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ABSTRACT: The authors describe a tropical cyclone risk model for the Philippines using open-source methods that can
be straightforwardly generalized to other countries. Wind fields derived from historical observations, as well as those from
an environmentally forced tropical cyclone hazard model, are combined with data representing exposed value and vulnera-
bility to determine asset losses. Exposed value is represented by the LitPop dataset, which assumes total asset value is dis-
tributed across a country following population density and night-lights data. Vulnerability is assumed to follow a functional
form previously proposed by Emanuel, with free parameters chosen by a sensitivity analysis in which simulated and histori-
cal reported damages are compared for different parameter values and further constrained by information from household
surveys about regional building characteristics. Use of different vulnerability parameters for the region around Manila,
Philippines, yields much better agreement between simulated and actually reported losses than does a single set of parame-
ters for the entire country. Despite the improvements from regionally refined vulnerability, the model predicts no losses
for a substantial number of destructive historical storms, a difference the authors hypothesize is due to the use of wind
speed as the sole metric of tropical cyclone hazard, omitting explicit representation of storm surge and/or rainfall. Bearing
these limitations in mind, this model can be used to estimate return levels for tropical cyclone–caused wind hazards and as-
set losses for regions across the Philippines, relevant to some disaster risk reduction and management tasks; this model also
provides a platform for further development of open-source tropical cyclone risk modeling.

SIGNIFICANCE STATEMENT: Landfalling tropical cyclones are devastating disasters for which the Philippines is
particularly at risk. Here we develop a model for tropical cyclone risk, quantified as property losses, over the Philip-
pines and demonstrate its effectiveness by comparing to historical damages. We find that capturing the difference in
vulnerability between the largest city in the Philippines (Manila) and more rural areas is important to accurately repre-
sent this risk. Using this model, we can more accurately constrain the risk of very extreme tropical cyclone events in the
Philippines. The model can also be straightforwardly adapted for emergency planning in other countries and for climate
change scenarios using openly available information.

KEYWORDS: Hurricanes/typhoons; Tropical cyclones; Emergency preparedness; Risk assessment; Societal impacts;
Vulnerability

1. Introduction

Accurate assessments of tropical cyclone (TC) risk are valu-
able for disaster risk reduction and climate adaptation. Such as-
sessments can inform decisions about both where to build
resilience and emergency preparedness prior to TC-induced dis-
asters and where to allocate aid following such disasters; they
can also inform the development of insurance and reinsurance
products. Assessing risk requires consideration of three different
factors (Field et al. 2012). The first factor is the hazard, the

probabilities that given levels of geophysical variables (e.g., wind
speed, rainfall, storm surge) will be exceeded. The second factor
is the exposure, which characterizes the human, structural, or ag-
ricultural assets in a place that might be affected by the disaster.
The third factor is the vulnerability, which is the degree to which
those assets will be lost if one or more of the geophysical varia-
bles exceeds a given value. TC risks are typically quantified in
the form of asset losses, or the replacement cost of assets de-
stroyed by a TC event.

Over the past decade or so, significant strides have been
made in quantifying different aspects of TC risk. Given that
TCs}particularly the few most-intense ones that cause the
largest share of damage}are rare events, the observed histor-
ical record is too limited for accurate TC risk assessment.
Statistical–dynamical models have been developed that allow
the simulation of many physically plausible TCs given back-
ground environmental conditions (Emanuel et al. 2008; Lee
et al. 2018; Jing and Lin 2020; Bloemendaal et al. 2020b). Syn-
thetic TCs generated by such models are used for assessment
of extreme wind hazards (Emanuel 2011; Sobel et al. 2019;
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Bloemendaal et al. 2020a; Lee et al. 2022), coupled with hy-
drodynamical models to estimate storm surge hazards (Lin
et al. 2010; Lin and Chavas 2012) and with physics-based mod-
els of precipitation to estimate extreme rainfall hazards (Xi et al.
2020; Gori et al. 2022). A key challenge for TC risk assessment is
incorporating changing hazards following climate change. Tradi-
tionally, hurricane risk assessment has been based primarily on
historical tracks (Watson and Johnson 2004), but this approach is
not appropriate in a nonstationary climate. In contrast, the statis-
tical–dynamical approaches can be applied with environmental
conditions drawn from climate change scenarios to estimate
changing hazards fromTCs (Emanuel et al. 2008; Lee et al. 2020).

Alongside these advances in modeling TC hazards, progress
has been made in modeling TC vulnerability and exposure.
This work can be broadly categorized into structural, eco-
nomic, and social approaches (Wilson et al. 2022). For the
United States, FEMA’s Hazus model provides a relatively
comprehensive framework for modeling wind and flood risks,
including computation of exposure and vulnerability from
building maps and structural engineering principles (Vickery
et al. 2006b,a). Some information in Hazus, especially around
vulnerability of building types, has been adapted for use in
other countries by the United Nations International Strategy
for Disaster Reduction (UNISDR)’s Global Assessment Re-
ports (Yamin et al. 2014). However, the lack of detailed build-
ing maps and the complexity of Hazus limit its applicability to
other countries. In contrast, recent studies using top-down,
economic-based approaches have created global exposure
fields and country-scale impact functions for TC risk modeling
(Geiger et al. 2018; Eberenz et al. 2020, 2021). While these
methods are more simplified than Hazus, they have the advan-
tage of being consistently applicable across the globe. Vulnera-
bility can also be estimated based on population characteristics
(what we term “social approaches”; e.g., Cutter et al. 2003;
Tellman et al. 2020; Dominguez et al. 2021). While these
techniques are suitable for assessing relative vulnerabilities of
different regions (e.g., counties), existing social approaches are
somewhat less straightforward to merge with TC hazard and
exposure for quantitative risk assessment.

The primary goal of the present work is to develop open-
source methods for assessing tropical cyclone risk that are ap-
plicable to lower-income nations with relatively limited data.
To do so requires the development of layers for hazard, expo-
sure, and vulnerability using public data sources and open-
source code. We develop and validate our TC risk model
around the Philippines as a case study but pursue methods
that can be straightforwardly repurposed for other countries.
In particular, we develop layers for vulnerability and exposure
to combine with TC tracks from the Columbia Tropical Cy-
clone Hazard (CHAZ) model, as well as with tracks from his-
torical observations. CHAZ is a statistical–dynamical tropical
cyclone model that can generate many physically plausible
synthetic TCs based on background environmental condi-
tions, allowing evaluation of TC risks for longer return peri-
ods than are available from the historical record alone (Lee
et al. 2018). Importantly for this work, CHAZ code is open
source, and the performance of CHAZ is comparable to that
of other stochastic TC hazard models, including in the

western North Pacific (Meiler et al. 2022). For exposure, we
employ an existing global dataset of asset value called LitPop
that depends on population and night-lights data (Eberenz
et al. 2020). Finally, for vulnerability we fit parameters for an
existing vulnerability function (Emanuel 2011) at the regional
level by combining information on damages and wind swaths
for historical TCs with survey data on household construction
materials. Vulnerability is the component of the model that is
least constrained by existing observational data and therefore
was a substantial focus of our research.

The secondary goal of this work is to produce and validate a
TC risk model for the Philippines that is usable for some disaster
risk reduction and management tasks. This project was a collabo-
ration between climate scientists and economists at the World
Bank. The World Bank and other nonprofit organizations regu-
larly use information about TC and other disaster risks in plan-
ning distribution of postdisaster aid and investments in disaster
resilience. While proprietary data from catastrophe modeling
companies can constrain TC risk in the Philippines, these sources
often stop short of providing spatially resolved maps of losses,
which are useful for accurate distribution of aid. The financial
costs associated with such proprietary data also often make it in-
feasible to test assumptions in the risk modeling process. Thus,
our work seeks to develop and document a model for TC risk in
the Philippines that might fill these gaps and be usable by the
World Bank and other nonprofit applications. The model de-
scribed here extends a prior open-source model that conducted
country-scale analyses of TC vulnerability (Eberenz et al. 2021)
but struggled to accurately capture risk in the Philippines.
We demonstrate that varying vulnerability by administrative
districts (i.e., regions) substantially improves the accuracy
of TC risk estimates in the Philippines. In summary, while
our model is less refined than proprietary risk models based
on claims data, we aim to take a useful step forward in open-
source TC risk modeling and provide a platform for future
model development.

The rest of this paper is structured as follows. Section 2 pro-
vides background on the geography of the Philippines and
storms affecting this country. Section 3 describes the methods
and datasets used in this work. Section 4 shows the sensitivity
of risk estimates to different assumptions about vulnerability.
Section 5 applies this risk model to create TC risk estimates for
the Philippines based on CHAZ. Section 6 discusses demon-
strated capabilities and uncertainties/limitations of our model-
ing approach. Finally, section 7 ends this paper with a summary
and conclusions. The supplemental material is referenced
throughout the paper and provides additional model validation
and details relevant but less central to the main manuscript.

2. The Philippines context

In this study, we focus on TC risk assessment for the Philippines
largely because this country experiences particularly high risks from
these events. About 70% of western North Pacific typhoons
form in or enter the region directly surrounding the Philippines
(Corporal-Lodangco and Leslie 2017). The more active period
for TCs is June–December, during which time the median num-
ber of landfalls in the Philippines is six (Corporal-Lodangco and
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Leslie 2017). Around the Philippines, ENSO plays a dominant
role in year-to-year variability of TC genesis frequency, tracks,
and associated precipitation (Lyon and Camargo 2009; Corporal-
Lodangco et al. 2016) and has been implicated in the formation of
exceedingly strong storms (Lin et al. 2014).

Landfalling typhoons in the Philippines are disasters both in
terms of economic impacts and fatalities (Ribera et al. 2008;
Walsh and Hallegatte 2019). Recent storms have highlighted
these dangers. In 2013, Typhoon Haiyan made landfall in the
Philippines as a category 5 storm, but with maximum sustained
winds exceeding the threshold for category 5 by over 18 m s21

(Lin et al. 2014). The extremely strong winds were accompanied
by very high-velocity surges and resultant flooding (Soria et al.
2016). The storm made a direct hit to Eastern Visayas, a region
on the eastern side of the Philippines. Haiyan is estimated to
have cost the Philippines more than $10 billion (Ehrhart et al.
2014) and resulted in 6300 known fatalities, the vast majority oc-
curring in Eastern Visayas, with an additional 1062 individuals
missing and 28688 injured (del Rosario 2013). These impacts
were exacerbated by large populations living along the coast in
structurally vulnerable (wood or bamboo) housing (Mas et al.
2015; Eadie et al. 2020). For perspective, Hurricane Katrina re-
sulted in 1833 known fatalities and several hundred persons
missing in the United States (Beven et al. 2008). Very recently,
inDecember 2021, TyphoonRai (Odette)mademultiple landfalls
in the southern Philippines with an initial intensity of category
5, causing widespread flooding. This disaster is the third-costliest

typhoon in Philippines history, affecting an estimated 12 million
people and causing more than 400 fatalities (United Nations
Office for the Coordination ofHumanitarianAffairs 2022).

There is a strong need for accurate TC risk assessment in the
Philippines to support disaster risk reduction and management
efforts. However, assessment of TC risk in the Philippines is
complicated by opposing spatial gradients of hazard and socio-
economic vulnerability (Fig. 1). The northern Philippines experi-
ences more frequent TCs than does the southern Philippines but
is also wealthier and more socioeconomically resilient, i.e., better
able to cope with and recover from disaster asset losses. The city
of Manila and its surroundings [also called the National Capital
Region (NCR)], constitute by far the most populated and devel-
oped region in the Philippines. In contrast, the southern Philip-
pines is generally poorer and less socioeconomically resilient.
Socioeconomic resilience is defined here as the ratio of expected
asset losses to wellbeing losses, as in Walsh and Hallegatte
(2020). These opposing patterns of hazard and resilience pose a
dilemma for the Philippines itself and international agencies
(such as the World Bank) aiming to distribute aid for disaster
risk reduction. Should this aid focus on the northern Philippines,
where exposure and hazards, and in turn asset losses, are great-
est, or on the southern Philippines, which is more vulnerable
and where the human wellbeing losses may be greatest? To an-
swer this question requires rigorous TC risk assessment that accu-
rately models differences in losses across the Philippines, and,
ultimately, consideration of losses across the income distribution.

FIG. 1. Contrasting TC density and socioeconomic resilience in the northern vs southern Philippines. (left) Number of TCs and ty-
phoons per year making landfall in different regions of the Philippines; (center) Regions in the Philippines (adapted from philippines.kosgep.
org); (right) average socioeconomic resilience in different regions of the Philippines. Socioeconomic resilience is defined here as the ratio of
expected asset losses to wellbeing losses in Walsh and Hallegatte (2020), from which the right panel is adapted. Wellbeing losses are calcu-
lated using household survey data about consumption habits across the Philippines.
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In the Philippines, “region” is the name for a particular
administrative division; the country is divided into 17 regions
(Fig. 1; center panel), which are further subdivided into 81 prov-
inces. For some results, we focus on two regions as contrasting
examples: 1) the NCR, which contains Manila and is highly ur-
banized, and 2) Eastern Visayas, a relatively less-affluent region
that was directly impacted by Typhoon Haiyan.

3. Methods

Our workflow combines hazard, vulnerability, and exposure to
calculate asset losses fromTCs in the Philippines (Fig. 2) and vali-
dates those asset losses against observations from historical
storms. We describe the basic methods we use to determine each
risk component separately here and discuss vulnerability further
in the next section.

a. Hazard

We make the simplifying assumption that total TC losses
can be modeled as a function of wind speed. In reality, TCs
cause losses through a number of different additional subper-
ils associated with these events, including intense rainfall,
storm surge, and associated flooding and landslides (Cinco
et al. 2016). Rainfall and storm surge are only indirectly and
loosely related to wind speed; for example, some relatively
weak but slow-moving storms can result in large amounts of
rainfall (Sato and Nakasu 2011). However, due to additional
complexities involved in modeling rainfall and storm surge,
wind speed alone is often used as a first-order estimate of TC
hazard (Eberenz et al. 2021; Geiger et al. 2018; Emanuel
2011).

We use two different types of TC track data. The first com-
prises historical TC tracks from the International Best Track

Archive for Climate Stewardship, v04r00 (IBTrACS). This
version includes data from a number of different meteorologi-
cal agencies across the world (Knapp et al. 2010). Given that
multiple agencies may provide track and intensity data for a
particular storm, we choose to examine western North Pacific
track data from only the Joint Typhoon Warning Center
(JTWC). Philippines-landfalling storms recorded in this data-
set span from 1945 to the present. The second data source
consists of synthetic tracks from CHAZ, specifically those
produced using environmental fields from the ERA-Interim
reanalysis (Dee et al. 2011; Lee et al. 2018). Both the histori-
cal and CHAZ tracks are available at 6-hourly temporal reso-
lution. We extract the salient information from these tracks
(latitude, longitude, maximum sustained wind speed) and
linearly interpolate them to a 15-min temporal resolution. We
use tracks that make landfall in the Philippines, determined
by the intersection of these 15-min-temporal-resolution track
points with a 5-arc-minute-spatia-resolution land mask of this
country. In IBTrACS, there are 480 historical Philippines-
landfalling tropical cyclones. Downscaled from ERA-Interim,
CHAZ generated in total 94 500 synthetic storms making
landfall in the Philippines. This number includes 3178 storm
tracks, and each track has roughly 30 stochastically generated
intensification trajectories (Lee et al. 2016, 2018). For each of
these landfalling storms, we use data extending from 1 day
before the first landfall to 1 day after the last landfall in the
Philippines for our risk analysis. Samples of landfalling TC
tracks from IBTrACS and CHAZ are shown in Fig. 3. Across
the two sets of TCs, locations of landfall and distribution
of intensities at first landfall are similar. However, CHAZ
synthetic TCs do not last as long after passing through the
Philippines as IBTrACS-observed TCs, which may be related

FIG. 2. Schematic of our TC risk modeling workflow. Layers for hazard, vulnerability, and exposed value are combined to model asset
losses from TCs. Details of each layer are described in section 3.
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to post-landfall decay assumptions in CHAZ, and are directed
more southward.

ATC track consists of a set of points defining a one-dimensional
curve in time and space, with wind represented by a single
number, the maximum sustained wind speed. It is necessary to
generate two-dimensional wind swaths at each point along the
track, in order to use those winds, together with spatially vary-
ing exposure and vulnerability data, to model damage. Swaths
should account for the variation of wind speed from the center
of the storm and some asymmetries typical in TCs. To do this,
we employ an approach based on previously published para-
metric wind models, described below and summarized in
Fig. 4. An important input to this modeling approach is the ra-
dius of maximum wind (RMW). In IBTrACS, observed esti-
mates of RMW are available for some storms but not all. As a
result, we estimate RMW using the empirically derived Knaff
et al. (2015) formula, in which the predicted RMW depends
on latitude and maximum sustained wind speed. This formula
was developed using data from the North Atlantic basin,
where storms typically do not reach intensities as high as those
in the western North Pacific basin. A side effect of this differ-
ence is that the formula produces physically unreasonable
RMW values (extremely small or negative) for the strongest
storms observed around the Philippines. To compensate for
this issue, any RMW values predicted by the formula to be
less than 20 km are overridden to be 20 km, which is on the
lower end of the observed RMW distribution, similar to what
is seen for high-intensity storms (Hsu and Yan 1998).

Once we have calculated an RMW for each storm at each
15-min time step, we can determine an associated radial pro-
file of the azimuthal wind (Fig. 4). Various parametric TC

wind profile models exist (Chavas et al. 2015; Willoughby et al.
2006; Holland 1980); in all of them, azimuthal wind speed in-
creases with radius from the eye of the storm until the RMW,
at which value it begins to decrease with radius. We elect to
use Willoughby et al. (2006), as it performs comparably well
or slightly better than other wind profile models when com-
pared to satellite-based observations of hurricane wind fields
(Yang et al. 2022). Inputs to this model are RMW, maximum
sustained wind speed, and latitude, and the shape is deter-
mined by an empirically fit double exponential profile.

The next step is to convert the one-dimensional radial profiles
to two-dimensional wind swaths on a latitude–longitude grid. As
we do this, we add a representation of asymmetry due to the
translation of the storm along its track, which accelerates winds
on the side of the storm where the storm-relative azimuthal ve-
locity is in the same direction as the storm translation and decel-
erates them on the opposite side (Klotz and Jiang 2017; Uhlhorn
et al. 2014). We first construct a 0.18 3 0.18 rectilinear grid span-
ning the Philippines. We then determine the track translation
speed V and track direction Q from a forward difference of the
time step of interest and the subsequent time step. The azi-
muthal velocity at each grid point imposed by the translation of
the storm can then be calculated as follows:

ui,j 5 arctan2[(yi,j 2 Y), (xi,j 2 X)] 2 Q, (1)

y t(i, j)
52V 3 cos(p/2 2 ui,j), (2)

where X and Y are the longitude and latitude locations of the
storm center, x and y are the longitude and latitude values for
each point (i, j) on the grid, u is the angle relative to the track

FIG. 3. Example of observed vs synthetic landfalling TCs. Sample of 200 landfalling TC tracks from (a) IBTrACS and
(b) CHAZ. First landfall in the Philippines is demarcated with a star, and tracks are shaded by intensity at first landfall.
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direction at each location (i, j) on the grid, and y t is the im-
posed azimuthal velocity from the storm translation at each
point (i, j) on the grid.

Applying a large asymmetry correction far from the storm
center can result in winds that increase with radius in some di-
rections, a feature we view as unrealistic. Thus, we modulate
y t based on distance from the storm center before applying it
to the wind field,

ai, j[ri, j $ 1] 5 e20:31420:042ri, j , (3)

ai, j[ri, j , 1] 5 0:3ri, j 1 0:4, (4)

ya(i, j)
5 ai, jy t(i, j)

, (5)

where r is the radius from the center of the storm in kilo-
meters normalized by the RMW (so r 5 1 at the RMW), a is
the factor modulating the asymmetry correction, and ya is the
asymmetry correction; a is designed assuming that the impact
of the storm motion on the symmetric background wind is re-
duced with radius. The above equation gives us maximum
asymmetries imposed by translation speed at the RMW with
a 5 0.7, gradually decreasing to 0.3 outward. These values of
a are within a rough range of the estimated values of storm
translation to surface background wind reduction factor shown
in Lin and Chavas (2012).

The final wind field is determined by regridding theWilloughby
et al. (2006) radial wind profile to the latitude–longitude grid and
adding the asymmetry correction [ya(i,j) ]. To this end, to ensure
the maximum wind speed remains unchanged, we input to the

wind profile calculation the maximum sustained wind speed mi-
nus the maximum asymmetry correction [max(ya) 5 0.7max(y t)].
Once a wind field is determined for each 15-min time step of a
given storm, the final wind swath to be used in loss calculations is
obtained by taking the maximum of all the wind fields across time
at each latitude–longitude grid point. Examples of resulting wind
swaths for nine of the most destructive historical storms in the
Philippines are shown in Fig. 4.

Above, we presented a relatively simple construction of
two-dimensional wind swaths that captures storm wind at first
order and allows efficient generation of wind maps for large
numbers of synthetic storms. Despite its relative simplicity,
our parametric wind fields and swaths reasonably capture the
magnitude and structure of observation-derived products (see
Figs. 1–3 in the supplemental material and related text). Our
method is also similar in construction and complexity to that
of other open-source tropical cyclone exposure modeling ef-
forts, notably Geiger et al. (2018), which conducted a larger-
scale wind field validation exercise. Given encouraging results
from these validation exercises, and results in a prior study in-
dicating that wind speed exceedance curves were relatively in-
sensitive to alternative possible choices for the parametric
wind field modeling (Lee et al. 2022), we conclude our wind
fields are sufficiently accurate for the present risk modeling
exercise.

That said, there are a variety of ways in which this wind
field construction could be improved. For example, one can
use a more sophisticated method in estimating RMW (Chavas
and Knaff 2022) and adding asymmetries (Lin and Chavas
2012; Chang et al. 2020; Yang et al. 2022). Additionally,

FIG. 4. Wind swath calculation schematic and resulting swaths for highly destructive historical TCs. (left to right) 1) Information on
maximum sustained wind speed, latitude, and RMW along TC tracks is used to determine 2) profiles of wind with radius from the center
of the storm, which is 3) placed on a latitude–longitude grid and combined with a correction for asymmetry to determine wind fields at
each point in time, then 4) the wind swath is determined as the maximum across time of the wind fields when the storm is near land.
Swaths corresponding to nine of the costliest historical storms affecting the Philippines are shown on the right-hand side of the figure.
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following landfall, another significant source of asymmetry in
the wind field is the roughness of the land surface (e.g., build-
ings, plants, and topography), which generally decelerates
wind speeds. For our initial model described here, we neglect
this roughness effect. This will lead to overestimates of the
wind over land, but we view this as an acceptable compromise
for the level of analysis we conduct here, particularly because
the vulnerability curves are calibrated to these winds. Incor-
porating roughness and conducting a detailed optimization of
wind field modeling for the Philippines are out of scope for
the present study, which focuses primarily on exploring meth-
ods for vulnerability assessment in this region. However, they
are areas we hope to pursue in future work.

b. Exposure

We represent exposure via a global dataset of assets in U.S.
dollars across space developed by Eberenz et al. (2020). This
dataset, called LitPop, is constructed by disaggregating 2014
national total asset value across space proportionally to popu-
lation density and night-lights data. The national total asset
value data used are the World Bank’s produced capital stock,
which represents the value of manufactured or built assets in
each country, not including the value of agricultural products
(World Bank 2021). The night-lights data used are NASA’s
Black Marble nighttime lights (Román et al. 2018), and the
population data used are the Gridded Population of the
World (Doxsey-Whitfield et al. 2015). Validating by disaggre-
gating national GDP and comparing to regional GDP esti-
mates in 14 countries, Eberenz et al. (2020) finds that
disaggregating proportionally to Lit1Pop1 (where Lit is the
night-lights data and Pop is the population data, and the num-
bers designate powers that the data are raised to) likely provides
the best estimate of asset distribution. It is worth noting that the
validation exercise was performed in a set of 14 countries that
did not include the Philippines. An improved Philippines-specific
dataset might be constructed by fitting this dataset for the Philip-
pines and perhaps considering the distribution of agricultural
products across space. But we expect that the existing dataset
provides a reasonable-enough estimate of asset distribution for
this initial risk model. In the Philippines, LitPop shows by far
the highest asset density in and around Manila, with more minor
hot spots of asset concentration in other major cities (Fig. 5).

LitPop is available at a relatively high 30-arc-s resolution,
which is equivalent to the resolution of the underlying popula-
tion data. To allow the wind hazard to interact with exposure,
we bilinearly interpolate the 0.18 3 0.18 wind swaths to the
higher resolution of the LitPop data. This is done to leverage
the spatial detail in the exposure dataset.

c. Vulnerability

Vulnerability is the propensity of exposed value to be de-
stroyed in the face of a geophysical hazard (Wilson et al.
2022). In the context of our model, vulnerability converts a
given wind speed to percentage of assets destroyed. Intui-
tively, at low-to-moderate wind speeds, such as those that are
commonly experienced in the absence of a tropical cyclone,
no damage should occur, and at high wind speeds, damages

should increase until they saturate at 100% of exposed value.
There are a few different functional forms for TC wind-related
vulnerability (called impact functions, vulnerability curves, or
damage functions) that have been proposed. Here we use the
functional form presented in Emanuel (2011), which is struc-
tured as follows:

f 5
y3n

1 1 y3n
, (6)

yn 5
max[(V 2 Vthresh), 0]

Vhalf 2 Vthresh
, (7)

where f is the fraction of the asset value lost, V is the wind
speed, Vthresh is the wind speed at and below which no dam-
age occurs, and Vhalf is the wind speed at which half the asset
value is lost (Fig. 6). The third power of wind speed in Eq. (6)
is based on physical arguments (Emanuel 2005) and empirical
analysis, i.e., regression against historical losses in the United
States (Strobl 2011). In the function shown in Eq. (7), the pa-
rameters Vthresh and Vhalf determine vulnerability}lower val-
ues of these parameters correspond to higher vulnerability.
We note that Vthresh is necessarily always lower than Vhalf.

The vulnerability function above was developed to repre-
sent damage from extreme wind, but has been used to predict
total TC-related damages in various applications. Most rele-
vant to this study, Eberenz et al. (2021; hereafter ELB21) fit
country-wide impact functions to simulate total historical TC
damages in different countries, including the Philippines. In

FIG. 5. Asset value across the Philippines according to LitPop.
Shaded is the estimated value of assets in 2014 U.S. dollars for
each 30-arc-s grid cell of LitPop. Major cities with high concentra-
tions of assets are labeled.
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that study, the values of Vhalf are varied to optimally simulate
total damages, while Vthresh is kept constant at 25.7 m s21

(50 kt), an approach that has been used and to some degree
supported in other studies. For example, in Emanuel (2011)
this 25.7 m s21 Vthresh value was proposed for the United
States, while the value of Vhalf varied in order to represent dif-
ferent vulnerability levels, and this same Vthresh value is some-
what consistent with structural vulnerability curves for wind
used in the Hazus risk modeling framework (Vickery et al.
2006b). This approach of varying Vhalf but not Vthresh has also
been shown to reasonably simulate losses in China (Elliott
et al. 2015). Since there is rather limited justification of this
Vthresh value when using wind as a proxy for all damages, and
it is plausible that lower Vthresh values may be justified to the
extent that nonwind hazards (such as flooding) are being
implicitly represented, we examine sensitivity of our risk re-
sults to both Vhalf and Vthresh.

Our process for fitting this vulnerability function for the Phil-
ippines is discussed in more detail in section 4. A dataset we use
in this fitting process is the Family Income and Expenditure Sur-
vey (FIES) for the Philippines. FIES is conducted by the Filipino
government’s National Statistics Office and is a key tool for pov-
erty quantification (Ericta and Fabian 2009). It surveys tens of
thousands of households in the Philippines on diverse and de-
tailed aspects of their incomes, spending, and saving. Particularly
relevant here, it also includes information on their dwellings.
This survey is completed every 3 years. We employ 2015 data on
dwelling construction materials (Bersales 2017). The FIES cate-
gorizes roof and wall construction materials into seven different
categories, which can roughly be ordered from weakest to stron-
gest. As discussed below, we employ this data as a proxy for TC
structural vulnerability.

d. Reported damage data

To develop and validate our risk model, we compare our
results to estimates of historical losses from real TCs that
have affected the Philippines. For this purpose, we use the

Emergency Events Database (EM-DAT), which aggregates
data on a wide range of disasters (Guha-Sapir et al. 2009).
EM-DAT includes disasters from 1900 to the present that
meet one of the following criteria: 10 or more people dead,
100 or more people affected, the declaration of a state of
emergency, and/or a call for international assistance. Sources
of data included in EM-DAT vary, but priority is given to in-
formation from United Nations (UN) agencies, governments,
and the International Federation of Red Cross and Red Cres-
cent Societies. From EM-DAT, we select only data entries for
storms affecting the Philippines and use the start date, end
date, and total damages for each storm. We retain storms that
have damage estimates, start and end dates, and are not la-
beled as convective or extratropical events (260 events total).
While tropical cyclones are convective in nature, all events with
the convective label in Philippines EM-DAT are either tornados
or related to frontal systems, hence their exclusion from our
analysis. Of the 260 included events, 245 are labeled as TCs. The
event names of the remaining 15 indicate that these are tropical
depressions or tropical storms}we also include these in our
analysis, as they were TCs but just did not have typhoon inten-
sity at the time of landfall in the Philippines. The timing of these
events spans 1952 to the present (Fig. 7). Their associated losses
span many orders of magnitude, with the smallest loss for an in-
dividual TC event being $5,000 and the greatest loss $10 billion,
caused by Typhoon Haiyan.

The number of events included in the dataset also increases
over time}this may result from changes in observing practi-
ces or actual increases in TC risk caused by population growth
and development and/or changes in TC characteristics (in par-
ticular TC intensity) due to anthropogenic climate change
(Knutson et al. 2020). Here we evaluate the model by com-
paring simulated damages to those in EM-DAT event by
event, without explicitly considering when each event oc-
curred, so any changes in observing practices are effectively
random errors for our purpose. The possible effects of such
changes would have to be considered more explicitly if one
wished to study temporal trends in damage.

e. Comparison between reported and simulated damages

To reasonably compare EM-DAT with our simulated dam-
ages, we need to account for change in assets over time and
inflation. However, the LitPop dataset uses asset data from
2014, while the damage values in EM-DAT should be com-
pared to asset values at the time the event occurred. There-
fore, in order to reasonably compare simulated and observed
damages, we first normalize the observed damages to 2014
values via the Penn World Tables’ (version 10.0) quantifica-
tion of Philippines capital stock, which is closely related to to-
tal asset value (Feenstra et al. 2015) and provided in units of
constant 2017 national prices in dollars. Specifically, we follow
a procedure similar to that in ELB21:

NRDE 5 RDE

CS2014
CSy

, (8)

where E represents a particular event, y is the year the event
occurs, RD is the raw reported damages, NRD is normalized

FIG. 6. Example vulnerability curve based on Emanuel (2011).
Indicated are the two parameters that constrain the vulnerability
curve: Vthresh (the minimum wind speed to have any damages) and
Vhalf (the wind speed at which 50% of property value is lost).
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reported damages, and CS is capital stock. For the rest of this
paper, “reported damages” refers to damages normalized this
way.

EM-DAT presents damages in entire country totals. For
some events, additional information is provided specifying the
region affected, but the lack of consistency in this information
makes it difficult to employ in our analysis. As such, in vali-
dating simulated damages against reported damages, we al-
ways first sum all simulated damages across the Philippines.

To pair simulated to reported damages, we need a way of
identifying corresponding events in EM-DAT and IBTrACS.
In theory, the events could be paired based on storm names
and years (e.g., Haiyan in 2013). However, we found that
slight variations in the names made this method difficult. In-
stead, we pair the simulated losses to reported losses using
the dates of occurrence of the events, similar to ELB21.
Sometimes event dates overlap (e.g., two events share
3–6 August 2018), but typically events do not share all the
same dates (e.g., one event spans 1–7 August while the other
spans 2–6 August). Thus, we pair an EM-DAT and an
IBTrACS event if their dates overlap for the largest number
of days compared to any other possible pairings. Using this
method results in 134 unambiguous matches. There were five
ambiguous matches that required special considerations,
which are detailed in the supplemental material. Many storms
are excluded because there is an IBTrACS track but no over-
lapping EM-DAT damage event or vice versa. Altogether, this
process results in matches for 139 events.

We use a few different metrics to compare reported and
simulated damages. Three are standard metrics of correlation:
Pearson’s r, Kendall’s t, and Spearman’s r. Pearson’s r meas-
ures the linear correlation between two datasets, whereas
Kendall’s t and Spearman’s r are both nonparametric, rank-
based correlation coefficients}they assess the extent to which
one dataset is a monotonic function of the other. For all three
of these metrics, model performance is better when the corre-
lation is closer to 1. The two additional metrics are drawn
from ELB21 and reflect distinct needs in developing a TC risk

model. The first metric is the total damage ratio (TDR), and
is quantified as

TDR 5

∑
N

E51
SDE

∑
N

E51
NRDE

, (9)

where E from 1 to N spans all the relevant historical TC
events, NRD is the normalized reported damages, and SD is
our model’s simulated damages. A TDR of 1 is optimal. TDR
reflects the ability of our risk model to simulate total damages
across all events and is dominated by the events that cause
the greatest asset losses (e.g., Haiyan). However, as discussed
further in section 4, lack of skill in simulating more moderate
events can be masked by TDR. To better assess skill across a
range of events, ELB21 also introduces a metric called root-
mean-squared fraction (RMSF), which is quantified as

RMSF 5 exp

��������������������������
1
N
∑
N

E51
[ln(EDRE)]2

√⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭, (10)

where EDR stands for event damage ratio and is defined as
SDE/NRDE for any given event. RMSF weighs errors propor-
tionally to event magnitude, so that a 50% error (for exam-
ple) is equally important, whether it is 50% of a small or large
loss. Values of RMSF closer to 1 represent lower model er-
rors. TDR and RMSF reflect different considerations relevant
to development of a TC risk model. Ideally, a model would
perform well for both metrics, but in general (and in our re-
sults below) there are trade-offs such that prioritizing one ver-
sus the other implies different modeling choices.

4. Development of the vulnerability layer

In this section, we estimate vulnerability across space in the
Philippines, which we call a vulnerability layer, to be com-
bined with hazard and exposure to estimate Philippines TC

FIG. 7. Historical TC-related damages for the Philippines over time from EM-DAT with (a) a linear y axis and (b) a
log-scale y axis, highlighting the many orders of magnitude that damages from these events span.
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risk. In developing a vulnerability layer, our general approach
is to determine which vulnerability parameter values result in
the best match between reported damages and simulated
damages for historical TCs. As mentioned above, we only
consider TCs that make landfall in the Philippines (excluding
near misses) and are included in EM-DAT. Fitting vulnerabil-
ity to damages as described here is primarily an empirical ap-
proach, though we note that the Emanuel (2011) vulnerability
curve functional form we employ is also informed by the
physics of wind-driven damage. Below, we describe a couple
of specific methods for fitting vulnerability in the Philippines
with varying levels of spatial complexity.

a. National fit

We initially apply the same vulnerability curve for all loca-
tions in the Philippines. This is similar to the approach em-
ployed in ELB21, who notably found very different values for
Vhalf in the Philippines depending on whether TDR or RMSF
was optimized, which were 188.4 and 84.7 m s21, respectively.
Using these Vhalf values and the Vthresh value used in ELB21
(25.7 m s21) as a starting point, we test the sensitivity of simu-
lated damages to Vhalf and Vthresh. Specifically, we evaluate simu-
lated damages forVhalf every 10 m s21 between 50 and 200 m s21

and for Vthresh every 5 m s21 between 15 and 35 m s21. For each
combination of these parameter values, we calculate the various
correlation metrics described in section 3 comparing simulated
versus reported damages (supplemental Fig. 4). This sensitivity
analysis highlights the difficulty of confidently fitting a single vul-
nerability curve for the Philippines. Depending on the correlation
metric examined, very different parameter values are found to be
optimal. Not only that, but the structure of the dependence of the
correlation metrics on the two vulnerability parameters varies
substantially (see the supplemental material for further descrip-
tion of this sensitivity analysis and comparison of our national fit
vulnerability results to ELB21).

For the rest of the paper, we simplify our vulnerability-
fitting procedure in a few ways for parsimony and consistency
with prior work. First, we focus on optimizing TDR and
RMSF, which we believe are more intuitive to interpret than
the other correlation metrics for emergency planning and pre-
paredness. Second, rather than continuing to fit Vthresh and
Vhalf, we hold Vthresh constant at 25 m s21 (approximately the
same value as ELB21) and vary only Vhalf. As measured by
TDR and RMSF, the degree of agreement with observed
damages can be fit to some extent either by Vthresh or Vhalf

(supplemental Figs. 4d,e); focusing on Vhalf seems a reason-
able simplifying assumption, especially as we have a some-
what stronger a priori constraint on Vthresh (i.e., that it should
be somewhere near the low end of the maximum sustained
wind speeds found in tropical storms). However, we empha-
size that the sensitivity analysis shown in supplemental Fig. 4
cannot clearly exclude values of Vthresh greater or lower than
25 m s21. Unlike prior work that has stated that Vthresh is rela-
tively well constrained to be around 25 m s21 (Emanuel 2011;
Elliott et al. 2015), our analysis suggests further examination
of appropriate Vthresh values is warranted, particularly in con-
texts where, as here, wind is being used as a proxy for all

damages, rather than modeling only damages directly caused
by wind.

Figure 8 plots reported damages against simulated damages
for historical TCs, with the vulnerability parameter set to the
optimal RMSF fit when holding Vthresh constant at 25 m s21

(Vhalf 5 80 m s21). When RMSF is minimized, TDR is
9.28}meaning total simulated damages are about 9 times
greater than those reported. This suggests a significant trade-
off between capturing the damages for individual storms and
across all storms when applying one vulnerability curve for
the entire Philippines. To better understand the cause of this
overestimation of total damages, we assessed possible com-
monalities among outliers. We found that storms passing
through the large, urban capital region, including Manila, by
and large exhibited overestimated simulated damages. This is
shown in Fig. 8a by the blue-circled values climbing the y axis
(simulated damages) for very low reported damages values, in
Fig. 8b by all the blue-circled values lying above the black
one-to-one line, and in Fig. 8c by storms that pass through
Manila disproportionately exhibiting high event-damage ra-
tios. Figure 8c is very similar to and inspired by Fig. 7 in
ELB21, though we find more storms with event-damage ratios
less than 0.1 than did those authors, as we include storms
where simulated damages are 0.

These results seem to reflect the limitations of country-scale
vulnerability in capturing significant urban–rural differences.
Manila is much more built up and wealthier than other re-
gions in the Philippines, with likelier lower vulnerability
(though greater exposure). As a result, when a vulnerability
curve fit for the entire Philippines is employed to calculate
damages for a storm passing through Manila, damages are
overestimated. Our hypothesis is that developing a more spa-
tially detailed map of vulnerability in the Philippines would
better capture these urban–rural differences and allow more
accurate simulation of damages for individual storms (i.e.,
lower RMSF) and across all storms (i.e., TDR closer to 1).

b. Regional fit

Motivated by the results above, we develop a vulnerability
layer with spatial variability in the vulnerability parameters.
To capture a very high level of spatial detail, one might match
buildings across the Philippines with building-type specific
vulnerability curves similar to the methodology used for the
United States in FEMA’s Hazus (Vickery et al. 2006b). How-
ever, this approach requires a detailed map of building types
across the Philippines, which we lack. Instead, we take an in-
termediate approach between a single, empirically derived
vulnerability curve for all the Philippines (the approach used
in the previous section) and a building-level map of structural
vulnerability to develop a region-scale TC vulnerability layer
for the Philippines.

Our first step is to fit Vhalf for each region in the Philippines
that has historically been damaged by TCs. A challenge here
is that EM-DAT only provides nationally aggregated damage
estimates. In lieu of region-level damage data, we fit Vhalf for
each region based on the subset of historical storms that result
in positive simulated asset losses for that region. Given the
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limitations of EM-DAT, we also compare the national sum of
reported damages to simulated damages, but just for the sub-
set of storms affecting a given region. The assumption here is
that even though the damage estimate for any given storm
may be affected by neighboring regions impacted by the same
TC, in aggregate across all historical storms this subset should
reflect the TC risk for the region of interest. We then deter-
mine the Vhalf values that minimize RMSF for storms affecting
each region. For most regions,Vhalf ranges from 60 to 120 m s21.
Manila, as predicted, exhibits lower vulnerability than any other
region, with an optimalVhalf equal to 180m s21.

Because some regions of the Philippines have been affected
by very few storms in the historical record, it is highly uncer-
tain or impossible to fit Vhalf using the method described
above for every region. For example, the Autonomous Re-
gion in Muslim Mindanao (ARMM) has experienced zero
recorded landfalling storms according to our analysis of
IBTrACS. To create a vulnerability map consistent across the
Philippines, and also lend further confidence to our vulnera-
bility quantification, we employ on-the-ground data about
structural vulnerability included in the FIES. The FIES sur-
veys a sample of households and groups them by region, mak-
ing it possible to derive region-scale information. The FIES
includes information on both roof and wall construction mate-
rials. We focus on roof materials, as both full-scale and wind-
tunnel-model studies and post-TC damage surveys indicate

that this is the most wind-vulnerable part of a house (Holmes
1982; Meecham et al. 1991; Leitch et al. 2010; Jayasinghe et al.
2018), and structural damage often occurs through damage to
the roof allowing rain to enter a building (D. Rowe 2021, per-
sonal communication). The roof materials listed in the FIES
dataset fall into seven categories (supplemental Fig. 5). Most
roofs are categorized as “strong material (galvanized, iron,

FIG. 9. Proportion of strong to weak roofs for regions in the Phil-
ippines. Bar chart showing number of strong roofs divided by num-
ber of light roofs for each region in the Philippines.

FIG. 8. Simulated vs observed asset losses with a sin-
gle national vulnerability curve fit to minimize RMSF.
Observed total damages are plotted against modeled to-
tal damages with (a) a linear axis and (b) a log-scale axis;
black lines are one-to-one lines and events that result in
losses in NCR are circled in blue; TDR and RMSF val-
ues calculated across all historical storms are shown in
(a). (c) Bar chart of number of TC events with damage
ratios less than 0.1, between 0.1 and 10, and greater than
10, split into events that do not affect NCR (orange) vs
those that do affect NCR (blue). Event damage ratio is
equal to simulated damages for a TC divided by normal-
ized reported damages for the same TC.
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al[uminum], tile, concrete, brick, stone, asbestos)” or “light
material (cogon, nipa, anahaw).” Cogon, nipa, and anahaw
are plant materials used to make straw thatch roofs. We use
the ratio of strong to light roof materials as a proxy for struc-
tural vulnerability (Fig. 9). As might be expected, NCR has
the highest proportion of strong to light roofs, whereas a
more rural and impoverished region such as Eastern Visayas
has a much lower proportion of strong to light roofs.

We hypothesize that the proportion of strong to light roofs
influences TC vulnerability and should positively correlate
with the Vhalf value fit in different regions. Indeed, we find a
positive association between these two quantities (Fig. 10a;

NCR is the top-right point). This association likely reflects the
direct impact of roof strength on TC damages, as well as other
socioeconomic factors such as income and extent of the social
safety net, which partially correlate with construction quality
and influence disaster outcomes. We linearly regress the pro-
portion of strong to light roofs against Vhalf and use the result-
ing regression coefficients and regional values of the roof
proportion to calculate a final Vhalf value for each region
(Fig. 10a). The resulting map of vulnerability (represented by
Vhalf values; Fig. 10b) is similar to the map of socioeconomic
resilience shown in Fig. 1: vulnerability is higher in the south
and lower in the north, especially close to Manila.

FIG. 10. Correspondence of regional Vhalf to roof strength proportion and resulting vulnerability map from regres-
sion. (a) Proportion of strong to weak roofs plotted against RMSF-fitted regional Vhalf values (blue circles) and linear
fit between the two quantities (red line) with a bootstrapped 90% confidence interval of the linear fit (gray shading);
(b) regional Vhalf determined from proportion of strong to weak roofs in each province and linear fit in (a). Note that
in (a), NCR is the top-right point in the plot with the highest Vhalf and highest proportion of strong roofs.

FIG. 11. Observed vs modeled damages for regionally varying vulnerability. (a) Observed total damages from
EM-DAT plotted against modeled total damages calculated with the regional varying vulnerability map; black line is
the one-to-one line; TDR and RMSF values calculated across all historical storms are shown in (a). (b) As in (a), but
with reduced x- and y-axis limits to highlight the prevalence of storms with zero modeled damages.
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We employ this map of regional vulnerability to recalculate
simulated damages for historical storms making landfall in the
Philippines and compare to reported damages from EM-
DAT. The results of this analysis are shown in Figs. 11 and 12.
Compared to the nationally fit vulnerability curves minimizing
RMSF (Fig. 8), the regionally varying vulnerability curves re-
sult in smaller RMSF (81 versus 92). Perhaps more striking,
TDR is reduced from 9.28 to 2.02, even though TDRwas not ex-
plicitly optimized for. For individual regions in the Philippines,
TDR calculated for the subset of storms affecting each region is
much improved as well. With a single national vulnerability
curve, northern regions reach TDR values above 20 (Fig. 12). In
contrast, considering regionally varying vulnerability curves
leads to TDR values below 10 across the Philippines, and in
most cases quite close to 1.

While key aspects of the simulated damages compare better
to reported estimates with spatially varying vulnerability, as de-
scribed above, others do not. In particular, with both versions of
the vulnerability layer (national and regional) there are many
storms with substantial reported damages that have zero simu-
lated damages (Fig. 11b). This error likely represents a structural
limitation of our risk model. Here we use wind as a proxy for all
TC-related damages. However, other hazards associated with
TCs (storm surge, flooding due to rainfall, landslides) may occur
at relatively low wind speeds (e.g., lower than the Vthresh value
of 25 m s21 used in the vulnerability curve) and result in dam-
ages that our model does not capture.

As an illustrative example, simulated damages from Typhoons
Haiyan (Yolanda) and Ketsana (Ondoy) are shown in Fig. 13.
Ourmodel simulates no damages resulting fromKetsana, though

FIG. 12. Damage simulation skill for national vs regionally varying vulnerability. TDR across regions for (left) single
national vulnerability curve and (right) regionally varying vulnerability curves and quantified as (top) raw TDR vs
(bottom) natural log of TDR.
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it actually produced damages of $240 million according to EM-
DAT. This appears to be because Ketsana was a relatively weak
storm (tropical storm intensity) in terms of wind speedwhen it af-
fected the Philippines, with damages dominated by extreme rain-
fall and flash flooding (Sato and Nakasu 2011), processes our
model does not represent in any explicit way. In contrast, our
model does simulate billions of dollars’ worth of damages from
Typhoon Haiyan, though it underestimates those damages by a
factor of 4.3. This may reflect the lack of explicit storm surge in
our model, as a large fraction of the damages caused by Haiyan
resulted from storm surge (Lagmay et al. 2015).

5. Return periods of TC risk in the Philippines

The goal of this work was to create a usable country and
regional-scale TC risk model for the Philippines. Before con-
cluding the paper, we briefly highlight the utility of our model
for estimating TC risk return periods in the Philippines.

In assessing TC risk for diverse aspects of emergency prepared-
ness, from building construction standards to emergency response
plans, it is useful to know the expected frequency of events of a
given severity. This is typically quantified as a return period (1/fre-
quency) in units of years for a given event severity. Using our
model, we can calculate return periods empirically for both wind
speed and asset losses for different regions in the Philippines. The
most accurate hazard input is obtained using historical TC tracks,
but this allows estimation only of return periods several times
shorter than the length of the historical record (76 years). Using
our TC risk model run with CHAZ tracks allows consistent esti-
mation of TC wind speed and asset losses out to much longer re-
turn periods. For CHAZ, we adjust the storm frequency such that
the regional landfall rate per year in CHAZ is consistent with
that of the historical record}that is, for each region,

yearsCHAZ 5 landfallsCHAZ/(landfallsIBTrACS/yearsIBTrACS),
(11)

which amounts to a regional-scale bias correction on the land-
fall rate. Resulting maps of wind speed and loss return levels

for regions across the Philippines are shown in Fig. 14. While
higher winds speeds are experienced by the farthest north
Philippines, the most dramatic increase in losses with return
period occurs in the northern to central Philippines. This high-
lights the fundamentally different patterns of hazard versus
economic risk and the utility of rigorously modeling such risk.

Examples of specific exceedance curves for NCR and East-
ern Visayas are shown in Fig. 15. Both the advantages and
challenges of our approach are clearly demonstrated in deter-
mining the return period for a Haiyan-like event in Eastern
Visayas as shown in Fig. 15. Based on the historical record, in
Eastern Visayas Typhoon Haiyan has a return period of about
70–80 years (since it occurred within the bounds of a historical
record of approximately that length) but is clearly an outlier
and not well constrained. The generalized Pareto distribution
(GPD) fit presents a purely statistical means to extend the ob-
served record to longer return periods and finds a slightly lon-
ger return period for Haiyan’s hazard of about 100 years. In
contrast, in the context of the much-larger sample of physi-
cally plausible TCs from CHAZ, the hazard associated with a
Haiyan-like event has a return period of several thousand
years, and the losses from such an event are outside the range
of synthetic storms (e.g., return period greater than 10000 years).
In contrast to Eastern Visayas, in NCR the GPD fit and the
CHAZ estimates are substantially better aligned for wind
hazards.

It appears that the larger sample of storms from CHAZ
may more robustly constrain the return period of Haiyan.
CHAZ is advantageous over just the historical record in in-
cluding more storms and is advantageous over the GPD fit in
capturing dynamics important for storm genesis, intensifica-
tion, and tracks that allow incorporation of changing back-
ground climate conditions. That said, there are important
caveats to consider with this CHAZ-based estimate. CHAZ
(like any model) may have biases}in Eastern Visayas,
CHAZ-based asset losses appear to be biased somewhat too
low given that the historical records lie slightly above the in-
tensity ensemble (thin red lines). While we perform some
light bias correction on the regional storm frequency (as

FIG. 13. Wind swath and asset losses for two notable Philippines-landfalling typhoons. Wind swath (contoured in
purple; darker contours correspond to faster wind speeds) and damages (shaded red) for (left) Typhoon Haiyan
(Yolanda) and (right) Typhoon Ketsana (Ondoy). The plot region is constrained to the area of most direct impact by
each storm, and at the top of each plot the actual cost from EM-DAT is listed above the simulated damages summed
across the entire Philippines.
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mentioned in the prior paragraph), more intensive bias cor-
rections could be applied, such as subselecting more realistic
CHAZ tracks. Additionally, the CHAZ simulations here used
environmental variables taken from the ERA-Interim reanal-
ysis in the recent historical period, with all years treated the
same in the return period calculation; thus, any possible cli-
mate change signal would be obscured to the extent that it
might render 2013 (when Haiyan occurred) different than the
earlier part of the period.

6. Discussion

In this study, we combined TC wind, exposed value, and re-
gionally refined vulnerability calibrated on historical damages
to estimate economic losses from TCs in the Philippines. The

model exhibits skill in assessing return levels of wind hazard
and damages across populations of storms. However, this is
nonetheless a less refined model compared to those used in
proprietary applications where large amounts of claims data
are available to constrain exposure and vulnerability, or as
compared to FEMA’s Hazus model in the United States. In
contrast to these more comprehensive models, the spirit of
our approach is to see what is possible with openly available
datasets common to many lower-income countries to take a
step forward in open-source TC risk modeling. However,
there are definite limitations to our approach. For example,
we make the strong simplifying assumption that all damages
can be modeled as proportional to wind, which leads our
model to completely miss damages from some historically im-
pactful weak-wind TCs that exhibited substantial flooding.

FIG. 14. Maps of return levels for wind speed and asset losses across all regions in the Philippines. Return levels of (top) maximum sus-
tained wind speed and (bottom) asset losses are shown for (a),(e) 10-, (b),(f) 20-, (c),(g) 50-, and (d),(h) 100-yr return periods. Risk assess-
ment is conducted using the synthetic CHAZ-based TC events. Values for the ARMM region are excluded because the adjustment of
storm frequency [Eq. (11)] cannot be directly applied for a region that has no historical landfalling TCs.
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Uncertainties exist in all three layers of our model. First,
the CHAZ wind tracks exhibit biases compared to observed
storms making landfall in the Philippines and some strong
landfalling TCs do not penetrate as far into the Philippines as
observed (Fig. 3). While various bias-correction techniques
(such as subsetting more realistic tracks) are possible to im-
prove this issue, we tried to minimize bias correction in this
work to provide a candid view of the current model ability to
hopefully inspire future improvements. Second, our wind field
modeling technique neglects some processes known to sub-
stantially effect wind fields, like boundary layer roughness,
and assumes particular algorithms for asymmetry and decay
profiles that could be varied. Third, the accuracy of the vul-
nerability layer is limited by the quality of losses from EM-
DAT data, the number of damaging Philippines storms in the
observed record, and the resolution and quality of the house-
hold survey data. Fourth, the exposed value dataset was de-
veloped for a large group of countries, and its underlying
algorithms that relate population and night lights to exposed
value could perhaps be better fit for the Philippines. Finally,
both vulnerability and exposure layers are assumed static
over time, whereas it is known that the population and econ-
omy grew over the historical period in the Philippines. Many
of these uncertainties are not straightforward to quantitatively
constrain, especially due to limitations of the available data.

As a result, a comprehensive uncertainty analysis is outside
the scope of the present work but is an important area for fu-
ture inquiry.

Many aspects of this model could be improved, and we
highlight a few here. On the hazard front, modeling other TC-
related hazards beyond wind could allow better simulation of
impacts from many storms (Lin et al. 2010, 2012; Aerts et al.
2013; Rodrigo et al. 2018). At present, our model simulates
zero damages for some historical TCs that did, in fact, pro-
duce damage. We believe this is because the damage from
these storms was predominantly due to rainfall and flooding}
hazards that are only indirectly, and very loosely, related to
wind speed. Regarding the existing wind model, capturing
surface roughness could allow more accurate simulation of
wind speeds, and in turn damages, over land. We expect this
limitation to be much less important than the omission of
flooding, however, in part because our vulnerability curves
are fit to the winds we use. The regional vulnerability ap-
proach can compensate further (compared to the national fit)
for the lack of roughness in our model, as vulnerability is
found to be lowest in urban regions where roughness would
likely be decelerating surface winds to the greatest extent.
The method of incorporating TC asymmetry here is also a
relatively simple function of TC translation, which might be
superseded in future model iterations by more advanced

FIG. 15. Return periods for different levels of wind speed and asset losses in two Philippines regions. Return periods
of different (top) maximum sustained wind speeds and (bottom) asset losses for two regions: (left) NCR and (right)
Eastern Visayas. Simulated damages from IBTrACS tracks are shown in black, while simulated damages from
CHAZ tracks are shown in red; thin red lines designate return periods derived from each CHAZ intensity ensemble,
while the thick dashed red line shows return periods from all the CHAZ tracks and intensity ensembles together. In
the top panels, the green lines represent the GPD fit to the historical IBTrACS-based windspeeds, with the solid line
being the central estimate and the dashed lines demarcating the 90% confidence interval. For the GPD fit, events be-
low a 10 m s21 wind speed are excluded.
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methods (Lin and Chavas 2012; Chang et al. 2020; Yang et al.
2022).

There are many areas within the vulnerability and exposure
modeling that merit further development as well. First, the tem-
poral and spatial resolution of the vulnerability and exposure
layers might be improved. Our assumption of static vulnerabil-
ity and exposure was made largely due to data limitations}the
exposure data that are presently available are calibrated for
2014, and the historical record of storms and reported damages
is limited and varies substantially in density through time, with
many more events later in the record. Thus, subdividing the
data further to calibrate vulnerability at the regional level pre-
sented robustness issues. Satellite-based datasets and street-
pose imagery, such as Google Street View, might present a
useful way forward for generating more detailed vulnerability
and exposure layers (e.g., province or even building scale) and
capturing some trends through time (Kang et al. 2018; Ayush
et al. 2020). Second, agricultural losses could be more rigorously
quantified. At present, the exposure layer includes built assets
but does not explicitly include agriculture. This may bias our re-
sults, as recorded agricultural losses have been significant in
many historical Philippines TCs (ELB21). Third, appropriate
values of the vulnerability parameter Vthresh might be more ro-
bustly determined, particularly in countries with a wide range of
construction standards. Here we have focused primarily on fit-
ting Vhalf, but our national vulnerability curve fitting results sug-
gests that in some circumstances values of Vthresh higher or
lower than that used here (25 m s21, similar with prior work)
could be more accurate. This issue is perhaps particularly acute
when wind is used as a proxy for all TC-related hazards, since
substantial flooding can occur at relatively small wind speeds.
Fourth, more work could be done to examine the causes of the
regional variation in vulnerability. While we relate regional
Vthresh values to a measure of the strength of roof construction
materials, the positive relationship between these two quantities
does not necessarily reflect stronger roofs directly reducing vul-
nerability. The proportion of strong roofs may simply correlate
with other quantities that could reduce vulnerability, such as
wealth and urbanization. Indeed, in some small island commu-
nities in the Philippines, light cogon roofs are actually reported
to be adaptive to tropical cyclones as they can be tied down in
high winds (Board 2019), highlighting a limitation of our focus
on strong/heavy roofs to explain vulnerability.

7. Summary and conclusions

We have described the development and application of a
TC risk model for the Philippines. This model includes three
layers}hazard, exposure, and vulnerability}which, when
combined, allow quantification of asset losses from storms.
The present study focuses on the Philippines, but the method-
ology could be straightforwardly applied to other countries.
Hazard is represented by swaths of maximum sustained wind
speeds, derived from a parametric wind field model with a
simple geometric correction for TC asymmetry. Swaths can
be derived from observed TC tracks (e.g., IBTrACS) or syn-
thetically generated TC tracks, such as from CHAZ. Expo-
sure is derived from the existing LitPop dataset, which

distributes national total asset value across each country pro-
portional to a combination of night lights and population
data (Eberenz et al. 2020). For vulnerability, we employ the
Emanuel (2011) functional form for vulnerability. However,
we run a number of tests to fit the vulnerability curve parame-
ters (Vhalf and Vthresh) to accurately simulate historical losses.

This work is novel in two main ways. First, while there are
other existing TC risk models, this is the first attempt to use
the open-source CHAZ model to quantify economic risks
from TCs, opening the door for a variety of future applica-
tions. Most notable is the ability to estimate asset losses from
TCs in the present and with climate change using open-source
methods, especially in relatively data-poor countries like the
Philippines. Second, we demonstrate the benefits of fitting re-
gional (as opposed to national) vulnerability curves based on
open-source economic data for TC risk analysis.

Initially, we tried fitting one vulnerability curve for the en-
tire Philippines. Similar to results in ELB21, we find that this
approach results in substantial uncertainty regarding the ap-
propriate vulnerability curve. If the vulnerability is fit to best
represent total damages (TDR close to 1), damages from TCs
that pass through Manila are well simulated, while damages
from other storms are underestimated. In contrast, if all
storms are weighted equally in fitting vulnerability (RMSF
minimized), damages from TCs that pass through Manila are
substantially overestimated, and the TDR is approximately 9.

We hypothesized that this trade-off regarding the appropri-
ate vulnerability curve resulted from urban–rural differences
not captured by a national-scale vulnerability fit. We tried in-
stead fitting Vhalf for each region to minimize RMSF based on
the subset of historical storms that affected each region. The
Vhalf values from this analysis suggest that Manila indeed has
the lowest vulnerability in the Philippines. These parameter
values were also found to be positively correlated with a
proxy of structural vulnerability based on household survey
data, namely, the proportion of strong to light roofs. Regress-
ing Vhalf against this roof strength proportion, we determined
Vhalf values for each region of the Philippines, and in so doing
determined a regional map of TC vulnerability. Applying this
regional TC vulnerability layer to simulate historical Philip-
pines storms, we find lower RMSF, a TDR value across the
Philippines of 2, and TDR values for individual provinces
much closer to 1. We conclude that regional, and especially
urban versus rural, differentiation of vulnerability is critical
for accurate TC risk modeling in the Philippines.

The TC risk model presented here fulfills the primary goal
of this study to develop methods for open-source TC risk
modeling relevant in lower-income, data-limited countries.
Our exposure and hazard methods are fully open source and
could be adapted for any country. The vulnerability methods
we developed rely on existing openly available damage data
(EM-DAT), combined with household survey or census data,
which is publicly available for many countries. Survey ques-
tions can vary by country, so our chosen vulnerability proxy
of roof strength may not always be available, but we expect
other questions related to house fragility or even family in-
come can usefully serve as proxies for structural vulnerability.
Altogether, these open-source methods and code increase
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access to risk assessment resources generally reserved for weal-
thy countries, the reinsurance industry, and private capital.

This work also fulfills our secondary goal to produce a us-
able TC risk model for the Philippines. The present model ex-
hibits significant skill in simulating aggregate damages across
many storms and can be used to constrain return levels of
wind hazards and asset losses. This type of risk assessment
generates insights useful for all stages of disaster risk manage-
ment policy dialogues. Expected asset losses are used in sov-
ereign risk financing dialogues to define needs and insurance
premiums. Simulations of extreme events are useful for as-
sessing tail risks and compound shocks, relevant to macrofiscal
and humanitarian contingency planning. Complex dynamics as-
sociated with economic and population growth and climate
change present challenges for such planning in the Philippines.
The open-source methods and code documented here allow
more flexible risk assessment for the Philippines that can better
account for such complexity. In particular, our model opens up
the possibility of exploring expected asset losses under varying
economic, population, and climate trajectories and assumptions.

Our study opens up a few key areas for further model de-
velopment and application. Regarding model development,
the current model quality encourages caution in interpreting
results for individual storms that could be dominated by haz-
ards other than wind; future model development should seek
to add storm surge and precipitation subperils. In this study,
we also treated each storm as independent in its hazard
and damages}exploring temporal compounding of multiple
storms would be an interesting extension to this work. Spatial
and temporal detail of vulnerability and exposure layers could
be substantially improved by building maps derived from sat-
ellite and street-pose imagery. Development of improved
methods for quantifying and propagating uncertainties be-
tween the hazard, exposure, and vulnerability layers of the
model would allow more comprehensive understanding of the
drivers of uncertainty in the final risk assessment. We also in-
tend to extend this model to assess TC impacts across the in-
come distribution, which is useful for mapping and addressing
vulnerabilities, and for crafting postdisaster assistance pack-
ages (Hallegatte et al. 2016; Walsh and Hallegatte 2020). We
hope to apply the general methodology outlined here to other
countries to work toward global TC risk assessments. Finally,
we plan to estimate projected changes in TC risk with global
warming by pairing this model with CHAZ tracks generated
using environmental variables taken from climate change sce-
narios simulated with earth system models (Emanuel 2011;
Lee et al. 2020); such results would be relevant to both adap-
tation planning and financial risk modeling, which regulations
increasingly require to consider climate change (Fiedler et al.
2021).
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