variables	to	observed	clinical-
demographic	 factors.	 Age	 at	 blood	 draw	 and	 sex	 demonstrate	 respective	 probabilistic	
relationships	 with	 SV4	 and	 SV1.	 Line	 boldness	 indicates	 confidence/strength	 of	 the	
estimated	 relationships	 between	 factors	 estimated	 from	 participant	 data	 and	 a	 fitted	
network	structure	[bnlearn:	arc.strength()].		
	

UCI	 ADRC:	 Peripheral	 Metabolite	 Features	 Differentially	 Abundant	 between	

Preclinical	and	Control	Plasma	are	Enriched	within	Known	Metabolic	Pathways	

	 Mass	 features	 (indexed	 by	 m/z,	 RT)	 were	 ranked	 according	 to	 nominal	 p-value	

corresponding	 to	 the	control-preclinical	 contrast	as	evaluated	 for	UCI	ADRC	participants.		

These	 values	 derived	 using	 BE	 surrogate	 variable	 estimates	 (Leek	method	 identified	 no	

significant	SVs	in	UCI	ADRC)	were	then	submitted	to	canonical	pathway	enrichment	analysis	

using	 Mummichog	 2.0	 (Table	 1.3).	 Specifically,	 the	 ESI+	 detection	 mode	 demonstrated	

significant	overrepresentation	of	DA	metabolites	involved	in	lipid	metabolism,	including	de	

novo	 fatty	 acid	 biosynthesis,	 fatty	 acid	 activation,	 bile	 acid	 biosynthesis,	 and	 C21-steroid	

metabolism,	p’s	<	.05.	The	ESI-	mode	of	detection	also	strongly	implicated	lipid	metabolism,	
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suggesting	 that	 the	 preclinical-control	 contrast	 involves	 plasma	 alterations	 to	

polyunsaturated	 fatty	 acid	 (PUFA)	 metabolism	 including	 that	 of	 linoleate	 and	

neuroprostanes,	p’s	<	.03.	This	finding	accompanied	enrichment	overall	for	de	novo	fatty	acid	

biosynthesis	and	activation	amongst	preclinical-control	DA	features,	p’s	<	.03.		

Table	1.3	 Canonical	Biochemical	Pathways	Differing	between	Control	 and	Preclinical	AD	
Plasma	in	UCI	ADRC		

Pathways  Overlap Size Pathway Size p-value ESI Mode 

Bile acid 
biosynthesis 

3 3 0.03949 POS 

Biopterin 
metabolism 

3 3 0.02924 POS 

C21-steroid 
hormone 
biosynthesis and 
metabolism 

3 3 0.03949 POS 

D4&E4-
neuroprostanes 
formation 

2 2 0.02487 NEG 

De novo fatty acid 
biosynthesis 

3 4 0.02143 NEG 

De novo fatty acid 
biosynthesis 

4 6 0.00269 POS 

Drug metabolism - 
other enzymes 

2 2 0.02487 NEG 

Fatty acid activation 3 4 0.02143 NEG 

Fatty acid activation 4 4 0.01244 POS 

Fatty Acid 
Metabolism 

4 4 0.02361 POS 

Limonene and 
pinene degradation 

2 2 0.00849 POS 
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Linoleate 
metabolism 

3 3 0.00664 NEG 

Prostaglandin 
formation from 
arachidonate 

2 2 0.00849 POS 

	

R/OCAS	 and	 UCI	 ADRC:	 Significantly	 Shared,	 Enriched	 Metabolic	 Pathways	 Index	

Preclinical	LOAD	in	Peripheral	Blood	Plasma			

	 The	canonical	pathways	indicated	by	Mummichog	as	altered	in	preclinical	LOAD	for	

both	R/OCAS	and	UCI	ADRC	could	indicate	shared	dysmetabolism.	They	could	also,	however,	

reflect	 an	 overlap	 in	 DA-enriched	 metabolic	 pathways	 due	 to	 chance	 alone.	 Tanimoto-

Jaccard	statistics	and	significance	testing	can	evaluate	if	the	former	hypothesis	is	supported,	

taking	the	latter	one	as	the	null.	All	significantly	enriched	(p’s	<	.05)	canonical	Mummichog	

metabolic	pathways	for	either	R/OCAS	or	UCI	ADRC	were	used	to	derive	a	Tanimoto-Jaccard	

coefficient	quantifying	this	degree	of	similarity.	The	significance	of	the	coefficient	(i.e.,	the	

probability	of	achieving	at	least	this	extreme	of	a	coefficient	under	the	null	hypothesis)	was	

exactly	 estimated	 (uncentered	 estimated	 coefficient:	 .057|	 centered	 coefficient:	 -.226)	 and	

highly	 significant	p	 <	 .001.	 This	 suggests	 that	 a	 shared	 “fingerprint”	 of	 altered	 canonical	

biochemical	 pathways	 (nominated	 across	 SVA	 methods	 and	 MS	 acquisition	 modes	 in	

peripheral	plasma)	characterizes	the	demographically-highly-similar	R/OCAS	and	UCI	ADRC	

preclinical	LOAD	cohorts	beyond	chance	levels	[310]	(Appendix	1.1).		
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UCI	 ADRC:	 Differentially	 Abundant	 Peripheral	 Metabolite	 Features	 between	

Preclinical	and	Control	Plasma	are	Enriched	within	De	Novo	Metabolic	Pathways	

	 As	with	 the	several	 significant	R/OCAS	control-preclinical	AD	contrasts,	UCI	ADRC	

also	 demonstrated	 de	 novo	 metabolic	 networks	 for	 these	 same	 clinical	 phenotypic	

relationships.	Notably,	the	ESI+	mode	analyses	identified	one	significant	module	containing	

several	saturated	and	unsaturated	C16-20	fatty	acids,	p	=	.02	(Figure	1.4A).		This	involved	

an	elaborated	metabolic	activity	network	suggesting	the	importance	of	Coenzyme	A	(CoA)	

and	cholesterol	in	the	metabolism	of	these	lipids	(Figure	1.4B).	There	was	good	concurrence	

in	 estimated	 Mummichog	metabolic	 activity	 networks	 across	 ESI+	 and	 ESI-	 MS	 analysis	

modes.	Specifically,	Mummichog	analyses	in	this	latter	ESI-	mode	suggest	the	importance	of	

C16-C20	acyl	chain	length	saturated	and	unsaturated	fatty	acids	to	preclinical	AD,	where	the	

metabolism	of	mono	and	triphosphate	nucleosides	may	also	intersect	with	that	of	these	lipid	

molecules	(Figure	1.4C).			
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Figure	1.4	Metabolomics	analyses	of	UCI	ADRC	preclinical	LOAD	plasma	suggest	evidence	
of	 abnormal	 lipid	 metabolism	 including	 that	 of	 saturated,	 monounsaturated,	 and	
polyunsaturated	fatty	acids.						
	

DISCUSSION	

	 This	chapter	sought	to	address	whether	systemic	metabolism	evident	in	peripheral	

circulation	demonstrated	pathway	and	network-scale	alterations	as	a	function	of	preclinical	

AD	 status	 in	 LOAD.	 Indeed,	 very	 large,	 recent	 studies	 of	 aging	 cohorts	 across	 multiple	

continents	have	suggested	systemically	metabolic	declines	in	aging	commencing	during	the	

sixth	decade	of	 life	onwards	 [311].	 If	 similar,	 early	occurring	changes	could	be	 identified	

reproducibly	in	the	plasma	metabolome	across	independent,	abnormally	aging	cohorts,	they	

might	suggest	metabolic	and	biochemical	processes	specifically	reprogrammed	as	a	function	

of	early,	preclinical	LOAD,	 if	not	early	AD	overall.	Because	metabolomics	quantifies	many	

biological	processes	of	unclear	number	and	physiological	extent	in	aging	blood	plasma,	the	
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experiments	and	analyses	pursued	in	this	chapter	employed	several	strategies	to	address	

this	uncertainty.	These	aimed	to	both	A)	minimize	the	likelihood	of	false-positive,	spurious	

associations	and	B)	focus	on	plasma	biochemistry	specifically	and	robustly	associated	with	

the	 control	 versus	 preclinical	 AD	 status.	 First,	 surrogate	 variable	 analysis	was	 employed	

(using	 multiple	 estimation	 methods)	 to	 parametrize	 sets	 of	 latent	 variables	 capturing	

metabolomic	 variability	 unrelated	 to	 AD	 status	 itself,	 but	 potentially	 relating	 to	 other,	

important	 clinical	 and	 demographic	 variables	 (i.e.,	 age	 at	 blood	 draw,	 sex,	 APOE4+	 risk	

genotype,	years	of	education).	The	use	of	multiple	surrogate	variable	estimation	methods	in	

the	R/OCAS	cohort	(where	these	both	suggested	non-zero	numbers	of	SVs)	also	minimized	

bias	 in	 the	 modeling	 of	 surrogate	 variables	 for	 downstream,	 feature-wise	 differential	

abundance	analysis.	Investigating	these	relationships	further,	integrative	Bayesian	network	

analyses	suggested	the	relationship	of	several	latent	factors	to	sex	and	age	at	blood	draw	in	

UCI	ADRC.	The	R/OCAS	cohort,	however,	did	not	demonstrate	significantly	similar	findings	

when	 submitted	 to	 this	 same	 analysis.	 Therefore,	 while	 such	 variables	 may	 impact	 the	

peripheral	 blood	 metabolome,	 this	 conclusion	 was	 not	 supported	 empirically	 based	 on	

R/OCAS	and	UCI	ADRC	preclinical	LOAD	participants.				

	 Independent	of	statistical	approaches,	the	design	of	these	experiments	in	preclinical	

LOAD	also	permitted	robust,	independent	comparisons.	The	deliberately	high	demographic	

and	clinical	similarity	of	the	R/OCAS	and	UCI	ADRC	cohorts	specifically	allowed	for	highly	

harmonized	 cross-cohort	 comparisons,	 even	 when	 these	 samples	 were	 ascertained	

independently	 in	 terms	 of	 time	 and	 study	 site.	 Consensus	 definitions	 of	 “validation”	 and	

“replication”	remain	under-defined	in	translational	metabolomics	and	biomarker	research,	

but	 the	 examination	 of	 independently	 ascertained	 samples	 drawn	 from	 a	 substantially	
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overlapping	clinical	population	agrees	with	other	recent,	“-omics”	approaches	for	rigorously	

and	reproducibly	investigating	AD	(i.e.,	genome-wide	association	studies,	GWAS)	[312-314].		

	 Even	 under	 these	 experimentally	 and	 statistically	 conservative	 premises,	 the	

experiments	carried	out	in	this	chapter	provide	multiple	lines	of	evidence	suggesting	shared,	

peripherally	evident	dysmetabolism	at	the	preclinical	stage	of	LOAD	across	both	the	R/OCAS	

and	 UCI	 ADRC	 cohorts.	 Integrative	 computational	 and	 statistical	 analyses	 through	 the	

integration	of	sva,	limma	and	Mummichog	software	revealed	these	relationships	at	both	the	

level	of	A)	canonical	metabolic	pathways	and	B)	de	novo	significant	modules	and	broader	

activity	 networks.	 Most	 clearly,	 both	 the	 R/OCAS	 and	 UCI	 ADRC	 preclinical	 cohorts	

demonstrated	enrichment	for	pathways	involved	in	diverse	aspects	of	 lipid	and	fatty	acid	

metabolism,	including	glycerophospholipid	metabolism	as	reported	by	Mapstone	and	others	

[28,	29,	315-317],	but	also	sterol,	steroid,	and	bile	acid	metabolism	[11,	318-320].	This	also,	

however,	 included	many	biogenic	amines	(including	amino	acids);	purine	and	pyrimidine	

nucleosides	 and	 their	 phosphorylated	 nucleotides	 derived	 from	 the	 pentose	 phosphate	

shunt;	 and	 small-molecule	 metabolites	 essential	 to	 redox	 homeostasis,	 cellular	

bioenergetics,	and	homeostatic	biosynthesis	[201,	207,	321].		

Such	constraints	likely	impact	many	tissues	and	organs	in	abnormal	aging;	however,	

these	 themselves	may	 indirectly	 contribute	 to	 emerging	 brain	 dysfunction	 in	 preclinical	

LOAD	through	physiologically	extended,	brain-peripheral	metabolic	axes	in	early	AD.	These	

vicious,	 feedforward	 cycles	 of	 “compensation	 for	 failure”	 and	 resulting	 “failures	 of	

compensation”	in	the	evolving	disease	process	could	be	thought	to	result	in	a	distribution	of	

systems	 biological	 state	 distributions	 in	 disease	 (i.e.,	 a	 dynamical	 distributional	 mixture	

model	in	evolving	AD).	Beyond	some	critical	point	in	time	and	mapping	to	some	subset	of	
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dysfunctional	 and	 dyshomeostatic	 biological	 processes	 in	 abnormal	 aging,	 successful	

trajectories	 of	 age-associated	 cognitive	 change,	 resilience,	 and	 brain	 health	 may	 exist	

fundamentally	incompatible	with	this	pathobiologically	distributional	mixture	developing	in	

AD	as	a	function	of	advancing	preclinical	LOAD	itself.		

	 The	use	of	both	R/OCAS	and	UCI	ADRC	also	conferred	advantages.	The	objective	of	

employing	 the	 independent	 R/OCAS	 and	 UCI	 ADRC	 cohorts	 was	 to	 facilitate	 highly	

harmonized,	 but	 parallel	 comparisons	 in	 preclinical	 LOAD	where	 participants	were	 very	

clinically	 and	 demographically	 similar.	 Significant	 canonical	 pathway	 enrichments	 (i.e.,	

Mummichog	pathways)	across	these	cohorts	can	suggest	this	overlap	qualitatively;	however,	

Tanimoto-Jaccard	 analyses	 can	 quantify	 and	 statistically	 test	 these	 putative	 associations	

relative	to	a	null	(i.e.,	random)	distribution.	When	evaluated	across	pathways	implicated	in	

either	R/OCAS	or	UCI	ADRC,	this	suggested	a	modest	degree	of	similarity	in	the	canonical-

pathway-wise	 “fingerprint”	 of	 preclinical	 LOAD	 across	 both.	 This	 overlap	 significantly	

deviated	 from	 expectations	 due	 to	 chance	 alone	 under	 the	 null	 distribution	 (uncentered	

estimated	coefficient:	.057|	centered	coefficient:	-.226,	p	<	.001).			

Mummichog	modeling	across	R/OCAS	and	UCI	ADRC	also	identified	several	de	novo	

metabolic	 networks	 associated	 with	 the	 preclinical	 LOAD	 versus	 control	 contrast.	

Interestingly,	both	Leek	and	BE	surrogate	variable	methods	in	the	ESI+	MS	mode	identified	

statistically	 significant	 network	 modules	 centered	 around	 glutamate.	 Glutamate	 is	

ubiquitous	within	 the	 brain	 as	 an	 excitatory	 neurotransmitter,	 but	 it	 also	 functions	 as	 a	

biochemically	 vital	 intermediate	 participating	 in	 mitochondrial	 fuel	 metabolism,	 and	

orchestrated	intermediary	biosynthesis	across	neurons	and	astrocytes	(i.e.,	the	glutamate-

glutamine	metabolic	cycle)	[322,	323].	This	resembles	other	hypothesized	CNS	inter-cellular,	
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metabolic	 shuttle	 systems	 (i.e.,	 the	 astrocyte-neuron	 lactate	 shuttle)	 which	 may	 also	 be	

altered	in	AD	[324].	Considered	elsewhere	in	human	disease	metabolism	as	glutaminolysis	

[325],	 this	 fuel	 and	 biosynthesis-affording	 cellular	 biochemical	 pathway	 has	 been	

understudied	relative	to	the	CNS-specific	functional	roles	of	glutamate	in	neurotransmission	

and	synaptic	homeostasis.	The	way	its	broader	metabolism	could	become	homeostatically	

imbalanced	 against	 the	 functional	 demands	 of	 CNS-specific	 glutamatergic	 processes	may	

suggest	another	early,	discrete	point	of	emerging	“failures	of	compensation”	in	preclinical	

AD	[326].		Bernier	and	colleagues	have	indeed	recently	reported	that	activated	microglia	can	

instead	employ	glutamate-metabolizing,	glutaminolysis-like	metabolic	programs	to	sustain	

the	chronic	neuroinflammation	often	present	in	preclinical	AD	including	preclinical	LOAD	

[327].		

This	may	be	differentiable	from	associated	glucose	dysmetabolism	in	AD;	however,	

the	R/OCAS	BE-ESI-	mode	 de	 novo	 analyses	 suggest	 that	 components	 of	 the	 preparatory	

phase	of	glycolysis	and	glutaminolysis	may	be	jointly	implicated	by	and	functionally	intersect	

with	each	other	in	preclinical	AD	[328].	Interestingly,	these	networks	include	the	molecule	

n-acetyl-aspartate	 (NAA),	 which	 is	 depleted	 in	 the	 AD	 brain	 as	 measured	 with	 proton	

magnetic	 resonance	 spectroscopy	 (1H-MRS)	 [329-331].	 The	 role(s)	 of	 NAA	 in	 AD	

pathobiology	remain	understudied,	but	NAA	homeostasis	may	index	mitochondrial	integrity	

and	 the	 sufficiency	 of	 upstream	 aspartate	 and	 acetyl-coenzyme	 A	 metabolism.	 These	

biogenic-amine-involving	 processes	 themselves	 suggestively	 resemble	 the	 glutamate-

containing	de	novo	pathways	identified	here	in	preclinical	LOAD	peripheral	blood	plasma.	

While	NAA	is	often	considered	a	neuronal	marker,	 it	also	contributes	to	lipid	synthesis	in	

oligodendrocytes	 [332].	 It	 may	 be	 translationally	 productive	 to	 consider	 these	 NAA-
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involving	processes	in	AD	involving	the	brain	as	components	of	an	extended	“glutaminolysis-

like”	network	under	metabolic	jeopardy	in	early	sporadic	AD.	Substantial	opportunity	clearly	

exists	for	the	integration	of	minimally	invasive	metabolic	imaging	and	blood	biomarkers	of	

AD	 to	 better	 demonstrate,	 contextualize,	 and	 dissociate	 these	 specific	 pathobiological	

relationships	between	metabolic	brain	molecules	and	those	of	the	periphery.	In	recent	years,	

much	 emerging	 work	 along	 these	 lines	 has	 been	 advanced	 by	 the	 emerging	 field	 of	

immunometabolism,	 which	 has	 most	 extensively	 studied	 the	 biochemical	 dynamics	 of	

activated	microglia	in	AD	[333,	334].		It	has	more	recently	also	considered	the	dysmetabolic	

profiles	of	reactive	astrocytes	and	even	peripheral	cells	of	the	adaptive	immune	system	[335-

339].	Critically,	all	such	processes	involve	intensive,	functionally	orchestrated	metabolism	

(including	that	of	lipids,	glutamate,	and	glucose)	much	like	the	diverse	metabolic	processes	

altered	 in	 R/OCAS	 and	 UCI	 ADRC	 preclinical	 LOAD	 peripheral	 plasma	 here.	 Further	

integrative	experiments	employing	CNS	imaging	and	fluid	biomarker	data	will	be	essential	

to	 clarify	 the	 therapeutically	 actionable	 biological	 processes	 and	 targets	 associated	with	

these	findings	in	early	LOAD.		

The	present	experiments	were	not	without	limitations.	Most	importantly,	while	the	

R/OCAS	and	UCI	ADRC	cohorts	were	overall	highly	similar,	frequencies	of	the	APOE4	risk	

allele	were	significantly	more	prevalent	in	UCI	ADRC	preclinical	participants	compared	to	

R/OCAS.	These	findings	prompted	the	exploration	of	parameterized	surrogate	variables	in	

terms	of	clinical-demographic	variables	 including	APOE	 genotype.	Across	both	preclinical	

cohorts	 and	 multiple	 methods	 of	 SV	 estimation,	 no	 fitted	 Bayesian	 networks	 suggested	

further	moderating	effects	of	APOE4+	status	on	the	composition	of	the	peripheral	plasma	

metabolome	in	LOAD.	Therefore,	the	disproportionality	of	this	risk	across	R/OCAS	and	UCI	
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ADRC	 may	 not	 impact	 the	 identification	 of	 peripheral	 plasma	 metabolomic	 change	

characterizing	preclinical	participants	with	LOAD.		

While	Mummichog	 represents	a	powerful	 tool	 integrating	empirical	metabolomics	

experiments	with	prior	biochemical	pathway	knowledge,	it	also	demonstrates	limitations	in	

its	 current,	 user-facing	 format.	 Namely,	 Mummichog	 does	 not	 natively	 place	 implicated	

biochemical	transformations	in	terms	of	associated	enzymes	and	transporters	where	these	

may	 themselves	 suggest	 highly	 important	 inferences	 regarding	 the	 etiopathogenesis	 and	

early	development	of	LOAD.	Similarly,	the	identification	of	AD-associated	metabolic	activity	

networks	 using	 Mummichog	 neither	 guarantees	 human-interpretable,	 parsimonious	

findings	 nor	 associated,	 statistical	 significance	 testing.	 Chapter	 Four	 of	 this	 dissertation	

instead	 suggests	 how	 Mummichog	 activity	 network	 outputs	 (considered	 as	 a	 “natural”	

biochemical	language	and	including	preclinical	LOAD	contrasts	considered	in	this	chapter)	

can	be	assimilated	into	a	small	number	of	 latent	topics	defined	by	individually	associated	

biochemical	 processes	 and	 enzyme-encoding	 genes.	 Despite	 this	 substantial	 reduction	 in	

data	 dimensionality,	 an	 ideally	 high	 degree	 of	 semantic	 coherence	 can	 be	 tuned	 using	

contemporary	topic	modeling	algorithms	[340]	.	Similar	strategies	to	identify	associations	

between	untargeted	metabolomics	chemical	features	and	protein	interaction	networks	have	

also	been	implemented	by	the	Fraenkel	lab	using	a	prize-collecting	Steiner	forest	algorithm	

(i.e.,	PIUMet)	[341]:	http://fraenkel-nsf.csbi.mit.edu/piumet2/.	One	aim	of	CHAPTER	3	will	

indeed	implement	this	software	to	nominate	(from	untargeted	plasma	LC-MS	metabolomic	

profiling	experiments)	specific	proteins	and	thus	gene	expression	associated	with	clinical	

dementia	status	for	aging	adults	with	Down	syndrome	(DS-AD).					
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In	all,	these	converging	peripheral	blood	biochemical	findings	in	multiple	preclinical	

LOAD	cohorts	suggest	multifactorial	brain-peripheral	metabolic	axes	in	abnormal	cognitive	

aging	which	become	systemically	perturbed	in	the	evolution	of	dementia,	thereby	affording	

AD-associated	peripheral	biomarker	candidates.	Crucially,	these	alterations	were	not	limited	

to	 one	 biochemical	 pathway,	 but	 involved	 diverse,	 hub-like	 metabolites	 and	 pathways	

important	for	the	dynamic	integration	and	regulation	of	fuel	metabolism,	biosynthesis,	and	

functional	 biological	 signaling	 in	 multiple	 CNS	 cells	 and	 peripheral	 tissues.	 In	 a	 vicious,	

feedforward	 process	 of	 metabolic	 “compensation	 from	 failure”	 precipitating	 an	 ultimate	

“failure	of	compensation”	in	AD,	these	incidental	metabolic	changes	with	advancing	disease	

may	become	unsustainable	and	incompatible	with	healthy	cognitive	aging.	More	specifically,	

this	 biological	 precariousness	 could	 involve	 the	 substantial,	 activity-associated	metabolic	

demands	of	chronically	activated	glia	and	immune	cells	beginning	early	in	LOAD.		

Aging	individuals	with	LOAD,	however,	do	not	possess	the	amyloid-specific	genetic	

risk	 experienced	 by	 those	 with	 DS-AD	 or	 ADAD.	 The	 following	 chapter	 aims	 to	 address	

whether	DS-AD,	as	opposed	to	preclinical	LOAD,	demonstrates	similarly	diverse,	peripheral	

blood	metabolic	 correlates	 compared	 to	 cognitively	 stable,	 aging	 adults	 with	 DS.	 Unlike	

LOAD,	 those	 who	 experience	 DS-AD	 incur	 risk	 as	 a	 function	 of	 trisomy	 21,	 genetically	

predisposed,	 early-onset	 amyloidosis,	 and	 oxidative-stress-associated	 accelerated	 aging	

[46].	Because	of	the	strong	ties	of	these	biological	processes	to	metabolism,	DS-AD	might	also	

demonstrate	alterations	to	the	peripheral	plasma	metabolome	resembling	those	observed	

in	preclinical	LOAD.	The	specific	details	of	these	similarities	in	DS-AD	relative	to	LOAD	(in	

addition	 to	 any	 differences)	 remain	 substantially	 unclear,	 as	will	 be	 further	 examined	 in	

CHAPTER	2.				
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CHAPTER	2.		Down	Syndrome	Alzheimer’s	Disease:	DS-AD	

In	 addition	 to	 his	 contributions	 towards	 discovering	 the	 trisomic	 basis	 of	 Down	

syndrome	involving	chromosome	21,	Jerome	Lejeune’s	late	work	established	him	as	an	early	

proponent	of	 investigating	DS	and	DS-AD	cognition	in	metabolic	terms	[342,	343].	 	These	

intuitions	 suggested	 by	 Lejeune	 in	 DS	 thus	 resemble	 the	 historically	 metabolic	 work	 of	

researchers	such	as	Raichle	and	Pettegrew,	where	these	latter	lines	of	inquiry,	evidence	and	

metabolic	 imaging	 methodologies	 have	 recently	 driven	 novel	 insights	 into	 the	 AD	

pathobiological	process	[132,	133,	344-346].	Several	recent	studies	have,	in	fact,	shown	that	

core	bioenergetic/metabolic	deficits	 are	a	 fundamental	 feature	of	AD	neurodegeneration,	

including	those	pathobiological	processes	specifically	precipitating	DS-AD	[12,	13,	347,	348].	

Lejeune’s	observations	also	resemble	a	longstanding	literature	on	the	non-nutritional	

use	of	nutrients	as	potential	metabolic	therapeutics	as	was	first	pursued	by	Wurtman	and	

others	 in	AD	[15,	16,	34,	201,	349].	 Interest	also	grows	in	systemic,	easily	accessible,	and	

metabolically	intensive	aerobic	exercise	interventions	for	DS-AD	and	AD	[33].	More	broadly	

in	 abnormal	 aging,	 this	 literature	 suggests	 that	 the	 catabolic,	 fuel-affording	 functions	 of	

metabolism	often	belie	the	anabolically	vital	biosynthetic	and	signaling	roles	often	served	by	

these	same	biomolecules.	Critically,	all	such	functional	and	homeostatic	metabolic	programs	

may	become	catastrophically	and	dyshomeostatically	limited	as	a	function	of	DS,	advancing	

AD,	or	their	combination	in	aging.	This	presents	a	particular	challenge	because	the	extent,	

scale,	duration,	and	scope	of	these	metabolic	changes	in	the	DS-AD	pathobiological	process	

remain	 unclear.	 The	 current	 limits	 on	 this	 knowledge,	 however,	 also	 suggest	 many	

opportunities	 to	 identify	 novel	 therapeutic	 targets	 and	 biomarkers	 in	 AD	 and	 DS-AD	

specifically.						
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The	 past	 decade	 of	 dementia	 research	 (enabled	 by	 burgeoning	 metabolomics	

technologies)	has	prompted	the	reconciliation	of	molecular	and	metabolic	perspectives	on	

complex,	 multifactorial	 diseases	 of	 abnormal	 aging	 including	 AD	 and	 DS-AD	 [241].	 This	

accords	with	recently	proposed	translational	policy	and	funding	initiatives	to	leverage	these	

and	similar		emerging,	data-rich	technologies	to	advance	the	study	and	treatment	of	hereto	

refractory	human	diseases	demonstrating	complex	drivers	and	risk	profiles	[24].		“-Omics”-

scale	measurement	approaches	such	as	metabolomics	have	allowed	researchers	to	explicitly	

pursue	metabolic	hypotheses	of	 the	kind	suggested	by	Lejeune	and	others	 in	DS	and	AD.	

These	metabolic	considerations	have,	however,	only	been	recently	explored	in	their	specific	

contributions	to	the	pathogenesis	and	dynamic	course	of	DS-AD.			

Amyloid-attenuating	pharmaceutical	therapies	have	recently	been	approved	by	the	

FDA;	however,	their	efficacy	to	robustly	halt,	reverse,	or	stabilize	emerging	cognitive	deficits	

in	prodromal	AD	remains	to	be	clarified	 in	coming	years	beyond	target	engagement	with	

cortical	 amyloid	 alone	 [350].	 The	 time	 thus	 appears	 opportune	 to	 more	 completely	

interrogate	Lejeune’s	original	metabolic	hypothesis	in	DS	that:	“[…]	victory	over	the	neural	

disturbances	resulting	from	the	genetic	overdose	of	trisomy	21	would	very	likely	also	lead	

to	a	cure	or	to	a	prevention	of	Alzheimer	[sic]	dementia”	[342].	For	DS	and	other	dissociable,	

AD-risk-imposing	etiologies,	these	dynamics	of	biologically	and	metabolically	“futile	cycles”	

accompany	 (if	 not	 drive)	 dementia	 progression	 in	 which	 “compensations	 for	 failure”	

precipitate	 complex,	 biologically	 non-random	 “failures	 of	 compensation.”	 These	

catastrophically	 feedforward,	 dyshomeostatic	 cascades	 during	 the	 emergence	 of	 age-

associated	decline	may	prove	ultimately	prohibitive	of	and	incompatible	with	trajectories	of	

healthy	cognitive	aging	in	individuals	with	DS.		
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It	 remains	 unclear,	 however,	 if	 the	 blood	 metabolome	 of	 those	 with	 DS	 meeting	

criteria	for	clinical	AD	resembles	peripheral	blood	metabolomic	changes	observed	in	early	

LOAD	as	detailed	in	CHAPTER	2.	This	question	remains	poorly	understood	in	terms	of	both	

specific,	 implicated	 metabolic	 pathways,	 but	 also	 in	 the	 diversity	 of	 DS-AD-associated	

biochemical	 processes	 involved.	 DS-AD	 initially	 proceeds	 from	 genetically	 driven,	 early	

cortical	amyloidosis	consequent	to	trisomy	21,	unlike	LOAD	[46,	351,	352].	The	principal	aim	

of	this	chapter	is	to	better	characterize	how	the	peripheral	metabolome	varies	specifically	

due	genetic	amyloidosis	risk	in	DS-AD.	Systemic	dysmetabolism	characterizing	individuals	

with	 DS	 throughout	 the	 lifespan	 appears	 to	 index	 (if	 not	mediate)	 this	 aging-associated	

cognitive	decline	[12,	13,	160,	252,	353].	How	these	findings	specifically	relate	to	trisomy	21,	

consequent	triplication	of	the	APP	gene,	and	elevated	cortical	amyloidosis	remains	less	clear.		

Generalizing	from	the	examples	outlined	by	Jerome	Lejeune	three	decades	ago	[342,	

343],	 these	 relationships	 may	 be	 substantially	 multifactorial,	 complex,	 and	 requiring	

homeostatic	regulation	orthogonal	to	the	demands	of	functional	physiological	programs	in	

individual	 tissues	and	cells.	Critically,	 the	possible	 configurations	of	 those	programs	may	

become	constrained	in	a	manner	 incompatible	with	healthy	cognitive	aging	and	cognitive	

resiliency	in	emerging	DS-AD.	Befitting	the	densely	interconnected	biological	networks	and	

pathways	which	describe	the	intersection	of	metabolism	and	biological	chemistry,	multiple	

discrete	foci	of	molecular	and	energetic	compensations	for	failure	may	precipitate	ultimate	

failures	 of	 compensation	 in	 the	 development	 of	 AD.	 These	 varying	 trajectories	 of	 illness	

driven	by	differing	sources	of	genetic	risk	(including	that	specifically	leading	to	amyloidosis)	

may,	however,	be	dissociable	within	the	peripheral	blood	plasma	metabolome	according	to	

differing	etiologies	and	clinical	demographic	variables	[78].		Cortical	amyloidosis	in	adults	
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with	DS	is	a	hallmark	of	these	individuals	as	they	age	[352].	The	triplication	of	the	APP	gene	

in	trisomy	21	drives	this	pathology,	yet	it	remains	unclear	if	more	complex,	sporadic	patterns	

of	heritability	also	contribute	to	both	the	A)	early	embryonic	development	of	DS,	but	also	the	

B)	 emergence	 of	 systemic	 metabolic	 and	 bioenergetic	 constraints	 in	 later-life	 cognitive	

decline.	The	pursuit	of	this	hypothesis	should	not	miss	the	forest	for	the	trees:	amyloidosis	

and	bioenergetics	may	both	exist	subject	to	metabolic	processes	and	constraints	in	evolving	

DS-AD	[347,	348,	354-356].		

Some	of	 this	 systems	pathobiology	 in	 abnormal	 aging	 also	 demonstrates	 sporadic	

heritability,	 agrees	 with	 patterns	 of	 maternally	 driven	 DS	 and	 AD	 risk,	 and	 explains	

intergenerational	patterns	of	LOAD	in	 families	also	overrepresented	with	DS	births	[357-

365]	 (but	 see	 also:	 [366]).	 This	 alone	 may	 suggest	 that	 metabolism	 represents	 a	 “final	

common	pathway”	mediating	genetically	conferred	AD	risk	broadly	across	family	pedigrees	

even	 independent	 of	 trisomy	 21	 gene	 dosage	 effects	 themselves.	 Understood	 more	

completely,	 these	 specific	metabolomic	 perturbations	 in	 DS-AD	 peripheral	 blood	 plasma	

could	 further	 and	 more	 specifically	 suggest	 a	 physiologically	 extended,	 CNS-peripheral	

metabolic	 axis	 dyshomeostatically	 altered	 in	 aging	 individuals	with	DS	 also	 experiencing	

clinical	 AD.	 Implicated	 (and	 perhaps	 highly	 distributed)	 biological	 systems	 relating	 to	

trisomy	21	might	thus	become	progressively	incompatible	with	and	constrained	apart	from	

neurobiological	and	cognitive	trajectories	of	successful	aging	in	DS-AD.	If	these	dynamics	can	

be	measured	at	low	cost	and	with	minimal	invasiveness	in	peripheral	blood,	they	may	also	

suggest	 novel	 plasma	 biomarkers	 and	 specifically	 DS-focused	 interventional	 targets.	

Critically	motivating	the	experiments	reported	in	this	chapter,	these	pathobiological	targets	
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may	only	incompletely	overlap	with	those	identified	in	LOAD	(possibly	as	a	unique	function	

of	amyloid-associated	genetic	burden	due	to	trisomy	21	in	DS-AD).				

METHODS		

Participants	 and	 Cognitive	 Assessment.	 Participants	 in	 this	 retrospective	 study	 were	

selected	from	individuals	with	DS	who	were	enrolled	in	one	of	three	longitudinal	research	

studies	 at	 UC	 Irvine	 between	 December	 2004	 and	 March	 2018.	 Collectively,	 these	

participants	 make	 up	 the	 Predicting	 Cognitive	 Decline	 in	 Adults	 with	 Down	 Syndrome	

(PCDA-DS)	cohort.	Of	these	aging	participants	with	DS,	158	provided	blood	samples	on	453	

visits	(range:	1–10	visits	per	subject).	Blood	samples	were	stored	for	future	research	as	part	

of	the	individual	study	protocols	and	following	informed	consent	from	the	study	participants	

or	 assent	 of	 the	 participant	 and	 consent	 from	 the	 participant's	 legal	 guardian	 where	

required.	All	study	protocols	and	informed	consent	procedures	were	approved	by	the	UCI	

Institutional	Review	Board	(UCI	IRB	HS#s:	2010-8008,	2004-3704,	1994-143,	2009-7244,	

2002-2796).	

Dementia	 status	 for	 all	 initial	 participants	 (n	 =	 158)	 was	 determined	 by	 a	 single	

investigator	(ED)	at	each	blood	draw	visit	(n	=	453)	using	all	available	demographic,	clinical,	

and	cognitive	data	collected	at	the	time	of	the	blood	draw.	Cognitive	assessment	included	the	

Rapid	 Assessment	 for	 Developmental	 Disabilities	 (RADD)	 [367],	 the	 Severe	 Impairment	

Battery	(SIB)	[368],	and	the	Dementia	Questionnaire	for	Mentally	Retarded	Persons	(DMR)	

[369].	All	DS	participants	were	classified	as	meeting	criteria	for	AD	(DS-AD)	or	not	meeting	

criteria	for	AD	(DS-NAD).	A	total	of	12	individuals	were	excluded	from	the	analysis	due	to	A)	

confounding	 medical	 or	 psychiatric	 comorbidities	 which	 obscured	 a	 clear	 dementia	

determination	or	B)	inconsistent	longitudinal	clinical	data	indicating	a	reversal	in	state	from	
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DS-AD	to	DS-NAD.	Thus,	a	 final	group	of	146	DS	participants	(78	DS-AD	and	68	DS-NAD)	

were	included	in	the	present	analyses.	Anticipating	that	DS-AD	participants	would	be	older	

than	 DS-NAD	 participants,	 the	 blood	 specimen	 corresponding	 to	 the	 visit	 when	 the	

participant	was	oldest	 for	DS-NAD	participants	was	selected.	For	DS-AD	participants,	 the	

blood	sample	corresponding	to	the	youngest	available	age	was	submitted	to	metabolomics.	

Phlebotomy	 Protocol,	 Blood	 Processing,	 and	 Long-Term	 Storage.	 Venous	 blood	 was	

collected	 using	 standard	 venipuncture	 technique	 into	 EDTA	 vacutainer	 collection	 tubes.	

Given	general	considerations	of	working	with	DS	participants	and	their	unique	needs,	the	

research	 team	 did	 not	 attempt	 to	 standardize	 blood	 collection	 procedures	 regarding	

medication	administration,	prandial	state,	or	time	of	day.	Not	standardizing	these	collection	

protocols	may	have	introduced	biological	noise	limiting	resolution	to	detect	true	differences	

in	 metabolite	 abundances	 between	 the	 groups.	 As	 for	 the	 LOAD	 analyses	 conducted	 in	

CHAPTER	 1,	 rigorous	 statistical	 parametrization	 of	 this	 potentially	 confounding	

metabolomic	variability	minimized	the	 likelihood	of	 false-positive	associations	associated	

with	these	statistical	risks	[304,	309].			

Following	venipuncture,	collection	tubes	were	gently	inverted	several	times	and	

centrifuged	to	separate	the	plasma	component.	Plasma	was	transferred	to	individual	500-

μl	siliconized	cryovials	and	stored	long-term	at	the	University	of	California	Irvine	

Alzheimer's	Disease	Research	Center	(UCI-ADRC)	biorepository	at	−80°C.	Plasma	samples	

were	shipped	via	overnight	courier	to	the	Lombardi	Cancer	Center	Shared	Resource	

Facility	Metabolomics	Core	at	Georgetown	University	for	mass	spectrometry	analyses.	The	

average	plasma	storage	duration	at	−80°C	was	9.8	years	(range	0.4–14.1).	
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Metabolomics	Methods		

Untargeted	LC-MS	Metabolomics.	Ultra-performance	liquid	chromatography	electro-spray	

ionization-quadrupole-time	 of	 flight-mass	 spectrometry	 (UPLC-ESI-QTOF-MS;	 Xevo-G2	

QTOF,	 Waters	 Corporation)	 was	 used	 to	 conduct	 untargeted	 metabolomic	 profiling	 as	

described	in	previous	work	[12,	13,	28].		Briefly,	plasma	samples	were	prepared	for	MS	by	

solvent	extraction	and	resolved	using	reverse	phase	chromatography	on	an	Acquity	UPLC	

(Waters	Corp.)	online	with	a	QTOF-MS	in	positive	and	negative	electrospray	ionization	(ESI)	

modes	with	optimized	run	parameters.	LC-MS	peaks	were	determined	from	resulting	raw	

instrument	data	using	XCMS	software	[302].	XCMS	processing	of	LC-MS	data	within	PCDA-

DS	 resulted	 in	 a	 total	 of	4962	 small-molecule	 (<	 1.5	 kDa)	 chemical	 features;	978	 in	 the	

negative	mode	(ESI-)	and	3984	in	the	positive	mode	(ESI+).	These	features	resulting	from	

LC-MS	metabolomics	were	defined	in	terms	of	physicochemical	properties	(Mass-to-Charge	

Ratio:	m/z;	chromatographic	retention	time:	RT).		

Untargeted	 Gas	 Chromatography-MS	Metabolomics.	 Gas	 Chromatography-MS	 (GC-MS)	

analyses	 took	 as	 input	 50	 μl	 volumes	 of	 isolated	 blood	 plasma	 extracted	with	 250	 μl	 of	

water/methanol/chloroform	solvent	containing	4-nitrobenzoic	acid.		The	resulting	solvent	

fraction	was	then	dried	under	vacuum.	Sample	derivatization	was	completed	using	20	μl	of	

methoxyamine	added	to	dry	samples	in	an	agitator	at	60°C	for	30	min.	This	was	followed	by	

100	μl	of	MSTFA.	A	1.5	μl	volume	of	the	derivatized	solution	was	injected	in	(1:5)	split	mode	

into	an	Agilent	7890B	GC	system	(Santa	Clara,	CA,	USA)	coupled	with	a	Pegasus	HT	TOF-MS	

(LECO	Corporation,	St.	 Joseph,	MI,	USA).	Separation	was	achieved	on	an	Rtx-5	w/Integra-

Guard	capillary	column	(30	m	×	0.25	mm	ID,	0.25	μm	film	thickness;	Restek	Corporation,	

Bellefonte,	PA,	USA),	with	helium	as	the	carrier	gas	at	a	constant	flow	rate	of	1.0	ml/min.	



 

67 
 

Electron	 impact	 ionization	 (70	 eV)	 at	 full	 scan	 mode	 (40–600	 m/z)	 was	 used,	 with	 an	

acquisition	 rate	 of	 20	 spectra	 per	 second	 in	 the	 TOF/MS	 setting.	 These	 GC-MS	 analyses	

provided	a	final	dataset	of	67	annotated	species.	

Targeted	 Tandem	 (LC-MS/MS)	 Metabolomics.	 Multiple	 reaction	 monitoring	 mass	

spectrometry-based	targeted	analysis	of	free	amino	acids	and	metabolites	associated	with	

energy	metabolism	(i.e.,	biogenic	acids)	was	performed	as	developed	by	Waters	cooperation	

[370].	 Target	molecules	 for	 consideration	 in	 peripheral	 plasma	were	 identified	 based	on	

existing	knowledge	of	biochemical	alterations	in	DS	[371].		Briefly,	plasma	samples	(25	µl)	

were	 mixed	 with	 300	 µl	 of	 methanol:	 chloroform	 (2:1).	 To	 this,	 100	 µl	 of	 water	 and	

chloroform	were	added,	separately.	The	samples	were	A)	vortexed	and	incubated	on	ice	for	

10	min	and	then	B)	centrifuged	at	13,000	rpm	at	60°C	for	15	min.	The	upper	aqueous	layer	

was	carefully	transferred	to	a	separate	vial	and	dried	under	a	gentle	stream	of	nitrogen.	The	

samples	were	reconstituted	in	ACN:Water	(50:50)	containing	1	µg/ml	of	internal	standard	

(tyrosine-15N).	The	supernatant	was	transferred	to	an	MS	vial	and	5	µl	of	sample	was	used	

for	analysis.	

Targeted	 quantifiaction	 of	 lactic	 acid	 was	 performed	 using	 multiple	 reaction	

monitoring	mass	spectrometry.	The	samples	were	resolved	on	an	Acquity	UPLC	CSH	Phenyl-

Hexyl	 column,	2.1	×	100-mm	column	online	with	a	 triple	quadrupole	mass	 spectrometer	

(Xevo-TQ-S,	Waters	Corporation,	USA)	operating	in	the	multiple	reaction	monitoring	(MRM)	

mode.	Signal	intensities	from	all	MRM	Q1/Q3	ion	pair	for	lactic	acid	were	ranked	to	ensure	

selection	of	the	most	intense	precursor	and	fragment	ion	pair	for	MRM-based	quantitation.	

This	approach	resulted	in	selection	of	cone	voltages	and	collision	energies	that	maximized	

the	 generation	 of	 each	 fragment	 ion	 species.	 The	 metabolite	 ratios	 were	 calculated	 by	
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normalizing	 the	peak	area	of	 endogenous	metabolites	within	participant	plasma	samples	

normalized	to	the	internal	standard	(i.e.,	tyrosine-	15N).	The	sample	queue	was	randomized,	

and	solvent	blanks	were	injected	to	assess	sample	carryover	using	four	biological	replicates	

each	for	both	DS-AD	and	DS-NAD	plasma	specimens.	

Statistical	Methods		

Univariate	Group-Wise	Comparisons.	To	examine	group	differences	which	might	influence	

metabolite	 expression,	 DS-AD	 and	 DS-NAD	 participants	 were	 compared	 on	 several	

demographic	and	clinical	and	cognitive	variables	using	Student’s	independent-sample	t-tests	

(participant	age	at	blood	draw,	plasma	storage	duration)	or	chi-square	tests	of	independence	

(participant	sex,	premorbid	degree	of	intellectual	disability,	current	medications).	Student’s	

independent-samples	 t-tests	 were	 also	 used	 to	 examine	 DS-AD	 and	 DS-NAD	 groups	 on	

cognitive	outcomes	(RADD,	SIB,	DMR-Sum	of	Cognitive	Scores).	The	statistical	significance	

threshold	for	all	t	and	χ2	statistics	was	⍺	=	.05.		GC-MS	and	LC-MS/MS	analyses	used	Mann-

Whitney	U	test	false	discovery	rate	(FDR)-adjusted	p-values	<	.05.	This	non-parametric	test	

of	two	independent	groups	guarded	against	the	skewness	of	metabolite	distributions	across	

DS-AD	 and	 DS-NAD	 participant	 specimens.	 Log-base-2	 ratios	 of	 groupwise	 median	

expression	values	(per	metabolite	feature)	quantified	the	direction	and	magnitude	of	these	

differences.	 In	 all	 comparisons,	 DS-AD	 participants	 were	 considered	 relative	 to	 aging	

individuals	with	DS	who	did	not	meet	criteria	for	clinical	AD.			
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Figure	2.1	LC-MS	untargeted	metabolomics	pipeline	for	profiling	of	DS-AD	versus	DS-NAD	
peripheral	plasma	specimens.	
	

Untargeted	LC-MS	Differential	Abundance	Analysis	and	Modeling	Pipeline.	The	statistical	

pipeline	 used	 in	metabolomics	 experiments	 of	 DS-AD	 peripheral	 plasma	 are	 reported	 in	

Figure	 2.1.	 Briefly,	 zero	 abundance	 and	missing	 LC-MS	measurements	were	 replaced	 as	

“NAs.”	 Features	which	 survived	variance	 thresholding	were	 then	 submitted	 to	k-nearest-

neighbors	 imputation	 (K	 =	 10)	 to	 generate	 a	 data	matrix	 free	 of	missing	 and	 artefactual	

values.	These	were	subsequently	base-2	logarithm	transformed	to	improve	symmetry	and	

reduce	positive	skewness	of	metabolite	mass	features.	These	data,	however,	almost	certainly	

reflect	biochemical	variability	in	the	blood	plasma	metabolome	unrelated	to	that	in	DS	which	

stratifies	participants	with	and	without	evidence	of	clinical	AD.	As	with	LOAD	analyses	in	
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CHAPTER	 1,	 the	 aging	 plasma	 metabolome	 of	 those	 with	 DS	 likely	 reflects	 biological	

processes	 unrelated	 to	 cognitive	 status	 in	 DS-AD	 itself.	 This	 again	 motivated	 the	 use	 of	

surrogate	 variable	 analysis	 (SVA)	 to	 parametrize	 sources	 of	 potentially	 confounding	

variability	unrelated	to	clinical,	cognitive	status	in	the	plasma	of	aging	individuals	with	DS.	

To	minimize	algorithmic	bias,	sets	of	significant	surrogate	variables	were	estimated	using	

both	Leek	[304,	309]	and	Buja-Eyuboglu	(BE)	[303]	methods	(SVs	Leek	=	1,	SVs	BE	=	15).			

To	 better	 characterize	 observed	 participant	 variables	 (e.g.,	 age	 at	 blood	 draw,	

APOE4+	 risk	 genotype,	 sex)	 in	 relation	 to	 estimated	SVs,	Bayesian	network	models	 [307,	

372]	were	constructed	using	participant-level,	discretized	BE	and	Leek	SV	scores	for	a	subset	

of	 participants	 with	 known	 values	 for	 all	 clinical-demographic	 variables	 (nsubset	 =	 127	

participants)	 [306].	 This	 allowed	 the	 relationships	 amongst	 these	 latent	 and	 observed	

variables	to	be	visualized	and	considered	in	an	integrated	manner.	Fitted	surrogate	variable	

scores	 for	 each	 participant	 were	 then	 included	 as	 covariates	 in	 linear	 models	 which	

estimated	the	abundance	of	each	observed	metabolite	as	a	function	of	cognitive	status	(DS-

NAD	versus	DS-AD)	[308].	The	nominal,	unadjusted	p-values	associated	with	this	phenotypic	

contrast	 for	 each	metabolite	 feature	 (indexed	 by	m/z	 ratio,	 RT)	were	 then	 submitted	 to	

integrative	pathway	analysis	using	Mummichog	2.0	software	[258].	Using	both	BE	and	Leek	

SV	estimation	methods,	unadjusted	p-values	 from	feature-wise	 linear	modeling	were	also	

transformed	as	the	-log10(unadjusted	p-values)	to	construct	a	set	of	empirical	“prizes”	to	be	

modeled	 as	 prize-collecting	 Steiner	 trees	 (implemented	 in	 PIUmet	 software)	 [341].	 This	

allowed	 for	 the	 inferred	 mapping	 of	 unannotated	 metabolomic	 mass	 features	 to	 latent	

dysregulated	 proteins	 differentiating	 DS-AD	 and	 DS-NAD	 blood	 plasma	 through	 known	

protein-protein	 interaction	 (PPI)	 networks.	 	 The	 mRNA	 expression	 of	 consensus	 genes	
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identified	through	PIUmet	analyses	were	characterized	at	the	tissue	and	CNS-cell	level	using	

GTEx	and	the	Barres	Lab	Brain	RNA-Seq	database,	respectively	[373].			

Software.	Analyses	employed	R	version	4.0.5.	Imputation	was	completed	using	the	impute	

package.	 SVA	was	 carried	 out	 using	 the	 sva	 package.	 	 Empirical	 Bayes-moderated	 linear	

models	and	metabolite-wise	phenotypic	contrasts	were	evaluated	using	the	limma	package.	

Mummichog	2.0	was	used	 to	model	 systems-scale,	 coordinated	changes	 in	 the	peripheral	

metabolome	due	 to	either	control	or	preclinical	AD	status:	mummichog.org.	 	The	bnlearn	

package	contributed	functions	for	constructing	Bayesian	networks,	which	ingested	features	

jointly	 discretized	 by	 the	 package	 GridOnClusters.	 PIUmet	 was	 used	 to	 estimate	 latent	

dysregulated	 protein	 networks	 from	 untargeted	 LC-MS	 profiling	 experiments:	

http://fraenkel-nsf.csbi.mit.edu/piumet2/.		

RESULTS	

Demographic,	Clinical,	and	Cognitive	Group	Differences:	DS-AD	versus	DS-NAD	

	 Participant	characteristics	stratified	by	DS-AD	versus	DS-NAD	status	are	reported	in	

Table	 2.1.	 	 The	 DS-AD	 and	 DS-NAD	 groups	 differed	 significantly	 on	 several	 relevant	

variables.	 The	 DS-AD	 group	 was	 significantly	 older	 (p	 <	 .001),	 had	 greater	 premorbid	

intellectual	disability	(p	<	.001)	and	DS-AD	plasma	was	stored	at	−80°C	significantly	longer	

(p	<	.001)	than	the	DS-NAD	group.	In	addition,	there	were	more	females	than	males	in	the	

DS-AD	group	and	more	males	than	females	in	the	DS-NAD	group	(p	<	.001).	Finally,	the	DS-

AD	group	had	a	higher	proportion	of	individuals	taking	cholinesterase	inhibitors	(p	<	.001),	

anticonvulsants	(p	<	.001),	and	the	antioxidant	supplement	vitamins	A,	C,	and	E	(alpha-lipoic	

acid)	 (p	 <	 .001)	 than	 the	 DS-NAD	 participants.	 These	 significant	 group	 differences	were	

considered	 further	 using	 Bayesian	 networks.	 Specifically,	 these	 networks	 integrated	 A)	
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known	clinical-demographic	variables	with	B)	participant-level	SV	scores	computed	in	the	

differential	abundance	(DA)	analysis	of	metabolite	features	in	DS-AD	versus	DS-NAD	plasma.	

Significant	differences	between	the	groups	on	cognitive	outcomes	were	also	observed.	As	

expected,	DS-AD	participants	demonstrated	greater	impairment	on	the	SIB	(p	<	.001),	the		

RADD	(p	<	.001),	and	the	cognitive	section	of	the	DMR	(p	<	.001).	

Table	2.1	Participant	Characteristics:	Means	and	Standard	Error	of	the	Mean	(SEM)	
	 n	(M/F)	 Participant	age	

at	blood	draw	
in	years	

Plasma	storage	
duration	in	
years	

Premorbid	degree	
of	intellectual	
disability	

SIB	
(max	=	100)	

RADD	
(max	=	76)	

DMR-SOC	
(max	=	44)	

Down	syndrome	
Alzheimer’s	disease		

(DS-AD)	

78	(36/42)	 53.7	(.7)	 11.8	(.3)	 32%	Mild		
39%	Moderate	
25%	Severe	
4%	Profound		

54.5	(3.9)	
	
	
	
n	=	58	

26.4	(2.3)	
	
	
	
n	=	58	

29.5	(1.3)	
	
	
	
n	=	75	

Down	syndrome	No	
Alzheimer’s	disease		

(DS-NAD)	

68	(44/24)	 46.1	(1.3)	 7.5	(.5)	 49%	Mild	
32%	Moderate	
10%	Severe	
9%	Profound	

82.5	(2.5)	
	
	
	
n	=	64	

46.4	(2.3)	
	
	
	
n	=	65	

10.3	(1.4)		
	
	
	
n	=	67	

	

Differentially	Abundant	Peripheral	Metabolite	Features	Distinguish	DS-NAD	and	DS-

AD	Plasma					

Following	initial	metabolomics	data	pre-treatment	(including	imputation	and	log2-	

transformation)	 (see	METHODS),	4962	putative	metabolite	 features	 identified	 by	 LC-MS	

were	submitted	to	surrogate	variable	analysis	(SVA).	These	empirical	estimation	methods	

can	improve	reproducibility	in	large-data	“-omics”	experiments	by	specifically	considering	

the	molecular	variability	 in	the	peripheral	metabolome	associated	with	the	DS-AD	versus	

DS-NAD	comparison	(e.g.,	as	opposed	to	fasting	and/or	medication-withholding	status).	To	

minimize	bias	 in	downstream	analysis	due	 to	 algorithm	choice,	both	Buja-Eyuboglu	 (BE)	

[303]	and	Leek	[304]	algorithms	were	used	to	fit	respective	sets	of	surrogate	variables	to	

PCDA-DS	metabolomics	data	(SVs	Leek	=	1,	SVs	BE	=	15).		
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Bayesian	network	analyses	relating	participant-wise	surrogate	variables	to	observed	

clinical-demographic	 factors	 did	 not	 observe	 associations	 between	 SVs	 and	 age	 at	 blood	

draw,	sex,	or	APOE4+	genotype	in	the	APOE-genotyped	subset	of	the	PCDA-DS	cohort	(nsubset	

=	127;	DS-AD	APOE4+	=	24,	DS-NAD	APOE4+		=	11,	chi-square	test	of	independence	p	=	.074).	Using	

Leek-method	 SVs,	 anticipated	 associations	 were	 observed	 between	 cognitive	 and	 social	

subscales	of	the	DMR,	in	addition	to	relationships	between	the	RADD,	SIB,	and	premorbid	

levels	 of	 intellectual	 disability	 (Figure	 2.2A).	 BE-method	 SVs	 recapitulated	 these	

associations	 across	 cognitive	 measures,	 while	 also	 associating	 SV11	 to	 cholinesterase	

inhibitor	use	(SV	scores	taking	<	SV	scores	not	taking).	Similarly,	participant	scores	on	SV14	were	

observed	to	moderate	status	for	taking/not	taking	proton	pump	inhibitors	(SV	scores	taking	<	

SV	scores	not	taking)	(Figure	2.2B).		

	
Figure	2.2	Bayesian	network	models	relate	A)	BE	and	B)	Leek	estimated	surrogate	variables	
to	observed	clinical-demographic	factors.	In	both	cases,	anticipated	relationships	between	
cognitive	assessments	were	recapitulated	(e.g.,	RADD,	SIB,	DMR).	In	the	BE	method	network,	
significant	surrogate	variables	related	to	cholinesterase	and	proton	pump	inhibitor	use.	Line	
boldness	 indicates	 confidence/strength	 of	 the	 estimated	 relationships	 between	 factors	
estimated	from	participant	data	and	a	fitted	network	structure	[bnlearn:	arc.strength()].		
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LC-MS	 mass	 feature	 abundances	 were	 then	 estimated	 from	 linear	 models	 as	 a	

function	of	A)	AD	status	(DS-AD	versus	DS-NAD)	and	B)	fitted,	participant-level	surrogate	

variable	scores.	Analysis	of	DA	metabolite	features	was	carried	out	in	parallel	using	both	BE	

and	Leek	methods	of	surrogate	variable	estimation.	Of	the	1590	features	submitted	to	DA	

modeling	using	the	BE	method,	1306	features	in	the	ESI+	mode	of	detection	and	284	in	the	

ESI-	mode	significantly	differed	due	to	AD	status,	nominal	p’s	<	.05.	Using	the	Leek	method	

of	SV	estimation,	similar	proportions	of	features	were	DA	in	peripheral	plasma	of	those	with	

clinical	AD	(ESI+:	1168,	ESI-:	267).		

Differentially	Abundant	Peripheral	Metabolite	Features	between	DS-AD	and	DS-NAD	

Plasma	are	Enriched	within	Known	Metabolic	Pathways		

Mass	features	identified	by	m/z	and	RT	were	ranked	according	to	nominal	p-value	

and	 taken	 as	 input	 to	 integrative	 Mummichog	 2.0	 metabolomic	 network	 modeling.	

Peripheral	 metabolic	 change	 characterizing	 clinical	 AD	 in	 aging	 DS	 implicated	 multiple	

known	biochemical	pathways	significantly	associated	with	and	enriched	in	relation	to	the	

DS-AD	to	DS-NAD	comparison	(Table	1.2).	 In	particular,	 (Leek-ESI+)-identified	processes	

including	vitamin	E	(p	<	.001),	porphyrin	ring	(p	<	.01),	and	glycerophospholipid	metabolism	

(p	=	 .066).	These	accompanied	alterations	to	components	of	the	fatty	acid/	mitochondrial	

carnitine	 shuttle	 system	 (p	 <	 .0001),	 all	 of	 which	were	 recapitulated	 in	 (BE-ESI+)-mode	

analyses,	p’s	<	.05.	The	modeling	of	Leek-ESI-	metabolite	features	also	identified	significant	

alterations	 to	 lipid	 metabolism,	 but	 further	 identified	 alterations	 to	 the	 central	 carbon	

metabolism	of	hexose	sugars	 including	glycolysis.	 	Similar	 findings	were	noted	 in	BE-ESI-	

analyses,	 in	 addition	 to	 differences	 in	 biogenic	 amine	 and	 pyrimidine	 nucleic	 acid	

metabolism,	all	p’s	<	.05.			
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Table	2.2	Canonical	Biochemical	Pathways	Differing	between	DS-AD	and	DS-NAD	Plasma	by	
Mummichog	2.0	Analyses		

Pathways Overlap 
Size 

Pathway 
Size 

p-value ESI Mode SV Mode 

Aminosugars metabolism 2 3 0.03185 NEG BE 
Arachidonic acid metabolism 2 2 0.01151 NEG BE 

Arginine and Proline Metabolism 3 5 0.01605 NEG BE 
Ascorbate (Vitamin C) and 

Aldarate Metabolism 
1 1 0.09991 POS BE 

Beta-Alanine metabolism 3 4 0.00874 NEG BE 
Carnitine shuttle 13 23 8.00E-05 POS LEEK 
Carnitine shuttle 12 23 0.00025 POS BE 

Fructose and mannose 
metabolism 

2 2 0.00832 NEG LEEK 

Fructose and mannose 
metabolism 

2 2 0.01151 NEG BE 

Galactose metabolism 2 2 0.00832 NEG LEEK 
Galactose metabolism 2 2 0.01151 NEG BE 

Glutamate metabolism 2 3 0.03185 NEG BE 
Glutathione Metabolism 2 2 0.01151 NEG BE 

Glycerophospholipid metabolism 10 29 0.0663 POS LEEK 
Glycerophospholipid metabolism 2 4 0.0358 NEG LEEK 
Glycerophospholipid metabolism 3 4 0.00874 NEG BE 

Glycine, serine, alanine and 
threonine metabolism 

3 4 0.00874 NEG BE 

Glycolysis and Gluconeogenesis 3 6 0.01546 NEG LEEK 
Glycolysis and Gluconeogenesis 4 6 0.00462 NEG BE 

Histidine metabolism 2 2 0.01151 NEG BE 
Leukotriene metabolism 2 3 0.02075 NEG LEEK 
Leukotriene metabolism 2 3 0.03185 NEG BE 

N-Glycan biosynthesis 1 1 0.1 POS LEEK 
Porphyrin metabolism 4 5 0.00403 POS LEEK 
Porphyrin metabolism 4 5 0.00143 POS BE 

Propanoate metabolism 2 3 0.03185 NEG BE 
Prostaglandin formation from 

arachidonate 
3 4 0.00403 NEG LEEK 

Prostaglandin formation from 
arachidonate 

3 4 0.00874 NEG BE 

Pyrimidine metabolism 3 7 0.04554 NEG BE 
Pyruvate Metabolism 2 3 0.02075 NEG LEEK 
Pyruvate Metabolism 3 3 0.00244 NEG BE 

TCA cycle 1 1 0.09991 POS BE 
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Vitamin E metabolism 9 15 0.00084 POS LEEK 
Vitamin E metabolism 8 15 0.00109 POS BE 

	

	

Differentially	Abundant	Peripheral	Metabolite	Features	between	DS-AD	and	DS-NAD	

Plasma	are	Enriched	within	De	Novo	Metabolic	Pathways		

	 Analyses	 using	 Mummichog	 software	 also	 discovered	 several	 de	 novo	 metabolic	

pathways	associated	with	the	DS-AD	versus	DS-NAD	comparison.	The	Leek-ESI+	comparison	

particularly	implicated	components	of	the	mitochondrial	fatty	acid	carnitine	shuttle	system	

(Figure	1.3A),	p	=	.0027.	This	finding	was	also	observed	in	BE-ESI+	with	the	further	inclusion	

of	coenzyme	A	(a	further	component	of	the	carnitine	fatty	acid	shuttle).		This	accords	with	

additional	findings	from	these	analyses	in	Leek-ESI+	and	BE-ESI+	linking	the	metabolism	of	

lipophilic,	 fatty	 vitamin	 E	 (alpha-tocopherol)	 and	 ubiquinone/	 Coenzyme	 Q	metabolites,	

which	 both	 serve	 to	 attenuate	 oxidative	 stress	 and	 promote	 redox	 homeostasis	 (Figure	

1.3B).	 This	 corroborated	 analyses	 in	 Leek-ESI-	 which	 implicated	 glutathione	 redox	

metabolism	 in	 relation	 to	components	of	glycolysis,	pyruvate	 fermentation	 to	 lactate,	 the	

citric	acid	cycle,	and	immuno-bioactive	PUFA	signaling	lipids,	p	=	.0087.	This	also	included	

glutathione	 conjugates	 of	 these	 latter	 polyunsaturated	 lipids	 and	 elements	 of	 the	

mitochondrial	pyruvate/	malate	shuttle	(Figure	1.3C).		

Analyses	 in	 BE-ESI-	 implicated	 very	 similar	 cytosolic-mitochondrial	 metabolism	

involving	this	same	shuttle	in	addition	to	pyruvate	fermentation	and	glutamate	metabolism.	

Interestingly	 this	BE-ESI-	 de	 novo	 network	 also	 included	 oxygenated	 biogenic	 amine	 (5-

oxoproline)	 and	 short-chain	 fatty	 acid	 (SCFA)	 derivatives	 associated	 with	 microbiome	

status,	p	=	.00372	(Figure	1.3D),	particularly	as	these	relate	to	glutamate	metabolism	as	in	
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glutaminolysis.	Strikingly,	BE-ESI+	modeling	recapitulated	the	intersection	of	phospholipid	

membrane	remodeling	and	mitochondrial	acyl-carnitine	metabolism	better	known	as	Lands’	

cycle,	p	 =	 .012	 (Figure	1.3E).	 At	 a	more	macroscopic	metabolic	 scale,	 this	 same	process	

contributes	 substantially	 to	 physiologically	 extended	 hepatic	 lipoprotein	 and	 cholesterol	

metabolism	which	has	been	associated	with	AD	and	other	metabolic	disorders	of	abnormal	

aging.	Through	coenzyme	A,	this	network	also	incorporated	peroxisomally	dependent	ether	

lipid	metabolism	and	hepatic	bile	acid	biosynthesis/conjugation.		

	
Figure	2.3	Significant	Mummichog	de	novo	metabolic	modules	are	overrepresented	with	
metabolite	features	nominated	by	the	DS-AD	versus	DS-NAD	statistical	comparison.		

	

While	 de	 novo	 Mummichog	 modeling	 can	 powerfully	 suggest	 pathway-level	

biochemical	associations	corresponding	to	clinical	and	cognitive	status	in	DS	aging,	it	does	

not	directly	map	these	processes	to	corresponding	human	genes.	It	also	does	not	leverage	

prior	biological	knowledge	regarding	the	associations	between	potentially	implicated	genes	

as	described	by	protein-protein	interaction	(PPI)	networks.	In	contrast,	this	alternative	de	



 

78 
 

novo	pathway	reconstruction	method	(taking	unannotated	m/z	features	and	-log10(nominal	

p-values)	 as	 input)	 has	 been	 implemented	 in	 the	 software	 PIUmet	 [374].	 These	 analyses	

undertaken	 in	 parallel	 for	 both	 Leek	 and	 BE	 SVA	methods	 in	 the	 DS-AD	 versus	 DS-NAD	

comparison	demonstrated	concordance	in	PCDA-DS	blood	plasma	specimens.		This	included	

multiple	metabolically	relevant	genes	encoding	enzymes	such	as	branched	chain	amino	acid	

transaminase	 1	 (BCAT1),	 prosaposin	 (PSAP),	 and	 ethanolamine	 phosphotransferase	 I	

(SELENOI/	EPT1)	(Figure	2.4).			

					
Figure	2.4	PIUmet	de	novo	untargeted	metabolomics	analyses	using	A)	Leek	and	B)	BE	SVA	
algorithms	identify	latent	proteins	implicated	in	metabolic	differences	characterizing	DS-AD	
versus	 DS-NAD	 peripheral	 blood	 plasma.	 Global	 tissue-level	 expression	 in	 humans	 was	
accessioned	using	GTEx.	Human,	CNS-cell-level	profiling	was	accessioned	from	the	Barres	
lab	Brain	RNA-Seq	database	[373].			
	



 

79 
 

GC-MS	 and	 Targeted	 LC-MS/MS	 Confirm	 Peripheral	 Bioenergetic	 and	 Biosynthetic	

Metabolites	are	Altered	in	DS-AD	Plasma		

		 To	follow-up	on	and	further	extend	the	findings	from	the	untargeted	LC-MS	profiling,	

subsequent	 GC-MS	 and	 targeted	 LC-MS/MS	 experiments	 were	 conducted.	 These	

corroborated	integrative	LC-MS	pathway	analyses	and	provided	further	evidence	of	altered	

bioenergetic	and	biosynthetic	metabolism	in	DS-AD.	Specifically,	GC-MS	analyses	identified	

lactic	acid	(the	end	product	of	lactic	acid	fermentation	following	glycolysis)	as	upregulated	

in	 DS-AD	 plasma	 (FDR	 =	 .0007,	 Log2FC	 =	 1.2)	 (Figure	 2.5A).	 Interestingly,	 a	 structural	

isomer	of	lactic	acid—dihydroxyacetone—trended	toward	upregulation	in	DS-AD	versus	DS-

NAD	plasma	 (FDR	=	 .062,	Log2FC	 =	 .47).	Although	 this	 isomer	 is	not	directly	 involved	 in	

glycolysis,	its	triose	phosphate	derivative—dihydroxyacetone	phosphate	(DHAP)—is	itself	

a	 glycolysis	 intermediate.	 The	 significance	 of	 this	 finding	 remains	 uncertain,	 but	 it	 may	

indicate	a	shift	toward	metabolically	ineffective,	cytotoxic,	and	pro-inflammatory	advanced	

glycation	end-product	(AGE)	formation	[375,	376].	Confirming	de	novo	LC-MS	analyses,	GC-

MS-analyzed	plasma	alpha-tocopherol/	vitamin	E	levels	were	elevated	in	those	with	DS-AD	

compared	to	DS-NAD	(FDR	=	.028,	log2FC	=	.275).			

	 Findings	from	untargeted	LC-MS	and	targeted	GC-MS	experiments	implicated	energy	

metabolism,	specifically	lactic	acid	in	the	case	of	the	latter	GC-MS	platform.	Further	targeted	

experiments	 using	 LC-MS/MS	 were	 undertaken.	 This	 permitted	 the	 unambiguous	

identification	and	quantification	of	several	organic	acid	abundances	to	better	understand	the	

relationship	of	this	biochemical	class	to	DS-AD	in	peripheral	plasma	(Table	2.5).	Consistent	

with	bioenergetic	alterations,	upregulation	of	pyruvic	acid	(FDR	=	.028,	Log2FC	=	1.1)	in	DS-

AD	 participants	 was	 observed	 (Figure	 2.5B).	 Unrelated	 to	 glycolysis	 itself,	 but	 perhaps	
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associated	 with	 bioenergetic	 functions,	 there	 was	 also	 a	 significant	 upregulation	 of	

methyladipic	 acid	 (FDR	 =	 .028,	 Log2FC	 =	 .64)	 in	 DS-AD	 relative	 to	 DS-NAD	 participants	

(Figure	2.5C).	 Importantly,	quantitative	LC-MS/MS	analyses	of	 lactic	acid	unambiguously	

confirmed	its	upregulation	in	DS-AD	versus	DS-NAD	patients	(FDR	=	 .0001,	Log2FC	=	 .86;	

Median	DS-AD:	712.5	µg/ml,	Median	DS-NAD:	392.7	µg/ml)	(Figure	2.5D).	

	 It	 has	 been	 previously	 suggested	 that	 nutrient	 availability	 may	 impact	 synaptic	

integrity	[321].	It	is	also	increasingly	regarded	that	synaptic	loss	and	derangement	may	be	

highly	proximal	to	cognitive	impairment	[377].	For	this	reason,	plasma	levels	of	folic	acid	

and	uridine	were	evaluated	in	patient	blood	plasma.	As	proposed	by	Wurtman	and	others	

[201,	321],	uridine	levels	may	be	rate	limiting	for	the	synthesis	of	membrane	components	

such	as	phosphatidylcholine	lipids	(PCs).	These	are	the	same	molecules	Mapstone	and	others	

have	previously	found	to	be	depleted	in	the	blood	plasma	of	older	adults	with	preclinical	AD	

[28,	 29].	 Additionally,	 deficiencies	 in	 folic	 acid	 may	 lead	 to	 limited	 regeneration	 of	

methionine	methyl	groups,	impaired	hepatic	choline	synthesis,	and	consequent	reduction	of	

available	 docosahexaenoic	 acid	 (DHA)	 to	 be	 used	 for	 membrane	 lipid	 synthesis	 [321].	

Uridine	levels	were	found	to	be	significantly	depleted	in	the	plasma	of	DS-AD	participants	

relative	to	the	DS-NAD	participants	(Figure	2.5E)	(FDR	=	.007,	Log2FC	=	−1.31);	however,	

levels	of	folic	acid	were	not	different	between	the	groups	(FDR	>	.5).		

	 Recent	 studies	 (and	 PIUmet	de	 novo	 analyses	 here)	 have	 also	 suggested	 that	 free	

amino	acid	levels	(e.g.,	branched	chain	amino	acids:	isoleucine,	leucine,	valine)	are	depleted	

in	the	peripheral	blood	of	those	at	increased	risk	of	developing	dementia	and	AD	[378].	It	is	

also	possible	that	amino	acid	oxidation	in	the	dementing	or	demented	brain	may	serve	as	an	

alternative	 bioenergetic	 resource	 in	 the	 face	 of	 impaired	 glucose	metabolism	 [326,	 327].	
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Employing	LC-MS/MS	methods,	no	 free	amino	acids	significantly	differed	between	DS-AD	

and	DS-NAD	participant	bloods	(all	FDR	>	.05).	This	included	the	branched	chain	amino	acids	

leucine	 and	 isoleucine,	 although	 valine	was	 not	measured	 due	 to	 abundances	 below	 the	

lower	 limit	 of	 reliable	 quantification	 in	most	 samples.	 This	 null	 finding	 is	 challenging	 to	

interpret	 in	 the	 context	 of	 de	 novo,	 untargeted	 PIUmet	 analyses	 of	 PCDA-DS	 participant	

plasma,	which	associated	branched-chain	amino	acid	metabolic	genes	(BCAT1)	to	the	DS-AD	

versus	DS-NAD	comparison	across	both	Leek	and	BE	method	analyses.		

	
Figure	 2.5	 Targeted	metabolomics	 experiments	 quantifying	 several	 biogenic	 acids	which	
demonstrated	FDR	<	 .05	significant	differences	between	DS-AD	and	DS-NAD	plasma.	This	
specifically	included	significant	differences	in	lactic	acid	across	GC-MS	(2.5A)	and	LC-MS/MS	
(2.5D).	 	 Additionally,	 membrane	 biosynthetic	 cofactors	 (i.e.,	 uridine)	 were	 significantly	
depleted	in	DS-AD	blood	(2.5E).							
	

DISCUSSION	

	 The	 present	 experiments	 in	 DS-AD	 and	 DS-NAD	 blood	 plasma	 using	 multiple	

metabolomics	 platforms	 and	 analysis	 approaches	 strongly	 support	 the	 hypothesis	 that	
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cognitive	decline	in	this	vulnerably	aging	population	occurs	concomitantly	with	emerging	

dysmetabolism.	 This	 specifically	 includes	 the	 peripherally	 apparent	 dysmetabolism	 of	

several	biogenic	acids	including	lactate	important	for	bioenergetic	processes.		As	observed	

in	CHAPTER	1	for	LOAD,	DS-AD	peripheral	metabolic	associations	were	diverse	but	included	

components	 of	 lipid,	 central	 carbon/glycolytic,	 and	 “glutaminolysis-like”	 metabolism	

identified	 across	 both	 canonical	 and	 de	 novo	 metabolic	 pathway	 analyses.	 Furthermore,	

PIUmet	 analyses	 of	 these	 same	metabolite	 features	 stratified	 by	 clinical,	 cognitive	 status	

nominated	 several	 inferred	 genes	 encoding	 diverse	 metabolic	 enzymes.	 These	 enzymes	

were	complexly	distributed	in	their	transcription	across	human	tissues	(including	the	brain)	

and	heterogeneously	expressed	across	CNS	cell	types	including	neurons	and	glia.					

	 Critically,	it	is	unclear	if	all	metabolic	models	generated	to	describe	the	DS-AD	versus	

DS-NAD	 comparison	 strictly	 represent	 disease-associated	 biochemical	 processes	 and/or	

pathways.	 This	 is	 because	 those	 cognitively	 impaired	 individuals	 with	 DS	 were	 also	

significantly	more	often	prescribed	anticholinergic	medications	 in	addition	to	antioxidant	

supplements	(i.e.,	vitamins	A,	C,	and	E/alpha-lipoic	acid).	Bayesian	network	analyses	of	BE-

estimated	surrogate	variables	in	relation	to	clinical	covariates	identified	SV11	as	covarying	

with	use	of	cholinesterase	inhibitor	drugs.	Because	cholinergic	dysmetabolism	has	long	been	

described	 as	 a	 component	 of	 AD	 pathobiology	 [379,	 380],	 the	 parametrization	 of	

cholinesterase	 inhibitor	 use	 by	 SV11	 likely	 improved	 statistical	 power	 to	 identify	 AD-

associated	 peripheral	 metabolic	 change	 itself	 unrelated	 to	 these	 pharmaceutical	

interventions	in	aging	DS.		

Similarly,	 vitamin	 E	 metabolism	 was	 associated	 with	 dementia	 status	 in	 aging	

individuals	with	DS.	Because	participants	with	DS-AD	more	 frequently	 consumed	dietary	
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supplements	of	this	metabolite,	additional	experiments	will	be	necessary	to	determine	if	this	

finding	suggests	an	A)	true	pathobiological	change	in	DS-AD	remediated	by	the	supplement	

or	 simply	 a	 B)	 readout	 of	 biological	 target	 engagement	 by	 therapeutics	 (e.g.,	 vitamin	 E,	

cholinesterase	 drugs).	 This	 latter	 possibility	may	 not	 be	 supported	 by	 the	metabolomics	

experiments	conducted	in	this	chapter,	which	nominated	vitamin	E	metabolism	specifically	

despite	DS-AD	participants	disproportionately	supplementing	with	vitamins	A	and	C	also.	

Neither	 of	 these	 latter,	 small-molecule	 cofactors	 (nor	 their	 metabolic	 pathways)	 were	

mapped	to	the	comparison	of	DS-AD	and	DS-NAD	plasma.	This	importance	of	vitamin	E	is	

intriguing,	as	it	represents	one	of	the	few,	key	lipophilic	antioxidants	in	human	tissues	and	

cells,	including	the	brain	[381].	Its	specific	roles	in	DS	aging,	however,	remain	unclear	[382].	

Consistent	with	 the	hypothesis	 that	 clinical	AD	accompanies	 changes	 to	a	physiologically	

extended,	 CNS-peripheral	metabolic	 axis,	 vitamin	 E	metabolism	 is	 complexly	 distributed	

across	human	tissues	and	organ	systems	[383].	Regardless	of	the	possible	mechanistic	roles	

of	vitamin	E	or	choline	metabolism	in	AD	pathobiology,	metabolomic	analyses	of	peripheral	

blood	 appear	 to	 sensitively	 index	 biological	 target	 engagement	 associated	 with	 these	

compounds	in	aging	adults	with	DS	to	whom	these	therapies	have	been	prescribed.		Although	

beyond	 the	 scope	 of	 this	 dissertation,	 such	 peripheral	 blood	 biomarkers	 could	 be	 highly	

useful	 for	 minimally	 invasive	 therapeutic	 response	 monitoring	 and	 should	 be	 further	

studied.			

Untargeted	LC-MS	Profiling	and	Modeling	Experiments		

	 Multiple,	 untargeted	 metabolomic	 modeling	 experiments	 and	 analyses	 in	 DS-AD	

plasma	suggested	a	diversity	of	metabolic	perturbations	involving	both	central	carbon	and	

lipid	 metabolism.	 Very	 similar	 to	 findings	 reported	 A)	 by	 Mapstone	 and	 colleagues	
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previously	 and	 B)	 in	 CHAPTER	 1	 for	 LOAD,	 these	 included	 de	 novo,	minimally	 biased	

reconstructions	 of	 phospholipid	 and	 acyl-carnitine	 intermetabolism	 (i.e.,	 Lands’	 cycle)	

(Figure	 2.3E).	 This	 included	 metabolite	 glycerophosphocholine	 (GPC)	 (i.e.,	

phosphatidylcholine	absent	its	fatty	acid	chains),	which	is	elevated	in	the	cerebrospinal	fluid	

of	euploid	Alzheimer's	patients	[384].	Further	metabolism	of	GPC	is	facilitated	by	the	gene	

glycerophosphocholine	phosphodiesterase	1	(EDI3),	which	controls	the	cleavage	of	GPC	and,	

thus,	augments	glycerol-3-phosphate	(G3P)	and	choline	availability	[385].		In	addition	to	its	

role	 in	 glycerolipid	 synthesis,	 G3P	 contributes	 to	 redox	 balance	 and	 oxidative	

phosphorylation	in	the	brain	by	oxidizing	cytosolic	NADH	generated	through	glycolysis	(i.e.,	

the	glycerol	phosphate	shuttle)	and	permitting	further	glycolytic	flux.	Although	it	remains	to	

be	 evaluated	 empirically,	 such	 a	 ratio	 of	 GPC/PC	 or	 the	 abundances	 of	 its	 downstream	

metabolites	may	index	lipid	dysmetabolism	in	DS-AD	and	potentially	AD	broadly.		

Mummichog	de	novo	modeling	also	identified	a	second	node	highly	suggestive	of	acyl-

carnitine	 metabolism.	 Module	 membership	 for	 acyl-carnitines	 was	 heterogeneous	 with	

respect	to	acyl	chain	length	and	degree	of	unsaturation,	indicating	that	the	process	captured	

by	this	node	may	be	relatively	non-specific	across	fatty	acid	species.	Fatty	acid	composition	

differs	 between	 DS	 patients	 and	 non-affected	 sibling	 controls	 [386-389];	 however,	 the	

mechanistic	investigation	of	lipid	dysmetabolism	in	aging	DS	and	AD	remains	at	early	stages.	

In	euploid	AD	patients,	alterations	of	fatty	acid	metabolism	are	increasingly	understood	to	

impact	cognitive	and	neuropathological	outcomes	[227].		

It	is	interesting	that	a	key	metabolite	bridging	phospholipid	and	fatty	acid	pathways	

is	Coenzyme	A	(CoA),	which	is	conjugated	to	fatty	acids	to	facilitate	their	transport	into	the	

mitochondria	 to	 undergo	 oxidation	 and	 fuel	 ATP	 synthesis.	 It	 is	 also	 required	 for	 the	
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remodeling	of	PC	acyl	chains	via	Lands'	cycle,	a	process	 increasingly	thought	to	exist	 in	a	

complex	 equilibrium	with	 the	 Kennedy	 pathway	 (i.e.,	 glycerolipid	 biosynthesis)	 and	 the	

cytosolic	 free	 fatty	 acid	 pool	 [390].	 	 Moreover,	 these	 lipid	 shutting	 dynamics	 may	

disproportionately	 implicate	 hepatic	 and	 lipoprotein	metabolism	 in	 abnormal	 aging	 [22,	

168,	318,	391,	392],	although	APOE4+	status	was	not	significantly	modeled	 in	relation	 to	

estimated	surrogate	variables	within	PCDA-DS	data.	Alterations	of	coenzyme	A-acetylating	

enzymes	have	long	been	appreciated	as	a	component	of	AD	cholinergic	deficits.		Coenzyme	

A	also	serves	as	a	purinergic	negative	modulator	of	neuronal	acetylcholine	release	 [393],	

which	is	itself	impaired	in	AD	[394,	395].	Similarly,	alteration	of	CoA	metabolism	and	its	flux	

through	 oxidative	 phosphorylation	 may	 reflect	 alternative	 and/or	 compensatory	

bioenergetic	strategies	to	metabolic	stress	and	insult	[396].	

Confirmatory,	Targeted	Metabolomics	Experiments		

Initial	 untargeted	 metabolomics	 profiling	 motivated	 confirmatory,	 targeted	

experiments	 quantifying	 several	 biogenic	 acids	 in	 peripheral	 blood	 related	 to	 cellular	

bioenergetic	 metabolism.	 Across	 both	 GC-MS	 and	 LC-MS/MS	 analysis	 platforms,	 lactate	

levels	were	elevated	in	the	blood	plasma	of	aging	individuals	with	Down	syndrome	who	met	

clinical	and	cognitive	criteria	for	AD.	Importantly,	this	elevated	plasma	lactate	could	indicate	

an	elevated	burden	of	epileptic	events	in	these	frankly	dementing	individuals	with	DS	[397],	

for	whom	seizures	occur	more	frequently	and	earlier	compared	to	LOAD.	Most	individuals	

with	DS-AD	will	develop	seizures	and	their	sudden	onset	in	aging	people	with	DS	strongly	

suggests	 AD	 [46].	 Indeed,	 aging	 participants	 with	 DS	 and	 AD	 were	 significantly	 more	

frequently	prescribed	anticonvulsant	medications	in	the	PCDA-DS	aging	cohort.	No	evidence	
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examined	here	or	noted	clinically,	however,	suggested	that	these	participants	experienced	

more	epileptic	events	compared	to	those	not	meeting	criteria	for	clinical	AD.		

Alternatively,	 the	 fermentative	 metabolism	 of	 pyruvate	 to	 lactate	 in	 the	 cellular	

cytosol	 suggests	 bioenergetic	 and	 biosynthetic	 strategies	 in	 DS	 tissues	 potentially	 both	

constrained	by	and	in	circumvention	of	emerging	AD	pathobiology.	Lactate	is	the	terminal	

product	 of	 lactic	 acid	 fermentation,	 in	 which	 pyruvate	 generated	 through	 glycolysis	 is	

diverted	from	complete,	bioenergetically	optimal	oxidation	in	the	mitochondria.	Compared	

to	oxidative	phosphorylation,	it	is	bioenergetically	inefficient	and	favored	under	anoxic	or	

hypoxic	 conditions	 as	well	 as	 in	pathological	metabolic	 states	 (i.e.,	 the	Warburg	 effect	 in	

cancer)	 [398,	 399].	 Lactic	 acid	 fermentation	 yields	 a	 net	 two	molecules	 of	 ATP	 for	 each	

molecule	of	glucose	entering	glycolysis.	This	is	in	stark	contrast	to	the	30+	ATP	afforded	by	

complete	oxidation	of	one	glucose	molecule	by	the	citric	acid	cycle	and	electron	transport	

chain.	Critically,	no	significantly	greater	frequency	of	overtly	hypoxic	or	anoxic	events	was	

noted	 for	 DS-AD	 relative	 to	 DS-NAD	 participants	 in	 the	 PCDA-DS	 cohort,	 which	 could	

otherwise	 explain	 mitochondrially	 independent,	 alternative	 pathways	 of	 glucose	

metabolism	favoring	lactate	formation.		

This	biochemical	 reprogramming	 involving	 lactate	could	bypass	dysfunctional	and	

dyshomeostatic	mitochondrial	metabolism	occurring	 in	pathological	aging,	possibly	as	an	

ultimately	futile	compensatory	strategy	associated	with	AD	cognitive	decline	as	observed	for	

the	experiments	included	within	this	chapter.	Clarifying	these	mechanistic	details	to	improve	

translational	 outcomes	 will	 require	 further	 investigation	 of	 specific	 pathobiology,	 cells,	

and/or	 tissues	 implicated	 in	 DS-AD	 in	 addition	 to	 their	 associated	 oxygen-dependent,	

mitochondrial	metabolism.	 Lactate	metabolic	 reprogramming	 in	 aging	DS	 evident	within	
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peripheral	 circulation,	 however,	 suggests	 a	 distinct,	 but	 nonetheless	 physiologically	

extended,	 CNS-peripheral	 metabolic	 axis	 in	 aging.	 Its	 compromise	 and	 pathological	

alteration	by	evolving	AD	could	thus	systemically	mediate	trajectories	of	cognitive	decline	in	

DS.			

	 This	hypothesis,	particularly	as	it	relates	to	lactate	and	glycolytic	dysmetabolism,	has	

been	 previously	 considered	 in	 AD.	 Relatively	 inefficient	 glycolytic	 glucose	 metabolism	

independent	of	mitochondria	and	occurring	despite	sufficient	oxygen	to	completely	oxidize	

glucose	(i.e.,	aerobic	glycolysis,	the	Warburg	effect)	has	been	observed	in	LOAD	both	in	the	

CNS	and	periphery	[132,	133,	400,	401]	.	In	the	CNS	specifically,	aging-related	alterations	to	

aerobic	glycolysis	spatially	correlate	with	amyloid	deposition	in	the	highly	speciated	human	

neocortex,	particularly	structures	within	the	default	mode	network	(DMN)	[132,	133,	243,	

402,	 403].	 Aerobic	 glycolysis	 may	 also	 mediate	 the	 co-occurrence	 of	 amyloid	 and	 tau	

pathologies	 in	 these	 same	 regions	 [133].	Much	 like	 complex,	multicellular	CNS	metabolic	

processes	 including	 the	 neuroglial	 glutamate-glutamine	 cycle,	 lactate	 metabolism	 as	

proposed	in	the	astrocyte-neuron	lactate	shuttle	(ANLSH)	hypothesis	could	also	be	altered	

in	DS-AD	[324,	404,	405].		

Future	studies	of	DS-AD	should	include	more	sensitive	measures	of	cortical	oxygen	

consumption	 to	 further	 clarify	 whether	 elevated	 lactate	 in	 DS-AD	 plasma	 suggests	 true	

reprogramming	 towards	 aerobic	 glycolysis	 specifically	 [406].	 Due	 to	 the	 unstandardized	

blood	draws	used	in	the	present	study,	it	also	remains	a	possibility	that	elevations	in	lactic	

acid	in	DS-AD	versus	DS-NAD	patients	reflect	differences	in	these	groups	unrelated	to	core	

disease	pathophysiology	(e.g.,	due	to	dementia-associated	comorbidities,	disproportionate	

motion/agitation	 demonstrated	 by	 DS-AD	 patients	 during	 blood	 draw)	 [407].	 Where	
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established	and	clarified	further,	elevation	of	peripheral	plasma	lactate	in	aging	adults	with	

DS-AD	 could	 provide	 another,	 biochemically	 discrete	 example	 of	 complex,	 multifactorial	

systems	 metabolic	 “compensations	 for	 emerging	 failure”	 driving	 emerging	 “failures	 of	

compensation”	in	evolving	dementia.		

	 Alterations	 to	 peripheral	 biogenic	 acids	 in	 those	 with	 DS-AD	 were,	 however,	 not	

limited	 to	 lactate,	 suggesting	potentially	broader	metabolic	dyshomeostases	 in	 this	 aging	

population.	 Targeted	 acidomics	 experiments	 further	 indicated	 a	 statistically	 significant	

increase	 in	pyruvic	 and	methyladipic	 acid	within	 the	plasma	metabolome	of	participants	

with	 DS-AD.	 The	 significant	 elevation	 in	 pyruvic	 acid	 is	 interesting	 in	 the	 context	 of	

simultaneously	elevated	peripheral	lactate	in	this	group,	as	it	indicates	that	DS-AD	is	not	only	

marked	by	increased	lactic	acid	fermentation,	but	either	A)	increased	glycolytic	flux	itself	or	

B)	 decreased	 entry	 of	 pyruvate	 into	mitochondrial	metabolism	 as	 acetyl-CoA.	 This	 could	

instead	suggest	the	importance	of	glycolysis-adjacent	pathways	(e.g.,	the	pentose	phosphate	

pathway)	vital	for	anabolic	biosynthesis	and	redox	homeostasis	[408-410].	Rather	than	as	

fuel	 affording	 metabolism,	 this	 exactly	 describes	 how	 Raichle	 and	 colleagues	 have	

increasingly	considered	the	role	of	aerobic	glycolysis	in	LOAD,	where	DS-AD	could	involve	

similar	processes	[132,	411,	412].		

Findings	in	DS-AD	plasma	regarding	methyladipic	acid	may	indicate	elevated	levels	

of	phytanic	acid	⍵-oxidation,	in	which	methyladipic	acid	is	the	terminal	metabolite	of	this	

process	[413,	414].	Phytanic	acid	and	its	metabolites	serve	as	ligands	of	the	lipometabolic	

transcription	 factors	 PPAR⍺	 and	 the	 retinoid	 X	 receptor	 (RXR)	 [413].	 Together,	 the	

expression	and	activation	of	these	transcription	factors	is	indicative	of	energy	deprivation	

and	 supportive	 of	 compensatory	 bioenergetic	 mechanisms	 such	 as	 ketogenesis	 [415].	
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Interestingly,	 phytanic	 acid	 is	 not	 a	metabolite	 of	 human	 origin,	 but	 is	 rather	 consumed	

through	the	meat	and	dairy	products	of	grazing	animals	as	a	metabolite	of	chlorophyll	[416].	

This	 may	 indicate	 that	 dysregulation	 in	 methyladipic	 acid	 in	 DS-AD	 individuals	 indexes	

dietary	 factors	 A)	 relevant	 to	 disease	 progression	 and	 B)	 potentially	 interacting	 with	

metabolic	dysfunction	consequent	 to	 trisomy	of	chromosome	21	and	aging.	Furthermore,	

phytanic	 acid	 metabolism	 depends	 upon	 peroxisomal	 integrity,	 where	 pathological	

alterations	of	this	organelle	have	been	associated	with	highly	deleterious,	genetically	driven	

phytanic	acid	accumulation	(i.e.,	Refsum	disease)	[416].	Peroxisomal	metabolic	dysfunction	

has	also	been	previously	associated	with	AD	and	neurodegeneration	overall.	In	this	way,	its	

altered	metabolism	may	 reflect	 the	 integrity	 of	 these	 organelles	 in	DS-AD	and	 should	be	

further	 explored	 in	 relation	 to	 associated	 fatty	 acid	 and	 lipid	metabolic	 dyshomeostases	

[417].				

Uridine	 was	 also	 differentially	 abundant	 in	 the	 plasma	 of	 DS-AD	 versus	 DS-NAD	

participants	(i.e.,	depleted	in	DS-AD).	Other	than	its	role	in	phospholipid	synthesis	via	the	

Kennedy	pathway,	it	is	also	essential	for	the	entry	of	alternative	carbohydrate	sources	(e.g.,	

galactose)	 into	 glycolysis	 and	 subsequent	 ATP	 generation	 [418].	 It	 is	 thus	 possible	 that	

membrane	 lipid	 synthesis	 and	 glycolysis	 may	 compete	 for	 uridine	 under	 circumstances	

when	 glucose	 is	 unabundant	 relative	 to	 other,	 alternative	 carbohydrate	 sources	 such	 as	

galactose.	 The	 administration	 of	 supra-physiological	 doses	 of	 D-galactose	 to	 rodents	 is	

indeed	a	potent,	accepted	model	of	accelerated	aging	not	unlike	descriptions	of	DS	aging	as	

a	“segmental	progeroid	phenotype”	[216,	419,	420].	Although	this	has	mechanistically	been	

understood	to	result	from	the	formation	of	toxic	advanced	glycation	end	products	(AGEs)	

and	consequent	oxidative	stress	[421-423],	it	may	also	be	consequent	to	D-galactose's	effects	
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on	bioenergetic	tone	and	its	dependence	on	uridine	metabolites	as	metabolic	cofactors.	As	

evidenced	 by	 targeted	 GC-MS	 findings	 that	 the	 methylglyoxal-forming,	 triose	 phosphate	

derivative	dihydroxyacetone	trended	toward	upregulation	in	DS-AD	versus	DS-NAD	patients	

(FDR	=	.062),	these	two	phenomena	may	not	be	mutually	exclusive	[376].		

The	 present	 experiments	 were	 not	 without	 limitations.	 Most	 clearly,	 cognitive	

assessment	of	PCDA-DS	participants	only	distinguished	the	presence	or	absence	of	manifest,	

clinical	AD,	rather	than	mild	cognitive	impairment	(MCI)	or	preclinical	disease.	This	partially	

resulted	from	the	retrospective	nature	of	PCDA-DS	analyses	reported	in	this	chapter,	but	also	

speaks	to	theoretical	and	methodological	challenges	inherent	to	studying	DS-AD.	Because	of	

premorbid,	 lifelong	 intellectual	 disability	 characterizing	 these	 participants	 (to	 an	 often	

moderate	or	greater	degree)	[212,	351],	robust,	early	cognitive	change	appreciable	in	LOAD	

or	ADAD	is	not	as	easily	observed	for	DS-AD	due	to	psychometric	assessment	floor	effects.	

Complicating	translational	studies	in	aging	DS,	this	does	not	necessarily	suggest	that	these	

stages	of	advancing	AD	do	not	occur	in	this	population,	nor	that	metabolic	change	does	not	

characterize	 these	 progressive	 transitions.	 Indeed,	 because	DS	 has	 been	 described	 as	 an	

oxidative-stress-induced	condition	of	accelerated	aging	(e.g.,	 cataract	 formation,	diabetes,	

hair	graying,	loss	of	auditory/visual	acuity)	[216,	419],	the	rate	of	underlying	pathobiological	

and	metabolic	 change	 in	 advancing	DS-AD	 relative	 to	 changes	 in	 clinical	 status	 could	 be	

highly	complex	and	subject	to	individual	differences	key	to	improved,	personalized	therapies	

[78].	 Better	 parametrizing	 this	 uncertainty	 surrounding	 true	 cognitive	 change	 in	 aging	

individuals	with	DS	due	to	AD	will	be	of	key	 importance	to	mapping	this	early	decline	 to	

systems	metabolic	correlates	(if	not	drivers)	quantifiable	within	peripheral	circulation.			

	



 

91 
 

	

Conclusion	

In	all,	biochemical	alterations	of	blood	plasma	in	aging	individuals	with	DS	and	AD	

demonstrate	increased	levels	of	pyruvic	acid,	lactic	acidosis,	depleted	uridine,	and	possibly	

lipid	metabolic	reprogramming	compared	to	that	of	non-demented	DS	controls.	These	effects	

appear	to	occur	in	the	absence	of	evident	hypoxia	or	increased	incidence	of	anoxic	events	in	

DS-AD	as	 compared	 to	DS-NAD.	Although	 the	drivers	and	purpose	of	 this	metabolic	 shift	

remain	 unclear	 and	 require	 further	 inquiry,	 DS-AD	 appears	 to	 be	 characterized	 by	

bioenergetically	 relevant	 alterations	 evident	 in	 peripheral	 blood	 plasma	which	 could	 be	

leveraged	 as	 potential	 markers	 of	 this	 pathophysiology.	 Although	 requiring	 further	

validation,	a	minimally	invasive,	inexpensive	plasma	lactic	acid	assay	may	prove	useful	for	

clinical	trials	patient	stratification	and	the	staging	of	dementia	progression	in	aging	adults	

with	DS.	That	 this	may	 serve	 similar	 functions	 in	 in	dementing,	 euploid	older	 adults	 is	 a	

possibility	that	should	be	evaluated	in	future	work.	Based	on	findings	reported	in	CHAPTER	

1	for	preclinical	LOAD,	however,	such	biological	similarities	are	highly	plausible.	Although	

incompletely	overlapping,	peripheral	metabolic	changes	characterizing	the	development	of	

both	LOAD	and	DS-AD	may	convergently	demonstrate	how	clinical	AD	can	ultimately	result	

from	 partially	 distinct	 (but	 dyshomeostatically	 equivalent)	 failures	 of	 metabolic	

compensation	resulting	from	metabolically	involved	compensations	for	emerging	failure.		
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CHAPTER	3.	Familial,	Autosomal	Dominant	Alzheimer’s	Disease:	ADAD	

Familial,	autosomal	dominant	Alzheimer’s	disease	(ADAD)	has	most	strongly	

informed	mechanistic	hypotheses	of	AD	pathogenesis	and	progression.	These	efforts	were	

greatly	advanced	in	molecular	genetic	terms	by	initial	reports	in	the	1980s	and	90s	of	

large-effect,	amyloidogenic,	protein-coding	mutations	within	amyloid	precursor	protein	

(APP)	and	presenilin	(PSEN1-2)	genes.	Subsequent	investigations	for	more	than	three	

decades	of	affected	family	pedigrees	within	which	these	mutations	dominantly	segregate	

have	firmly	established	them	as	causative,	mechanistic	drivers	of	early-onset	dementia	and	

extensive	cortical	amyloidosis	in	aging	[73].	These	findings	thus	contributed	substantial	

empirical	support	for	the	amyloid	cascade	hypothesis	proposed	first	by	Hardy,	Selkoe,	

Higgins,	and	colleagues	[5,	6],	which	consequently	drove	the	generation	and	adoption	of	

APP	and	presenilin	transgenic	mutant	rodent	models	of	AD.	Such	models	(most	faithfully	

recapitulating	CNS	amyloidosis)	have	unfortunately	proven	limited	in	their	ability	to	

advance	therapeutics	in	humans	[105];	however,	this	is	perhaps	also	a	function	of	ADAD	

composing	less	than	1%	of	all	aging	adults	who	will	develop	AD	[221].		

In	addition,	the	amyloidogenic	and	molecular-genetic	perspectives	historically	

considered	by	much	ADAD	research	(including	specific	investigations	of	the	amyloid	

cascade	hypothesis)	have	seldom	considered	amyloidogenesis	and	its	catabolism	as	

metabolic	processes,	nor	AD	as	broadly	and	systemically	dysmetabolic	overall	[354,	356,	

424,	425].	It	is	thus	not	surprising	that	metabolomics	studies	themselves	have	been	scarce	

in	ADAD,	including	studies	of	peripheral	biofluids	such	as	blood	plasma	[426,	427].	

Consistent	with	the	amyloid	cascade	hypothesis,	both	peripheral	blood	and	CSF	research	in	

ADAD	have	instead	more	frequently	examined	amyloid	beta	and	tau	abundances	[428].	
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These	investigations	are	not	unlike	similar,	recent	studies	examining	amyloid	and	tau	

proteopathies	in	in	DS-AD,	which	(like	ADAD)	presents	with	early-onset	and	substantial,	

genetically	driven	cortical	amyloidosis	[429].	Consistent	with	findings	in	LOAD	and	DS-AD,	

Mosconi	and	colleagues	have	reported	that	pre-symptomatic	adults	with	dominantly	

inherited	PSEN1	coding	mutations	demonstrate	decreases	in	cerebral	glucose	metabolism.	

Critically,	reductions	exceeded	those	consistent	with	atrophy	alone,	as	observed	through	

structural	MRI	of	these	same	regions	[249].	This	pattern	resembles	recent	findings	

identified	in	LOAD	using	multi-tracer	PET	imaging,	where	clinically	impaired	individuals	

demonstrated	cerebral	glucose	metabolic	deficits	(attenuated	FDG-PET	tracer	retention)	

exceeding	those	explained	by	synaptic	density	loss	alone	in	the	neocortex,	but	not	the	

medial	temporal	lobes	(i.e.,	quantified	using	[11C]	UCB-J	PET)	[255].		

Investigations	of	the	amyloid	cascade	hypothesis	in	ADAD	have	often	defined	it	as	a	

linearly	feedforward	biological	process	proceeding	from	amyloid	deposition	to	progressive	

tauopathy,	neurodegeneration,	and	ultimately	cognitive	decline	[5,	6,	430]	(but	also	see:	

[431]).	This	contrasts	with	recent	reports	of	a	PSEN1	coding	mutation	carrier	in	the	

seventh	decade	of	life	who,	only	in	the	past	decade,	has	met	criteria	for	mild	cognitive	

impairment	(MCI)	[223].	Cognitive	resilience	persisted	for	this	person	despite	prolific	

cortical	amyloidosis,	which	was	minimally	accompanied	by	tauopathy	or	posterior	

cingulate	glucose	hypometabolism	usually	typical	of	advancing	ADAD	[249].	These	

exceptional	outcomes	were	attributed	to	the	participant’s	homozygosity	for	the	rare	

Christchurch	allele	of	the	APOE	gene,	which	poorly	binds	heparin	sulfate	proteoglycans	

similar	to	the	AD-protective	APOE	ε2	allele	[223,	224].	Other	studies	examining	preclinical	

ADAD	participants	have	failed	to	identify	the	Christchurch	allele	as	a	protective	factor	[432,	
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433],	but	suffered	from	small	sample	size.	Nonetheless,	they	do	suggest	that	poorly	

understood	genetic	variation	in	ADAD	could	explain	individual	differences	in	cognitive	

decline	relative	to	family-wise-average	ages	of	onset	[434-436].	Although	expressed	APOE	

serves	physiological	roles	related	to	amyloid	metabolism	and	clearance	[437,	438],	it	is	also	

a	critical	component	of	lipoprotein	complexes	and	intercellular	lipid	trafficking	within	the	

CNS	in	particular	[168,	439-441].	This	is	highly	consistent	with	the	increasingly	understood	

vulnerability	of	lipo-homeostasis	in	AD	across	multiple	systems	biological	scales	of	

organization	in	abnormal	physiological	and	cognitive	aging	[11,	318].		

Joe,	Ringman	and	colleagues	have	also	recently	conducted	proton	magnetic	

resonance	spectroscopy	(1H-MRS)	neurochemical	imaging	for	several	preclinical	ADAD	

mutation	carriers	within	clinically	identified,	affected	family	cohorts	[442].	These	

experiments	indicated	that	N-acetyl-aspartate	(NAA)	and	glutamate/glutamine	(Glx)	levels	

were	depleted	in	the	anterior	cingulate	cortices	of	preclinical	mutation	carriers.	In	contrast,	

the	precuneus/	posterior	cingulate	demonstrated	depleted	NAA	in	addition	to	elevated	

myo-inositol	(mI)	and	choline	(Cho).	Although	cortical	NAA	levels	have	been	thought	to	

indicate	neuronal	integrity	relative	to	its	depletion	in	AD	[329],	this	brain	metabolite	also	

serves	as	an	anabolic	reserve	for	oligodendroglial	myelin	lipid	synthesis,	perhaps	in	a	

manner	related	to	the	elevation	of	AD	risk	though	broader	cardiovascular	compromise	

[443].		Increased	levels	of	mI	in	these	ADAD-affected	neocortical	regions	also	associated	

with	estimated,	family-wise	ages	of	dementia	onset.	The	metabolite	mI	is	known	to	indicate	

pro-inflammatory,	reactive	glial	activation	in	the	AD	cortex	[329,	331],	but	also	increasing	

amyloid	beta	burden	in	these	affected	structures	[442].		
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Substantial	opportunity	exists	to	further	investigate	metabolic	changes	

characterizing	the	development	of	ADAD,	particularly	as	peripheral	metabolomics	

approaches	can	resolve	potentially	many	more	disease-related	compounds	in	blood	plasma	

compared	to	current	metabolic	imaging	methods.	Considered	in	terms	of	prior	biochemical	

knowledge,	computational	systems	metabolomics	approaches	might	have	increased	

resolution	to	probe	deeply	into	cellular	metabolic	pathways	to	better	identify	disease-

related	changes.	In	CHAPTER	1,	analyses	of	blood	plasma	derived	from	two	independent	

cohorts	of	preclinical	LOAD	participants	(relative	to	cognitively	stable	controls)	

demonstrated	converging	evidence	of	shared,	peripherally	evident	dysmetabolism	at	this	

early	stage	of	disease.	Interestingly,	this	included	alterations	to	glucose/	hexose,	lipid/	fatty	

acid,	and	“glutaminolysis-like”	central	carbon	metabolism	including	that	of	NAA	

metabolites	quantified	in	the	AD	cortex	using	1H-MRS.		

Analogous	to	the	preclinical	phase	of	LOAD,	aging	adult	participants	carrying	ADAD-

causing	mutations,	but	who	remain	cognitively	stable,	also	demonstrate	preclinical	AD.	Any	

associated	alterations	to	the	plasma	metabolome	in	preclinical	ADAD,	however,	remain	

unclear,	particularly	in	relation	to	those	changes	identified	in	CHAPTER	1	for	preclinical	

LOAD.	Because	LOAD	is	not	driven	by	large-effect	mutations	in	amyloid	processing	genes	

specifically	linked	to	prolific	amyloidosis	in	aging,	the	peripheral	blood	metabolic	

correlates	of	ADAD	could	differ	from	those	identified	in	sporadic,	late-onset	disease.	Even	

in	such	a	case,	these	diverging	patterns	of	compensation	might	nonetheless	implicate	

vulnerable,	tenuous	metabolic	programs	situated	in	a	final	common	biochemical	pathway	

of	AD	etiopathogenesis.		Despite	these	differences	as	a	function	of	dissociable	etiologic	risk,	

emerging	metabolic	vulnerability	and	dyshomeostases	in	both	preclinical	LOAD	and	ADAD	
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could	equivalently	suggest	evidence	of	physiologically	extensive,	CNS-peripheral	metabolic	

networks	mediating	the	effects	of	abnormal	cognitive	aging	in	AD.					

Because	CHAPTER	2	considered	the	PCDA-DS	aging	cohort	(which	dichotomized	

cognitive	status	in	DS-AD	based	on	presence	or	absence	of	clinical	AD),	it	is	not	intuitive	

how	these	levels	of	cognitive	status	should	be	mapped	to	the	continuum	of	objective	

impairment	in	aging	adults	without	premorbid	and	lifelong	neurodevelopmental	

differences	(i.e.,	as	in	LOAD	and	ADAD).		As	detailed	in	the	previous	chapter,	reaching	

consensus	on	this	theoretical	issue	in	coming	years	will	be	important	for	aligning	systems	

biological	disease	staging	across	diverse	and	disparate	clinical	populations	for	precision	

healthcare	aims.	More	immediately,	peripheral	plasma	from	neurodevelopmentally	typical	

LOAD	or	ADAD	participants	demonstrating	objective	cognitive	deficits	of	any	severity	could	

be	compared	to	those	peers	who	remained	cognitively	stable	despite	elevated,	respective	

sources	of	risk.	Similarly,	in	LOAD	and	ADAD,	the	plasma	metabolome	of	preclinical	

participants	could	also	be	compared	to	respective	peers	demonstrating	objective	cognitive	

impairment	if	not	decline	(i.e.,	MCI/	AD).	Family-wise	average	ages	to	AD	diagnosis	varied	

across	affected	mutation	carriers	and	could	be	estimated	for	individual	participants.	This	

permits	simple	rank	correlational	analyses	of	metabolite	features	by	anticipated	years	until	

clinical	onset,	which	could	suggest	changes	in	peripherally	indexed	metabolic	networks	

covarying	with	these	chronic,	progressive	disease	processes.				

	

METHODS	

Participants	and	Cognitive	Assessment.	Participants	from	the	R/OCAS	LOAD	cohort	

demonstrating	any	degree	of	objective,	amnestic	cognitive	decline	(i.e.,	MCI/AD)	and	
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cognitively	stable,	at-risk	controls	are	described	extensively	in	CHAPTER	1	METHODS.		

Briefly,	this	cognitive	test	battery	quantified	major	cognitive	domains	(attention,	executive	

functions,	language,	memory,	and	visuo-perceptual	skills)	impaired	by	emerging	clinical	

AD.	Test-level	assessment	scores	were	aggregated	into	composite	z-scores	reflecting	each	

cognitive	domain,	where	a	z-score	less	than	1.35	below	the	cohort	median	was	considered	

objectively	impaired	compared	to	healthy,	same-age	peers.	

In	addition,	a	total	cohort	of	80	individual	participants	from	families	possessing	

ADAD	mutations	were	longitudinally	followed	by	a	single	investigator	(JR)	in	a	

comprehensive	study	of	preclinical	and	manifest	ADAD	at	a	tertiary	dementia	referral	

center.	The	study	was	approved	by	the	University	of	California	Los	Angeles	(UCLA)	Human	

Subjects	Committee	and	informed	consent	was	obtained	from	all	individual	participants	

included	in	the	study	(i.e.,	the	UCLA	ADAD	cohort).	All	subjects	were	first-degree	relatives	

of	someone	known	to	carry	a	pathogenic	mutation	in	the	APP	or	PSEN1-2	genes,	placing	

them	at	50%	risk	for	inheriting	such	a	mutation	and	therefore	developing	ADAD.	Genetic	

testing	for	the	relevant	mutation	was	performed	as	part	of	this	study	but	subjects	were	not	

informed	of	the	results.	Revealing	clinical	genetic	testing	was	offered	outside	of	the	

research	protocol	for	interested	subjects.		

	 The	Clinical	Dementia	Rating	Scale	(CDR)	was	performed	with	an	unrelated	

informant	[444].	The	CDR	is	a	structured	interview	with	input	from	both	the	participant	

and	an	informant	who	knows	the	subject	well.	In	the	CDR,	asymptomatic	persons	are	rated	

0,	and	persons	with	questionable	cognitive	impairment	are	rated	0.5.	Scores	of	1,	2,	and	3	

represent	mild,	moderate,	and	severe	stages	of	dementia,	respectively.	The	Mini-Mental	

State	Examination	(MMSE)	was	also	administered	to	each	participant	who	contributed	
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peripheral	blood	specimens	[445].	Each	subject’s	age	in	relation	to	their	estimated	age	of	

dementia	diagnosis	was	further	calculated.	Because	the	age	of	onset	of	symptoms	is	

consistent	within	a	given	family	and	mutation	(but	more	variably	so	between	families),	an	

“adjusted	age”	can	be	calculated	that	estimates	how	many	years	from	disease	manifestation	

a	given	subject	is	[446].	In	the	single	experimenter’s	experience,	the	age	of	clinical	

diagnosis	of	dementia	is	a	more	reproducible	measure	and	therefore	this	adjusted	age	was	

calculated	for	each	subject	as	his	or	her	chronological	age	minus	the	median	age	of	

dementia	diagnosis	in	his	or	her	family.		

Consistent	with	the	2011	National	Institutes	on	Aging	–	Alzheimer’s	Association	

(NIA-AA)	restatement	of	the	McKhann	criteria	for	the	cognitive	staging	of	emerging,	clinical	

AD	(i.e.,	preclinical	AD	to	mild	cognitive	impairment	(MCI)	to	clinical	AD),	each	participant	

in	the	ADAD	cohort	was	assigned	to	one	of	these	groups	based	on	cognitive	scores,	overall	

clinical	appraisal,	and	genotyping	relative	to	non-carrier	family	controls	[35,	37,	91,	96].	

Preclinical	ADAD	was	defined	as	adult	mutation	carriers	who	scored	CDR	<	1.	Objective	

cognitive	impairment	described	those	mutation-carrying	individuals	who	demonstrated	

evidence	of	either	MCI	or	clinical	AD	(CDR	>	1).	Non-carrier	family	controls	accounted	for	

shared,	sporadically	heritable	variation	unrelated	to	APP	or	PSEN1-2	Mendelian	mutations,	

but	possibly	related	to	cognitive	decline	in	AD.		

Phlebotomy	Protocol,	Blood	Processing,	and	Long-Term	Storage.	Details	for	the	collection	

and	storage	of	R/OCAS	plasma	specimens	are	described	in	CHAPTER	1	METHODS.	For	ADAD	

participants,	venous	blood	was	collected	using	standard	venipuncture	technique	into	EDTA	

vacutainer	 collection	 tubes.	 Specimens	 were	 then	 centrifuged	 to	 separate	 the	 plasma	

component	following	venipuncture,	which	was	aliquoted	and	stored	long-term	at	−80°C.	The	
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research	 team	 did	 not	 attempt	 to	 standardize	 blood	 collection	 procedures	 regarding	

medication	administration,	prandial	state,	or	time	of	day.	Not	standardizing	these	collection	

protocols	may	have	introduced	biological	noise	limiting	resolution	to	detect	true	differences	

in	metabolite	abundances	between	the	groups.	As	for	LOAD	and	DS-AD	analyses	conducted	

in	CHAPTER	1	and	2	respectively,	rigorous	parametrization	of	this	potentially	confounding	

metabolomic	variability	minimized	the	 likelihood	of	 false-positive	associations	associated	

with	these	statistical	risks	[304,	309].	Plasma	samples	were	shipped	via	overnight	courier	to	

the	Lombardi	 Cancer	Center	 Shared	Resource	Facility	Metabolomics	Core	 at	Georgetown	

University	for	mass	spectrometry	analyses.	

Metabolomics	Methods		

Untargeted	LC-MS	Metabolomics.	Ultra-performance	liquid	chromatography	electro-spray	

ionization-quadrupole-time	 of	 flight-mass	 spectrometry	 (UPLC-ESI-QTOF-MS;	 Xevo-G2	

QTOF,	 Waters	 Corporation)	 was	 used	 to	 conduct	 untargeted	 metabolomic	 profiling	 as	

described	in	previous	work	[12,	13,	28].		Briefly,	plasma	samples	were	prepared	for	MS	by	

solvent	extraction	and	resolved	using	reverse	phase	chromatography	on	an	Acquity	UPLC	

(Waters	Corp.)	online	with	a	QTOF-MS	in	positive	and	negative	electrospray	ionization	(ESI)	

modes	with	optimized	run	parameters.	LC-MS	peaks	were	determined	from	resulting	raw	

instrument	data	using	XCMS	software	[302].	XCMS	processing	of	LC-MS	data	resulted	in	a	

total	of	3536	small-molecule	(<	1.5	kDa)	chemical	features;	1569	in	the	negative	mode	(ESI-

)	and	1967	in	the	positive	mode	(ESI+).	These	features	resulting	from	LC-MS	metabolomics	

were	 defined	 in	 terms	 of	 physicochemical	 properties	 (Mass-to-Charge	 Ratio:	 m/z;	

chromatographic	retention	time:	RT).		
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Statistical	Methods		

Untargeted	LC-MS	Differential	Abundance	Analysis	and	Modeling	Pipeline.	The	statistical	

pipeline	 used	 in	 metabolomics	 experiments	 of	 ADAD	 peripheral	 plasma	 is	 described	 in	

Figure	 3.1.	 Briefly,	 zero	 abundance	 and	missing	 LC-MS	measurements	were	 replaced	 as	

“NAs.”	 Features	which	 survived	variance	 thresholding	were	 then	 submitted	 to	k-nearest-

neighbors	 imputation	 (K	 =	 10)	 to	 generate	 a	 data	matrix	 free	 of	missing	 and	 artefactual	

values.	These	were	subsequently	base-2	logarithm	transformed	to	improve	symmetry	and	

reduce	positive	skewness	of	metabolite	mass	features.	These	data,	however,	almost	certainly	

reflect	 biochemical	 variability	 in	 the	 blood	 plasma	metabolome	 unrelated	 to	 that	 which	

stratifies	 specific	 statistical	 contrasts	 of	 interest	 in	ADAD	 (e.g.,	 preclinical	 disease	 versus	

non-carrier	 family	 controls).	 The	 aging	 plasma	 metabolome	 of	 those	 with	 ADAD	 likely	

reflects	many	biological	processes	unrelated	to	cognitive	risk	and	decline	itself.	This	again	

motivated	the	use	of	surrogate	variable	analysis	(SVA)	to	parametrize	sources	of	potentially	

confounding	 variability	 unrelated	 to	 clinical,	 cognitive	 status	 in	 the	 plasma	 of	 aging	

individuals	with	ADAD.	To	minimize	algorithmic	bias,	sets	of	significant	surrogate	variables	

were	estimated	using	both	Leek	[304,	309]	and	Buja-Eyuboglu	(BE)	[303]	methods	(SVs	Leek	

=	0,	SVs	BE	=	13).		All	subsequent	modeling	experiments	employed	the	non-zero	set	of	13	BE-

estimated	SVs.		

To	better	characterize	observed	participant	clinical-demographic	variables	(e.g.,	age	

at	blood	draw,	APOE4+	risk	genotype,	sex)	in	relation	to	estimated	SVs,	Bayesian	network	

models	[307,	372]	were	constructed	using	participant-level,	discretized	BE	SV	scores	[306].	

This	allowed	the	relationships	amongst	these	latent	and	observed	variables	to	be	visualized	

and	 considered	 in	 an	 integrated	 manner.	 Fitted	 surrogate	 variable	 scores	 for	 each	
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participant	 were	 then	 included	 as	 covariates	 in	 linear	 models	 which	 estimated	 the	

abundance	of	each	observed	metabolite	as	a	function	of	cognitive	status	(contrasts:	A)	non-

carrier	family	controls	compared	to	preclinical	disease,	B)	objective	cognitive	impairment	

(MCI/AD)	 compared	 to	 preclinical	 disease)	 [308].	 The	 nominal,	 unadjusted	 p-values	

associated	with	 these	 phenotypic	 contrasts	 for	 each	metabolite	 feature	 (indexed	 by	m/z	

ratio,	 RT)	 were	 then	 submitted	 to	 integrative	 pathway	 analysis	 using	 Mummichog	 2.0	

software	 [258].	 For	 canonical	 pathway	 analyses	 in	 Mummichog,	 the	 significance	 of	 the	

overlap	 across	 these	 DA	 metabolic	 pathways	 was	 determined	 using	 Tanimoto-Jaccard	

statistics	and	bootstrapped	significance	testing	(⍺	=	.05).			

Figure	3.1	A	schematic	diagram	details	the	untargeted	LC-MS	metabolomics	pipeline	and	
downstream	 statistical	 analyses	 to	 which	 R/OCAS	 and	 UCLA	 ADAD	 participant	 plasma	
specimens	were	submitted	for	integrative	comparison.				
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Unadjusted	p-values	 from	 feature-wise,	 Spearman	 correlation	modeling	were	 also	

transformed	as	the	-log10(unadjusted	p-values)	to	construct	a	set	of	empirical	“prizes”	to	be	

modeled	 as	 prize-collecting	 Steiner	 trees	 (implemented	 in	 PIUmet	 software)	 [341].	 This	

allowed	 for	 the	 inferred	 mapping	 of	 unannotated	 metabolomic	 mass	 features	 to	 latent	

dysregulated	proteins	correlated	to	estimated	years	until	dementia	diagnosis.	Specifically,	

these	 relationships	 were	 computationally	 estimated	 through	 known	 protein-protein	

interaction	(PPI)	networks	empirically	evaluated	within	blood	plasma	using	untargeted	LC-

MS	 metabolomic	 profiling.	 The	 mRNA	 expression	 of	 selected	 candidate	 genes	 identified	

through	PIUmet	analyses	were	characterized	at	the	tissue	and	CNS-cell	level	using	GTEx	and	

the	Barres	Lab	Brain	RNA-Seq	database,	respectively	[373].			

	

Software.	Analyses	employed	R	version	4.0.5.	Imputation	was	completed	using	the	impute	

package.	 SVA	was	 carried	 out	 using	 the	 sva	 package.	 	 Empirical	 Bayes-moderated	 linear	

models	and	metabolite-wise	phenotypic	contrasts	were	evaluated	using	the	limma	package.	

Mummichog	2.0	was	used	 to	model	 systems-scale,	 coordinated	changes	 in	 the	peripheral	

metabolome	due	 to	either	control	or	preclinical	AD	status:	mummichog.org.	 	The	bnlearn	

package	contributed	functions	for	constructing	Bayesian	networks,	which	ingested	features	

jointly	 discretized	 by	 the	 package	 GridOnClusters.	 Tanimoto-Jaccard	 statistics	 and	

significance	testing	were	completed	using	the	jaccard	package.	PIUmet	was	used	to	estimate	

latent	 dysregulated	 protein	 networks	 from	 untargeted	 LC-MS	 profiling	 experiments:	

http://fraenkel-nsf.csbi.mit.edu/piumet2/.		
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RESULTS	

R/OCAS	and	ADAD	Cohorts:	Participant	Characteristics		

	 To	pursue	comparisons	between	disease	evolution	across	LOAD	and	ADAD,	R/OCAS	

participants	 demonstrating	 any	 level	 of	 objective	 cognitive	 impairment	 (i.e.,	 MCI/AD)	

compared	 to	 healthy	 peer	 controls	 were	 also	 considered	 (Table	 3.1).	Within	 the	 ADAD	

cohort	 and	 as	 anticipated,	 mutation	 carriers	 with	 MCI	 or	 AD	 scored	 significantly	 more	

impaired	on	the	MMSE	and	CDR	compared	to	preclinical	mutation	carriers,	Mann-Whitney	

U	p’s	<	.01.	In	contrast,	MMSE	scores	and	CDR	sum	of	boxes	between	preclinical	mutation	

carriers	and	non-carrier	family	controls	did	not	significantly	differ.	The	Global	CDR	score	did,	

however,	significantly	differ	between	these	two	groups,	Mann-Whitney	U	p-value	<	.01.	In	

this	 genetically	 unaffected	 group	 of	 participants	 from	 families	 carrying	 ADAD-causing	

mutations,	 24%	of	non-carriers	 themselves	demonstrated	evidence	of	preclinical	 or	 very	

mild	dementia.		

Neither	sex	nor	APOE4+	genotype	significantly	differed	 in	proportions	across	non-

carrier,	preclinical,	and	objectively	impaired	participants,	chi-squared	test	of	independence	

p-values	>	.40.	Linear	models	were	also	fit	(for	mutation-carrying	participants)	to	evaluate	

the	 impact	 of	 these	 same	 variables	 on	 estimated	 years	 until	 clinical	 dementia	 diagnosis.	

While	sex	did	not	significantly	predict	estimated	years,	APOE4+	genotype	did	demonstrate	a	

trending	 main	 effect,	 p	 =	 .072.	 Specifically,	 APOE4+	 individuals	 demonstrated	 median	

estimated	years	to	diagnosis	closer	to	zero	(i.e.,	the	estimated	diagnosis	event)	compared	to	

those	without	this	risk	genotype.	
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Table	3.1	Participant	Characteristics	for	the	R/OCAS	and	UCLA	ADAD	Cohorts		 
n (M/ F) Mean age 

at blood 
draw in 

years (SD) 

Mean 
MMSE 

(SD) 

Mean CDR 
Sum of 

Boxes (SD) 

Mean 
CDR 

Global 
(SD)  

Mean 
estimated 
years to 
ADAD 

diagnosis for 
mutation 

carriers (SD)  

Frequency 
of APOE4+ 

participants  

Frequency 
of APP/ 
PSEN1-2 

Mutations 
for Affected 

Carriers  

R/OCAS: 
MCI/AD 

Participants 
with LOAD  

52 (18/33)* 82.2 (4.2)         17  

                 
R/OCAS: 

Cognitively 
Stable, At-Risk 
Controls (Non-

Mutation 
Carriers)   

53 (19/34) 81.6 (3.5)         14  

        
 

ADAD: MCI/AD 
participants 

carrying 
amyloidogenic 

coding 
mutations  

27 (8/19) 43.4  
(18.4) 

21.6 
(8.7) 

4.26 
(5.34) 

.89  
(.78) 

-8.44  
(10.7) 

5 10 APP/  
17 PSEN 

        
 

ADAD: 
Preclinical, 

asymptomatic 
participants 

carrying 
amyloidogenic 

coding 
mutations  

28 (10/18) 34.1  
(8.81) 

28.7 
(1.05) 

.143  
(.23) 

0.0  
(0.0) 

-13.11  
(6.34) 

4 1 APP/ 
 27 PSEN 

        
 

ADAD: Non-
Gene-Carrier, 

Family Controls 

25 (9/16) 39.2  
(12.2) 

28.4 
(1.47) 

.28  
(.36) 

.12  
(.22) 

 
7  

	
*Included	one	participant	who	did	not	complete	further	clinical-demographic	screening	(including	sex),	but	
was	assigned	as	MCI/AD	by	a	single	investigator	(MM)			
	

Differentially	Abundant	Peripheral	Plasma	Metabolite	Features	Differentiate	Control	

from	Preclinical	ADAD	Plasma		

	 Metabolic	 network	 modeling	 in	 CHAPTER	 1	 suggested	 that	 systems-scale	

dysmetabolism	across	metabolite	classes	and	pathways	can	be	observed	in	the	peripheral	
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blood	 plasma	 of	 participants	with	 preclinical	 LOAD.	 To	 evaluate	 this	 same	 possibility	 in	

preclinical	ADAD,	3536	putative	metabolite	features	identified	by	LC-MS	were	submitted	to	

surrogate	 variable	 analysis	 (SVA)	 following	 initial	 metabolomics	 data	 pre-treatment	

(including	imputation	and	log2-	transformation)	(see	METHODS).	Surrogate	variables	were	

fit	 across	 all	 available	 participant	 plasma	 specimens	 and	 improved	 statistical	 power	 to	

identify	 biochemical	 differences	 associated	 with	 preclinical,	 mutation-carrier	 status	

(compared	to	non-carrier,	family	controls).	Because	the	Leek	method	of	surrogate	variable	

fitting	did	not	estimate	a	non-zero	number	of	SVs,	downstream	analyses	exclusively	used	

adjustment	covariates	derived	from	Buja-Eyuboglu	(BE)	computed	values	(SVs	=	13).			

Bayesian	network	analyses	relating	participant-wise	surrogate	variables	to	observed	

clinical-demographic	factors	identified	few	relationships	between	observed	and	surrogate	

variables,	 apart	 from	 a	 relationship	 between	 SV10	 and	 sex	 (Figure	 3.2).	 As	 expected,	

estimated	 age	 to	 dementia	 diagnosis	 demonstrated	 strong	dependencies	 on	 age	 at	 blood	

draw.	Estimated	age	until	 diagnosis	 itself	 impacted	participant	CDR	Global	 scores,	which	

corresponded	to	levels	of	cognitive	functioning	and	Mendelian	carrier	status	(i.e.,	cognitively	

stable	non-carrier,	preclinical	carrier,	and	MCI/AD	carrier)	as	described	by	the	2011	NIA-AA	

revised	McKhann	staging	criteria	for	clinical	AD	[35,	37,	96].	Modeling	of	estimated	age	to	

dementia	diagnosis	also	demonstrated	unanticipated	associations	with	participant-specific	

carrier	 genotypes	 (i.e.,	 APP	 compared	 to	 PSEN1-2	 mutation	 carriers).	 Interestingly,	 but	

perhaps	 incidentally,	 presenilin	 gene	mutation	 carriers	were	 closer	 to	 time	 of	 estimated	

diagnosis	compared	to	carriers	of	APP	mutations,	Mann-Whitney	U	p-value	=	 .012.	Those	

with	APP	gene	mutations	were,	however,	underrepresented	and	under-sampled	(24%	of	all	

mutation	carriers)	relative	to	 individuals	with	mutations	 in	PSEN1-2.	LC-MS	mass	 feature	
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abundances	 were	 then	 estimated	 from	 linear	 models	 as	 a	 function	 of	 A)	 AD	 status	

(preclinical	 ADAD	 versus	 non-carrier	 control)	 and	 B)	 fitted,	 participant-level	 surrogate	

variable	scores.	Using	BE	method	SV	estimation,	140	features	(ESI+:	88,	ESI-:	52)	of	3536	

were	differentially	abundant	in	in	the	plasma	of	preclinical	mutation	carriers	compared	to	

non-carrier	controls,	all	nominal	Limma	p’s	<	.05.		

Figure	3.2	Bayesian	network	modeling	associates	surrogate	variables	to	observed	clinical-
demographic	factors.	Participant	sex	demonstrated	an	association	with	SV10.	Age	at	blood	
draw	 related	 to	 estimated	 years	 to	 dementia	 diagnosis,	 as	 anticipated.	 Line	 boldness	
indicates	 confidence/strength	 of	 the	 estimated	 relationships	 between	 factors	 estimated	
from	participant	data	and	a	fitted	network	structure	[bnlearn:	arc.strength()].	
	
Differentially	 Abundant	 Peripheral	 Metabolite	 Features	 between	 Preclinical	 ADAD	

and	Control	Plasma	are	Enriched	within	Known	and	De	Novo	Metabolic	Pathways		

Mass	features	identified	by	m/z	and	RT	were	ranked	according	to	nominal	p-value	

and	 taken	 as	 input	 to	 integrative	Mummichog	 2.0	metabolomic	 network	modeling.	Mass	

features	identified	by	m/z	and	RT	were	ranked	according	to	nominal	p-value	and	taken	as	

input	to	integrative	Mummichog	2.0	metabolomic	network	modeling.	Peripheral	metabolic	

change	characterizing	preclinical	versus	control	ADAD	participants	significantly	implicated	

multiple,	 known	 biochemical	 pathways	 (Table	 3.2).	 Specifically,	 ESI+	 mode	 analyses	

identified	 the	 overrepresentation	 of	 DA	 metabolite	 features	 belonging	 to	

cysteine/methionine,	porphyrin,	and	lipid	metabolism	(including	that	of	bile	acids	and	C21	

steroid	hormones),	p’s	<	.05.			
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Table	3.2	Canonical	Biochemical	Pathways	Differing	between	Preclinical	ADAD	and	Non-
Carrier,	Family	Control	Plasma	by	Mummichog	2.0	Analyses			

Pathways  
Overlap 

Size 
Pathway 

Size  Nominal p-value ESI Mode  
Drug metabolism - cytochrome 

P450 1 1 0.00723 POS 
Methionine and cysteine 

metabolism 1 1 0.00723 POS 
Porphyrin metabolism 1 4 0.02092 POS 
C21-steroid hormone 

biosynthesis and metabolism 1 8 0.02554 POS 
Bile acid biosynthesis 1 9 0.02622 POS 

Leukotriene metabolism 3 4 0.00429 NEG 
Glycine, serine, alanine and 

threonine metabolism 2 3 0.02126 NEG 
Di-unsaturated fatty acid beta-

oxidation 1 1 0.04016 NEG 
Vitamin H (biotin) metabolism 1 1 0.04016 NEG 

Urea cycle/amino group 
metabolism 1 1 0.04016 NEG 

Arachidonic acid metabolism 1 1 0.04016 NEG 
Prostaglandin formation from 

arachidonate 1 1 0.04016 NEG 
	

Consistent	 with	 these	 findings,	 a	 unique	 empirical	 compound	 estimated	 by	

Mummichog	and	putatively	identified	as	bilirubin	was	depleted	in	the	plasma	of	participants	

with	preclinical	ADAD	compared	to	controls	(Log2	Fold	Change	=	-.56).	This	was	consistent	

with	 further,	 de	 novo	 metabolic	 network	 analyses	 of	 these	 samples,	 which	 identified	 an	

inferred	metabolic	activity	network	also	centered	on	bilirubin	metabolism.	This	included	its	

mono	 and	 di-glucuronidation	 involving	 uridine	 phosphate	 co-factors	 and	 other	 heme	

metabolism	 intermediates	 (e.g.,	 bilirubin)	 in	 the	 ESI+	 detection	 mode	 (Figure	 3.3A).	

Negative	 ionization	 mode	 analyses	 associated	 this	 preclinical	 ADAD	 statistical	 contrast	

instead	 with	 lipid	 metabolism,	 particularly	 polyunsaturated	 signaling	 lipid	 metabolism.	

Biogenic	amine	(e.g.,	glycine,	serine,	alanine),	biotin,	and	urea	cycle	metabolites	were	also	
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overrepresented	amongst	those	metabolomic	features	DA	in	preclinical	ADAD	blood	plasma	

versus	non-carrier	controls,	p’s	<	.05.	 	Network,	de	novo	metabolomic	analyses	in	the	ESI-	

mode	 for	 this	 contrast	 recapitulated	 the	 importance	 of	 biotin	 and	 polyunsaturated	 lipid	

metabolic	hubs,	 particularly	 as	 these	might	be	bridged	by	processes	 involving	 adenosine	

phosphate	compounds	(Figure	3.2B).				

	
Figure	3.3	De	novo	metabolic	activity	networks	in	the	A)	ESI+	and	B)	ESI-	untargeted	LC-
MS	 detection	 modes	 inferred	 through	 the	 preclinical	 ADAD-family	 control	 statistical	
comparison.	The	discovered	networks	were	unscored	in	terms	of	p-value	significance.							
	

CHAPTER	 1	 compared	 the	 statistical	 significance	 of	 the	 overlapping	 “fingerprint”	

between	the	R/OCAS	and	UCI	ADRC	preclinical	LOAD	cohorts	in	terms	of	shared,	canonical	

metabolic	 pathways	 altered	 by	 emerging	 disease	 (quantified	 as	 Tanimoto-Jaccard	

coefficients).	 This	 same	 strategy	 can	 be	 employed	 to	 compare	 the	 overlap	 of	 canonical	

metabolic	dyshomeostases	jointly	characterizing	LOAD	and	ADAD	preclinical	participants.	

Defining	all	significantly	enriched	(p	<	.05)	canonical	pathways	from	R/OCAS	and	UCI	ADRC	

cohorts	as	the	preclinical	LOAD	signature	(Appendix	1.1),	this	was	compared	to	pathways	

overrepresented	 with	 DA	 metabolites	 in	 the	 ADAD	 preclinical	 plasma	 metabolome.		

Dysmetabolic,	 canonical	 fingerprints	 characterizing	 the	 ADAD	 and	 LOAD	 preclinical	

metabolomes	demonstrated	modest	overlap	to	a	statistically	greater,	significant	degree	than	
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would	be	anticipated	due	to	chance	alone	(uncentered	estimated	coefficient:	 .15	|	centered	

coefficient:	-0.11),	p	=	.001	(Appendix	1.2).			

	

Differentially	 Abundant	 Peripheral	 Metabolite	 Features	 between	 Preclinical	 and	

MCI/AD	ADAD	Plasma	are	Enriched	within	Known	and	De	Novo	Metabolic	Pathways	

	 Preclinical	 ADAD	 could	 suggest	 important	 insights	 regarding	 the	 pathobiology	 of	

emerging	 disease	 as	 indexed	 within	 the	 peripheral	 metabolome.	 It	 could	 also,	 however,	

suggest	biochemical	changes	associated	with	the	transition	from	A)	cognitive	resilience	and	

compensation	 despite	 biological	 instability	 to	 B)	 concomitant,	 objective	 biological	 and	

cognitive	deficits	 (i.e.,	MCI/AD).	 	 To	 evaluate	 this	 latter	 comparison	 in	 the	ADAD	plasma	

metabolome,	peripheral	blood	from	preclinical	mutation	carriers	were	compared	relative	to	

mutation	 carriers	 demonstrating	 objective	 cognitive	 decline	 (i.e.,	 those	 meeting	 clinical	

criteria	for	MCI/AD).		Untargeted	LC-MS	profiling	experiments	evaluating	this	comparison	

identified	3536	putative	metabolite	 features	which	were	 submitted	 to	 surrogate	variable	

analysis	(SVA)	following	initial	metabolomics	data	pre-treatment	(including	imputation	and	

log2-	transformation)	(see	METHODS).		

Surrogate	variables	were	 fit	across	all	available	participant	plasma	specimens	and	

improved	statistical	power	to	 identify	biochemical	differences	associated	with	preclinical,	

mutation-carrier	status	(compared	to	MCI/AD	status)	[304,	305].	As	for	the	ADAD	preclinical	

versus	 control	 comparison,	 downstream	analyses	 exclusively	used	 adjustment	 covariates	

derived	 from	 Buja-Eyuboglu	 (BE)	 computed	 values	 (SVs	 =	 13),	 which	 were	 non-zero	 in	

number.	Bayesian	networks	relating	these	SVs	to	observed,	clinical-demographic	covariates	

are	 reported	 in	 Figure	 3.1,	 which	 suggested	 a	 relationship	 between	 SV10	 and	 sex	 as	
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described	for	the	ADAD	preclinical-	family	control	contrast.	In	total,	3536	LC-MS	metabolite	

mass	 features	 (ESI-:	 1569,	 ESI+:	 1967)	were	 submitted	 to	 downstream	 modeling	 as	 a	

function	of	A)	estimated,	participant-level	surrogate	variable	scores	and	B)	preclinical	ADAD	

versus	MCI/AD	cognitive	status.		Differential	abundance	analysis	in	UCLA	ADAD	using	linear	

modeling	revealed	that	173	ESI+	and	65	ESI-	features	significantly	differed	in	their	plasma	

abundances	due	to	preclinical	AD	status	compared	to	MCI/AD,	nominal	p’s	<	.05.								

Mass	 features	 (indexed	 by	 m/z,	 RT)	 were	 ranked	 according	 to	 nominal	 p-value	

corresponding	 to	 the	preclinical-	MCI/AD	contrast	as	evaluated	 for	participants	 from	 the	

UCLA	ADAD	cohort.	These	values	derived	using	BE	surrogate	variable	estimates	were	then	

submitted	 to	 canonical	 pathway	 enrichment	 analysis	 using	Mummichog	 2.0	 (Table	 3.3).	

Specifically,	the	ESI+	detection	mode	demonstrated	significant	enrichments	(p’s	<	 .05)	for	

aminosugar,	 glycerophospholipid,	 fatty	 acid,	 porphyrin,	 galactose,	 and	 biogenic	 amine	

metabolism.	 Lipid	 dynamics	 were	 broadly	 affected,	 with	 specific	 impacts	 on	 steroid-

backbone	 lipids	 including	 cholecalciferol,	 squalene,	 and	 cholesterol	 biosynthesis	 and	

metabolism	 (Figure	 3.4A).	 Mummichog	 estimated	 several	 empirical	 compounds	 which	

corresponded	to	lipid	metabolites	and	their	metabolic	co-factors.	These	included	platelet-

activating	 factor	 (PAF),	 dihydroxy-cholestenoate	 metabolites,	 3-Methoxy-4-

hydroxyphenylethyleneglycol	 (KEGG:	 C05594),	 bilirubin,	 and	 CDP-choline.	 De	 novo	

metabolomic	network	analyses	recapitulated	many	of	these	as	inferred	dysmetabolic	nodes	

characteristic	of	preclinical	compared	to	MCI/AD	ADAD	mutation	carriers.		

Analyses	 in	 the	 LC-MS	 ESI-	 detection	 mode	 indicated	 possible	 dyshomeostases	

involving	phosphatidylethanolamine	(PE)	glycerophospholipid	metabolism	(Figure	3.4B).	

Specifically,	a	Mummichog-estimated	empirical	compound	putatively	 identified	as	PE	was	
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upregulated	 in	 preclinical	 versus	 MCI/AD	 participants	 carrying	 ADAD-causing,	 coding	

mutations	 (Log2	 Fold	 Change	 =	 .17).	 This	 compound	 could	 be	 involved	 in	 progressively	

disturbed	 lipid	processes	 such	as	glycosylphosphatidylinositol	 (GPI)-anchor	biosynthesis,	

vitamin	 A	 (retinol)	 metabolism,	 and	 glycerophospholipid	 metabolism,	 Mummichog	

canonical	pathway	enrichment	p’s	<	.05.	

	
Table	3.3	Canonical	Biochemical	Pathways	Differing	between	ADAD	Preclinical	and	MCI/AD	
Participants	in	Blood	Plasma	by	Mummichog	2.0		

Pathways  Overlap 
Size 

Pathway 
Size  

Nominal p-
value 

ESI Mode  

Aminosugars metabolism 3 3 0.00101 POS 
Glycerophospholipid metabolism 4 8 0.00681 POS 

Galactose metabolism 2 3 0.01353 POS 
Aspartate and asparagine 

metabolism 
2 3 0.01353 POS 

Glycine, serine, alanine and 
threonine metabolism 

2 4 0.04504 POS 

Porphyrin metabolism 2 4 0.04504 POS 
Vitamin D3 (cholecalciferol) 

metabolism 
1 1 0.04655 POS 

Squalene and cholesterol 
biosynthesis 

1 1 0.04655 POS 

Fatty Acid Metabolism 1 1 0.04655 POS 
Arginine and Proline Metabolism 1 1 0.04655 POS 

Glycosylphosphatidylinositol(GPI)-
anchor biosynthesis 

1 1 0.0021 NEG 

Vitamin A (retinol) metabolism 1 3 0.00588 NEG 
Glycerophospholipid metabolism 1 7 0.01622 NEG 

	

In	addition	to	UCLA	ADAD	cohort	participants	with	MCI/AD,	the	R/OCAS	cohort	also	

included	aging	individuals	with	this	same	cognitive	status.	Using	the	same	statistical	pipeline	

as	 employed	 for	 previous	 Mummichog	 analyses	 in	 ADAD,	 significant	 canonical	 pathway	

enrichments	 (p’s	 <	 .05)	 were	 compiled	 into	 a	 fingerprint	 of	 metabolic	 dyshomeostases	

describing	the	preclinical	versus	MCI/AD	LOAD	comparison.	Tanimoto-Jaccard	coefficient	
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estimation	and	significance	testing	was	then	used	to	compare	these	two	ADAD	versus	LOAD	

peripheral	 blood	 plasma	metabolic	 fingerprints.	 These	 analyses	 demonstrated	 a	 modest	

overlap	to	a	statistically	greater,	significant	degree	than	would	be	anticipated	due	to	chance	

alone	 (uncentered	 estimated	 coefficient:	 .15	 |	 centered	 coefficient:	 -0.18),	 p	 =	 .0015	

(APPENDIX	1.3).					

Figure	3.4	Mummichog	de	novo	metabolomic	activity	networks	in	ADAD	preclinical	versus	
MCI/AD	mutation	carriers	indicate	alterations	of	lipid	metabolism	across	both	A)	positive	
and	B)	negative	ESI	modes	of	LC-MS	detection.				

	

De	Novo	and	Canonical	Peripheral	Metabolic	Pathways	Associate	with	Estimated	Years	

to	Diagnosis	in	ADAD	Mutation	Carrier	Plasma		

	 Compared	 to	 the	 sporadic	 occurrence	 of	 LOAD,	 asymptomatic	 adult	 individuals	

possessing	ADAD	mutations	will	in	most	cases	eventually	experience	early-onset	cognitive	

decline	(but	also	see:	 [223]).	This	affords	unique	advantages	 for	 longitudinal	research	on	

abnormal	human	aging,	particularly	because	estimated	years	until	clinical	diagnosis	can	be	

empirically	 approximated	and	vary	predictably	as	a	 function	of	 individual	 family	 cohorts	

[446].	 	 It	 is,	however,	unclear	how	estimated	age	 to	diagnosis	 relates	 to	 the	status	of	 the	

peripheral	plasma	metabolome	for	mutation-carrying	individuals	independent	of	cognitive	
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status	(preclinical	or	MCI/AD).	Spearman	correlations	were	calculated	for	3536	untargeted	

LC-MS	metabolomics	features	resulting	in	470	which	were	significant	at	the	nominal	p	<	.05	

level	(n	total	mutation	carriers	=	55).		Mass	features	(indexed	by	m/z,	RT)	were	ranked	according	to	

nominal	 p-value	 and	 submitted	 to	 canonical	 and	 de	 novo	 pathway	 analyses	 using	

Mummichog	2.0.	A	non-zero	number	of	estimated	empirical	compounds	were	identified	in	

the	ESI+	mode	analyses.	These	were	enriched	within	pathways	involved	in	mitochondrial	

fatty	 acid	 oxidation	 via	 the	 carnitine	 shuttle	 in	 addition	 to	 glycosphingolipid,	 purine,	

biopterin,	and	dihydroxy-cholestenoate	metabolism	(Table	3.4).		

	

Table	 3.4	 Canonical	 Metabolic	 Pathways	 Significantly	 Enriched	 for	 Plasma	 Blood	
Biochemical	Features	Correlated	with	Estimated	Years	to	Dementia	Diagnosis		

Pathways  
Overlap 

Size Pathway Size  
Nominal 
p-value 

ESI 
Mode  

Biopterin metabolism 2 3 0.01731 POS 
Purine metabolism 2 3 0.01731 POS 

Glycosphingolipid metabolism 2 3 0.01731 POS 
Vitamin D3 (cholecalciferol) metabolism 1 1 0.0389 POS 

C5-Branched dibasic acid metabolism 1 1 0.0389 POS 
TCA cycle 1 1 0.0389 POS 

Prostaglandin formation from 
arachidonate 1 1 0.0389 POS 

Fatty acid activation 1 1 0.0389 POS 
Methionine and cysteine metabolism 1 1 0.0389 POS 

Carnitine shuttle 2 4 0.04201 POS 
	

	

Very	interestingly,	these	analyses	also	identified	an	estimated	empirical	compound	

putatively	identified	as	the	bioactive,	polyunsaturated	signaling	lipid	2-arachidonoylglycerol	

(2-AG),	which	demonstrated	an	inverse	relationship	in	its	plasma	abundance	compared	to	

estimated	years	until	dementia	diagnosis.	 Similar	 findings	 suggested	 the	depletion	of	 the	
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polyunsaturated	fatty	acid	dihomo-gamma-linoleic	acid	(FA	C20:3;	DGLA,	KEGG:	C03242)	

with	advancing	years	 to	 the	estimated	diagnosis	event.	DGLA	 is	a	desaturation	and	chain	

elongation	derivative	of	the	linoleic	acid	(FA	C18:2),	which	must	be	consumed	through	diet	

in	humans.	DGLA	can	be	metabolized	into	several	eicosanoid	(thromboxane	and	prostanoid)	

mediators	with	inflammation	resolving	effects	inhibiting	the	production	of	arachidonic	acid	

(AA)-derived,	 pro-inflammatory	 metabolites	 [318,	 447].	 Network-scale	 de	 novo	 analyses	

also	 identified	 DGLA	 as	 a	 dysmetabolic	 node,	 but	 also	 implicated	 its	 association	 to	 the	

mitochondrial	fatty-acid	carnitine	shuttle	and	guanine	phosphate	(GTP)	metabolism	through	

coenzyme	A	(CoA)-involving	processes	(Figure	3.5A).		

	

Figure	3.5	De	novo	metabolomic	networks	inferred	from	both	Mummichog	2.0	and	PIUmet	
software	from	the	Spearman	rho	rank	correlations	of	untargeted	LC-MS	metabolite	features	
to	 participant-wise	 estimated	 years	 until	 dementia	 diagnosis.	 Correlation	 analyses	 were	
conducted	 for	 all	 ADAD	 mutation	 carriers	 regardless	 of	 NIA-AA	 cognitive	 staging	 (i.e.,	
including	participants	meeting	criteria	for	preclinical	and	MCI/AD.								
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Mummichog	 analyses	 characterizing	 estimated	 years	 to	 dementia	 diagnosis	 can	

suggest	associated	changes	to	metabolic	pathways	evident	within	the	peripheral	circulation	

of	 mutation-carrying	 individuals.	 These	 analyses	 do	 not,	 however,	 directly	 suggest	

associated,	inferred	metabolic	proteins	and	enzymes.	To	address	this	shortcoming,	PIUmet	

network	analyses	were	also	conducted	over	 the	set	of	metabolite-feature-wise	Spearman	

correlations	previously	submitted	to	Mummichog	analysis.		Specifically,	unadjusted	p-values	

associated	 with	 respective	 Spearman	 correlations	 were	 transformed	 as	 the	 -

log10(unadjusted	p-values)	to	construct	a	set	of	empirical	“prizes”	to	be	modeled	as	prize-

collecting	Steiner	trees	(implemented	in	PIUmet	software)	[341].	This	revealed	a	complexly	

distributed	network	of	inferred	protein-protein	interactions	(PPIs)	and	metabolites	(Figure	

3.5B).	Like	findings	in	CHAPTER	2	for	DS-AD,	the	enzyme	ethanolamine	phosphotransferase	

1	(EPT1/	SOLENOI)	constituted	a	metabolic	hub	for	metabolomic	features	correlated	with	

estimated	years	to	dementia	onset	(Figure	3.5C).	
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Figure	 3.6	 Enzyme-coding	 genes	 identified	 by	 PIUmet	 modeling	 of	 untargeted	 LC-MS	
metabolomics	features	as	they	correlated	with	estimated	years	until	dementia	diagnosis	for	
all	ADAD	mutation	carriers	(n	total	carriers	=	55)	independent	of	NIA-AA	cognitive	staging.		Pan-
tissue,	bulk	human	gene	expression	and	CNS-cell-specific	expression	were	accessioned	using	
GTEx	and	the	Barres	Lab	Brain	RNA-seq	databases,	respectively.		

	

This	also	included	the	neurometabolic	enzyme	monoamine	oxidase-B	(MAOB),	which	

is	 a	putative	marker	of	 reactive	astroglial	 activation	associated	with	 chronic,	progressive	

neuroinflammation	 in	 AD	 [333,	 335,	 448-452].	 Interestingly,	 Steiner-forest	 network	

modeling	of	these	relationships	also	suggested	several	other,	densely	connected	PPI	hubs	
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related	 to	 lipid	 metabolism.	 These	 included	 the	 gene	 ASPG	 (encoding	 an	 enzyme	 which	

functions	 dually	 as	 a	 lysophospholipase	 and	 an	 asparaginase),	 platelet-activating	 factor	

acetylhydrolase	 2	 (PAFAH2),	 lecithin	 retinol	 acyltransferase	 (LRAT),	 acyl-CoA	 synthetase	

long	chain	family	member	1	(ACSL1),	LPC	acyltransferase	2	(LPCAT2),	glycerol-3-phosphate	

acyltransferase	3	(AGPAT9/	GPAT3),	and	the	mitochondrial	carnitine/acylcarnitine	carrier	

protein	translocase	(SLC25A20)	(Figure	3.6).		

	

DISCUSSION	

	 Previous	chapters	of	this	dissertation	have	provided	evidence	that,	for	both	LOAD	and	

DS-AD,	 emerging	 cognitive	 decline	 co-occurs	 with	 alterations	 to	 a	 diverse	 milieu	 of	

peripheral	 blood	 biochemicals	 and	 metabolic	 processes.	 The	 mechanistic	 details	 and	

significance	of	these	findings	in	at-risk	or	abnormal	aging	remain	to	be	further	investigated.	

They	 could,	 however,	 indicate	 a	 peripherally	 extensive,	 CNS-peripheral	 metabolic	 axis	

subject	to	catastrophic,	dyshomeostatic	failure	in	AD	following	some	duration	of	increasingly	

inadequate	 “compensations	 for	 failure.”	 Beyond	 some	 critical	 point	 in	 systems	 biological	

organization,	 configuration,	 and	 functioning,	 these	 failures	 of	 compensation	 could	 be	

incompatible	with	 adaptation	 and	 resilience	 required	 for	 successful	 processes	 of	 healthy	

cognitive	aging.		

	 Because	metabolomic	investigations	of	ADAD	have	been	limited,	it	remained	unclear	

if	or	how	diverse	any	changes	evident	within	the	peripheral	plasma	metabolome	would	be	

as	 a	 function	 of	 AD	 staging.	 Understanding	 these	 relationships	 in	 terms	 of	 dissociable,	

predisposing	 AD	 etiologies,	 this	 question	was	 particularly	 interesting	 as	 an	 extension	 of	

findings	reported	in	CHAPTER	1	for	LOAD	and	CHAPTER	2	for	DS-AD.	More	specifically	and	
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quantitatively,	 metabolomic	 “fingerprints”	 of	 the	 preclinical-control	 and	 preclinical-

objectively	impaired	(MCI/AD)	statistical	contrasts	were	compared	across	etiologies	(LOAD	

and	 ADAD)	 using	 Tanimoto-Jaccard	 significance	 testing.	 If	 metabolic	 change	 and	

dyshomeostases	 characterizing	 ADAD	 across	 its	 progression	 are	 different	 from	 those	 of	

LOAD	 as	 a	 function	 of	 non-shared,	 autosomal	 dominant	mutation	 burden	 in	 ADAD,	 then	

LOAD	and	ADAD	peripheral	plasma	metabolomes	might	similarly	differ.			

Very	 interestingly,	 both	 the	 preclinical-control	 and	 preclinical-MCI/AD	 contrasts	

across	 LOAD	 and	 ADAD	 cohorts	 demonstrated	 canonical	 metabolic	 fingerprints	 which	

significantly	overlapped	beyond	chance	alone.	The	degree	of	overlap	was	consistent	with	(if	

not	exceeding)	coefficients	obtained	in	CHAPTER	1	for	preclinical	LOAD.	Acknowledging	this,	

the	estimated	degree	of	overlap	in	no	analysis	exceeded	20%.	This	suggests	that,	while	some	

AD-associated	 dysmetabolic	 processes	 are	 shared	 between	 ADAD	 and	 LOAD,	 much	

peripheral	metabolic	variability	significantly	associated	with	clinical	trajectories	of	decline	

in	AD	is	not.	In	the	very	narrow	sense	of	comparing	ADAD	and	LOAD,	these	core	peripheral	

fingerprints	 could	 themselves	 suggest	 elements	 of	 a	 “final	 common	 pathway”	 jointly	

impacted	 across	 these	 etiologically	 distinct	 populations	 in	 the	 development	 of	 cognitive	

decline.	More	broadly,	metabolism	also	encapsulates	many	vital	homeostatic	and	functional	

processes	supporting	healthy	aging	and	cognitive	resilience.	In	this	sense,	the	significant	(but	

modest)	 overlap	 between	 canonical	 biochemical	 pathways	 for	 equivalent	 clinical	 staging	

comparisons	 in	ADAD	and	LOAD	underscores	metabolic	processes	 in	AD	as	 conceptually	

integral	 and	 possibly	 final	 from	 an	 etiopathogenic	 perspective.	 Nonetheless,	 this	 also	

suggests	a	high	degree	of	changing	biochemical	and	dysmetabolic	complexity	emerging	in	

AD	 overall.	 Distributed	 across	 differing	 mechanistic	 mediators,	 biomarkers,	 therapeutic	
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targets,	 and	 systems	 biological	 constraints,	 this	 heterogeneity	 of	 risk	 characterizing	

emerging	 dementia	 pathobiology	 agrees	 with	 the	 diversity	 of	 resulting	 pathologies	 and	

deficits	observed	in	in	abnormal	aging.		

Computational	analyses	employing	Mummichog	and	the	protein-interaction-centric	

PIUmet	suggested	systems	biological	change	in	ADAD	highly	consistent	with	this	possibility	

for	 both	 the	preclinical-control	 and	preclinical-	MCI/AD	 plasma	 comparisons.	 Specifically,	

these	analyses	implicated	the	hepatic	metabolism	of	compounds	such	as	heme	and	steroid	

derivatives	of	cholesterol	metabolism	including	primary	bile	acids.	Liver	dysmetabolism	in	

aging	has	been	both	A)	previously	associated	with	both	elevated	risk	for	AD	and	B)	proposed	

as	 an	 active	 participant	 in	 the	 evolving	 disease	 process,	 particularly	 in	 relation	 to	 lipid	

metabolism	[16,	19-23,	58,	274,	453,	454].	Particularly	through	the	secondary	metabolism	

of	hepatic	bile	 acids	within	 the	brain-gut	 axis	 [192],	 lipo-homeostasis	 and/or	disordered	

biological	 signaling	 may	 systemically	 exacerbate	 biochemical	 constraints	 and	 insults	

ultimately	driving	cortical	amyloid	and	tau	pathologies	[320,	455].		

Independent	of	lipid	metabolism	itself,	substantial	literature	now	also	suggests	that	

metabolically	 intensive	peripheral	organs	 (substantially	 involving	 the	 liver)	contribute	 to	

whole-body	beta	amyloid	metabolism	and	clearance	[23].	Because	early-onset,	substantial	

cortical	amyloidosis	is	etiopathologically	central	to	ADAD,	it	is	not	surprising	that	metabolic	

dyshomeostases	 worsened	 by	 the	 concomitant	 demands	 of	 amyloid	 clearance	 could	

themselves	exacerbate	and	further	ongoing	cognitive	decline	[23,	354].	Substantial	and	early	

depositing	 cortical	 amyloid,	 however,	 also	 describes	 DS-AD,	 which	 is	 itself	 genetically	

predisposed	albeit	instead	due	to	trisomy	21	[352].	Future	research	involving	metabolically	

diverse	 readouts	 will	 be	 essential	 to	 better	 understand	 the	 comparative	 biological	
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circumstances	and	dynamics	surrounding	amyloid	deposition	in	ADAD	relative	to	DS-AD,	but	

also	LOAD.		

Although	highly	similar	 in	the	end	stages	of	neuropathological	decline,	very	recent	

research	 by	 Ances	 and	 colleagues	 have	 indeed	 suggested	 that	 CNS	 amyloid	 burden	

differentially	accumulates	across	ADAD	and	DS-AD	populations	over	time.	Only	in	DS-AD	was	

this	 trajectory	 dynamic	 in	 time,	 proceeding	 sigmoidally	 from	 an	 initial	 sublinear	 rate	 of	

accumulation	 to	 a	 decompensatory	 overshoot.	 These	 findings	 are	 thus	 consistent	with	 a	

pathophysiological,	 critical	 phase	 transition	 from	 conditions	 of	 tenuous	 metabolic	

compensation	to	those	of	rapidly	emerging	failure	in	evolving	DS-AD.	In	contrast,	the	linearly	

increasing	 amyloid	 burden	 characterizing	 ADAD	 with	 age	 did	 not	 show	 evidence	 of	

acceleration	 or	 deceleration	 consistent	 with	 complex	 programs	 of	 systems	 biological	

compensation	prior	to	frank	clinical	decline	(Dr.	Beau	Ances	lab	09/21,	unpublished	talk).		

Both	DS-AD	and	ADAD	may	be	linked	through	the	shared,	early	deposition	of	cortical	

amyloid	because	of	large-effect	genetic	drivers.	These	apparent	similarities	could,	however,	

belie	 important	 etiological	 distinctions	 important	 for	 understanding	 their	 respective	

pathogenic	 origins	 and	 dyshomeostatic	 development	 across	 affected	 biological	 systems.	

Whereas	 DS-AD	 may	 involve	 protective	 factors	 conferred	 through	 an	 elevated	 genetic	

dosage	of	chromosome	21	[456,	457],	ADAD	may	instead	represent	a	“purer”	genetic	lesion	

exerting	unchangingly	and	uniformly	deleterious	effects	on	the	aging	brain	which	proceed	

unabated	 in	 these	 latter	 individuals.	 As	 discussed	 in	 CHAPTER	 2,	 psychometric	

considerations	of	assessing	cognitive	change	in	adults	with	DS	complicates	straightforward	

comparisons	with	ADAD	participants,	particularly	at	early	prodromal	stages	of	disease	in	DS-

AD	 possibly	 also	 subject	 to	 generalized	 accelerated	 aging	 processes	 [216,	 419].	 Better	
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clarifying	 these	 questions	 will	 assist	 in	 addressing	 how	 the	 pathobiological	 roles	 of	

dysmetabolism	in	AD	correspond	to	potentially	varied	dynamic	processes	of	cognitive	and	

biological	change	which	may	differ	across	etiologies	including	DS-AD	and	ADAD.	These	could	

themselves	proceed	as	a	function	of	diverging,	specific	dysmetabolic	limitations	nonetheless	

driving	functionally	convergent,	vicious	cycles	of	increasingly	untenable	compensations	for	

emerging	failure.	At	some	critical	point	in	the	development	of	clinical	illness,	this	accrued	

vulnerability	 within	 biological	 systems	 could	 instead	 prohibit	 healthy	 trajectories	 of	

cognitive	aging	and	resilience.	

Because	ADAD	is	highly	genetically	penetrant	and	demonstrates	family-wise	median	

ages	of	onset,	mutation	carriers	can	be	longitudinally	monitored	as	adults	from	preclinical	

status	and	objective	cognitive	impairment	to	the	estimated	time	of	clinical	decline	resulting	

in	diagnosis.		Independent	of	cognitive-staging-based	comparisons	of	the	peripheral	plasma	

metabolome,	 it	 remained	 unclear	 how	 or	 if	 these	 estimated	 years	 until	manifest	 clinical	

impairment	 related	 to	biochemical	abundances	 in	blood.	Network-scale	modeling	studies	

investigating	 these	 questions	 again	 identified	 de	 novo	 associations	 highly	 suggestive	 of	

hepatic	metabolism.	This	specifically	included	PUFA	(dihomo-gamma-linolenic	acid,	DGLA)	

dysmetabolism,	where	similarly	impaired	hepatic	PUFA	biosynthesis	involving	peroxisomes	

has	 been	 reported	 in	 aging	 adults	with	 AD	 [19-21].	 	 Further	 providing	 evidence	 of	 liver	

metabolic	dyshomeostasis	 associated	with	years	 to	estimated	diagnosis	 in	ADAD,	 several	

inferred	enzymes	nominated	by	PIUmet	modeling	(which	were	not	generally	expressed	as	

mRNA	 in	CNS	cells)	were	highly	expressed	 in	 the	 liver	 relative	 to	all	human	 tissues	 (e.g.,	

ASPG).		
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Interestingly,	these	PIUmet	analyses	also	identified	several	lipid	metabolic	enzymes	

(ACSL1,	LPCAT2,	AGPAT9)	which	are	disproportionately	expressed	by	microglia	within	the	

human	CNS.	This	corresponds	with	proton	MRS	findings	recently	reported	by	Joe,	Ringman	

and	 colleagues	 in	 which	 increasing	 levels	 of	 myo-inositol	 were	 observed	 in	 neocortical	

regions	with	 increased	proximity	 to	 estimated	age	of	dementia	onset	 [442].	Myo-inositol	

within	 the	 CNS	 has	 been	 advanced	 as	 a	 marker	 of	 reactive	 and	 activated	 glial	 activity	

characteristic	with	 chronic	 neuroinflammation	 in	 AD	 [331].	 Future	 investigations	 should	

integrate	analyses	of	the	blood	metabolome	and	MRS	neurochemistry	to	better	understand	

these	 immunometabolic	 processes	 in	 aging	 human	 participants	 themselves	 through	

minimally	invasive	approaches.		

Particularly	 as	 PIUmet	 network	 analyses	 related	 to	 estimated	 age	 of	 diagnosis	

implicated	lipid	and	microglial	metabolism,	emerging	literature	has	reported	altered	lipid	

metabolism	and	dyshomeostasis	within	these	cells	with	their	pathological	activation	in	AD	

[452].		Consistent	with	reports	that	this	proinflammatory	state	in	AD	also	involves	astrocyte	

reactivity	[335],	further	PIUmet	hubs	(e.g.,	SLC25A20)	also	demonstrated	disproportionate	

expression	 in	 these	 other	 glia	 at	 a	 mature	 stage	 of	 cellular	 development.	 Much	 as	

lipometabolic	axes	span	tissues	and	organ	systems	in	AD	pathobiology	at	one	scale,	these	

likely	 also	 complexly	 span	 cell	 types	 and	 perhaps	 even	 affected,	 abnormally	 aging	 brain	

regions.	 Future	 research	 might	 productively	 explore	 these	 fundamentally	 metabolic	

relationships	to	pursue	more	precise	biomarker	and	therapeutic	targeting	in	AD	consistent	

with	personalized	care	and	precision	medicine	objectives	[24].	Incidentally,	many	of	these	

efforts	will	 ideally	 inform	 upon	 and	 specifically	 explore	 the	 diverse,	 etio-pathobiological	

bases	of	AD	in	terms	of	organizing,	biochemical	processes.		
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Semantically	driven,	inference	generating	pipelines	such	as	those	employed	for	this	

and	 previous	 chapters	 can	 suggest	 systems	 scale	 insights	 through	 the	 genome-scale	

metabolic	modeling	of	network-scale,	empirical	metabolomics	measurements	from	plasma	

specimens.	 These	 methods	 (including	 Mummichog	 and	 PIUmet)	 also	 demonstrated	

limitations	in	the	integration	and	comparison	of	LOAD	and	ADAD	metabolomes.	Specifically,	

peripheral,	 metabolomic	 signatures	 of	 AD	 in	 these	 cohorts	 across	 cognitive	 staging	

comparisons	 often	 revealed	 only	 a	 modest	 core	 of	 shared	 dysmetabolic	 processes	

corresponding	to	canonical	pathways.	In	contrast,	many	more	estimated	metabolic	activity	

network	relationships	were	estimated	by	Mummichog.	 Importantly,	 this	 scale	of	putative	

biochemical	 relationships	 indexed	 by	 cognitive-phenotypic	 contrasts	 explored	 in	 this	

dissertation	greatly	exceeded	manual,	segment-wise	consideration.		

It	 therefore	 remains	 unclear	 if	 the	 analysis	 pipelines	 employed	 thus	 far	 are	

sufficiently	 expressive	 to	 model	 and	 represent	 highly	 heterogeneous,	 metabolic	 change	

complexly	 distributed	 across	 LOAD,	 DS-AD,	 and	 ADAD	 at	 varying	 stages	 of	 developing	

cognitive	decline.	 	 	 In	 this	sense,	 the	semantic	consideration	of	changes	 to	 the	peripheral	

plasma	 metabolome	 which	 covary	 with	 translationally	 important,	 clinical	 phenotypic	

dissociations	 could	 also	 describe	 the	 statistical	 investigation	 of	 AD	 metabolism	 (and	

dysmetabolism)	 as	 a	 natural	 language.	More	 specifically,	 this	 could	 productively	 employ	

contemporary	methods	 in	unsupervised	 semantic-level	 topic	mining	applied	 to	 empirical	

metabolomics	modeling	results	(e.g.,	from	Mummichog)	[340].	Contemporary	topic	and	text	

mining	methods	could	project	contrast-level,	phenotypic	comparisons	into	a	substantially	

lower-dimensional,	conceptually	abstracted	peripheral	metabolic	basis-space	summarizing	

interrelated	perturbations	to	underlying	biochemical	classes	and	networks.	In	doing	so,	this	
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simultaneously	 and	 integratively	 compares	 many	 phenotypic	 contrasts	 across	 diverse	

degrees	of	cognitive	staging	and	specific	etiologies.		

As	a	 further	substantial	advantage,	generative	representational	paradigms	such	as	

structural	 topic	 models	 (STMs)	 can	 estimate	 the	 optimal	 integer	 number	 of	 such	 “AD	

metabolic	topics”	(absent	a	priori	expectations)	empirically	in	the	process	of	mapping	these	

to	 Mummichog-level	 biomolecules	 and	 enzymes.	 Systematically	 exploring	 these	

relationships	as	elements	of	a	semantically	rich,	natural	metabolic	language	using	explicitly	

synthetic	 statistical	 methods	 could	 better	 account	 for	 the	 distribution	 of	 non-shared	

peripheral	metabolic	change	across	AD	etiologies.	These	efforts,	in	turn,	could	inform	and	

advance	 more	 precise	 biomarker	 development	 and	 therapeutic	 targeting	 across	 these	

clinically	diverse	populations	affected	by	abnormal	 aging.	 	 It	 could	also	more	 specifically	

address	the	distribution	and	variability	amongst	distributed,	CNS-peripheral	metabolic	axes	

differentially	impacting	these	individuals	developing	AD	as	a	function	of	cognitive	status	and	

specific	etiologies	(LOAD,	DS-AD,	ADAD).		
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CHAPTER	4:	Peripheral	Systems	Biochemistry	in	AD	as	Natural	Language	Processing		

One	of	the	central	inferences	from	the	preceding	chapters	has	been	that	complexly	

distributed,	 systems	metabolic	 and	biochemical	 change	 accompanies	 the	 evolution	of	AD	

across	 differing	 risk	 etiologies.	 Furthermore,	 these	 distributed	 dyshomeostases	 might	

themselves	 complexly	map	 to	 the	 compromise	 of	 various	 CNS-peripheral	metabolic	 axes	

resulting	 from	 and	 furthering	 trajectories	 of	 abnormal	 AD	 cognitive	 decline.	 Although	 a	

modest	core	of	metabolic	deficits	is	statistically	shared	between	ADAD	and	LOAD,	a	larger	

proportion	of	significantly	enriched,	metabolic	pathways	altered	in	disease	remain	unique.	

Ongoing	 metabolic	 investigations	 of	 DS-AD	 might	 suggest	 similar	 findings,	 although	 the	

relationship	of	A)	DS-AD	to	B)	ADAD	and	LOAD	trajectories	of	cognitive	decline	remains	to	

be	 further	 established	 for	 comparative	purposes.	Although	necessarily	pursued	at	 a	high	

level	 of	 conceptual	 abstraction,	 these	 high-level	 peripheral	 metabolic	 inferences	 could	

suggest	 translationally	 actionable	 biomarker	 and	 therapeutic	 target	 candidates	 of	 great	

practical	importance.		

Challengingly,	 the	 extent	 of	 potentially	 implicated	metabolic	 processes	 indexed	 in	

peripheral	 plasma	 (as	biological	 pathways	 and	networks)	 is	 intractably	 large	 for	manual	

inspection	 across	 such	 a	 substantial	 cross-section	 of	 systems	 biology.	 This	 substantial	

biochemical	 scope	should	 itself	be	carefully	 considered	as	a	non-trivial	 finding	 informing	

future	 translational	 efforts	 in	 AD	metabolism.	 If	 AD	 pathobiology	 exists	 enriched	within	

diverse	 metabolic	 network	 hubs	 made	 vulnerable	 by	 abnormal	 aging,	 the	 size	 and	

complexity	 of	 these	 extended	 biological	 networks	 alone	 could	 jeopardize	 the	 successful	

homeostatic	 functioning	 of	 extended	 CNS-peripheral	 physiological	 axes	 necessary	 for	

healthy	cognitive	resilience	and	stability.	Across	substantial	diversity	in	AD	etiopathogenesis	
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and	 development,	 specialized	 statistical	methods	may	 prove	well-suited	 to	 organize	 this	

complexity	 in	 human-comprehensible	 terms	 for	 the	 targeted	 specification	 of	 testable/	

mechanistic	 hypotheses	 involving	 metabolism	 in	 abnormal	 cognitive	 aging.	 More	

specifically,	 this	 diversity	 of	 observed	 peripheral	 metabolomic	 changes	 accompanying	

dementia	 could	 form	 the	 basis	 of	 an	 empirically	 derived,	 highly	 expressive,	 biochemical	

natural	language	describing	the	A)	mapping	of	AD	peripheral	metabolic	signatures	to	their	

B)	 respectively	 associated	 clinical	 phenotypic	 attributes.	 	 Although	 in	 its	 infancy,	 natural	

language	 processing	 (NLP)	 research	 specializing	 in	 scientific	 inputs	 (e.g.,	 chemical	

structures,	biological	networks,	 compound/	gene	 IDs)	has	 increasingly	used	 large-corpus	

text	mining	methods	to	pursue	translational	biomedical	objectives	[458-462].			

While	text	mining	can	conventionally	summarize	input	terms	extracted	from	records	

as	individual	tokens	(e.g.,	by	mean	or	mode	values),	its	most	powerful	features	include	the	

abstractive	mapping	of	tokens	(e.g.,	chemical	names,	enzyme	IDs)	to	a	summarized,	much-

lower-dimensional	concept	space	through	the	technique	of	“topic	mining”	[463].		Through	

this	 method,	 biochemical	 topics	 across	 AD	 could	 be	 described	 etiopathologically	 as	 a	

function	 of	 metabolite	 and	 enzyme	 term	 frequencies	 (i.e.,	 estimated	 from	 Mummichog	

activity	network	modeling	as	 carried	out	 in	prior	 chapters).	 	Topic	mining	could	 thereby	

ingest	 and	 identify	 latent	metabolic	 patterns	 in	 these	Mummichog	outputs	 by	 employing	

parsimonious,	semantic-level	generative	NLP	models	to	map	these	AD	biochemical	tokens	to	

specific	topics	[258].	Similarly,	various	pairwise	AD	phenotypic	contrasts	across	LOAD,	DS-

AD,	and	ADAD	could	further	be	described	as	a	function	of	these	discrete,	fitted	biochemical	

topics.	To	this	end,	 topic	modeling	 in	peripheral	AD	biochemistry	could	serve	to	map	the	

relationship	 of	 clinical	 phenotypic	 variance	 to	 semantic-level	 pathways	 and	 processes	
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through	 inferred	 topics	 in	metabolism	 at	de	 novo,	 network	 scale.	 Very	 importantly,	 these	

models	would	also	be	highly	semantically	compact	and	interpretable	by	human	experts.			

Much	of	 this	dissertation	has	employed	supervised	statistical	methods	 (e.g.,	 linear	

models)	to	evaluate	relationships	between	the	peripheral	metabolome	and	multiple	clinical	

comparisons	across	AD	stages	and	etiologies.	Unsupervised	methods	such	as	topic	mining,	

however,	may	also	be	productive	in	suggesting	the	architecture	of	physiologically	extended,	

peripheral-CNS	metabolic	axes	in	AD	pathogenesis	and	progression	with	respect	to	clinical	

phenotypic	diversity.	These	NLP-derived	approaches	could	suggest	many	nodes	of	emerging	

dysfunction	indexed	within	peripheral	plasma	which	might	be	prioritized	as	precision	AD	

biomarkers,	 therapeutic	 targets,	 and	 prior	 inferences	 informing	 targeted,	 mechanistic	

investigations.	 Unlike	 coarse-grained	 and	 minimally	 structured	 unsupervised	 learning	

methods	 (e.g.,	 principal	 components	 analysis	 (PCA)	 [464],	 latent	 semantic	 analysis	 (LSA)	

[465],	 k-nearest	 neighbors	 clustering	 [466]),	 this	 very	 semantically	 dense	 mapping	 of	

biochemical	 to	 phenotypic	 information	 in	 AD	 plasma	 perhaps	 better	 resembles	NLP	 and	

concept/topic	mining	in	form,	function,	and	intent.	Semantic-level	 language	models	of	AD	

peripheral	 dysmetabolism,	 however,	 have	 not	 been	 empirically	 explored	 in	 previous	

translational	research.	

In	2003,	Blei,	Ng	and	colleagues	contributed	a	powerful,	adaptive	algorithm	for	the	

semantic	 topic	 modeling	 of	 text	 through	 unsupervised,	 hierarchical	 Bayesian	 generative	

models	(i.e.,	latent	Dirichlet	allocation,	LDA)	[467].	Since	then,	these	methods	have	iterated	

to	 support	 the	 modeling	 of	 correlated	 topics	 (e.g.,	 overlapping	 or	 highly	 covarying	

biochemical	pathways	and	processes)	[468].	Recently	described	variants	of	these	algorithms	

(structural	topic	modeling,	STM)	permit	the	modeling	of	structural	covariates	(i.e.,	clinical	
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phenotypic	 and	 metabolomic	 metadata)	 across	 individual,	 pairwise	 AD	 Mummichog	

contrasts	[340].	This	allows	for	the	fitting	of	inference	generating,	well-indexed	conceptual	

metabolic	“libraries”	which	explicitly	account	for	nuisance	variance	in	the	peripheral	plasma	

metabolome	(e.g.,	related	to	nothing	more	than	SVA	methods,	ESI-MS	modes).	Finally,	as	a	

benefit	of	topic	models	descending	from	LDA,	hard	prior	knowledge	regarding	the	number	

of	discrete	topics	to	be	modeled	is	not	necessary.	Instead,	the	content	and	number	of	topics	

can	 be	 empirically	 estimated	 through	 the	 mapping	 of	 structural	 covariates	 to	 some	

biochemical,	 k-topics	 through	 unsupervised	 variational	 inference.	 To	 maximize	

interpretability,	a	small	range	of	peripheral	metabolic	and	biochemical	topics	(k	<	10)	could	

be	 considered	 to	 represent	Mummichog	 activity	modeling	 of	 the	 plasma	metabolome	 as	

described	in	previous	chapters.		

These	 analyses	 (with	 respect	 to	 both	 nuisance	 and	 clinical	 phenotypic	 contrast	

covariates)	could	estimate	a	small	number	of	biochemical	topics	(i.e.,	peripherally	indexed	

metabolic	axes)	as	they	jointly	map	distributions	of	A)	molecules	and	enzymes	estimated	as	

textually	defined	Mummichog	activity	networks	to	B)	specific,	pairwise	clinical-phenotypic	

AD	contrasts.	Doing	so	could	better	resolve	and	contextualize	the	highly	diverse	metabolic	

processes	 indexed	 in	 AD	 peripheral	 circulation	 and	 implicated	 by	 prior	 chapters’	

metabolomic	differential	abundance	(DA)	analyses	conditional	on	clinical	phenotype.	This	

could	map	otherwise	very	diverse,	networked	biological	processes	 in	very	 translationally	

actionable	and	ideally	concise	terms.	It	will	also	almost	certainly	incorporate	processes	and	

molecules	 which	 have	 been	 limitedly	 studied	 (in	 addition	 to	 those	 only	 very	 recently	

studied)	in	AD	[88].	In	fact,	this	process	of	“semantic	alignment”	to	potentially	sparse,	prior	
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literature	 is	 vital	 to	 heuristically	 validating	 the	 final	 conceptual	 fit	 across	 some	 modest	

number	of	biochemical	topics	(but	also	for	optimal	hypothesis	generation).			

More	specifically,	STM	models	could	 ingest	and	variationally	model	A)	matrices	of	

clinical	phenotypic	contrasts	by	B)	tokenized	Mummichog	activity	network	terms	where	C)	

metabolic	terms	in	these	specific	pairwise	contrasts	are	indexed	as	raw	counts	of	each	term	

across	phenotypic	comparisons.	This	is	not	unlike	contemporary	transcriptomic	methods	for	

the	statistical	modeling	of	RNA-seq	normalized	read	counts	[469].	 Importantly,	structural	

covariates	could	further	be	included	to	deconvolve	the	statistical	effects	of	nuisance	factors	

(MS,	 SVA	modes),	but	also	 to	 represent	 the	 linear	 interactional	 effects	of	how	 individual,	

fitted	 topics	 are	 variously	 “discussed”	 as	 biochemical	 processes	 in	 specific,	 pairwise	

phenotypic	comparisons	(Figure	4.1).	Based	on	prior	chapters’	findings	in	LOAD,	DS-AD,	and	

ADAD,	one	can	hypothesize	that	a	core	of	shared	dysmetabolism	may	span	multiple	or	all	

etiologies	 (i.e.,	 a	 strict,	 “final	 common	pathway”	 through	metabolism	 in	 evolving	AD).	 	 A	

much	broader	number	likely	remain	complexly	distributed	as	a	function	of	diverse	clinical	

phenotypes,	 with	 these	 phenotypes	 only	 sparsely	 mapping	 across	 multiple	 biochemical	

topics	as	 supported	by	 findings	of	modest	 (but	 significant)	 canonical	pathway	overlap	 in	

prior	chapters	(e.g.,	of	LOAD	compared	to	ADAD).	Dysmetabolism	broadly	could	thus	instead	

encapsulate	a	heterogeneous	final	common	process	in	AD	which	complexly	impacts	many	

biological	 pathways	where	many	 of	 these	 dynamics	 remain	 to	 be	 empirically	mapped	 to	

hopefully	great	translational	success.	
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Figure	4.1	 Example	 toy	matrices	demonstrating	 the	data	 structure	of	A)	 tokenized	 term	
counts	 modeled	 by	 STM	 in	 addition	 to	 B)	 corresponding	 comparison-wise	 structural	
covariate	metadata.	Matrices	of	tokenized	counts	are	not	statistically	unlike	tables	of	raw	
read	 counts	 obtained	 from	RNA-seq	 experiments.	 Unlike	RNA-seq	 read	 counts,	 however,	
token	counts	(i.e.,	 the	values	of	cells	 in	Panel	A)	are	submitted	un-normalized	to	STM,	as	
anticipated	by	this	software.					

	

Modern	 generative	 topic	models	 such	 as	 STM	 aim	 to	 succinctly	 represent	 exactly	

these	complex	mappings	inherent	in	semantically	rich,	metabolic/	biochemical	relationships	

(as	otherwise	discussed	at	length	in	broader	abstractive	text	mining	and	NLP).	It	remains	to	

be	 empirically	 modeled	 based	 on	 Mummichog	 pairwise-comparison	 activity	 networks,	

however,	A)	how	few	topics	can	be	coherently	considered	(for	parsimony’s	sake),	B)	what	

individually	 dissociable	 biochemical	 enrichments	 occur	 across	 topics,	 and	 C)	 what	

distribution	describes	the	mixture	of	phenotypic	contrasts	loading	onto	specific,	identified	

biochemical	topics.	Doing	so	will	ideally	produce	(from	the	peripheral	plasma	metabolome)	

a	generative	metabolic	“library”	highly	enriched	for	and	stratified	by	clinical	diversity	in	AD	

cognitive	 staging	 and	 etiologies.	 In	 translational	 terms,	 these	 efforts	 might	 contribute	
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valuable	 maps	 charting	 the	 biological	 interrelationships	 of	 prioritized	 biomarker,	

therapeutic,	 and	 mechanistic	 follow-up	 targets	 disproportionately	 at	 risk	 of	 recurrent	

“failure	of	compensation”	following	from	“compensations	for	failure”	in	evolving	AD.							

METHODS	

Ingested	 Phenotypic	 Comparisons.	 Pairwise	 phenotypic	 comparisons	 were	 extensively	

evaluated	 (for	 LOAD,	 DS-AD,	 and	 ADAD	 participant	 specimens,	 respectively)	 using	

differential	abundance	(DA)	analysis	and	downstream	de	novo	Mummichog	activity	network	

modeling	as	described	extensively	in	previous	chapters	(Table	4.1).	To	minimize	artefact	

unrelated	to	the	mapping	of	the	peripheral	metabolome	to	clinical	phenotypic	differences,	

all	pairwise	 contrasts	were	 considered	across	both	 the	ESI+	and	ESI-	mass	 spectrometry	

analysis	 modes.	 Similarly,	 surrogate	 variable	 estimation	 was	 pursued	 across	 the	 Buja-

Eyuboglu	(BE)	and	Leek	methods	wherever	either	or	both	demonstrated	non-zero	SV	count	

estimates.	Study	design	and	individual	cohorts	permitting,	all	pairwise	phenotypic	contrasts	

submitted	to	Mummichog	activity	modeling	attempted	to	compare	cognitively	and	clinically	

discrete	groups	(e.g.,	preclinical-MCI	as	opposed	to	preclinical-MCI/AD)	wherever	possible	to	

minimally	bias	STM	estimation	by	providing	the	algorithm	the	greatest	feasible	variance	of	

clinically	interpretable	phenotypic	comparisons	to	consider.			

	

Table	4.1	Pairwise	Phenotypic	Contrasts	Evaluated	through	Mummichog	De	Novo	Modeling	
and	Submitted	to	STM	for	Integrative	Consideration	 

CLINICAL 
POPULATION  

COHORT  CONSOLIDATED AD CONTRAST ESI-MS 
MODE  

SVA 
ALGORITHM  

1 ADAD UCLA ADAD AD versus MCI NEG BE 
2 ADAD UCLA ADAD AD versus MCI POS BE 
3 ADAD UCLA ADAD preclinical mutation carrier versus 

family control  
NEG BE 
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4 ADAD UCLA ADAD preclinical mutation carrier versus 
family control  

POS BE 

5 ADAD UCLA ADAD preclinical mutation carrier versus MCI  NEG BE 
6 ADAD UCLA ADAD preclinical mutation carrier versus MCI  POS BE 
7 LOAD UCI ADRC preclinical versus cognitively stable 

control  
NEG BE 

8 LOAD UCI ADRC preclinical versus cognitively stable 
control  

POS BE 

9 DS-AD PCDA-DS DS-AD versus DS-NAD  NEG BE 
10 DS-AD PCDA-DS DS-AD versus DS-NAD  POS BE 
11 DS-AD PCDA-DS DS-AD versus DS-NAD  NEG Leek  
12 DS-AD PCDA-DS DS-AD versus DS-NAD  POS Leek  
13 LOAD R/OCAS  preclinical versus cognitively stable 

control 
NEG BE 

14 LOAD R/OCAS  preclincal versus cognitively stable 
control  

POS BE 

15 LOAD R/OCAS  preclinical versus cognitively stable 
control  

NEG Leek  

16 LOAD R/OCAS  preclincal versus cognitively stable 
control 

POS Leek  

17 LOAD R/OCAS  MCI/AD versus cognitively stable control NEG BE 
18 LOAD R/OCAS  MCI/AD versus cognitively stable control POS BE 
19 LOAD R/OCAS  MCI/AD versus cognitively stable control NEG Leek  
20 LOAD R/OCAS  MCI/AD versus cognitively stable control  POS Leek  
21 LOAD R/OCAS  MCI/AD versus preclinical  NEG BE 
22 LOAD R/OCAS  MCI/AD versus preclinical  POS BE 
23 LOAD R/OCAS  MCI/AD versus preclinical  NEG Leek  
24 LOAD R/OCAS  MCI/AD versus preclinical  POS Leek  
25 LOAD R/OCAS  supernormal versus cognitively stable 

control  
NEG BE 

26 LOAD R/OCAS  supernormal versus cognitively stable 
control 

POS BE 

27 LOAD R/OCAS  supernormal versus cognitively stable 
control 

NEG Leek  

28 LOAD R/OCAS  supernormal versus cognitively stable 
control 

POS Leek  

29 LOAD R/OCAS  supernormal versus preclinical  NEG BE 
30 LOAD R/OCAS  supernormal versus preclinical  POS BE 
31 LOAD R/OCAS  supernormal versus preclinical  NEG Leek  
32 LOAD R/OCAS  supernormal versus preclinical  POS Leek  
33 LOAD R/OCAS  supernormal versus MCI/AD NEG BE 
34 LOAD R/OCAS  supernormal versus MCI/AD POS BE 
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35 LOAD R/OCAS  supernormal versus MCI/AD NEG Leek  
36 LOAD R/OCAS  supernormal versus MCI/AD POS Leek  

	

Importantly	for	LOAD,	the	extensible	and	synthetic	STM	framework	allowed	for	the	

consideration	(through	Mummichog)	of	a	further	R/OCAS	sub	cohort.	These	“supernormal”	

participants	 demonstrated	 exceptional	 cognitive	 resiliency	 inversely	 analogous	 to	 the	

deficits	(<	1.35	standard	deviations	below	the	median)	defining	domain-specific,	objective	

cognitive	 impairment	 (i.e.,	MCI/AD).	 Including	 those	 instead	 in	 the	highest	percentiles	of	

aging	 outcomes	 (i.e.,	 >	 1.35	 standard	 deviations	 above	 the	 median),	 supernormal	

participants	alternatively	contributed	an	interesting	negative	control	for	cognitive-decline-

associated	 peripheral	 dysmetabolic	 processes.	 Instead,	 specimens	 contributed	 by	 these	

participants	 might	 instead	 suggest	 biochemical	 signatures	 of	 complexly	 distributed	

processes	conferring	or	related	to	cognitive	resilience.		

Integrative	Biochemical	Text	Mining	and	STM	Concept	Extraction	Pipeline.	Estimated,	de	

novo	activity	networks	included	A)	biochemicals	coded	as	Kyoto	Encyclopedia	of	Genes	and	

Genomes	(KEGG)	terms	and	B)	enzymes	coded	as	BRENDA	identifiers	as	defined	in	the	MFN	

human,	genome-scale	metabolic	model	queried	by	Mummichog	[258].	Implicated	metabolic	

reactions	 per	 phenotypic	 comparison	 per	 cohort	 were	 parsed	 into	 countable	 tokens	

quantifying	 extracted	 metabolic	 term	 frequency	 counts	 (Figure	 4.2).	 This	 resulted	 in	 a	

matrix	of	2741	biochemical	tokens	by	36	individual	phenotypic	contrasts	populated	by	term	

frequency	counts.	To	ensure	semantically	adequate	tokenization	of	the	biochemical	space	

spanned	 by	 the	 ingested	 terms,	 singleton	 metabolic	 terms	 in	 addition	 to	 all	 unnested	

biochemical	bigrams,	trigrams,	and	complete	reactions	were	extracted	to	maximize	relevant	

biochemical	 coverage	 across	 textual	 representations	 of	 inferred	 Mummichog	 activity	
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networks.	 Corresponding	 metabolomic	 metadata	 was	 paired	 to	 each	 clinical	 phenotypic	

contrast	 associated	 with	 a	 discrete	 activity	 network.	 Specifically,	 individual	 metabolic	

network-phenotypic	comparison	pair	was	coded	according	to	its	LC-MS	detection	mode	(ESI+	

or	ESI-)	and	associated	method	of	surrogate	variable	(SV)	estimation.		

In	 cases	 of	 multiple	 detection	 and	 SV	 estimation	 modes,	 all	 individual	 pairwise	

contrasts	 for	 a	 given	 clinical	 comparison	 were	 submitted	 to	 STM	 analysis	 for	 joint	

consideration	as	unique	records.	Doing	so	leveraged	the	ability	of	STM	to	fit	these	known,	

structural	 covariates	 to	 identified,	 estimated	 metabolic	 topics	 within	 the	 plasma	

metabolome.	Individual	tokens	were	filtered	prior	to	modeling	to	exclude	terms	with	likely	

minimal	 semantic	 significance	 and	 to	 speed	 the	 convergence	 of	 variational	 models.	

Specifically,	tokens	were	filtered	out	if	they	proportionally	occurred	in	fewer	than	7.5%	of	

all	submitted	pairwise	contrasts	(including	all	combinations	of	MS	and	SV	modes).	Tokens	

were	also	removed	if	they	occurred	in	greater	than	90%	of	these	same	pairwise	contrasts	by	

proportion.	These	latter	biochemical	terms	were	ubiquitous	across	most	clinical	phenotypic	

comparisons	and,	thus,	would	likely	contribute	minimal	information	relating	to	dissociable	

AD	clinical	phenotypes	and	pathobiological	processes	as	reflected	in	the	peripheral	plasma	

metabolome.				
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Figure	4.2	A	schematic	diagram	details	the	computational	modeling	pipeline	for	structural	
topic	 modeling	 (STM)	 analyses	 of	 estimated	 AD	 peripheral	 plasma	 metabolic	 activity	
networks	downstream	of	differential	abundance	(DA)	analysis	and	Mummichog	2.0	de	novo	
estimation.	These	latter	statistical	procedures	are	described	at	length	in	prior	chapters.						

	

A	final	2741	metabolic	token	by	36	contrast	matrix	of	term	counts	was	then	submitted	

to	STM	modeling.	By	resampling	over	a	range	of	two	through	ten	STM	topics	estimated	using	

ingested	metabolic	activity	network	data,	an	empirical	best	 fit	was	determined	though	A)	
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identifying	those	numbers	of	topics	which	maximized	the	held-out	likelihood	conditional	on	

number	of	selected	topics	while	also	B)	minimizing	the	expectation-maximization	algorithm	

variational	lower	bound	and	associated,	obtained	model	residuals.		Final	STM	models	were	

fit	using	both	prevalence	and	content	covariates.	Prevalence	covariates	used	here	sought	to	

explain	 overall	 base-rate	 topic	 frequencies	 as	 explained	 by	 a	 “null”	 model	 of	 nuisance	

explanators	(e.g.,	ESI	mode,	SVA	algorithm).	Content	covariates	instead	aimed	to	explain	how	

specific	phenotypic	comparisons	themselves	(e.g.,	UCI	ADRC	preclinical	LOAD	participants	

versus	controls)	affected	biochemical	term	usage	describing	certain	metabolic	topics.	In	this	

way,	“consolidated”	clinical	and	cognitive	relationships	to	biochemical	terms	can	be	directly	

evaluated	using	STM	independent	of	and	accounting	for	possibly	confounding	ESI-MS	and	

SVA	covariates.		

The	 final,	 fitted	STM	model	considered	topic	prevalence	as	the	 fully	crossed	 linear	

three-way	 interaction	 of	 these	 direct	 clinical	 and	 cognitive	 comparisons,	 ESI-MS	 analysis	

mode,	 and	SVA	algorithm.	Consolidated,	direct	 clinical-cognitive	 comparisons	 constituted	

the	main	 effect	 submitted	 as	 a	 content	 covariate	 to	 STM.	 	 All	 resulting	 topics	were	 then	

linearly	modeled	as	 the	main	effect	of	all	pairwise	phenotypic	comparisons	plus	 the	 fully	

crossed	interaction	across	differing	SVA	algorithms	and	MS	analysis	modes.	The	significance	

threshold	for	inferential	testing	of	these	specified	clinical	metadata-STM	topic	relationships	

using	linear	models	was	set	at	the	nominal	p	<	 .05	level.	 	Generative	model	outputs	were	

exported	to	the	stminsights	Shiny	app	for	further	inspection	[470].	Specifically,	loadings	of	

biochemical	 terms	 on	 specific	 topics	 were	 quantified	 and	 ranked	 as	 the	 estimated	

probabilities	beta	of	each	biochemical	term	being	drawn	from	the	distribution	of	the	kth	fitted	

metabolic	topic.	These	were	visualized	as	word	clouds	proportionately	scaled	by	estimated	
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beta	 probabilities.	 	 Similarly,	 the	 proportional	 mappings	 of	 individual	 pairwise	 clinical	

comparisons	across	all	biochemical	topics	were	represented	as	arrays	of	theta	coefficients.	

In	characterizing	biochemical	topics	through	identified	terms,	beta	probability	coefficients	

from	 fitted	 STM	models	were	 supplemented	with	 similar	 (and	 often	 overlapping)	 terms	

indexed	 by	 FREX	 scores	 [471].	 Using	 these	 multiple,	 functionally	 comparable	 methods	

decreased	the	likelihood	of	methodological	bias	associated	with	pursuing	further	literature	

searches	 based	 on	 one	 or	 the	 other	 alone.	 In	 addition,	 FREX	 scoring	 advantageously	

nominates	 terms	 which	 are	 FRequent	 and	 EXclusive	 to	 a	 specific	 topic	 of	 interest.	 This	

heuristically	 represents	 many	 successful	 applications	 of	 topic	 identification	 and	

segmentation,	 which	 often	 guard	 against	 considering	 terms	 which	 are	 A)	 frequent,	 but	

ubiquitous	 and	 uninformative,	 but	 also	 those	 which	 are	 	 B)	 exclusive,	 but	 sometimes	

infrequent	enough	to	occur	through	chance	alone	[471].			

Software.	 Analyses	 employed	 R	 version	 4.0.5.	 Differential	 expression	 analyses	 and	

Mummichog	 2.0	 modeling	 were	 implemented	 in	 software	 as	 described	 extensively	 in	

previous	chapters	 to	generate	pairwise	clinical	comparisons:	mummichog.org.	 	Structural	

topic	models	(STMs)	were	 fit	and	evaluated	using	the	stm	package	[340].	The	stminsights	

Shiny	app	permitted	further,	detailed	inspection	of	the	fitted	model	[470].		

	

RESULTS	

	 Tokenization	 of	 biochemical	 terms	 from	 upstream	 Mummichog	 activity	 network	

modeling	resulted	in	a	matrix	of	2741	DA-analysis-implicated	metabolic	tokens	across	36	

pairwise	phenotypic	AD	comparisons.	These	included	combinations	of	clinical	contrasts	as	

determined	 from	 specific	 upstream	 SVA	 algorithms	 and	 ESI-MS	 analysis	 modes.	 To	
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specifically	 model	 the	 main	 effects	 of	 clinical	 status	 independent	 of	 any	 effects	 due	 to	

statistical	 preprocessing	 and	 chemistry	 alone,	 a	 structural	 topic	 model	 (STM)	 was	

implemented.	This	structural	algorithm	explicitly	accounted	for	any	potentially	problematic,	

semantic	noise	variability	associated	with	these	covariates	[340].		

The	 36	 pairwise	 contrasts	 detailed	 in	 Table	 4.1	 (and	 associated	 metabolomics	

metadata)	were	taken	as	input	to	metabolic	topic	modeling.		Using	STM,	an	initial	variational	

search	 was	 conducted	 over	 the	 space	 of	 two	 through	 ten	 topics	 to	 estimate	 a	 low-

dimensional	basis	of	semantically	dissociable,	peripherally	indexed	dysmetabolic	axes	in	AD.	

These	 search	methods	 converged	on	 an	 estimated	optimal	 number	of	k	 =	 5	 topics.	More	

specifically,	the	five-axis	metabolic	topic	architecture	was	the	one	which	most	optimally	A)	

minimized	 model	 residuals	 and	 Expectation-Maximization	 (EM)	 algorithm	 variationally	

estimated	lower	bounds	while	B)	maximizing	the	likelihood	of	the	fitted	model	conditional	

on	biochemical	terms	held-out	from	individual	clinical	contrasts	(Figure	1.3).		
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Figure	4.3	Model	calibration	curves	resulting	 from	STM	variational	searches	plot	several	
performance	metrics	conditional	on	the	selection	of	between	two	and	ten	possible	metabolic	
topics.	The	selection	of	k	=	5	topics	appears	to	balance	the	A)	minimization	of	residuals	and	
the	lower	bound	with	B)	maximization	of	the	held-out	likelihood	and	parsimonious,	stable	
semantic	 coherence.	 In	 practice,	 estimating	 k-topics	 is	 approximative	 and	 without	 a	
knowable,	global	optimum.						
	

To	 better	 understand	 how	 upstream	 SVA	 algorithm	 and	 chemistry	 metadata	

corresponded	to	the	five	fitted	metabolic	topics,	linear	models	were	fit	to	each.	To	evaluate	

consolidated	AD	clinical	comparisons,	main	effects	due	to	these	factors	were	evaluated	plus	

the	 fully	crossed	 interaction	of	SVA	algorithms	and	ESI-MS	 instrument	modes.	Consistent	

with	the	hypothesis	that	peripherally	indexed	metabolic	processes	are	complexly	distributed	

in	AD,	no	specific	clinical	contrasts	nor	metabolomic	metadata	covariates	were	significantly	

associated	with	any	of	the	five	fitted	biochemical	topics,	all	linear	model	coefficient	nominal	

p’s	>	.05.	Using	the	Shiny	app	stminsights	[470]	(Figure	4.4A),	the	five-topic	fitted	STM	was	

further	 visualized	 and	 inspected.	 Because	 it	 remained	 unclear	what	 specific	 biochemical	

terms	mapped	 to	 specific	 topics	 (quantified	 through	 term-wise	probabilities	beta),	 initial	
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characterization	 visualized	 these	 proportional	 probabilities	 as	 word	 clouds	 for	 each.		

Cursory	 inspection	 of	 Topic	 4	 through	 probability	 word	 clouds	 (supplemented	 by	 FREX	

scoring	 of	 the	 same	 terms)	 suggested	 the	 disproportionate	 importance	 of	 N-acetyl-D-

glucosamine	 (GlcNAc,	 Kegg:	 C00140)	 to	 this	 specific	 concept	 (Figure	 4.4B).	 GlcNAc	

dysmetabolism	 has	 previously	 been	 associated	with	 AD	 pathobiology,	most	 interestingly	

through	intracellular	O-GlcNAcylation	of	target	proteins	as	a	regulatory	post-translational	

modification,	not	unlike	the	hallmark	pathological	hyperphosphorylation	of	tau	protein	in	

the	AD	brain	[472-475].		
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Figure	4.4	Panel	A	depicts	the	stminsights	Shiny	dashboard	with	the	final,	 fitted	AD	topic	
model	 loaded	 for	 inspection.	 Biochemical	 terms	 (scaled	 proportional	 to	 beta	 probability	
loadings)	suggest	five	putative,	latent	topics	on	metabolic	topics	in	Panel	B.		Highlighted	in	
green,	 preliminary	 analyses	 identified	 the	 highly-ranked	 metabolite	 N-Acetyl-D-
glucosamine	(GlcNAc,	Kegg:	C00140)	within	the	discovered	metabolic	Topic	4.					
	

To	 pursue	 this	 observation	 specifically	 and	 retain	 focused	 analytical	 scope	 in	 the	

discovered	 biochemical	 topic	 space,	 the	 inferred	 metabolic	 Topic	 4	 was	 exclusively	

considered	 in	 further	 comparisons.	 Due	 to	 its	 semantically	 rich,	 generative	 use	 factor,	

however,	this	STM	model	(or	future	extensions	of	it)	afford	substantially	more	opportunities	
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for	 additional	 exploration	 and	 characterization	beyond	 this	 dissertation.	 Beyond	GLcNAc	

itself,	 Topic	 4	 also	 demonstrated	 varied	 composition	 of	 biochemicals	 and	 enzymes	 as	

quantified	through	the	top	ten	ordinally	ranked	terms	by	FREX	score	and	term-wise	beta	

probabilities	(Table	4.2).		These	interestingly	included	a	diverse	set	of	molecules	implicating	

the	 metabolic	 pathways	 of	 biogenic	 amine/catecholamine	 neurotransmitters,	 lipid	

metabolism,	 nucleic	 acid	 phosphates,	 and	 other	 complex	 aminosugars	 (e.g.,	 N-acetyl-

lactosamine).	Terms	relating	to	long-chain	fatty	acid	activation	by	coenzyme	A	(necessary	

for	mitochondrial	oxidation	as	fuel)	and	saturated,	long-chain	fatty	acids	themselves	clearly	

defined	Topic	4	relative	to	all	others	identified	(Figure	4.5).	 	Because	the	fitted	STM	also	

mapped	individual	phenotypic	comparisons	to	the	semantic	biochemical	space,	inspection	

of	 this	 matrix	 of	 theta	 coefficients	 can	 clarify	 which	 phenotypic	 comparisons	 were	

disproportionately	described	by	Topic	4.			
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Table	 4.2	 Ordinally	 Ranked	 Biochemical,	 Enzyme	 IDs	 and	 Human	 Genes	 loading	
disproportionately	on	Metabolic	Topic	4	as	Quantified	by	Beta	Probabilities	and	FREX	Scores		
	

RANK BETA-PROBABILITY RANKING (LARGEST 
TO SMALLEST) 

FREX RANKING (LARGEST TO SMALLEST) 

1 3.1.3.5; 5'-nucleotidease  1.4.3.4; monoamine oxidase (MAOA, MAOB) 
2 c00049; Aspartic acid c00780; serotonin 
3 c00140; N-acetyl-D-glucosamine  c00140; N-acetyl-D-glucosamine  
4 c00350; Phosphatidylethanolamine   2.4.2.1; purine nucleoside phosphorylase 

(PNP, LACC1) 
5 2.4.2.1; purine nucleoside phosphorylase 

(PNP, LACC1) 
c00788; epinepherine  

6 1.4.3.4; monoamine oxidase (MAOA, 
MAOB) 

c00611; N-Acetyllactosamine 

7 c00059; sulfate  c00350; Phosphatidylethanolamine   
8 c00780; serotonin c00059; sulfate  
9 c00104; inosine diphosphate c05589; L-Normetanephrine 

10 3.1.2.2; acyl-CoA thioesterase (ACOT1-13, 
THEM4-5, BAAT, PLA2G6, ACAA2, PPARG, 

PPT1) 

3.1.3.5; 5'-nucleotidease  

Figure	 4.5	 Pairwise	 comparisons	 of	 strongly	 loaded	 Topic	 4	 biochemicals	 relative	 to	 all	
other	 fitted	 topics.	 In	 all	 cases,	 terms	 related	 to	 mitochondrial	 fatty	 acid	 metabolism	
involving	Coenzyme	A	clearly	distinguished	Topic	4	relative	to	all	others.			
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Estimated	 theta	 values	 interestingly	 suggested	 that	 this	metabolic	 axis	was	highly	

enriched	 within	 multiple	 comparisons	 involving	 R/OCAS	 cognitively	 supernormal	

participants.	 Non-trivial	 loadings	 were	 also,	 however,	 observed	 for	 several	 ADAD	

comparisons	(Table	4.3).	Because	the	fitted	STM	was	estimated	in	relation	to	a	main	effect	

content	covariate	(i.e.,	consolidated	cognitive	and	etiologic	pairwise	comparisons),	Topic	4	

was	 further	 defined	 through	 those	 terms	 uniquely	 used	 to	 describe	 its	 manifestation	 in	

comparisons	involving	supernormal	participants	and	ADAD.	Considering	the	top	ten	terms	

ranked	 ordinally	 by	 beta	 probabilities	 and	 FREX	 scores,	 this	 notably	 included	 many	

compounds	substantially	involving	sialylated	complex	aminosugars	and	enzymes	involved	

in	 their	 remodeling.	 It	 also	 included	 components	 of	 lipid,	 nucleic	 acid	 phosphate,	 and	

biogenic	 amine	 metabolism	 as	 previously	 identified	 through	 Term	 4	 loadings	 across	 all	

clinical	comparisons	(Figure	4.6).	In	contrast,	enrichment	for	Coenzyme	A	and	nucleic	acid	

phosphate	 pathways	 characterized	 Topic	 4	 as	 it	 was	 referenced	 for	 the	 ADAD	mutation	

carrier-	non-carrier	controls	comparison	(ordinally	top	ranking	KEGG	and	BRENDA	terms	by	

beta	probability:	c00020,	 c00010,	 c00024,	 c00241,	 c00060,	2.3.1.16,	 c00049,	1.4.3.2,	

1.4.3.4,	3.1.3.5).				

Table	4.3	Top	Metabolic	Topic	4	Theta	Coefficient	Values	as	Distributed	across	Consolidated,	
Main	Effect	Clinical	Phenotypic	Contrasts	in	AD	
			
RANK CLINICAL 

POPULATION  
COHORT  CONSOLIDATED AD 

CONTRAST 
ESI-MS 
MODE  

SVA ALGORITHM  THETA 
COEFFICIENT  

1 LOAD R/OCAS supernormal versus 
MCI/AD 

POS Leek 0.9994078 

2 LOAD R/OCAS supernormal versus 
cognitively stable 
control  

POS Leek 0.9993403 

3 LOAD R/OCAS supernormal versus 
MCI/AD 

POS BE 0.9986634 
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4 LOAD R/OCAS supernormal versus 
preclinical  

NEG Leek 0.9960087 

5 LOAD R/OCAS MCI/AD versus 
preclinical  

NEG Leek 0.9701927 

6 LOAD R/OCAS preclinical versus 
cognitively stable 
control 

NEG Leek 0.9537516 

7 ADAD UCLA 
ADAD 

preclinical mutation 
carrier versus family 
control  

NEG BE 0.9514507 

8 LOAD R/OCAS MCI/AD versus 
cognitively stable 
control 

POS Leek  0.7910050 

9 LOAD UCI 
ADRC 

preclinical versus 
cognitively stable 
control 

POS BE 0.3377170 

10 ADAD UCLA 
ADAD 

AD versus MCI NEG BE 0.2776085 

	

	

Figure	4.6	A	representative	term	cluster	illustrates	how	STM	content	covariate	estimation	
can	estimate	how	specific	AD	metabolic	topics	(e.g.,	Topic	4)	are	described	by	biochemical	
terms	in	specific,	clinical	phenotypic	comparisons.	Terms	are	KEGG	chemical	and	BRENDA	
enzyme	IDs.	Distinct	(but	similar	to)	overall	term	loadings	onto	Topic	4	across	all	pairwise	
contrasts,	 the	 consolidated	 comparison	 of	 R/OCAS	 supernormal	 and	 preclinical	 LOAD	
peripheral	metabolomes	implicates	the	metabolism	of	sialylated	complex	aminosugars	and	
enzymes	 involved	 in	 their	 remodeling.	 It	 also	 includes	 components	 of	 lipid,	 nucleic	 acid	
phosphate,	 and	 biogenic	 amine	 metabolism	 consistent	 with	 Topic	 4	 loadings	 across	 all	
pairwise	comparisons	overall.				
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DISCUSSION	

	 Previous	 chapters’	 analyses	 of	 the	 peripheral	 plasma	 metabolome	 across	 AD	

cognitive	 staging	 comparisons	 and	 etiologies	 suggested	 that	 only	 a	 modest	 core	 of	

biochemical	 change	 characterizes	 several	 clinical	 comparisons	 (e.g.,	 the	 MCI/AD	 versus	

preclinical	contrast	across	LOAD	and	ADAD).	Because	of	this	substantial	residual	diversity,	

alternative	 statistical	 approaches	 were	 necessary	 to	 integratively	 characterize	 how	 this	

complex	distribution	of	peripherally	evident	dysmetabolism	mapped	to	a	similarly	complex	

distribution	 of	 clinical	 phenotypic	 comparisons.	 Because	 this	 problem	 greatly	 exceeded	

unaided	human	consideration,	these	relationships	were	instead	estimated	using	text	mining	

approaches	(as	a	natural	language	processing	problem)	spanning	a	biochemical	term/token	

space	 nominated	 by	 upstream	 Mummichog	 activity	 network	 modeling.	 Specifically,	

structural	 topic	 models	 (STMs)	 estimated	 five	 latent	 metabolic	 topics	 which	 effectively	

summarized	Mummichog	activity	networks	derived	from	36	pairwise	clinical	comparisons	

across	 the	 span	 of	 AD	 clinical	 staging	 and	 etiologies.	 In	 explicitly	 accounting	 for	 both	

prevalence	and	content	structural	covariates,	these	models	permitted	the	highly	expressive,	

yet	 precise,	 mapping	 of	 implicated	 biomolecules	 and	 clinical	 comparisons	 through	 the	

inferred	biochemical	and	metabolic	topic	architectures	discovered.		

	 Very	interestingly,	metabolic	Topic	4	specifically	implicated	the	molecule	N-Acetyl-D-

glucosamine	(GlcNAc,	Kegg:	C00140),	which	has	been	previously	found	to	moderate	amyloid	

and	tau	pathology	in	AD	[472-475].	Specifically,	this	could	be	mediated	by	intracellular	post-

translational	 modifications	 of	 proteins	 (including	 amyloid	 and	 tau)	 by	 O-GlcNAcylation	

functioning	as	an	activity-dependent	regulator	and	biological	signaling	component.	GLcNAc	

biosynthesis	and	its	dynamic	conjugation	to	and	removal	from	cellular	proteins	is	dependent	
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upon	nutrient	availability,	principally	that	of	glucose	dysmetabolically	impacted	in	AD	[473,	

475].	 Small-molecule	 co-factors	 such	 as	 uridine	 diphosphate	 (UDP)	 employed	 in	

glycerophospholipid	synthesis	and	the	catabolism	of	some	dietary	hexose	sugars	other	than	

glucose	 (i.e.,	 galactose)	 also	 participate	 in	 hexosamine	 metabolism	 and	 could	 prove	

pathobiologically	 limiting	 through	 their	 disease-associated	 dyshomeostasis.	 Due	 to	 the	

multiply	 crucial	metabolic	 roles	 served	 by	 these	metabolites	 in	 AD	 (and	 the	 abnormally	

aging,	dysmetabolic	brain	specifically),	these	complex	biochemical	interdependencies	could	

comprise	 one	 discrete	 CNS-peripheral	 metabolic	 axis	 (likely	 among	 others)	

disproportionately	 subject	 to	 metabolic	 “failures	 of	 compensation”	 proceeding	 from	

“compensations	 for	 failure”	 in	 abnormal	 aging.	 This	 vicious,	 feedforward	 cycle	

accompanying	the	development	of	clinical	and	cognitive	decline	could	therefore	describe	a	

“final	 common	 process”	 in	 AD	 etiopathogenesis	 complexly	 distributed	 across	 metabolic	

biological	systems.		

This	could	explain	why	the	strict	“dysmetabolic	core”	across	AD	clinical	populations	

including	 LOAD	 and	 ADAD	 was	 modest	 as	 observed	 in	 previous	 chapters,	 even	 if	 (and	

perhaps	 exactly	 because)	 most	 vulnerable	 biochemistry	 in	 AD	 becomes	 complexly	

distributed	with	 its	 evolution	 across	 diverse,	 impacted	 biological	 systems	 conditional	 on	

predisposing	risk	etiologies.	This	complexity	and	its	dyshomeostatic	compromise	in	AD	(as	

recapitulated	 across	 likely	many	 analogous	 biological	 networks	 similarly	 constrained	 by	

disease	 processes)	 could	 suggest	 many	 examples	 of	 why	 and	 how	 specific,	 perturbed	

biological	systems	in	abnormal	aging	can	only	support	cognitive	stability	only	indefinitely	

(i.e.,	 as	 in	 the	 clinical	 transition	 from	preclinical	disease	 to	MCI/AD).	To	 remediate	 these	

deficiencies,	dysmetabolic	limitations	rendering	brain	structure	and	function	incompatible	
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with	cognitive	resilience	could	be	therapeutically	corrected	through	dietary,	lifestyle,	and/or	

pharmaceutical	interventions	[33,	207,	476].		

This	 hypothesis	 strongly	 agrees	 with	 findings	 that	 O-GlcNAcylation	 is	 overall	

depleted	 in	 in	 the	 AD	 brain	 (similar	 to	 AD	 cortical	 glucose	 hypometabolism)	 and	 can	

attenuate	neuroinflammation	in	addition	to	amyloid/	tau	proteopathies	[472,	477,	478].	It	is	

also	supported	by	the	fact	that	GLcNAc	and	broadly	hexosamine	biosynthesis	competes	for	

central	 carbon	 pathway	 metabolites	 with	 both	 the	 pentose	 phosphate	 pathway	 and	

glycolysis	also	homeostatically	important	in	AD	[473].	Indeed,	UDP-GLcNAc	is	also	depleted	

in	AD,	where	this	could	serve	as	an	important	nutrient	deficiency	signal	involved	in	stress	

response	 transduction	 [477,	 479,	 480].	 The	 only	 recent	 attention	 to	 brain	 hexosamine	

biology	in	AD	belies	the	importance	of	this	metabolism	to	it	and	other	metabolically	intensive	

organs	 such	 as	 the	 pancreas	 [473].	 Like	 N-acetyl-L-aspartate	 (NAA)	 metabolism,	

hexosamines	may	be	particularly	important	for	neurons	[329,	332,	475,	481],	particularly	

elements	 of	 the	 extracellular	 matrix	 (ECM)	 including	 the	 perineuronal	 net	 and	 sulfated	

extracellular	proteoglycans	[482-489].	Metabolic	processes	involving	GLcNAc	are	enriched	

in	the	hippocampus	and	increased	0-GlcNAcylation	protects	against	amyloid	and	tau	toxicity	

[473,	480,	485].	Specifically	relating	hexosamine	to	 lipid	dysmetabolism,	high-fat	diet	has	

been	found	to	reduce	0-GlcNAcylation	concurrent	with	mitochondrial	deficits	in	several	non-

human	model	systems	[474,	477].	 	This	agrees	with	observations	derived	from	metabolic	

STM	Topic	4,	which	suggested	(in	addition	to	hexosamines)	a	semantic	enrichment	for	fatty	

acid	metabolic	processes	compared	to	all	other	fitted	topics.			

Across	 differing	 cells	 and	 tissues	 (including	 neurons	 and	 glia	 in	 the	 CNS),	 these	

alternative	metabolic	pathways	also	serve	vital	homeostatic	functions	in	successful	cognitive	
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aging	which,	when	sufficiently	compromised	by	AD,	could	precipitate	the	failure	of	GLcNAc-

involving	processes	similarly	protective	against	dementia	[336,	338].	Through	mechanisms	

which	remain	unclear	and	deserve	further	mechanistic	consideration,	this	could	occur	in	a	

manner	 incompatible	 with	 successful	 cognitive	 aging	 once	 compromised.	 Increased	 O-

GlcNAcylation	 as	measured	 in	 cerebrospinal	 fluid	 (CSF)	 or	 blood	might	 thus	 represent	 a	

specific	 molecular	 target	 remediable	 by	 small-molecule	 therapeutics	 or	 functioning	 as	 a	

readout	 of	 AD	 treatment	 response.	 Interestingly,	 comparisons	 involving	 cognitively	

supernormal	participants	were	enriched	for	contributions	from	metabolic	Topic	4.	This	very	

successfully	aging	population	could	therefore	be	uniquely	vital	for	better	understanding	how	

the	 sustained	 integrity	 of	 hexosamine	 biology	mechanistically	 relates	 to	 this	 exceptional	

degree	of	cognitive	resilience.		

In	 this	 supernormal	 population	 specifically,	 content-covariate	 modeling	 pursued	

using	 STM	 suggested	 a	 semantic	 cluster	 of	 biomolecules	 again	 including	 hexosamine	

metabolites	(e.g.,	GLcNAc,	N-acetyllactosamine)	and	nucleic	acid	phosphates.	Ethanolamine	

phospholipid	 processing	 was,	 however,	 additionally	 implicated	 through	 the	 enzyme	

ethanolamine	phosphotransferase	(EPT1/	SELENOI)	which	was	also	inferred	for	DS-AD	and	

ADAD	 comparisons	 in	 CHAPTER	 2	 and	 CHAPTER	 3	 using	 PIUmet	 modeling	 [341].	 Very	

interestingly,	 this	 content-covariate-level	 phenotypic	 comparison	 further	 nominated	

multiple	 terms	 involved	 in	 the	 transfer	 of	 sialic	 acid	 to	 glycosaminoglycan	 (GAG)	 ECM	

polysaccharides	previously	implicated	in	the	deposition	of	amyloid	and	tau	[484,	485].	Also	

known	 as	 siglecs	 (i.e.,	 sialic-acid-binding	 immunoglobulin-type	 lectins),	 these	 molecules	

including	the	microglial-expressed	LOAD	GWAS	hit	CD33	have	been	increasingly	studied	as	

regulators	of	chronic	neuroimmune	dyshomeostases	observed	from	very	early	in	emerging	
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AD	[490-494].	Sulfotransferase	deficiencies	involving	sialic-acid-modified	glycans	have	been	

associated	 with	 AD	 microglial	 reactivity	 AD	 patient	 and	 rodent	 model	 brains	 [495].	

Consistent	with	much	prior	literature	in	AD	[496,	497],	these	GAG	molecules	play	roles	in	

innate	immune	system	complement	regulation,	where	resulting	deficits	in	sugar	recognition	

signaling	due	to	disease	might	precipitate	mechanistically	catastrophic	outcomes	and	thus	

cognitive	decline	[498-503].	Broader	glycobiology,	like	complex	lipid	biology	in	AD,	might	

suggest	many	aspects	of	complex	carbohydrate	metabolism	related	to	bioenergetics,	but	also	

substantially	 involving	anabolic,	 signaling	 roles	 in	 the	pathways	of	disease-relevant	 cells,	

tissues,	and	organs.	 It	 is	again	 intriguing	to	consider	that	dyshomeostases	emerging	from	

these	 additional,	 potentially	 competing	 processes	 in	 AD	 could	 become	 pathobiologically	

limiting	in	a	manner	relating	to	(if	not	driving)	cognitive	decline,	as	suggested	here	by	NLP	

approaches	implementing	metabolic	STMs.		

Importantly,	clinical	comparisons	besides	those	involving	supernormal	participants	

also	 demonstrated	 non-zero	 theta	 coefficient	 loadings	 on	 Topic	 4,	 although	 these	 were	

generally	 weaker	 relationships	 compared	 to	 the	 former.	 Specifically,	 some	 evidence	

emerged	 that	 the	 ADAD	 mutation	 carrier-	 non-carrier	 controls	 comparison	 also	 loaded	

modestly	on	Topic	4,	however,	several	of	the	implicated	enzymes	and	their	genes	(ACAA1-2,	

HADHB)	 are	 primarily	 expressed	 in	mature	 astrocytes,	 rather	 than	microglia	 [373].	 This	

suggests	the	intriguing	possibility	(consistent	with	the	existence	of	multiple,	complex	CNS-

peripheral	metabolic	disease	axes)	that	these	dyshomeostatic	molecular	programs	could	be	

complexly	 and	dynamically	distributed	even	across	CNS	 cell	 types	 in	AD	as	 a	 function	of	

etiology	and	cognitive	staging.	Here	too	it	is	possible	to	appreciate	how	complex	processes	

of	homeostatic	compensation	and	accommodation	could	fail	catastrophically	beyond	some	
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critical	point	in	AD	with	strongly	limiting	implications	for	trajectories	of	successful,	resilient	

cognitive	aging.		

It	is	fascinating	to	consider	that	these	and	similar	relationships	could	be	alluded	to	

presently	by	a	single	metabolic	topic	identified	using	STM,	even	exempting	the	A)	other	four	

fitted	topics	or	B)	future	extensions	incorporating	additional,	clinical	neurological	disease	

comparisons	 of	 the	 peripheral	 plasma	 metabolome.	 Much	 additional	 work	 should	 be	

pursued	to	further	unpack	the	presently	fitted	biochemical	STM	and	better	understand	the	

capabilities	 of	 these	 powerfully	 expressive,	 semantic	 models	 to	 accelerate	 translational,	

neurodegenerative	research.	The	application	of	NLP	approaches	to	semantically	understand	

AD	 pathobiology	 indexed	 in	 peripheral	 plasma	 invites	 exciting,	 new	 conceptual-level	

possibilities	 for	hypothesis	generation	and	downstream,	confirmatory	research	design.	 In	

doing	so,	this	generative	modeling	might	suggest	highly	contextualized,	targeted	molecular	

pathways	and	processes	in	AD	with	minimal	invasiveness	in	alive,	aging	adults	themselves.		

These	possibilities	remain	to	be	considered	by	focused,	mechanistic	investigations	in	

appropriate	 AD	 model	 systems	 including	 patient-derived	 cell	 culture	 [504];	 however,	

semantic-level	knowledge	generation	approaches	like	these	could	substantially	bridge	the	

gap	between	A)	data-driven	and	B)	hypothesis-testing	branches	of	AD	systems	biological	

inquiry	in	coming	years.	Benefitting	and	enriching	both	research	paradigms,	this	synthesis	

could	 prove	 important	 for	 successfully	 developing	 biomarker	 and	 therapeutic	 targets	

associated	with	abnormal,	age-associated	cognitive	decline,	where	 limited	semantic-level,	

pathobiological	understanding	of	AD	currently	 limits	both	efforts	 in	precision	healthcare.	

Specifically,	applied	NLP	methods	involving	scientific	text	mining	could	further	demarcate	

diverse	and	physiologically	extended	CNS-peripheral	dysmetabolic	axes	in	evolving	AD.	Such	



 

152 
 

efforts	 could	 then	 systematically	 suggest	 important	 biochemical	 inferences	 (for	 focused	

follow-up	 in	 aging	 adults)	 explicitly	 mapped	 in	 terms	 of	 clinical	 and	 cognitive	 diversity	

informing	upon	these	complex	biological	disease	processes.						

Where	successfully	mapped	as	a	function	of	diverse	cognitive	status	and	etiologies,	

targets	 resulting	 from	 generative	 NLP	 modeling	 of	 the	 AD	 plasma	 metabolome	 could	

precisely	 direct	 focused	 follow-up	 research,	 in	 addition	 to	 therapeutic	 and	 biomarker	

targeting.	 As	 with	 all	 AD	 modeling	 efforts,	 downstream	 validation	 will	 be	 essential	 to	

proactively	identify	and	address	the	potential	limitations	of	semantic	topic	extraction	NLP	

methods	 including	 STM	 [340].	 As	 suggested	 here	 and	 by	 proceeding	 chapters,	 however,	

metabolic	perturbations	may	proceed	highly	heterogeneously	in	AD	as	a	function	of	differing	

etiologic	 risk	 factors	 and	 cognitive	 status.	 Nonetheless,	 this	 dysmetabolic	 diversity	 of	

molecular	programs	similarly	impacted	by	recurrent	“failures	of	compensation”	driven	by	

“compensations	for	 failure”	might	represent	a	systems	biological,	 “final	common	process”	

across	varied	AD	etiopathogenesis	and	development.	While	biochemical	pathways,	classes,	

and	processes	 implicated	 in	 this	way	 could	greatly	 inform	and	advance	basic	AD	disease	

biology,	they	might	also	be	similarly	enriched	with	diverse	translational	research	targets	as	

a	consequence.	Befitting	their	complexity	across	the	dynamic	process	of	Alzheimer’s	disease,	

translational	 systems	 biology	 (and	 metabolomics	 specifically)	 will	 hopefully	 identify	

manifold	 therapeutic	 targets	 and	 precision	 biomarkers	 from	 amongst	 them	 to	 better	

remediate	and	monitor	this	devastating,	refractory	metabolic	disease	of	abnormal	cognitive	

aging.					
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CHAPTER	5:	Summary,	Conclusions,	and	Future	Aims	

The	 coming	 years	 will	 be	 incredibly	 important	 and	 transformative	 for	 the	 rapid	

expansion	 of	 quantitative,	 systems	 biology,	 not	 just	 to	 advance	 new	 paradigms	 in	

translational	biomedical	research,	but	also	to	close	the	sometimes-labyrinthine	circle	from	

“bench	to	bedside.”	Perhaps	no	single	set	of	professional	skills	stands	to	contribute	more	

intensively	 and	 uniformly	 to	 all	 such	 efforts	 than	 does	 applied	 systems	 biology	 and	

bioinformatics.	 	 If	anything,	 these	 technologies	 (and	 the	diseases	such	as	AD	 increasingly	

investigated	by	them)	have	begun	to	challenge	historically	normative	expectations	regarding	

the	 complexity	 of	 anticipated	 pathobiological	 architectures	 and	 mechanisms	 underlying	

abnormal	aging.	At	least	part	of	this	trend	emerges	from	the	field’s	better	understanding	of	

how	intricate	biological	disease	processes	in	AD	might,	in	fact,	actually	be	(as	increasingly	

appreciated	through	large-data	omics	methods	including	metabolomics).		

Because	AD	has	been	historically	informed	by	strong	prior	expectations	concentrated	

on	 amyloid-processing,	 protein-coding	 genes	 (i.e.,	 the	 amyloid	 cascade	 hypothesis),	 this	

expanded	scale	of	inquiry	beyond	a	finite	number	of	disease	subnetworks	could	be	a	highly	

disruptive	and	 translationally	 fruitful	 in	 coming	years.	 In	prioritizing	 the	development	of	

methods,	 platforms,	 and	data	 integration	 infrastructure,	 applied	 computational	 optimists	

within	the	field	may	look	to	these	prior	efforts	in	understanding	and	remediating	abnormal,	

age-associated	 cognitive	 decline	 as	 the	 opportunity	 costs	 of	 technology	 (i.e.,	 machine	

learning,	computation,	data)	not	always	evolving	in	stride	with	ideal	timetables	for	practical	

advances	 in	 personalized	 health	 (i.e.,	 cheap,	 effective	 point-of-care	 tests	 for	 emerging	

cognitive	risk).	This	narrative	exalting	the	power	of	computation	alone	to	drive	innovation	

in	translational	science	is	reductive,	but	it	also	remains	an	underappreciated	lens	by	which	
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to	understand	the	limited	success	of	many	AD	therapeutic	discovery	efforts	for	decades.	We	

will	 never	 know	what	 could	 have	 been	 had	 a	 time-travelling	 bioinformatician	 (with	 the	

benefit	 of	 modern	 compute	 and	 omics	 instrumentation)	 sat	 with	 Hardy,	 Selkoe,	 and	

colleagues	as	they	designed	and	interpreted	their	seminal	experiments.	If	recent	proposals	

and	achievements	by	the	NIH	such	as	Operation	Warp	Speed	and	the	proposed	Advanced	

Research	 Projects	 Agency	 for	 Health	 (ARPA-H)	 serve	 as	 any	 indication	 [24],	 these	

considerations	 are,	 however,	 very	much	 at	 the	 emerging	 core	 of	 tomorrow’s	 transitional	

medicine	for	diseases	to	come	and	those	that	remain	under-addressed.			

The	value	of	systems-scale	and	platform-driven	outlooks	on	disease	is	exemplified	by	

few	 innovations	 better	 than	 metabolomics	 and	 the	 renewed	 metabolic	 focus	 on	 human	

disease	 over	 the	 past	 decade	 [241].	 Not	 only	 has	 this	 permitted	 the	 understanding	 of	

pathobiology	 very	 proximal	 to	 the	 AD	 clinical	 phenotype	 [25],	 but	 it	 has	 also	 forced	

molecular	 researchers	 to	 confront	 biases	 inherited	 from	 the	 protein-coding-gene	 centric	

focus	of	 translational	molecular	research	from	the	 late-20th	century	onwards.	 In	contrast,	

metabolism	 as	 surveyed	 through	 metabolomics	 of	 peripheral	 blood	 might	 provide	 an	

alternative	picture	of	diseases	of	aging	such	as	AD.	Particularly,	 these	experiments	might	

instead	 suggest	 interdictable	 points	 of	 homeostatic	 compromise	 in	 the	 emerging	 disease	

process	 which	 become	 pathologically	 limiting	 through	 “failures	 of	 compensation”	

precipitated	 by	 “compensations	 for	 failure.”	 This	 specific	 pattern	 of	 failure	 in	 time	

distributed	across	human	structure	and	function	could	represent	a	“final	common	process”	

sculpting	 through	 its	 disease-specific	 particulars	 many	 of	 the	 well-appreciated,	

neurodegenerative	pathologies	of	abnormal	aging	and	cognition	clinically	appreciated	in	AD.		
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In	 this	 way,	 the	 process	 of	 specifically	 mapping	 this	 emerging	 distribution	 of	

dyshomeostases	 (at	 the	 pathobiological	 interface	 of	 biochemicals	 as	 both	 functional	

molecules	and	metabolites)	could	turn	our	attention	towards	understudied	biomarker	and	

therapeutic	 targets	 potentially	 addressing	 great,	 unmet	 clinical	 needs	 in	 diseases	 of	

abnormal	 aging	 including	 AD.	 Particularly	 because	 metabolomics	 contributes	 such	 a	

sensitive	and	disease-proximal	biological	readout,	these	methods	will	also	be	of	increasing	

importance	for	understanding	important,	but	understudied,	correlates	of	clinical	variability	

which	must	be	better	contextualized	for	the	effective	delivery	of	personalized	monitoring	

and	therapies.	Key	among	these	in	AD	are	the	effects	of	distinct	predisposing	risk	etiologies	

(e.g.,	LOAD,	DS-AD,	ADAD)	and	antemortem	cognitive	staging	(i.e.,	preclinical	disease,	MCI,	

AD),	 which	 have	 been	 incompletely	 considered	 by	 previous	 mechanistic	 models	 of	 AD	

(particularly	 as	 they	 might	 relate	 to	 implicated	 biology	 other	 than	 amyloid	 and	 tau	

proteopathies).		

In	2014,	Mapstone	and	colleagues	reported	in	LOAD	that	a	10-lipid	panel	(comprised	

predominantly	 of	 phospholipids	 and	 acyl-carnitines)	 demonstrated	 depletion	 in	 the	

peripheral	 plasma	 of	 individuals	 cognitively	 stable	 at	 baseline,	 but	 who	would	 go	 on	 to	

objectively	 decline	 within	 a	 five-year	 observational	 period	 [28].	 It	 remained	 unclear,	

however,	 if	 these	 preclinical	 LOAD	 participants	 included	 in	 the	 R/OCAS	 aging	 cohort	

demonstrated	broader	networks	of	peripheral	metabolic	deficits	beyond	the	10-lipid	panel	

which	also	anticipated	prodromal	and	clinical	impairments.	It	further	remained	unclear	if	

these	findings	were	generalizable,	even	under	conditions	of	clinical	and	demographic	parity,	

to	 the	 peripheral	 metabolomes	 of	 independent	 participants	 also	 meeting	 criteria	 for	

preclinical	LOAD.		
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Consistent	 with	 the	 findings	 of	 Mapstone	 and	 colleagues,	 canonical	 biochemical	

pathway	 analyses	 indeed	 implicated	 lipid,	 and	 specifically	 glycerophospholipid,	

dysmetabolism	within	R/OCAS	preclinical	LOAD	plasma.	They	also,	however,	suggested	the	

importance	of	potentially	related	and	previously	described	metabolic	pathways	 including	

glycolysis	and	glutaminolysis.	In	addition	to	their	intrinsic	roles	in	bioenergetics,	increasing	

research	at	single-cell	resolution	has	suggested	that	these	same	molecules	may	serve	vital	

functions	in	the	vulnerably	aging	brain	which,	when	compromised,	might	prohibit	cognitive	

resilience	 through	 ultimately	 abortive	 “compensations	 for	 failure”	 and	 “failures	 for	

compensation.”	Across	a	diverse	cross	section	of	metabolites	deleteriously	affected	under	

similar	 constraints	 in	 abnormal	 aging,	 this	 could	 constitute	 a	 metabolic	 “final	 common	

process”	in	AD	etiopathogenesis	and	evolution.			

Supporting	 this	 possibility,	 the	 comparison	 of	 preclinical	 LOAD	 metabolomic	

“fingerprints”	 in	 plasma	 across	 the	 R/OCAS	 and	 independent	 UCI	 ADRC	 preclinical	

participants	demonstrated	a	highly	statistically	significant,	but	modest,	overlap	in	implicated	

canonical	pathways.	Because	this	exceeded	expectations	due	to	chance	alone,	it	suggests	not	

only	 that	 this	 specific	 dysmetabolic	 signature	 of	 preclinical	 LOAD	 is	 reproducible	 at	 the	

pathway	 level,	 but	 also	 that	 network-scale	 plasma	 metabolic	 perturbations	 in	 this	

population	are	robustly	observed	overall.	This	was	further	supported	by	de	novo	modeling	

driven	by	these	clinical	phenotypic	comparisons,	which	identified	additional	dysregulated	

metabolic	networks	in	both	R/OCAS	and	UCI	ADRC	associated	with	preclinical	LOAD	status.			

Although	 LOAD	 is	 the	 most	 prevalent	 AD	 etiology,	 it	 remained	 unclear	 if	 other	

vulnerably	 aging	 populations	 (e.g.,	 those	 with	 Down	 syndrome)	 similarly	 demonstrated	

cognitive-decline-associated,	network-scale	changes	to	the	peripheral	metabolome.	Even	if	
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this	were	the	case,	it	remained	unclear	if	any	such	changes	accompanying	decline	in	DS-AD	

resembled	 those	 observed	 in	 early	 LOAD.	Because	 of	 inherent	 limitations	 comparing	 the	

cognitive	 staging	 of	 DS-AD	 and	 LOAD	 (due	 to	 premorbid	 intellectual	 deficits	 in	 DS),	

peripheral	plasma	metabolic	change	in	DS	was	examined	as	the	comparison	of	those	trisomic	

aging	individuals	who	remained	cognitively	stable	versus	those	who	demonstrated	clinical	

AD.	As	 in	LOAD,	 this	comparison	nominated	many	network-scale	alterations	 to	canonical	

metabolic	pathways	in	the	peripheral	blood	metabolome,	suggesting	that	these	peripheral	

dyshomeostases	do	not	occur	solely	as	a	function	of	LOAD	in	the	development	of	AD	overall.	

More	specifically,	both	canonical	and	de	novo	pathway	analyses	in	DS-AD	strongly	implicated	

semantically	 interpretable	 patterns	 of	 metabolic	 compromise	 involving	 lipids	 (including	

phospholipids	and	acyl-carnitines)	and	the	central	carbon	metabolism	of	hexose	sugars.	This	

was	further	supported	through	the	modeling	of	inferred	metabolic	enzyme	activity	from	DS-

AD	 peripheral	 metabolomics,	 which	 again	 implicated	 proteins	 with	 diverse	 molecular	

substrates	 (e.g.,	 lipids,	 branched-chain	 amino	 acids)	 involved	 in	 similarly	 diverse	

biochemical	 programs.	 Furthermore,	 targeted	 metabolomics	 investigations	 established	

multiple,	bioenergetically	 important	organic	acids	(e.g.,	 lactic	acid)	as	dysregulated	 in	the	

blood	of	DS	individuals	with	clinical	AD.		

Although	comparisons	between	LOAD	and	DS-AD	imply	necessary	limitations	within	

current	frameworks	as	described,	these	analyses	chiefly	demonstrated	that	both	etiologies	

involve	 peripherally	 evident	 changes	 to	 the	 plasma	metabolome	 in	 relation	 to	 cognitive	

status	 in	AD.	Furthermore,	 these	changes	were	similarly	heterogeneous	across	pathways,	

even	if	they	did	not	implicate	identical	molecules	through	a	strictly	delineated	“final	common	

pathway”,	but	perhaps	instead	a	shared	“final	common	process”	of	emerging	dysmetabolic	
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constraints.	Where	differentially	realized	in	vulnerably	aging	biology	according	to	differing	

cognitive	 status	 and	 risk-conferring	 etiologies	 in	 AD,	 these	 dyshomeostases	 could	

nonetheless	 contribute	 to	 adverse,	 shared	 outcomes	 involving	 neuropathological	

accumulation	and	associated	failures	of	cognitive	resilience.		

To	further	explore	this	possibility,	the	ADAD	peripheral	plasma	metabolome	was	also	

investigated.	 This	 permitted	 several	 comparative	 advantages	 relative	 to	 DS-AD	 because,	

unlike	 this	 latter	 population,	 those	 with	 ADAD	 do	 not	 experience	 premorbid	 cognitive	

developmental	differences	compared	to	those	with	LOAD	on	average.	Furthermore,	because	

age	to	dementia	diagnosis	can	be	estimated	for	given	mutations	segregating	within	families,	

metabolomic	 changes	 co-varying	 with	 these	 estimates	 can	 be	 evaluated	 for	 mutation	

carriers,	 even	 if	 these	 individuals	 have	 not	 yet	 demented.	 To	 explicitly	 compare	 the	

metabolomes	 of	 preclinical	 ADAD	 to	 preclinical	 LOAD	 participants	 (versus	 respective	

cognitively	 stable	 controls),	 metabolic	 fingerprint	 analyses	 of	 respectively	 perturbed	

canonical	pathways	again	demonstrated	a	modest,	but	statistically	significant,	proportion	of	

overlap	between	these	to	a	degree	exceeding	chance	alone.		

To	evaluate	the	specificity	of	this	overlap	for	the	preclinical-control	comparison,	the	

plasma	metabolomes	of	preclinical	LOAD	and	ADAD	participants	were	compared	 to	 their	

respective	peers	demonstrating	objective	cognitive	deficits	 (i.e.,	MCI/AD).	Not	entirely	as	

anticipated,	these	comparisons	across	etiologies	(and	with	the	benefit	of	highly	harmonized	

cognitive	comparisons)	also	demonstrated	some	significant	overlap	in	peripherally	indexed,	

canonical	metabolic	pathways	exceeding	chance	alone.	Much	as	in	LOAD	and	DS-AD,	de	novo	

biochemical	 modeling	 in	 ADAD	 plasma	 indicated	 the	 extensive	 involvement	 of	 diverse	

networks	including	lipids	of	potentially	disproportionate	importance	of	hepatic	metabolic	
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processes	homeostatically	supportive	of	cognitive	resilience.			It	remained	unclear,	though,	

if	the	content	of	the	blood	metabolome	from	ADAD	mutation	carriers	demonstrated	similar,	

diverse	biochemical	changes	in	relation	to	estimated	years	until	clinical	dementia	diagnosis.	

Consistent	 in	 other	 analyses	 across	 ADAD,	 DS-AD,	 and	 LOAD,	 metabolomic	 network	

simulations	of	these	observed	correlations	again	implicated	diverse	metabolites	principally	

including	 lipids	(e.g.,	cholesterol,	 fatty	acid	metabolites),	but	also	sugars	of	 importance	to	

central	 carbon	 pathway	 flux.	 These	 findings	 were	 recapitulated	 by	 analyses	 of	 these	

untargeted	 data	 which	 inferred	 the	 activity	 of	 inferred	 enzyme-coding	 genes	 (e.g.,	

SELENOI/EPT1)	again	metabolizing	 lipids,	many	of	which	were	 interestingly	expressed	in	

glia.			

In	 sum,	 the	 peripheral,	 systems	 metabolomic	 analysis	 of	 blood	 plasma	 across	

cognitive	staging	and	etiologies	in	AD	suggested	a	two-fold	distribution	of	dysmetabolism.	

On	one	hand,	multiple	comparisons	of	canonical	pathway	fingerprints	evaluated	across	these	

populations	frequently	suggested	overlap	significantly	beyond	chance	levels,	but	which	was	

overall	modest	in	proportion.	This	could	suggest	that	a	strict	“final	common	pathway”	in	AD	

etiopathology	exists	ubiquitously	 across	 these	populations	but	 is	 overall	 limited.	 It	 could	

also,	however,	suggest	that	a	much	larger	proportion	of	peripheral	metabolomic	change	in	

AD	 remains	 non-shared	 and	 complexly	 distributed	 across	 biochemical	 pathways	 as	 a	

function	 of	 cognitive	 staging	 and	 etiologies.	 If	 this	were	 true,	 such	 a	 highly	 semantically	

dense	and	residually	complex	mapping	of	metabolic	processes	to	specific	clinical	phenotypic	

comparisons	 presents	 a	 non-trivial	 challenge	 for	 understanding	 these	 relationships	 to	

advance	translational	aims	(i.e.,	biomarkers	and	therapeutic	targets).		
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To	 deconvolve	 these	 relationships,	 this	 mapping	 was	 cast	 as	 a	 natural	 language	

processing	 (NLP)	 problem	 in	 biochemical	 network	 space.	 Specifically,	 a	 small	 number	 of	

latent	metabolic	topics	were	estimated	from	counts	of	metabolic	terms	extracted	from	de	

novo	Mummichog	activity	networks	for	36	AD	clinical	phenotypic	contrasts.	Implemented	

through	structural	topic	models	(STMs),	this	algorithm	also	permitted	the	contextualization	

of	 these	 fitted	 topics	 in	 terms	 of	 specific,	 phenotypic	 content	 variable	 comparisons.	 In	

addition,	it	allowed	for	the	estimation	of	and	correction	for	nuisance	metabolomic	variables	

(e.g.,	ESI-MS	mode,	SVA	algorithm)	which	might	otherwise	confound	peripheral	metabolic	

topic	mappings.		

Consistent	with	the	previously	appreciated	semantic	diversity	of	the	AD	peripheral	

metabolome,	 none	 of	 the	 five	 fitted	 metabolic	 topics	 alone	 significantly	 associated	 with	

specific,	clinical	phenotypic	comparisons	(p’s	>	.05).	Very	interestingly,	however,	metabolic	

Topic	 4	 demonstrated	 a	 semantic	 enrichment	 for	 biochemistry	 involving	 hexosamine/	

aminoglycan	 metabolism,	 which	 has	 been	 previously	 implicated	 in	 AD	 through	 A)	 glial	

dyshomeostases	 and	 B)	 alterations	 to	 extracellular	 structures	 including	 the	 extracellular	

matrix	 (ECM)	 and	 perhaps	 the	 perineuronal	 net	 specifically.	 Moreover,	 comparisons	

involving	 the	 plasma	 of	 aging	 individuals	 with	 exceptional	 cognitive	 resilience	 (i.e.,	

supernormal	participants)	were	disproportionately	enriched	for	these	processes,	although	

more	limited	evidence	also	suggested	relationships	to	the	ADAD	preclinical-control	contrast	

also	evaluated	in	CHAPTER	3.	In	the	case	of	the	former	supernormal	comparisons,	content-

covariate-level	 modeling	 using	 STM	 even	 more	 specifically	 indicated	 the	 importance	 of	

glycan	sialylation,	as	described	by	AD	research	investigating	siglecs	(i.e.,	sialic-acid-binding	

immunoglobulin-type	lectins).	Because	these	molecules	include	the	glycoprotein	encoded	by	



 

161 
 

the	LOAD	GWAS-implicated	gene	CD33,	it	is	intriguing	to	consider	that	this	observation	in	

supernormal	 plasma	 could	 instead	 index	 these	 same	 processes	 as	 correlates	 (if	 not	

mechanistic	 mediators)	 of	 successful	 cognitive	 resiliency	 resulting	 from	 their	 sustained	

homeostatic	 integrity	 in	 aging.	 These	 possibilities,	 particularly	 with	 respect	 to	 cognitive	

outcomes,	 remain	 to	 be	more	 precisely	 articulated	 through	 refined	NLP	 approaches	 and	

mechanistically	examined	for	translational,	therapeutic	purposes.		

In	 conclusion,	 these	 combined	 findings	 (across	 the	 LOAD,	 DS-AD,	 and	 ADAD	

peripheral	metabolomes)	suggest	an	overwhelming	diversity	of	complex	metabolic	change	

contingent	upon	specific	disease	etiologies	and	cognitive	status	across	the	development	of	

AD.	 In	 this	 way,	 a	 complex	 distribution	 of	 physiologically	 extended,	 CNS-peripheral	

metabolic	 axes	 might	 dynamically	 participate	 in	 and	 index	 the	 emerging	 cognitive	

dysfunction	 nonetheless	 characterizing	 all	 adults	 who	 develop	 AD	 regardless	 of	 specific	

etiologies.	 Exactly	 this	 finding	 of	 cryptic,	 otherwise	 masked	 metabolic	 diversity	 in	 AD	

(despite	overall	shared	clinical	trajectories	across	etiologies)	underscores	the	importance	of	

omics	 methods	 (including	 metabolomics)	 for	 unbiasedly	 and	 precisely	 stratifying	 these	

individual	 differences	 in	 A)	 translational	 research	 and	 for	 B)	 personalized	 healthcare	 in	

aging.		

As	a	corollary,	this	pattern	of	findings	also	suggests,	 in	highly	concrete	terms,	why	

etiologically	agnostic,	linear	hypotheses	explaining	AD	pathogenesis	and	development	could	

substantially	 and	 artificially	 limit	 the	 study	 of	what	 is,	 in	 fact,	 a	much	more	 biologically	

complex	 and	 dynamic	 phenomenon.	 While	 this	 promises	 substantial	 opportunities	 for	

impactful,	quantitative	systems-scale	research	in	coming	years,	it	is	also	a	sobering	reminder	

that	these	strong	prior	hypotheses	provide	distinct	frameworks	for	understanding	basic	AD	
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pathobiology	and	pursuing	clinical	translation	which	are	not	without	bias.	This	should	be	

proactively	anticipated	and	actively	considered	in	the	pursuit	of	effective	AD	biomarkers	and	

therapeutic	targets,	but	also	basic	disease	research	as	well.			

Even	if	only	a	modest	core	of	strict	metabolic	pathways	span	AD	etiologies,	this	does	

not	exclude	the	possibility	that	a	dyshomeostatic,	“final	metabolic	process”	exerts	common	

constraints	across	diverse	biology	in	abnormal	aging	which	might	otherwise	be	capable	of	

supporting	healthy,	resilient	cognitive	aging.	In	this	capacity,	the	complexity	of	homeostatic	

demands	 upon	 metabolism	 in	 those	 aging	 abnormally	 (and	 particularly	 involving	 the	

precariously	aging	brain)	might	 impose	catastrophic	 limitations	across	diverse	molecular	

programs	in	aging	nonetheless	similarly	impacted	by	recurrent	“failures	of	compensation”	

driven	 by	 “compensations	 for	 failure.”	 These	 themselves	 may	 be	 complexly	 distributed	

throughout	 abnormally	 aging	 biological	 systems	 conditional	 on	 etiologies	 and	 cognitive	

status	 in	 a	 manner	 which,	 all	 the	 same,	 similarly	 converges	 towards	 configurations	

precipitating	clinical	AD	and	prohibiting	healthy	trajectories	which	might	otherwise	afford	

avenues	of	further	cognitive	and	functional	compensation.			

If	 these	 imperiled	 CNS-peripheral	metabolic	 axes	 can	 be	 discretely	 identified	 and	

contextualized	across	differing	at-risk	clinical	populations	as	pursued	 in	this	dissertation,	

these	 vulnerabilities	might	 be	 remediated	 through	 highly	 targeted	 lifestyle,	 diet,	 and/or	

pharmaceutical	interventions	consistent	with	the	goals	of	personalized	healthcare.		Besides	

this	and	contextualized	through	minimally	biased	natural	language	processing	approaches,	

these	 dynamically	 dyshomeostatic	 axes	 in	 evolving	 dementia	 might	 also	 suggest	 very	

rationally	premised,	 semantically	 informed	disease	biomarkers	best	 indicated	 to	 address	

specific	clinical	questions	in	individual	aging	adults.	This	does	not	even	begin	to	address	how	
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similar	insights	applied	to	basic	AD	research	might	close	the	loop	between	A)	data-intensive	

hypothesis	generation	and	B)	prioritized,	mechanistic	 investigation	of	highly	non-random	

and	contextually	rich	target	biology	thereby	implicated	in	disease.	Of	great	importance	for	

emerging	programs	like	ARPA-H	to	consider,	there	will	be	no	such	virtuous	cycles	until	open	

access	 publishing	 streamlines	 the	 broad	 dissemination	 of	 these	 taxpayer-funded,	 public-

good	 insights.	 This	 will	 be	 especially	 vital	 in	 further	 scientific	 text	 mining	 efforts	 in	

neurodegenerative	diseases	 such	as	AD,	 and	perhaps	 should	be	 specifically	 elevated	as	 a	

critical	concern	in	the	current	IT	infrastructural	design	implemented	by	scientific	publishing.	

Improving	 this	 status	 quo	 might	 greatly	 and	 more	 seamlessly	 aid	 the	 exposure	 of	 such	

reported	 literature	 to	 concept/topic-level	 semantic	 modeling	 ahead	 of	 human-expert	

summary	 review.	 	 	 The	 possibilities	 for	 overburdened	 PIs	 with	 no	 time	 to	 read	 are	

tremendous.			

Looking	 to	 the	 future	 of	 translational	 AD	 systems	 biology,	 metabolism,	 and	

metabolomics,	 much	 work	 remains	 to	 be	 done.	 The	 field	 has,	 however,	 made	 immense	

strides	 in	 the	 semantic-level	 understanding	 of	 biochemical	 findings	 easily	 and	 cheaply	

obtained	from	blood	plasma,	but	harder	to	interpret	in	the	pathobiological	context	of	AD	as	

a	CNS	disorder.	Because	the	extent	of	 these	dyshomeostases	 in	aging	remain	unclear	and	

marked	 by	 their	 striking	 degree	 of	 complexity	 as	 described	 in	 this	 dissertation,	 this	

conceptual	sharpening	has	been	and	will	continue	to	be	vital.	Integrated	into	an	accelerating	

culture	of	large-data	analysis	and	platforms	in	translational	AD	research,	I	do	not	see	these	

trends	 abating.	 If	 anything,	 I	 have	 sensed	 the	 early	 growth	 of	 new	 scientific	 culture	 and	

collaboration	 befitting	 an	 increasingly	 identifiable	 approach	 to	 translational	 research.	
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Unfortunately,	 these	 aims	 are	 still	 often	 talked	 about	 more	 abstractly	 than	 they	 are	

successfully	implemented	to	the	point	of	concrete	insights	and	deliverables.		

At	least	part	of	this	implies	the	growing	need	to	nurture	this	culture	and	bring	more	

informed	perspectives	to	the	conference	table	or	Zoom	window.	This	will	likely	involve	the	

skillful	deployment	of	existing	bioinformatics	and	computation	talent	where	it	exists,	but	this	

alone	will	not	be	enough.	Bioinformatics	has	no	footprint	in	pre-baccalaureate	education	and	

a	limited,	but	growing,	footprint	at	the	undergraduate	level.	Qualified	undergraduates	might	

sensibly	aim	to	employ	skills	well	suited	to	bioinformatics	in	the	handsomely	renumerated	

private	tech	sector,	away	from	access	to	many	priceless	clinical	datasets	and	stipend-level	

compensation.	Similarly,	much	bioinformatics	talent,	once	terminally	trained	in	academia,	

churn	through	a	revolving	door	to	industry,	which	limits	the	development	of	bioinformatic	

culture	 and	 institutional	 knowledge	 in	 academia.	 Although	 the	 work	 to	 be	 done	 and	 its	

significance	if	successful	are	nearly	beyond	debate,	who	will	do	this	work	remains	far	less	

clear,	in	addition	to	the	training	and	educations	they	will	have,	the	academic	culture	they	will	

participate	 in,	 and	 the	 funding	 mechanisms	 through	 which	 they	 will	 best	 competitively	

pursue	 these	 aims.	 The	 most	 sober,	 purposeful	 approach	 to	 pursuing	 translational	

innovation	in	AD	will	proactively	address	these	concerns	and	create	the	circumstances	for	

necessary	work	to	flourish	and	propagate,	as	it	must	to	succeed.		

Along	 the	 lines	 of	 highly	 applied	 and	 data-centric	 investigation	 in	 disease,	 it	 is	

reassuring	to	see	 the	NIH	embrace	 innovation	 in	agile,	platform/process	centric	research	

capabilities	 and	 funding	 through	 proposed	 initiatives	 such	 as	 the	 proposed	 Advanced	

Research	Projects	Agency	for	Health	(ARPA-H)	[24].	In	aiming	to	spur	collaboration	across	

academic	and	industry	stakeholders	consistent	with	the	“Heilmeier	Catechism”	paradigm	of	
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research	 prioritization,	 this	 will	 almost	 definitionally	 stipulate	 a	 culture	 in	 which	 large	

biomedical	data	and	accompanying	data	analysis	become	a	common	currency	of	intellectual	

exchange	 and	 appropriate	 scrutiny.	 The	 further	 normalization	 and	 proliferation	 of	 these	

skillsets	within	academic	biomedicine	promises	exciting	opportunities	for	collaboration	and	

diverse	engagement,	particularly	as	this	could	be	driven	by	existing	talent	in	industry	highly	

acculturated	 in	 the	 construction	 of	 durable	 analysis	 infrastructure	 through	 software.	 By	

more	 optimally	 distributing	 computational	 work	 amongst	 invested	 parties,	 many	 time-

consuming	duties	independent	of	conceptual-level	research	formulation	could	be	passed	to	

those	who	stand	to	gain	most	from	these	opportunities	(e.g.,	motivated	undergraduates	who	

code	and	see	biology	as	exactly	this,	eager	high	schoolers	through	education?	As	a	team	sport	

even?).	

	Particularly	 if	 this	 infrastructure	 can	 be	 organized	 into	 durable	 pipelines	 and	

databases,	the	transparency	of	these	processes	across	analysts	could	be	transformative	in	

allowing	translational	scientists	the	bandwidth	to	follow	new	lines	of	inquiry	as	driven	by	

data	 and	 resulting	 inference,	 rather	 than	 plunging	 them	 ever	 deeper	 into	 a	 quagmire	 of	

patchworked	 software	 and	 data.	 Where	 this	 infrastructure	 is	 deliberately	 engineered	

particularly	well,	 its	 extensibility	might	 even	 facilitate	 the	pursuit	 of	 new	 research	using	

novel	 methodologies	 and	 instrumentation	 which	 might	 otherwise	 only	 add	 prohibitive	

complexity.	The	prioritization	of	these	capabilities,	however,	is	not	guaranteed,	as	much	as	

doing	 so	would	 be	 highly	 useful.	 It	will	 be	 incumbent	 upon	 the	 field	 of	 translational	 AD	

systems	biology	and	emerging	entities	such	as	ARPA-H	to	aggressively	support	these	front-

heavy	investments	in	research	infrastructure,	which	will	yield	substantial,	delayed	returns	

in	 the	study	of	abnormal	human	aging	consequently.	The	reward	will	be	an	 investigative	
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culture	which	prioritizes	time	and	resources	invested	in	high-level	knowledge	generation,	

diverse	communication	with	stakeholder	peers,	and	biomedical	intelligence	workup,	rather	

than	solitary	hours	consumed	in	software	code	without	a	thought	to	the	pathobiology	of	AD.				

This	is	even	more	important	because	peripheral	investigations	of	AD	alone	(such	as	

plasma	metabolomics)	will	be	insufficient	to	mechanistically	understand	AD	and	establish	

causative	 dysmetabolic	 relationships	 within	 and	 across	 different,	 affected	 clinical	

populations.	While	 it	 remains	 increasingly	 clear	 that	 concomitant	 changes	 to	 peripheral	

metabolism	 accompany	 cognitive	 decline	 in	 AD,	 it	 remains	 much	 less	 clear	 how	 these	

dyshomeostatic	 CNS-peripheral	 axes	 ultimately	mediate	 insults	 to	 the	 brain	 in	 abnormal	

aging	which	proximally	result	 in	failures	of	cognitive	resilience.	To	probe	these	questions	

further	 in	 alive,	 aging	participants	 at	molecular	 resolution,	metabolic	 imaging	 employing	

specialized	MRI	paradigms	and/or	PET	will	be	necessary	to	better	quantify	an	intermediate,	

metabolic	 “endophenotype”	 between	 broad	 clinical/cognitive	 status	 and	 the	 blood	

metabolome.	This	does	not	even	begin	to	consider	future	work	to	be	done	further	evaluating	

and	 clarifying	 these	 processes	 in	 model	 systems	 of	 AD	 beyond	 aging	 adults	 themselves	

(including	participant-derived	tissues	such	as	 iPSCs).	Very	excitingly,	 these	future	studies	

might	 themselves	 implicate	 other	metabolically	 intensive	 organ	 systems	 in	 AD	 cognitive	

change,	which	also	could	prove	amenable	to	imaging	or	characterization	in	further	model	

systems.	 Overall,	 these	 expanded	 workflows	 will	 involve	 substantial	 considerations	 and	

bioinformatics	pipelines	orthogonal	to	metabolomics,	but	which	are	equally	(if	not	more)	

data	 intensive.	 This	 is	 even	 more	 reason	 to	 invest	 in	 large-scale	 quantitative	 analysis	

infrastructure,	 personnel,	 and	 platforms	 which	 at	 least	 anticipate	 the	 scale	 of	 these	

challenges	and	the	software	tools	to	best	address	them.	In	doing	so,	translational	researchers	
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will	 keep	 their	 heads	 above	 the	 matted	 weeds	 of	 methods	 implementation	 and	 remain	

responsively	agile	to	new	avenues	of	inquiry	through	rapidly	evolving,	quantitative	research	

capabilities	and	platforms.			

In	all,	the	translational	systems	metabolic	investigation	of	AD	promises	a	hard,	but	

hopefully	 actionable,	 road	 to	 useful	 therapies	 and	 biomarkers	 in	 coming	 years.	 There	

remains	 much	 to	 be	 understood	 about	 the	 disease	 to	 the	 clinical	 benefit	 of	 multiple	

populations,	 but	 the	 pathobiological	 architecture	 underlying	 AD	 as	 suggested	 by	 this	

dissertation	much	more	resembles	a	sphinxian	enigma	compared	to	a	cascade.	This	will	be	

immensely	challenging	to	address	for	manifold	reasons	spanning	from	the	conceptual	to	the	

methodological	and	practical.	At	the	same	time,	it	gives	promise	that	the	aging	biology	most	

promising	as	AD	therapeutics,	biomarkers,	and	mechanistic	targets	in	basic	research	has	not	

yet	 been	 fully	 appreciated.	 It	 is,	 has	 been,	 and	 will	 be	 my	 privilege	 as	 a	 translational	

biomedical	scientist	to	continue	this	vital	work	advancing	precision	health	aims.	In	doing	so,	

it	 is	 my	 sincerest	 hope	 that	 we	 can	 better	 monitor	 and	 ultimately	 cure	 this	 viciously	

unrelenting	disease	of	abnormal	cognitive	aging,	and	perhaps	a	few	more	like	it.				
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APPENDIX	

Appendix	1.1	Biochemical	Fingerprints	of	Canonical	Metabolic	Pathways	Enriched	for	
Dysregulated	Metabolite	Features	in	R/OCAS	and	UCI	ADRC	Preclinical	AD	Blood	Plasma		
	
Pathway R/OCAS UCI ADRC 

Alanine and Aspartate Metabolism 1 0 
Androgen and estrogen biosynthesis and metabolism 1 0 

Arginine and Proline Metabolism 1 0 
Aspartate and asparagine metabolism 1 0 

Beta-Alanine metabolism 1 0 
Bile acid biosynthesis 0 1 
Biopterin metabolism 0 1 

C21-steroid hormone biosynthesis and metabolism 0 1 
Carbon fixation 1 0 

D4&E4-neuroprostanes formation 0 1 
De novo fatty acid biosynthesis 0 1 

Drug metabolism - other enzymes 1 1 
Fatty acid activation 0 1 

Fatty Acid Metabolism 0 1 
Galactose metabolism 1 0 

Glutamate metabolism 1 0 
Glutathione Metabolism 1 0 

Glycerophospholipid metabolism 1 0 
Glycine, serine, alanine and threonine metabolism 1 0 

Histidine metabolism 1 0 
Limonene and pinene degradation 0 1 

Linoleate metabolism 0 1 
Methionine and cysteine metabolism 1 0 

Nitrogen metabolism 1 0 
Prostaglandin formation from arachidonate 1 1 

Purine metabolism 1 0 
Putative anti-Inflammatory metabolites formation from EPA 1 0 

Pyrimidine metabolism 1 0 
Saturated fatty acids beta-oxidation 1 0 

Sialic acid metabolism 1 0 
Tryptophan metabolism 1 0 

Tyrosine metabolism 1 0 
Urea cycle/amino group metabolism 1 0 

Vitamin B3 (nicotinate and nicotinamide) metabolism 1 0 
Vitamin B9 (folate) metabolism 1 0 
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Appendix	1.2	Biochemical	Fingerprints	of	Canonical	Metabolic	Pathways	Enriched	for	
Dysregulated	Metabolite	Features	in	Preclinical	LOAD	and	ADAD	
	
Pathway Preclinical LOAD Preclinical ADAD 
Alanine and Aspartate Metabolism 1 0 
Androgen and estrogen biosynthesis and metabolism 1 0 
Arginine and Proline Metabolism 1 0 
Aspartate and asparagine metabolism 1 0 
Beta-Alanine metabolism 1 0 
Bile acid biosynthesis 1 1 
Biopterin metabolism 1 0 
C21-steroid hormone biosynthesis and metabolism 1 1 
Carbon fixation 1 0 
D4&E4-neuroprostanes formation 1 0 
De novo fatty acid biosynthesis 1 0 
Drug metabolism - other enzymes 1 0 
Fatty acid activation 1 0 
Fatty Acid Metabolism 1 0 
Galactose metabolism 1 0 
Glutamate metabolism 1 0 
Glutathione Metabolism 1 0 
Glycerophospholipid metabolism 1 0 
Glycine, serine, alanine and threonine metabolism 1 1 
Histidine metabolism 1 0 
Limonene and pinene degradation 1 0 
Linoleate metabolism 1 0 
Methionine and cysteine metabolism 1 1 
Nitrogen metabolism 1 0 
Prostaglandin formation from arachidonate 1 1 
Purine metabolism 1 0 
Putative anti-Inflammatory metabolites formation from 
EPA 1 0 
Pyrimidine metabolism 1 0 
Saturated fatty acids beta-oxidation 1 0 
Sialic acid metabolism 1 0 
Tryptophan metabolism 1 0 
Tyrosine metabolism 1 0 
Urea cycle/amino group metabolism 1 1 
Vitamin B3 (nicotinate and nicotinamide) metabolism 1 0 
Vitamin B9 (folate) metabolism 1 0 
Leukotriene metabolism 0 1 
Di-unsaturated fatty acid beta-oxidation 0 1 
Vitamin H (biotin) metabolism 0 1 
Arachidonic acid metabolism 0 1 
Porphyrin metabolism 0 1 
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Appendix	1.3	Biochemical	Fingerprints	of	Canonical	Metabolic	Pathways	Enriched	for	
Dysregulated	Metabolite	Features	in	LOAD	and	ADAD	Preclinical	versus	Objectively	
Impaired	(MCI/AD)	Participant	Plasma		
	

Pathway 
LOAD Preclinical 
versus MCI/AD 

ADAD Preclinical 
versus MCI/AD 

Alanine and Aspartate Metabolism 1 0 
Aminosugars metabolism 0 1 
Androgen and estrogen biosynthesis and 
metabolism 1 0 
Arginine and Proline Metabolism 1 1 
Aspartate and asparagine metabolism 1 1 
Beta-Alanine metabolism 1 0 
Carbon fixation 1 0 
Drug metabolism - other enzymes 1 0 
Fatty Acid Metabolism 0 1 
Fructose and mannose metabolism 1 0 
Galactose metabolism 1 1 
Glutamate metabolism 1 0 
Glutathione Metabolism 1 0 
Glycerophospholipid metabolism 1 1 
Glycine, serine, alanine and threonine 
metabolism 1 1 
Glycolysis and Gluconeogenesis 1 0 
Glycosylphosphatidylinositol(GPI)-anchor 
biosynthesis 0 1 
Histidine metabolism 1 0 
Methionine and cysteine metabolism 1 0 
Nitrogen metabolism 1 0 
Porphyrin metabolism 0 1 
Purine metabolism 1 0 
Putative anti-Inflammatory metabolites 
formation from EPA 1 0 
Pyrimidine metabolism 1 0 
Sialic acid metabolism 1 0 
Squalene and cholesterol biosynthesis 0 1 
Tryptophan metabolism 1 0 
Tyrosine metabolism 1 0 
Urea cycle/amino group metabolism 1 0 
Vitamin A (retinol) metabolism 0 1 
Vitamin B3 (nicotinate and nicotinamide) 
metabolism 1 0 
Vitamin B9 (folate) metabolism 1 0 
Vitamin D3 (cholecalciferol) metabolism 0 1 

	
	
	




