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Time-Domain Green’s Function for an Infinite
Sequentially Excited Periodic Planar

Array of Dipoles
Filippo Capolino, Member, IEEE,and Leopold B. Felsen, Life Fellow, IEEE

Abstract—The present paper is a continuation of previous
explorations by the authors, aimed at gaining a basic under-
standing of the time domain (TD) behavior of large periodic
phased (i.e., sequentially turned-on) array antenna and related
configurations. Our systematic investigation of the relevant
canonical TD dipole-excited Green’s functions has so far included
those for infinite and truncated sequentially pulsedline periodic
arrays, parameterized in terms of radiating (propagating) and
nonradiating (evanescent)conical TD Floquet waves (FW) and
truncation-induced TD FW-modulated tip diffractions. The
present contribution extends these investigations to an infinite
periodic sequentially pulsedplanar array, which generates pulsed
planepropagating and evanescent FW. Starting from the familiar
frequency domain (FD) transformation of the linearly phased
element-by-element summation synthesis into summations of
propagating and evanescent FWs, we access the time domain by
Fourier inversion. The inversion integrals are manipulated in a
unified fashion into exact closed forms, which are parameterized
by the single nondimensional quantity =

( )
1 , where ( )

and are the excitation phase speed along a preferred phasing
direction 1 in the array plane and the ambient wave speed,
respectively. The present study deals with the practically relevant
rapidly phased propagating case 1, reserving the more
intricate slowly phased 1 regime for a future manuscript.
Numerical reference data generated via element-by-element
summation over the fields radiated by the individual dipoles
with ultrawide band-limited excitation are compared with results
obtained much more efficiently by inclusion of a few TD–FWs.
Physical interpretation of the formal TD–FW solutions is ob-
tained by recourse to asymptotics, instantaneous frequencies and
wavenumbers, and related constructs. Of special interest is the
demonstration that the TD–FWs emerge along “equal-delay”
ellipses from the array plane; this furnishes a novel and phys-
ically appealing interpretation of the planar array TD–FW
phenomenology.

Index Terms—Antenna arrays, arrays, floquet waves, Green’s
function, periodic structures, time-domain (TD) analysis, transient
analysis.
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I. INTRODUCTION

T HIS paper represents the third in a series of prototype
studies [1], [2] of the time-domain (TD) behavior of

sequentially excited periodic dipole array configurations,
motivated by similar investigations in the frequency domain
(FD) [3]–[6], which have already been applied effectively and
efficiently to finite practical array antennas [7]–[10]. Referring
to the more detailed introduction in [1] for background, we
proceed in Section II to the formulation of the problem in
terms of the frequency-domain (FD) and time-domain (TD)
fields excited by the individual phased dipole radiators. Via
Poisson summation, these discretely spaced individual FD and
TD sources are reexpressed collectively in terms of equivalent
global periodicity-induced continuous distributions which obey
the Floquet wave (FW) dispersion relation and span the entire
array surface. The FD-FW and TD–FW wavefields, i.e., the
Floquet plane waves, radiated by these FW-modulated aperture
distributions are developed in Sections III and IV, respectively,
with emphasis in the TD on the new phenomenologies exhibited
by the planar array, as well as on similarities with the previously
investigated TD-infinite line dipole array [1]. As previously
cited in [1], the TD–FW fields are found to be expressible
in new exact closed forms which reduce to known results
for special choices of the problem parameters. Numerical
results in Section V furnish reference data which are used for
comparison with considerably more efficient FW-generated
fields. Conclusions are presented in Section VI.

II. STATEMENT OF THE PROBLEM

A. Element-by-Element Formulation

The geometry of the planar array of dipoles oriented along
the direction and excited by transient currents in free space
is shown in Fig. 1. The period of the array is and in the

and directions, respectively. The vector electric field is
simply related to the directed magnetic scalar potential
which shall be used throughout. A caret (^) tags time-dependent
quantities; boldface symbols define vector quantities;, ,
and denote unit vectors along , , and , respectively. FD
and TD quantities are related by the Fourier transform pair

(1)
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Fig. 1. Planar periodic array of dipoles. Physical configuration and
coordinates.d , d : interelement spacing alongx and x , respectively;
! = k�: phase gradient of the excitation (i.e., the wavefront) along the
directioni ;  = �=c: “slowness” (normalized wavenumber) alongi ;
v = c=� = 1= : phase speed alongi .

The phased array FD and TD dipole currents and ,
respectively, are given by

(2)

(3)

where is the th dipole location,
, denotes the

ambient wavenumber, anddenotes the ambient wave speed.
Moreover, and , with

(4)

are the interelement phase gradients alongand , respec-
tively. Here, is chosen to match the form of the impor-
tant nondimensional parameter introduced previously [1]. This
yields

(5)

with now denoting the normalized (with
respect to ) phase gradient, and the corresponding
impressed phase speed, along the array in thedirection (see
Fig. 1). The FD phasing unit vector is rotated through the
angle with respect the axis; this corresponds in the TD
to sequentially pulsed dipole elements, with the element at

turned on at time . Choosing the nor-
malized form for along as in (5) systematizes subsequent
notation and interpretation.

The respective regimes and characterize two dis-
tinct TD wave phenomenologies with phase speedsalong
larger or smaller than the ambient wave speed. Only the practi-
cally more important regime is examined in this paper.

B. Collective Formulation

To convert the individual element contributions in (2) into
equivalent collective smooth aperture distributions, we use the
Poisson sum formula in its most elementary form given by

[11, pp.
117] . When applied sequentially to the double infinite series
of phased -indexed FD and TD elements in (2), Poisson
summation yields

(6)

The vector wavenumber

(7)

(8)

which combines the two Floquet-type dispersion relations

(9)

(10)

with , has previously been employed in
the FD studies of planar dipole arrays [3]–[5]. The subscript
“ ” on denotes the vector component transverse to, and

represents the-independent part of the vector dispersion
relation in (7). Thus, in the frequency domain, Poisson sum-
mation converts the effect of the infinite periodic array ofindi-
vidual phased -indexeddipoleradiators collectively into an
infinite superposition of linearlysmoothly phased -indexed
equivalentplanardistributions that furnish the initial conditions
for propagating (i.e., radiating) PFW and evanescent (i.e., non-
radiating) EFW Floquet-type waves. In the TD, the -in-
dexed sequentially pulsed dipoles are converted collectively into
smoothly phased, -indexed impulsive source distributions

, which travel with phase speed in the
direction, which is the direction of the wavefront shown in

Fig. 1.

III. FLOQUET WAVES: FREQUENCYDOMAIN

To obtain for the potential fields radiated by the
linearly phased dipole array element currents at an equiva-
lent sum of FW potentials radiated by the smoothly
phased FW-modulated aperture distributions, we multiply the
FD portion of (6) by the FD element Green’s function

(11)

and perform the integration , for 1 and 2, to generate
on the left-hand

side (LHS) of (6). Here, denotes the position vector.
On the right-hand side (RHS) of (6), this yields the collective
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FW-phased plane waves (it is the inverse of the transform shown
in [12, p. 481])

(12)

Here, denotes the total propagation
vector, and

(13)

is the wavenumber along. The square root function in (13)
is defined so that on the top Riemann sheet,
consistent with the radiation condition at . Further-
more, or for or 0, respectively,
in order to satisfy the radiation condition for positive and neg-
ative real frequencies. In (12), Floquet waves with transverse
propagation constants or , where

, characterize PFW or EFW, respec-
tively, along . Note that by phase matching along, , each
PFW contributes at the observation point a ray
asymptotic field originating at a point
on the -plane. The ray emanating from the point lie
on a ray with angular displacement from the -axis, and az-
imuthal displacement from the axis (see Fig. 1),

(14)

for positive or negative frequencies. For or ,
and give rise to two different propagation an-

gles. When approaches , the polar

angle tends to . Beyond that limit, when ,
the polar angle becomes complex and the field becomes evanes-
cent along , with , i.e., , defining the th
FW cutoff condition. Owing to the exponential attenuation of

along , the EFW portion of converges
rapidly away from the array plane and a few terms may suffice
for an adequate approximation of the total radiated field.

IV. FLOQUET WAVES: TIME DOMAIN

Three distinct approaches are analyzed, each describing dif-
ferent aspects of TD–FWs. The first two lead to exact expres-
sions for TD–FWs, while the third leads to an asymptotic de-
scription of the same phenomena.

A. Fourier Inversion From the FD

The TD Floquet Wave is obtained through Fourier inversion
from the frequency domain

(15)

(16)

with given in (12). The wavenumber is
rewritten as

(17)

in which we used the frequency shift

(18)

and the definitions

(19)

(20)

Thus, (15) becomes

(21)

The integrand has branch points at , with [from (20)]

(22)

as shown in Fig. 2. Cuts are determined by imposing
on the top -plane Riemann sheet, and

or 0 for or ,
respectively, in accord with the definition of in (13). In
the -plane, the vertical dashed line at
separates positive and negativefrequencies (only is
shown in the figure).

Defining

(23)

Equation (21) is rewritten as

(24)

with and or for
or , respectively, in accord with the definitions for

in (13). The positive–negative transition at
occurs between the two branch points. The indentation of the
integration path in (24) is chosen in accord with the radiation
condition at (causality) for any ; therefore, the integration
path from to is shifted below the branch cuts (see
Fig. 2), where or for or
in accord with the radiation condition specified in the text after
(13) (see also [12, p. 35] where, to ensure the existence of the
Fourier pair in (1), the variable and therefore the contour of
integration in (24) is shifted slightly below the real axis into

).
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Fig. 2. Topology of the complex! -plane. Branch points are located at! =
�! . The vertical dotted line at! = ��! (! = 0) separates positive
and negative! frequencies (here,�! > 0 for simplicity). The dashed region
denotes the side of the cuts where<e(! � ! ) > 0, according to the
choice of the root fork in (13). For Fourier inversion (see (1)), the integration
path is moved to the real axis and indented accordingly with respect to the
singularities.

Since for , the integrand in (24) decays exponentially
in , the integration contour can be closed by addition
of the noncontributing portion ; because no singularities
are located within the contour, the integral vanishes by Cauchy’s
theorem. For , the integration contour can be closed by
the noncontributing portion , and is therefore deformable
into . Using the relation (demonstrated in Appendix A)

(25)

in which and are the zeroth-order Hankel functions
of the first and second kind, respectively, and combining

, leads directly to the closed
form exact expression

(26)

with or 0 for or , respectively.
Although obtained by conventional Fourier inversion from

the frequency domain, the result in (26) is complex foror
since and, from (19), in this case.

The phenomenology is directly analogous to that observed
previously for the line dipole array [1], and is addressed as in
[1] by , pairing to obtain the “physically
observable”real TD–FW field. Noting from (8) and (19) that

and , it follows that the
“physically observable”real TD–FW field is given by

(27)

(28)

For the mode, one has ,
with and ; i.e., the argument of the Bessel

function in (26) vanishes. Since , we have

which agrees exactly with the
real field radiated by an impulsively excited smooth infinite
plane source with phasing specified by .

B. Spatial Synthesis of TD–FWs Via Poisson Summation

Since the FD- series in (6), when applied to , has
summands
composed of two -dependent functions (see text
after (11)), the TD involves a convolution
which yields (29). Alternatively, first, one finds that

. When this function
is time-convolved with the TD portion on the left-hand side of
(6), i.e., , followed
by , one obtains the field

(29)

excited by the impulsive th dipole current in (2) which rep-
resents a spherical impulsive wavefront radiated by the dipole
at at the delayed time . The same
operations applied to the right-hand side of (6), or direct FD in-
version of (12), yields the TD–FW

(30)

The argument of the delta function in (30) identifies the two-di-
mensional (2-D)integral as a Radon slant-stack projection trans-
form [13] (normalized to the unit cell area ). The integrand
in (30) contributes only for those real -values which sat-
isfy

(31)

To understand the implications of this condition, we change co-
ordinates to

(32)

with (see Fig. 1), which ori-
ents the coordinate along the direction of propagation of the
traveling impulse excitation (see Figs. 3 and 4). Therefore, the
integral in (30) becomes

(33)

and (31) is written as

(34)
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Fig. 3. Phenomenology matched coordinate system(u ; u ), rotated with
respect to(x ; x ), whose transformation is given in (32).u points in the
directioniii = cos� iii + sin� iii of the propagating wavefront. The
first signal arrival at the observation point(x; z) originates at the earlier point
x (t ) = x (t )iii + x (t )iii � z�(1 � � ) iii . Successively, for
t > t , contributions arrive at the observersimultaneouslyfrom points whose
locus is a distinct “equal delay” ellipse (see also, Fig. 4).

(a) (b)

(c)

Fig. 4. Various equal delay ellipse configurations, represented in the(u ; u )
plane at three time instantst > t > t , all greater than the turn-on time
t . The signal arriving at the observer att is generated earlier at the point
x (t ) which, in the(u ; u ) plane, is located at(�z�(1� � ) ; 0). (a)
For � = 0, ellipses degenerate to circles. (b) For a generic0 < � < 1, the
equal delay ellipses have axis ratio equal to1=(1 � � ), and foci atu =

�c�(1 � � ) � + (�1) � � � , i = 1, 2, that tend tou ! 0

andu ! �1, when� ! 1. (c) When� approaches the cutoff condition
(� = 1) the axis ratio tends to infinity, and the foci as well as the launch point
x (t ) approachu = �1.

Squaring and rearranging (34) leads to

(35)

(36)

with and in accord with
in (13) (since ; see (7)

and (13)). In the -plane, (35) defines -independent
“equal delay” curves in the plane, whose shape depends

on the parameters, and . We now explore the behavior of
the solutions for the FW for various -parameter ranges.

Equation (35) describes an ellipse with foci
,with

and , 2, center and
axis ratio , as shown in Fig. 4. At the turn on time

, the foci coincide and the ellipse reduces to a point at
. At later time instants, the

ellipse becomes larger, with the focus moving along the
directionandthefocus movingtowardtheorigin .For
the nonphased case , the ellipse degenerates into a circle
withcenter fixedat .Whenapproachingcutoff

, the axis ratio tends to infinity, and the two foci as well
as the launchpoint moveto . (For ,whichcorre-
sponds to evanescent in the FD, the equal delay contours
becomehyperbolas(see(35)),ofwhichonlytheright-handbranch
is relevant. Whether TD radiation is now possible under special
phase-matchedconditionsremainstobeexploredfurther.)

The -integral in (33) is exactly like that in [1] for aline
array of dipoles. For , the -dependent -values that
satisfy (35) are [1, Eq. (13)]

(37)

with . The two real solutions of (37)
for coincide at time which, at the
observer, corresponds to the causal (wavefront) arrival time

of a signal due
to a smoothly phased infinite line currentalong , located
at , with launch point in the plane at

. In the moving coordinate system
along the excitation wavefront, represents the signal
arrival delay that the moving observer encounters with respect
to the exciting current impulse located at (Fig. 3).
For , these solutions separate according to (37) and
move toward and (Fig. 4).
For , the two solutions are conjugate complex and
do not lie on the integration path; thus the-integral in (33)
vanishes for (causality). The twocausalcontribu-
tions corresponding to and are determined by
using the formula when

, as in [1, Sec. V-A]. Substituting for
from (34) and (37) and simplifying, one obtains what we shall
refer to as the causalsolutionfor the -indexed TD–FW

(38)
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in which is defined in (19), and where or 0 for
or , respectively. The function delimits the integration

domain to points with ,
i.e., between . Therefore, the in-
tegral is nonvanishing only in the case of . Changing
variables to , and adding the

to the contributions gives

(39)

After expressing and
noting that the the odd part of the integrand does not con-
tribute, we recall the formula

, with de-
noting the Bessel function of zeroth-order [14, p. 28]; observing
that , we obtain

(40)

in which is defined in (22). This result, obtained by ap-
plying the Poisson summation formula directly to the TD ele-
ment-by-element field representation, is coincident with that in
(26) obtained from the direct Fourier inversion of the FD-FW.
The remarks after (26), concerning the “physically observable”
TD–FW, apply here as well.

C. Asymptotic Inversion From the FD

1) Local Frequencies and Wavenumbers:The
behavior of the high-frequency asymptotic evaluation of the
FD inversion integral in (1)

(41)

provides additional insight and parameterizes the TD–FW dis-
persion process. The manipulations here are 2-D generalizations
of those carried out in [1] for the line dipole array, and the prin-
cipal steps are given below. Referring to the last expression for

in (12), accounts for the
slowly varying amplitude terms in the integrand. The phase is
given by

(42)

with and defined in (7) and (13), respectively.
The dominant contributions to the integral in the high-frequency

range arise from the stationary (saddle) pointsof , de-
fined by . (For , is -in-
dependent and therefore not amenable to saddle point approxi-
mation.) For , or , the real solutions yield thelocal
instantaneous frequencies(see Appendix B)

(43)

with and defined in (16) and (23), respectively. Positive
and negative frequencies are denoted by and , re-
spectively. This expression agrees with that obtained via the op-
eration per-
formed directly on the time-dependent phase in (26), after re-
placing the Bessel function by its large argument asymptotic
approximation.

The two instantaneous frequencies of the in (43)
at a given point and a given instant ( in the moving refer-
ence system; see (31)) are real in the causal domain

, increase with mode indexes but
decrease with time, and approach their observer-independent
cutoff frequency when , (defined by ) (see
Fig. 7)

(44)

The instantaneous saddle point frequencies characterize
corresponding instantaneous wavenumbers pertaining to the ob-
server located at at time . For specified , one obtains

(45)

(46)

(47)

where the wavenumber is calculated using (68). From
(14), the corresponding local FW propagation angles denoted
for specified by and , respectively, become

(48)

(49)

Evaluation of the th TD–FW integral in (41) via the standard
asymptotic formula [12, p. 382]

(50)

(51)
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yields

(52)

where we have used (43), (47) and
.

The unit step function arises because real saddle point
frequencies are restricted to . Combining

with yields

(53)

The FD-inverted asymptotic TD–FW in (53) is the asymp-
totic version of theexact TD–FW in (26) obtained through
Poisson summation directly in the time domain, as can be seen
from the asymptotic approximation of the Bessel functions

. Thus, all interpretations
relating to (26) apply. The fact thatall TD–FW propagate
simultaneously toward the observer is in accord with the
instantaneous wavenumber in (47), that is real when

for all . Indeed, the asymptotic
frequencies are such that
whence, after turn-on , in (47) is real (con-
dition for propagation). At the turn-on time ,
we have and . For
we have (see (44)); thus, the
wavenumbers , with

, as in the text after (14).
2) The Nondimensional Estimator:In order to assess the ac-

curacy of the asymptotics in (50), we use thenondimensional
estimatordefined as [15]

(54)

which combines the various critical problem parame-
ters and variables. We have noted here that

. The range of
validity of the asymptotic solution is expressed thereby through
the condition , with the limits given by .
As a function of , this eliminates the near-wavefront regime

and the late-time regime , for both of which
. However, the validity of the asymptotic result is ex-

tended to when the dipoles are excited by a band-limited
waveform (see Section V-B).

Fig. 5. All TD–FWs propagatesimultaneouslytoward the observer with
group velocityvvv (t), vvv (t) = c. The emergence pointx (t) of each
TD{FW is located on thet-dependent “equal delay” ellipse defined in (31).

6. Normalized Rayleigh pulse and its FD spectrum.

3) Group Velocity: The group velocity, which specifies the
direction and propagation speed of theenergy fluxof the
wave field, is defined as

with

Thus, , and
. Inserting the instantaneous wavenumbers from (46) and

(47) and using the instantaneous propagation angle in
(48), yields

(55)

Thus, all instantaneous fields propagate toward the

observer with group speed as shown in Fig. 5.
4) Instantaneous Localization:To complete the connection

between the exact and asymptotic results, we show that at the
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Fig. 7. Local instantaneous radian frequency of oscillation! (t) of the TD–FWs, evaluated at(x ; x ; z) = (0; 0; 15d ), versus normalized timet=T , with
T = d =c. Only those withjpj; jqj � 2 are shown. Parameters:d = d ; � = 0:2, iii = iii . At turn-ont = t , j! (t)j ! 1 for all p; q. At the RHS,
pulse-excitation spectra are shown for the two cases analyzed in Fig. 8(! = �c=d ;� = 2d ) and in Fig. 10(! = 4�c=d ;� = d =2). In each case,
only those TD–FWs with local instantaneous frequency lying within the excitation spectrum are excited.

observation point , localization through local instanta-
neous frequencies and wavenumbers and in
(45) and (46), respectively, define localized “emergence” points

(56)

on the array plane; these points all lie on the-instantaneous
“equal delay” ellipse defined in (31), as shown in Fig. 5. We first
recall the definition of in (11), and thus

(see Fig. 5) which, when inserted together with (56) into (31),
leads to

(57)

This identity is verified from (45)–(47) and (43), and it rep-
resents the equation of the “equal delay” ellipse in terms of
instantaneous wavenumbers. In summary, at each time, all

TD–FWs propagate toward the observer along-dependent
cones, from directions , , with the same group
velocity . These TD–FW emerge earlier from points
located on the “equal delay” ellipse at time.

D. The Total Physically Observable Radiated Field

The total “physically observable” field radiated by the array
is expressed as a sum of , paired TD–FWs,

(58)
where the th TD–FW is given by (26) or (40). The terms
in the series on the RHS of (58) can also be rearranged so as to
include only positive (and zero), indexes.

V. BAND-LIMITED PULSE EXCITATION

We now analyze the effects of physically realizable band-lim-
ited (BL) pulsed dipole excitation on the field radiated by the

planar array. The pulse excitation function is represented as
with spectrum . Accordingly, the factor multiplying

in (2) becomes for the
FD dipole currents and for the TD dipole
currents.

The total BL response of the planar array is then
obtained by convolving the total TD impulse response in (58)
with the BL signal , yielding

(59)

(60)

The BL Floquet-modulated signal due to the planar
array can be calculated either by convolution with the exact
TD–FW or by inversion of FD asymptotics.

A. Convolution With the Exact FW

Here, the exact FW field in (26) or (40) is used in (60). Again,
the , pairing defines “physisically observ-
able” BL–TD–FW, yielding the real field

, that also demonstrates (59) for BL excitation.

B. Band-Limited Asymptotics

Avoiding the convolution in (60), the th BL field
can be calculated as the inverse Fourier transform

of . Therefore, for or , using the
high-frequency asymptotics in Section IV-C, can be
evaluated approximately by including the pulse spectrum
in the inversion integral (41). For these short pulses, can
be considered slowly varying with respect to the phase in the
integrand of (41) [2], [16], and can therefore be approximated
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by its value at the saddle point frequencies , , 2.
Thus, near the wavefronts

(61)

with

(62)

and approximated asymptotically as in (52). Again,
, pairing synthesizes the real BL asymptotic

solution

(63)

since , [see (43)],

and . For , which is not
amenable to -domain saddle point asymptotics (see Sec-
tion IV-C), the pulsed response is calculated by the
convolution in (60). Although the impulsively excited asymp-
totic wavefields in Section IV-C are valid only forearly times
close to (behind) the wavefronts, convolution with a waveform
having a band-limited spectrum may enlarge the range
of validity to later observation times behind the wavefront. For

or , the relevant fields are those with
in the signal bandwidth.

C. Illustrative Examples

To check the accuracy of the TD–FW-based BL Green’s
function algorithm for the impulse-excited planar phased
dipole array, we have implemented two numerical examples
(see Figs. 8 and 10). The TD asymptotic solution (59), with
(61), is compared there with a reference solution obtained via
element-by-element summation over the pulsed radiation from
all dipoles, i.e.,

(64)
The -series has been truncated when contributions from
the far elements are negligible, i.e., when .
The chosen BL excitation is a normalized Rayleigh pulse

(i.e., ) [17], with FD
spectrum
and central radian frequency , shown in Fig. 6.

To explain the results in Figs. 8 and 10, we shall utilize
plots of the TD–FW instantaneous frequency dispersions

shown in Fig. 7. The relevant spectral range of
that contributes significantly to the total radiated field at
the observer can be assessed from Fig. 7 which shows on
the left the instantaneous radian frequency trajectories for

, evaluated at , and
plotted versus normalized time , with ; the array
parameters are , ( in (14)), and

. At turn-on , all instantaneous frequencies
with or . It is also seen that for ,

defined in (44). The index , 2 tags
negative/positive -frequencies, respectively. The RHS of

Fig. 8. Field radiated by an infinite planar array of dipoles observed at
(x ; x ; z) = (0; 0; 15d ). The fields are plotted versus normalized timet=T ,
with T = d =c. Parameters:d = d ; � = 0:2, iii = iii , � = 2d ,
! = �=T .

Fig. 7, shows the pulse-excitation frequency spectra for the two
cases under consideration: ; (Fig. 8)
and ; (Fig. 10). In each case, only
those TD–FWs with instantaneous frequencies within the
excitation spectrum are relevant, as stated in (61),(62).

The fields are likewise plotted versus normalized time,
with . Fig. 8 shows the field radiated by the array
with parameters , and , observed at

, . The central radian frequency is chosen
as , with central wavelength

; this implies from Fig. 7 that the for only those
TD–FWs with lie in the region where is non-
vanishing, and therefore furnish the dominant contributions. In-
deed, in Fig. 8, excellent agreement with the reference solu-
tion has been obtained by retaining only the asymptotic terms

, thereby demonstrating good convergence of the
TD–FW field representation. Since the median wavelength is
larger than the interelement spacings ,
the main feature of the pulse shape in Fig. 8, is contributed by
the integrated excitation waveform of Fig. 6 and represents the

, which is evaluated by the convolution in (60) [see
text after (63)]. The tail after the wavefront is due to the higher
order FWs with , which oscillate at their distinct
local instantaneous frequencies , , 2,
and thereby form the noted interference pattern.

The quality of the asymptotic results in Fig. 8 up to
(and beyond) is assessed by the behavior of the nondimensional
estimators in (54), as shown in Fig. 9 for .
The estimator for is not included since it is not
amenable to saddle point asymptotics as noted in Section IV-C.
In the plotted range, for all except near turn-on

where . Near , the local
instantaneous frequencies tend to infinity, but due to the band-
limited excitation frequency spectrum in Fig. 6, TD–FWs
with or are not excited there.

Fig. 10 shows plots for an infinite planar array under the
same conditions as in Fig. 8, except that the central radian fre-
quency is now .
This changes the relevant spectral range of to
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Fig. 9. Nondimensional estimatorsE (t) in (54), shown forjpj; jqj � 2.
The quality of the asymptotics for thepqth TD–FW is assessed by how well each
satisfies the conditionE � 1, with respect to an arbitrarily set reference
level.

Fig. 10. Field radiated by an infinite planar array of dipoles observed at
(x ; x ; z) = (0; 0; 15d ). The fields are plotted versus normalized timet=T ,
with T = d =c. Parameters:d = d ; � = 0:2, iii = iii , � = d =2,
! = 4�=T .

, as can be seen from Fig. 7. Accordingly, it is noted that
excellent agreement with the reference solution has been ob-
tained also in this case by retaining the relevant asymptotic
terms , thereby again demonstrating good conver-
gence of the TD–FW field representation. At these shorter wave-
lengths, features of individual element arrivals become more
pronounced but are well synthesized by a correspondingly larger
number of TD–FWs.

VI. CONCLUSION

In this paper we have extended previous studies of period-
icity-induced impulsive Green’s functions for phased arrays of
dipoles from the line dipole array (infinite [1] and truncated [2])
to an infinite planar array. From the detailed analyses in [1]
and [2], we have gained substantial insight into relevant tech-
niques for quantifying and interpreting TD periodicity-induced
global phenomena in terms of TD–FW wavefields. The new fea-
tures introduced by the assembly of an infinite periodic array
in terms of phased line dipole arrays in Section IV-B therefore

bear strongnotationalresemblance to the FD planar array sector
geometry in [5], and strongphenomenologicalresemblance to
that of the TD infinite line dipole array in [1]. To highlight these
analogies, we have used phrasings similar to those in [1] and [2]
for similar concepts and methodologies. As in [1], the present
prototype problem is sufficiently simple to yield the exact closed
form TD solutions in (28) for Floquet-typedispersivewave phe-
nomena, which are dispersive TD–FW radiatingplane waves
for ; the nonradiating case will be presented sep-
arately. The most interesting and new finding here is the exci-
tation mechanism (for ) of the TD–FWs along “equal
delay” ellipses in the array plane (see (35) and Figs. 3 and 4),
and the appealing physical interpretations that follow from it
(see Fig. 5). The next prototype studies will be of the TD–GFs
for a semiinfinite planar [18], and thereafter for a plane-sectoral,
phased dipole array. This will furnish the tools for analyzing ac-
tual finite planar arrays under short pulse conditions. The prac-
tical utility of FW-based dipole GFs for finite planar phased ar-
rays has already been demonstrated in the frequency domain
[3]–[10], and application of its TD counterpart will be guided
by these FD studies.

APPENDIX A

DETAILS PERTAINING TO (25)

We perform the change of variable in the
integral in (25). Along the paths and in Fig. 2, the variable

assumes real values from to , and the inverse is defined
as with , 2 when is on ,
respectively. The integral in (25) is thus rewritten as

(65)

which has been recognized as a zeroth-order Hankel function of
the first or second kind when or , respectively [12,
p. 493], thereby establishing (25).

APPENDIX B

DETAILS PERTAINING TO (43)

Recalling (42), the saddle point condition is

(66)
Note that or for or 0, respectively,
in order to satisfy the radiation condition at for all .
Squaring and rearranging yields, using (13)

(67)

with . After recalling that
, (67) has the two -indexed solu-
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tions in (43). To sort out the correct solution for , we
substitute (43) into the original (66) [recalling(13)] to obtain

(68)

Realvalues of in (43) are obtained only for . Since,
, the sign of depends on through

the sign of the second term inside the parentheses in (43), i.e.,
. Since ,

we have . Thus, both the LHS
and RHS of (68) have the same sign for and opposite sign
for , for , 2. This means that for both
and are real solutions of (66), while neither is a solution
for negative .
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