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ON WEIGHT MATRIX AND FREE ENERGY MODELS FOR

SEQUENCE MOTIF DETECTION

By Qing Zhou∗

University of California, Los Angeles

The problem of motif detection can be formulated as the construc-
tion of a discriminant function to separate sequences of a specific
pattern from background. In computational biology, motif detection
is used to predict DNA binding sites of a transcription factor (TF),
mostly based on the weight matrix (WM) model or the Gibbs free
energy (FE) model. However, despite the wide applications, theoret-
ical analysis of these two models and their predictions is still lacking.
We derive asymptotic error rates of prediction procedures based on
these models under different data generation assumptions. This al-
lows a theoretical comparison between the WM-based and the FE-
based predictions in terms of asymptotic efficiency. Applications of
the theoretical results are demonstrated with empirical studies on
ChIP-seq data and protein binding microarray data. We find that,
irrespective of underlying data generation mechanisms, the FE ap-
proach shows higher or comparable predictive power relative to the
WM approach when the number of observed binding sites used for
constructing a discriminant decision is not too small.

Key words: asymptotic efficiency, discriminant analysis, protein-
DNA interaction, predictive error, transcription factor binding site.

1. Introduction. Transcription factors (TFs), a class of proteins, regulate gene
transcription through their physical interactions with particular DNA sites. Such a
DNA site is called a transcription factor binding site (TFBS), which is usually a short
piece of nucleotide sequence (e.g., ‘CATTGTC’). Typically, a TF can bind different
sites and regulate a set of genes. A key observation is that sites of the same TF share
similarity in their sequence composition, which is characterized by a motif. Since gene
regulation has always been an important problem in biology, many computational
methods have been developed to predict whether a given DNA sequence can be bound
by a TF. Please see Elnitski et al. (2006), Ji and Wong (2006), and Vingron et al.
(2009) for recent reviews on relevant methods.

The prediction of TFBS’s considered in this article is formulated as a classification
problem. Denote by w the width of the binding sites and code the four nucleotide
bases, A, C, G and T, by a set of positive integers I = {1, · · · , J} (J = 4). Suppose
that we have observed a sample of labeled sequences of length w,Dn = {(Yk,Xk)}nk=1,
where Xk ∈ Iw and Yk ∈ {0, 1} indicating whether Xk is bound by the TF (Yk = 1)
or not (Yk = 0). We call D+

n = {Xk : Yk = 1} observed binding sites (or motif sites)
and D−

n = {Xk : Yk = 0} background sites (or background sequences). Then, motif
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2 Q. ZHOU

detection is to construct a discriminant function from Dn to predict the label of any
new sequence x ∈ Iw.

Most of the existing computational methods for motif detection can be classified into
two groups. The starting point of the first group is the sequence specificity of binding
sites, which is often summarized by the position-specific weight matrix (WM). For early
developments of WM, please see Stormo (2000). Under the WMmodel, each nucleotide
(letter) in a binding site is assumed to be generated independently from a multinomial
distribution on {A, C, G, T}. This model has been widely used in search of TFBS’s
(e.g., Hertz and Stormo, 1999; Kel et al., 2003; Rahmann et al., 2003; Turatsinze
et al., 2008), de novo motif finding (e.g., Stormo and Hartzell, 1989; Lawrence et al.,
1993; Bailey and Elkan, 1994; Roth et al., 1998; Liu et al., 2002) and many other works
reviewed in Vingron et al. (2009). The second group aims at modeling physical binding
affinity between a TF and its binding sites via the concept of the Gibbs free energy
(FE) or binding energy (e.g., Berg and von Hippel, 1987; Stormo and Fields, 1998;
Gerland et al., 2002; Kinney et al., 2007). Assuming that each nucleotide in a DNA
sequence of length w (w-mer) contributes additively to the interaction with the TF,
this approach often leads to a regression-type model for the conditional distribution of
binding affinity given a piece of nucleotide sequence (e.g., Djordjevic et al. 2003; Foat
et al. 2006). This group of methods have tight connections with predictive modeling
approaches to gene regulation, reviewed in Bussemaker et al. (2007), which can be
regarded as a natural generalization to the free energy framework (Zhou and Liu, 2008).
Although the standpoints are different, the two groups of approaches are in some sense
closely related. They often give similar discriminant functions for predicting TFBS’s,
and there are many FE-based methods that use a weight matrix to approximate Gibbs
free energy (e.g., Granek and Clarke, 2005; Roider et al., 2007).

In spite of the fast methodological development on the WM and the FE models,
there is still a lack of solid theoretical analysis to compare model assumptions, pa-
rameter estimations and response predictions of the two approaches. Such theoretical
analysis can provide insights into these methods by seeking answers to a series of ques-
tions. For example, what are the common and distinct assumptions between the WM
and the FE models, what is the relative performance between the two approaches in
predicting TFBS’s given a certain data generation mechanism, and how to calculate
their predictive error rates when the size of observed sampleDn becomes large? With-
out answering these questions, one may find it difficult to understand the nature of
these methods and cannot extract the full information contained in extensive empirical
comparisons between the two approaches.

In this article, we compare model assumptions and parameter estimations of typical
WM and FE approaches, derive asymptotic error rates of their predictions under dif-
ferent data generation models, and perform comparative studies on large-scale binding
data. The article is organized as follows. In Section 2 we review the basic models of the
two approaches. Asymptotic error rates of prediction procedures based on these mod-
els are derived and analyzed in Section 3. Computational approaches are developed in
Section 4 for practical applications of the theoretical results. Numerical analysis and
biological applications are presented in Sections 5 and 6, respectively, with a compar-
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ison of the WM-based and the FE-based predictions on ChIP-seq data and protein
binding microarray data. The paper concludes with discussions in Section 7. Some
mathematical details are provided in Appendices. Although presented in the specific
context of motif detection, the results in this article are generally applicable to the
modeling and classification of categorical data.

2. Models. Let c be a scalar, u = (u1, · · · , uJ) be a (column) vector, v =
(v1, · · · , vw) ∈ Iw, and A = (aij)w×J and B = (bij)w×J be two w × J matrices.
For notational ease, we define c ±A := (c ± aij)w×J , A/B := (aij/bij)w×J provided
that bij 6= 0, vA :=

∑w
i=1 aivi , A(v) :=

∏w
i=1 aivi and u(v) :=

∏w
i=1 uvi . Furthermore,

we define v[−k] := (v1, · · · , vk−1, vk+1, · · · , vw) and A[−k] by removing the kth row

from A, for k = 1, · · · , w. Symbols ‘
L→’ and ‘

P→’ are used for convergence in law and
in probability, respectively.

Let θ0 = (θ01, · · · , θ0J) be the cell probabilities (probability vector) of a multinomial
distribution for i.i.d. background nucleotides, where

∑J
j=1 θ0j = 1 and θ0j > 0 for

j = 1, · · · , J . Since θ0 can be accurately estimated from a large number of genomic
background sequences, we assume that it is given in the following analyses. Throughout
the paper, we assume that the cell probabilities of any multinomial distribution are
bounded away from 0.

2.1. The weight matrix model. Let X = (X1, · · · , Xw) ∈ Iw be a sequence of
length w. In the weight matrix model (WMM), we assume that X is generated from a
mixture distribution. Let Y ∈ {0, 1} label the mixture component. With probability q0,
Y = 0 and X is generated from an i.i.d. background model (with parameter) θ0, that
is, P (X | Y = 0) = θ0(X). With probability q1 = 1 − q0, Y = 1 and X is generated
from a weight matrix Θ = (θij)w×J = (θ1, · · · ,θw)t, where θi = (θi1, · · · , θiJ) is a
probability vector for i = 1, · · · , w and Xi is independent of other Xk (k 6= i). To be
specific, P (X | Y = 1) = Θ(X). From this model the log-odds ratio of Y given X is

log
P (Y = 1 |X)

P (Y = 0 |X)
= log

q1Θ(X)

q0θ0(X)
= log(q1/q0) +

w
∑

i=1

log(θiXi
/θ0Xi

). (1)

In the WM-based prediction, q1 is typically fixed by prior expectation or determined by
the relative cost of the two types of errors (false positive vs false negative). Effectively,
we assume that q1 is given. Let

β0 = log(q1/q0), βij = log(θij/θ0j), (2)

for 1 ≤ i ≤ w, 1 ≤ j ≤ J and β = (βij)w×J . We rewrite (1) as

log
P (Y = 1 |X)

P (Y = 0 |X)
= β0 +

w
∑

i=1

βiXi
= β0 +Xβ := h(X), (3)

which defines an additive discriminant function to predict Y given X, i.e., to predict
whether the sequence X can be bound by the TF. The label Y will be predicted as
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1 if h(X) ≥ 0 and 0 otherwise. This prediction can be regarded as a naive Bayesian
classifier.

Given observed binding sitesD+
n , we estimateΘ by the maximum likelihood estima-

tor (MLE) Θ̂m = (θ̂m1 , · · · , θ̂mw )t and substitute it in equation (2) to obtain β̂m. Here,
the superscript ‘m’ stands for estimators based on the WMM. Let dθ̂mi = θ̂mi − θi,
which is an infinitesimal in the order of 1/

√
n as n → ∞. The standard asymptotic

theory (e.g., Ferguson 1996) implies that

√
ndθ̂mi

L→N (0,Σm
i ) restricted to

J
∑

j=1

dθ̂mij = 0, as n→ ∞, (4)

and that
√
ndθ̂mi , i = 1, · · · , w, are mutually independent. The (j, k)th element of the

covariance matrix Σm
i is (δjkθij − θijθik)/q1 where δjk is the Kronecker delta symbol

and 1 ≤ j, k ≤ J . From equation (2) we have dβ̂mij = dθ̂mij /θij , which leads to the
following limiting distribution,

√
ndβ̂mij

L→N (0, (1− θij)/(θijq1)), for j = 1, · · · , J , as n→ ∞, (5)

with
√
ndβ̂m

i mutually independent for i = 1, · · · , w.

2.2. The free energy model. Let F , X = (X1, · · · , Xw) and FX be a TF, a DNA
sequence, and the corresponding TF-DNA complex, respectively. The process of the
TF-DNA interaction can be described by the chemical reaction F +X = FX. The
concentrations of the three molecules at chemical equilibrium, [F ], [X] and [FX], are
determined by the association constant Ka(X), that is,

[FX]

[F ][X]
= Ka(X) = exp

{

−∆G(X)

RT

}

,

where ∆G(X) is the Gibbs free energy (FE) for the interaction of F with X, R is the
gas constant and T the temperature. We regard RT > 0 as a constant. Suppose that
the contribution of a single nucleotide Xi to the FE is additive (von Hippel and Berg,
1986; Benos et al., 2002) so that we may write −∆G(X)/(RT ) = c+

∑w
i=1 biXi

. Then
we have

log
[FX]

[X]
= log[F ] + c+

w
∑

i=1

biXi
:= b0 +

w
∑

i=1

biXi
. (6)

To avoid non-identifiability in estimation, we take Sref = (s1, · · · , sw) as a reference
sequence to determine a baseline level of the FE, and define β̃ij = bij − bisi for all i, j
and β̃0 = b0 +

∑w
i=1 bisi , such that β̃isi ≡ 0 for i = 1, · · · , w and

b0 +
w
∑

i=1

biXi
= β̃0 +

w
∑

i=1

β̃iXi
(7)
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for every X ∈ Iw. Let Y be the indicator for whether X is bound by the TF at
chemical equilibrium. From the physical meaning of concentration,

P (Y = 1 |X) =
[FX]

[X] + [FX]
. (8)

Combining equations (6), (7) and (8) leads to an additive discriminant function for
this free energy model (FEM),

log
P (Y = 1 |X)

P (Y = 0 |X)
= β̃0 +

w
∑

i=1

β̃iXi
= β̃0 +Xβ̃ := h̃(X). (9)

Similarly as for the WMM, we assume that β̃0 is fixed by prior or a desired cost.
Furthermore, it is conventional to assume thatX is sampled from an i.i.d. background
model θ0, i.e., P (X) = θ0(X). The data generation process of the FEM has a clear
biological meaning. Suppose that we have sampled n nucleotide sequences of length
w, {Xk ∈ Iw}nk=1, from the genomic background θ0. We mix these sequences with
TF molecules in a container where the concentration of the TF is held as a constant.
At chemical equilibrium we label the sequences Xk bound by the TF as Yk = 1
and otherwise Yk = 0. The output of this experiment is the labeled sample Dn =
{(Yk,Xk)}nk=1. Although there exist other models based on binding free energy, we
focus on this basic model in this paper, which makes a theoretical analysis relatively
clean while capturing main characteristics of FE-based approaches.

Given Dn, the MLE of β̃, denoted by β̂f = β̃ + dβ̂f with the superscript ‘f ’ for
FE-based estimators, can be calculated by the standard logistic regression. Note that
β̂f maximizes the conditional likelihood

P (Y |X, β̃) =
exp{(β̃0 +Xβ̃)Y }
1 + exp(β̃0 +Xβ̃)

(10)

determined by equation (9). Similar to the results in Efron (1975), it is not difficult
to demonstrate that β̂f is consistent for β̃ with asymptotic normality,

√
ndβ̂f L→N (0,Σf ), as n→ ∞, (11)

where dβ̂f is regarded as a vector of (J − 1)w dimensions (recall that βisi = β̂isi ≡ 0
for i = 1, · · · , w). The asymptotic covariance matrix

Σf =
[

Eθ0

{

p1(X)p0(X)CXC
t
X

}]−1
, (12)

where py(X) = P (Y = y | X) for y = 0, 1, CX is a (J − 1)w-dimensional column
vector coding each Xi as a factor of J levels, and Eθ0 is taken with respect to (w.r.t.)
the background model θ0 that generates the sequence X.
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2.3. Comparison. Given (β0,β) in the WMM and the reference sequence Sref in
the FEM, if we let

β̃0 = β0 +
w
∑

i=1

βisi , β̃ij = βij − βisi , (13)

for i = 1, · · · , w, j = 1, · · · , J , then the two models have the same conditional distri-
bution [Y | X] (3, 9) for any X. To simplify notations, we shall denote the decision
function (9) in the FEM by h(X) = β̃0 + Xβ̃ hereafter. Except for this condition
distribution, other model assumptions are different. The WMM assumes that the nu-
cleotides in X are generated independently given its label Y . But this is not true for
the FEM, in which the conditional probability of X given Y is

P (X | Y,FEM) ∝ P (Y |X,FEM)P (X | FEM) =
exp{(β̃0 +Xβ̃)Y }
1 + exp(β̃0 +Xβ̃)

θ0(X). (14)

Since equation (14) cannot be written as a product of functions of Xi, this model
implicitly allows dependence among X1, · · · , Xw. Consequently, the FEM may account
for some observed nucleotide dependences within a motif such as in Bulyk et al. (2002),
Barash et al. (2003), Zhou and Liu (2004), and Zhao et al. (2005) among others. On
the other hand, under the FEM model the marginal distribution of X is simply the
background nucleotide distribution, i.e., P (X | FEM) = θ0(X), but the marginal
distribution of X under the WMM is a mixture,

P (X | WMM) = q1Θ(X) + q0θ0(X). (15)

The different model assumptions lead to different procedures for parameter estima-
tion, in particular the coefficients β (β̃). As discussed in Sections 2.1 and 2.2, β̂m and
β̂f are consistent under the WMM and under the FEM, respectively. Since β̂f maxi-
mizes the conditional likelihood P (Y | X, β̃) (10) which is identical between the two
models, it is also consistent for β under the WMM up to the translation (13). However,
β̂f is expected to be less efficient than β̂m in prediction if the WMM corresponds to
the underlying data generation process, due to the ignorance of the information on
Θ contained in the marginal likelihood P (X | Θ,WMM) (to be discussed in detail
in Section 3.1). Conversely, if data are generated by the FEM, β̂m is biased and no
longer consistent. We will analyze the bias and the resulting incremental error rate in
later sections.

3. Theoretical results. For both WMM and FEM, the ideal decision function
h(x) is obtained with the true parameters of the respective models and the corre-
sponding ideal error rate

R∗ =
∑

x:h(x)≥0

P (Y = 0,X = x) +
∑

x:h(x)<0

P (Y = 1,X = x). (16)

Denote by
R∗(x) = min

y∈{0,1}
P (Y = y |X = x)
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the ideal error rate for h(x) givenX = x. Consider a decision function ĥ(x) estimated
from Dn. Given any x for which h(x)ĥ(x) < 0, the incremental error rate beyond
R∗(x) is

∆R(x) = |P (Y = 1 |X = x)− P (Y = 0 |X = x)| .
Then the expectation of the total incremental error rate for ĥ is

E[∆R(ĥ)] = E

[

∑

x∈Iw

∆R(x)P (X = x)1
{

h(x)ĥ(x) < 0
}

]

=
∑

x∈Iw

∆R(x)P (X = x)P
{

h(x)ĥ(x) < 0
}

, (17)

where 1(·) is the indicator function. Please note that ĥ, constructed from a sample
of size n, is a random function. Let ∆ĥ(x) = ĥ(x) − h(x) be the deviation of ĥ(x)
from h(x). In what follows, we will derive two theorems on E[∆R(ĥ)] under different
assumptions for ∆ĥ(x). As we will see, the asymptotic error rates of the WM and the
FE procedures under the data generation models discussed in this paper can all be
calculated based on the two theorems.

Suppose that, for every x,
√
n∆ĥ(x)

L→N (0, V (ĥ,x)), where V (ĥ,x) is the asymp-
totic variance. As n→ ∞,

E[∆R(ĥ)] →
∑

x∈Iw

∆R(x)P (X = x)P (∆ĥ(x) > |h(x)|)

=
∑

x∈Iw

∆R(x)P (X = x) Φ

{

−
√

nh2(x)/V (ĥ,x)

}

, (18)

where Φ is the cdf of the standard normal distribution N (0, 1). Let

α(ĥ) = min
h(x) 6=0

h2(x)/V (ĥ,x), (19)

and x∗ be the corresponding minimum. Note that ∆R(x) = 0 when h(x) = 0. Thus,

as n→ ∞, E[∆R(ĥ)] is dominated by the term ∆R(x∗)P (X = x∗) Φ
[

−{nα(ĥ)}1/2
]

,

where α(ĥ) determines the rate of convergence. Using the theory of large deviations,
we obtain:

Theorem 1. If
√
n∆ĥ(x)

L→N (0, V (ĥ,x)) for every x ∈ Iw then

1

n
logE[∆R(ĥ)] → −α(ĥ)

2
, as n→ ∞.

Let ĥa and ĥb be two estimated decisions constructed from samples of size na and nb,
respectively. Suppose that both of them satisfy the condition in Theorem 1. We define
the asymptotic relative efficiency (ARE) of ĥa with respect to ĥb by ARE(ĥa, ĥb) =
α(ĥa)/α(ĥb), which is the limit ratio nb/na required to achieve the same asymptotic
performance.
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If ĥ(x) is biased in the sense that
√
n{∆ĥ(x) − µ(ĥ,x)} L→N (0, V (ĥ,x)), where

µ(ĥ,x) denotes the asymptotic bias of ĥ(x), then simple derivation from equation
(17) gives that

E[∆R(ĥ)] →
∑

x∈Iw

∆R(x)P (X = x) Φ





−√
n sign{h(x)}{h(x) + µ(ĥ,x)}

√

V (ĥ,x)



 ,

as n→ ∞, where sign(y) is the sign of y with sign(0) ≡ 0.

Theorem 2. Suppose that
√
n{∆ĥ(x) − µ(ĥ,x)} L→N (0, V (ĥ,x)) for every x ∈

Iw. Let B(ĥ) = {x : sign{h(x)}{h(x) + µ(ĥ,x)} < 0}. Then

E[∆R(ĥ)] →
∑

x∈B(ĥ)

∆R(x)P (X = x), as n→ ∞. (20)

We ignore the case {x : h(x) + µ(ĥ,x) = 0} which practically never happens. The
set B(ĥ) is the collection of x for which the estimated decision ĥ gives a different
predicted label from the ideal decision h as n → ∞. Note that E[∆R(ĥ)] does not
vanish if B(ĥ) is nonempty. Thus, the incremental percentage over the ideal error rate,
E[∆R(ĥ)]/R∗, is an appropriate measure of the predictive performance of ĥ.

In the remainder of this section, we derive and compare the error rates of the WM
and the FE procedures. From Sections 3.1 to 3.4, we assume that the constant term
β0(β̃0) is fixed to its true value. The results are generalized to situations where the
constant is mis-specified in Section 3.5. The computation of α(ĥ) (19) and E[∆R(ĥ)]
(20) will be discussed in Section 4.

3.1. Error rates under WMM. In this subsection we assume that the underlying
data generation process is given by the WMM. Since both β̂m and β̂f are consistent
with asymptotic normality under the WMM, we may uniformly denote their deci-
sion functions by ĥ(x) = β0 + xβ̂ = h(x) + xdβ̂, where dβ̂ = β̂ − β and

√
ndβ̂

follows a normal distribution N (0,Σ) as n → ∞. This implies that
√
n∆ĥ(x) =

√
nxdβ̂

L→N (0, V m(β̂,x)) with V m(β̂,x) being the asymptotic variance. The super-
script ‘m’ indicates the WMM as the data generation model. Let E[∆Rm(β̂)] be the
expected incremental error rate of ĥ indexed by β̂. Following Theorem 1,

1

n
logE[∆Rm(β̂)] → −α

m(β̂)

2
= −1

2
min

h(x) 6=0

h2(x)

V m(β̂,x)
, (21)

as n → ∞. Consequently, the ARE of the FE procedure w.r.t the WM procedure,
AREm(β̂f , β̂m), is determined by the ratio of αm(β̂f ) over αm(β̂m).

The decision function of the WM procedure is constructed with β̂m (Section 2.1).
Note that xdβ̂ =

∑

i dβ̂ixi
is a summation of w dβ̂ij ’s, each from a different dβ̂i. The
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limiting distribution of
√
ndβ̂mij (5) and the mutual independence among dβ̂m

i imply

that the asymptotic variance of
√
nxdβ̂m is

1

q1

w
∑

i=1

(1− θixi
)/θixi

=
1

q1
x {(1−Θ)/Θ} ,

and consequently,

αm(β̂m) = min
xβ 6=−β0

q1(β0 + xβ)
2

x{(1−Θ)/Θ} .

Suppose that we have chosen (s1, · · · , sw) as the reference sequence in the FE pro-
cedure. Define β̃0 and β̃ from the parameters (β0,β) of the WMM by equation (13).
Then the FE-based estimator β̂f is consistent for β̃ with asymptotic normality. Let
dβ̂f = β̂f − β̃. Similar to equation (12), the asymptotic covariance matrix of

√
ndβ̂f

is
[

E
{

p1(X)p0(X)CXC
t
X

}]−1
, where the expectation is taken w.r.t. the marginal

distribution of X under the WMM (15). Thus the covariance matrix can be written
as

Covm
(√

ndβ̂f
)

=

[

q0Eθ0

{

eh(X)

eh(X) + 1
CXC

t
X

}]−1

, (22)

where the expectation Eθ0 averages over X ∈ Iw generated from the background
model θ0. Based on equation (22), one can calculate the variance of

√
nxdβ̂f for every

x and determine the convergence rate αm(β̂f ) of the expected incremental error rate
E[∆Rm(β̂f )] for the FE procedure.

Because the estimation of β̂f is only based on the conditional distribution [Y | X]
while β̂m is estimated from the joint distribution of Y and X, we expect β̂f to be
less efficient in prediction with αm(β̂f ) < αm(β̂m). We will conduct a numerical
study in Section 5 to evaluate AREm(β̂f , β̂m) on 200 transcription factors to confirm
our conclusion. Here we demonstrate the lower efficiency of β̂f by the loss of Fisher
information in estimating an individual θij from the conditional likelihood only. For
simplicity, suppose that Θ[−i] is given and collapse Xi into two categories, Xi = j and
Xi 6= j. Because

P (X, Y | Θ) = P (Y |X,Θ)P (X | Θ)

under the WMM, the loss of information equals the Fisher information on θij contained
in the marginal likelihood P (X | Θ), denoted by I(θij | X). Let I(θij | X, Y ) be the
Fisher information on θij given X and Y jointly. We define

∆(θij | [Y |X]) = I(θij |X)/I(θij |X, Y ) (23)

as the fraction of the loss of information on θij in the conditional likelihood P (Y |
X,Θ).

Proposition 3. Let θ̄ij = q0θ0j + q1θij. If (Y,X) is drawn from the WMM then

∆(θij | [Y |X]) ≥ q1θij(1− θij)

θ̄ij(1− θ̄ij)
:= B(q1, θij , θ0j).
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A proof of this proposition is given in Appendix A. If one chooses to include an equal
number of background sites (Y = 0) and binding sites (Y = 1) in logistic regression to
estimate β̂f , which effectively specifies q0 = q1 = 0.5 by design, then this lower bound
may be substantial. For example, with a uniform background distribution θ0j = 0.25
for j = 1, · · · , 4, the range of B(q1, θij , θ0j) is between 20% and 55% for most typical
values of θij (Table 1).

Table 1

Typical values of B(0.5, θij , 0.25)

θij 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
B(0.5, θij , 0.25)(%) 31 46 53 55 53 49 42 32 18

3.2. WMM with Markov background. We generalize the background model to a
Markov chain, which often represents a better fit to genomic background in high
organisms. We assume that given Y = 0, X is generated by a first order Markov
chain with a transition probability matrix ψ0 = (ψ0(x, y))J×J where x, y ∈ I. For any
x = (x1, · · · , xw) ∈ Iw, ψ0(x) :=

∏w
i=1 ψ0(xi−1, xi), where ψ0(x0, x1) is interpreted as

the probability of x1 under the stationary distribution of the Markov chain. The ideal
decision function under this model is

h1(x) = log
P (Y = 1 |X = x)

P (Y = 0 |X = x)
= β0 +

w
∑

i=1

log θixi
− logψ0(xi−1, xi), (24)

where β0 = log(q1/q0) and the subscript ‘1’ [in h1(x) and ∆Rm
1 (26)] indicates a quan-

tity whose definition involves a Markov background model. Since ψ0 can be accurately
estimated with sufficient genomic background sequences, we assume that it is given.
With the MLE Θ̂m from observed binding sites, the WM procedure constructs a de-
cision whose expected incremental error rate converges to zero exponentially fast as
n→ ∞, following Theorem 1.

With a slight abuse of notations, let us denote by θ0 the probability vector of the
stationary distribution of the Markov chain, which is also the marginal distribution
of any nucleotide Xi in a background site. We still define β0 and β by equation (2)
with θ0 being the stationary probabilities, and translate β0 and β via a reference
sequence to β̃0 and β̃ (13). Let (Y,X) be a sample from the WMM with Markov
background. If the dependence among neighboring nucleotides in a background site is
ignored, the conditional likelihood P (Y |X, β̃), parameterized by β̃, is then given by
the same expression in equation (10). Because the FE-based estimator β̂f maximizes

this conditional likelihood, it is standard to show that β̂f P→ β̃ and is asymptotically
normal. Let ĥf (x) = β̃0 + xβ̂f denote the estimated decision function of the FE
procedure. As n→ ∞,

ĥf (x)
P→ β̃0 + xβ̃ = β0 +

w
∑

i=1

log θixi
− log θ0xi

. (25)
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Let ∆ĥf (x) = ĥf (x) − h1(x) be the deviation of ĥf (x) from the ideal decision (24).
Comparing equations (24) and (25) gives the asymptotic bias,

b(x) =
w
∑

i=1

logψ0(xi−1, xi)− log θ0xi
= logψ0(x)− log θ0(x).

Due to the asymptotic normality of β̂f , we have
√
n{∆ĥf (x)−b(x)} L→N (0, V m

1 (β̂f ,x)),
where V m

1 (β̂f ,x) is the corresponding asymptotic variance. Under this model,

∆R(x)P (X = x) = |q1Θ(x)− q0ψ0(x)| = q0ψ0(x)
∣

∣

∣
eh1(x) − 1

∣

∣

∣
.

Following Theorem 2 with µ(ĥf ,x) = b(x), the expected incremental error rate

E[∆Rm
1 (β̂f )] →

∑

Bm
1 (β̂f )

q0

∣

∣

∣
eh1(x) − 1

∣

∣

∣
ψ0(x), as n→ ∞, (26)

where Bm
1 (β̂f ) = {x : sign{h1(x)}{h1(x) + b(x)} < 0}. The incremental percentage

over the ideal error rate, E[∆Rm
1 (β̂f )]/(Rm

1 )∗, is appropriate for comparing the FE-
based prediction with the WM-based prediction whose expected error rate converges
to (Rm

1 )∗. A general expression for R∗ is given in equation (16) which, under the WMM
with Markov background, is written as

(Rm
1 )∗ = q0Eψ0

{

1(h1(X) ≥ 0) + eh1(X)1(h1(X) < 0)
}

. (27)

3.3. Error rates under FEM. We now analyze asymptotic error rates of the two
procedures regarding the FEM as the underlying data generation mechanism.

The FE-based estimator β̂f is consistent for β̃ under the FEM. The asymptotic nor-

mality of
√
ndβ̂f (11, 12) implies that

√
nxdβ̂f L→N (0, V f (β̂f ,x)). Let E[∆Rf (β̂f )]

be the expected incremental error rate of the FE procedure under the FEM. From
Theorem 1, we have

1

n
logE[∆Rf (β̂f )] → −α

f (β̂f )

2
= −1

2
min

h(x) 6=0

h2(x)

V f (β̂f ,x)
, as n→ ∞. (28)

Denote by θfi = (θfi1, · · · , θ
f
iJ) the probability vector of the conditional distribution

[Xi | Y = 1] under the FEM, i.e.,

θfij = P (Xi = j | Y = 1,FEM), (29)

for i = 1, · · · , w, and call Θf = (θfij)w×J the weight matrix. Recall that the WM-

based estimator β̂m is obtained by estimating θfi individually from observed binding
sites D+

n and then transforming the estimates via equation (2). Denote the estimated

weight matrix by Θ̂m. Since the data are generated by the FEM, Θ̂m P→Θf and√
ndΘ̂m =

√
n(Θ̂m −Θf ) follows a multivariate normal distribution asymptotically,
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similar to (4), but dθ̂mi and dθ̂mk may be correlated (1 ≤ i 6= k ≤ w). Given that the

coefficients β̃ in the FEM are defined w.r.t. a reference sequence, we transform Θ̂m to

β̂mij = log(θ̂mij /θ0j)− log(θ̂misi/θ0si), for all i, j, (30)

where si is the ith nucleotide of the reference sequence Sref . Let ∆β̂
m = β̂m − β̃ be

the deviation of β̂m = (β̂mij )w×J . To obtain its asymptotic distribution, we determine

the cell probability θfij (29) from equation (14), that is,

θfij ∝ θ0je
β̃ij

∑

x∈Iw−1

eβ̃0+xβ̃[−i]

1 + eβ̃ijeβ̃0+xβ̃[−i]

θ0(x) = θ0je
β̃ijEθ0

{

eUi

1 + eβ̃ijeUi

}

,

where Ui = β̃0 +Xβ̃[−i] for X ∈ Iw−1. In particular, θfisi ∝ θ0siEθ0
{

eUi/(1 + eUi)
}

since β̃isi = 0. For i = 1, · · · , w and j = 1, · · · , J , we define

δij = logEθ0

{

eUi

1 + eβ̃ijeUi

}

− logEθ0

{

eUi

1 + eUi

}

(31)

and rewrite θfij = θ0je
β̃ij+δij/Zi, where Zi =

∑

j θ0je
β̃ij+δij is the normalizing constant.

Because θ̂mij
P→ θfij and β̃isi = δisi = 0, from equation (30) we have

β̂mij
P→ log(θfij/θ0j)− log(θfisi/θ0si) = β̃ij + δij (32)

for all i and j as n → ∞. Thus, δ = (δij)w×J is the asymptotic bias of β̂m. From the

asymptotic normality of
√
ndΘ̂m, we see that

√
n(∆β̂m − δ) follows a multivariate

normal distribution with mean 0 and finite covariance matrix as n → ∞. Note that
this multivariate normal distribution is defined on a (J−1)w-dimensional space, since
∆β̂misi = δisi ≡ 0 for i = 1, · · · , w.

Consider the WM-based decision function ĥm(x) = β̃0+xβ̂
m = h(x)+x∆β̂m. The

above derivation shows that
√
n(x∆β̂m−xδ) L→N (0, V f (β̂m,x)), where the variance

is determined by the covariance matrix of ∆β̂m. Following Theorem 2, the expectation
of the total incremental error rate of the WM procedure

E[∆Rf (β̂m)] →
∑

Bf (β̂m)

tanh |h(x)/2| θ0(x), as n→ ∞, (33)

where Bf (β̂m) = {x : sign{h(x)}{h(x)+xδ} < 0}. Similarly, the incremental percent-
age over the ideal error rate E[∆Rf (β̂m)]/(Rf )∗ is used to compare the predictions of
the WM and the FE procedures, given that E[∆Rf (β̂f )] → 0 (28). Under the FEM,
the ideal error rate

(Rf )∗ = Eθ0 {p0(X)1(h(X) ≥ 0) + p1(X)1(h(X) < 0)} . (34)

Recall that py(X) = P (Y = y |X), i.e.,

py(X) =
eyh(X)

eh(X) + 1
, for y = 0, 1.
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3.4. FEM with Markov background. Next, we generalize the FEM to Markov back-
ground and assume that any sequence X ∈ Iw is generated marginally by a Markov
chain. Consistent with Section 3.2, we denote by ψ0 = (ψ0(x, y))J×J the transition
probability matrix of the Markov chain.

It is trivial to see that, with the Markov background model, the ideal decision is
still h(x) = β̃0 + xβ̃. If V

f
1 (β̂f ,x) denotes the asymptotic variance of

√
nxdβ̂f under

Markov background, then with V f
1 in place of V f equation (28) remains valid for the

FE-based prediction. On the other hand, if we proceed with the WM procedure, the
expected incremental error rate

E[∆Rf
1 (β̂

m)] →
∑

Bf
1 (β̂

m)

tanh |h(x)/2| ψ0(x), as n→ ∞, (35)

where Bf
1 (β̂

m) = {x : sign{h(x)}{h(x)+δ(x)} < 0}. Here δ(x) denotes the asymptotic
bias of the WM-based decision function for x. A detailed derivation of equation (35)
and the bias δ(x) is provided in Appendix B. In analogy to the FEM with i.i.d. back-

ground, E[∆Rf
1 (β̂

m)]/(Rf
1 )

∗ measures the increased error rate of the WM procedure
relative to the FE procedure, where

(Rf
1 )

∗ = Eψ0 {p0(X)1(h(X) ≥ 0) + p1(X)1(h(X) < 0)} .

3.5. Mis-specification of the constant term. In all the above derivations, we have
assumed that the constant term β0(β̃0) is fixed to its true value. If this is not the case,
then the deviation ∆β̂0 = β̂0 − β0(β̃0) will be an extra bias term for an estimated
decision in which the constant term is fixed to β̂0. More specifically, the set Bf (β̂m)
in equation (33) will be replaced by {x : sign{h(x)}{h(x) + xδ + ∆β̂0} < 0}, and
similarly for Bm

1 (β̂f ) in equation (26) and Bf
1 (β̂

m) in equation (35).

4. Computation. To apply the theoretical results, we need to solve the mini-
mization (19) and the summation (20) involved in Theorems 1 and 2, respectively. If
the width of a motif w ≤ 12, brute-force enumeration of all w-mers is computationally
feasible, which provides exact solutions for both the minimization and the summation
problems.

For a motif of width w > 12, we minimize (19) to find α(ĥ) by a two-step approach.
We generate N = 5 × 106 w-mers from the background model θ0 and identify the
minimum of (19) among them. Then we refine the obtained minimum by simulated
annealing for 5,000 iterations with temperature decreasing linearly from one to zero.
At each iteration, we randomly choose one nucleotide Xi from the w positions and
propose to mutate Xi to one of the other three nucleotide bases with equal probabil-
ity. The proposal is accepted according to a Metropolis-Hastings ratio with current
temperature.

Since the set B(ĥ), as in equations (26), (33) and (35), is usually small, it will be
very inefficient to approximate the summation by generating w-mers from background
distributions. Thus, we develop an importance sampling approach to approximate the
summation (20) when w > 12. Here, we use the calculation of E[∆Rf (β̂m)] (33) to
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illustrate this approach. Note that one can bound xδ in the definition of Bf (β̂m)
so that xδ ∈ [M1,M2], where M1 =

∑w
i=1minj δij and M2 =

∑w
i=1maxj δij . These

bounds imply that if x ∈ Bf (β̂m) then

h(x) ∈ (−M2, 0) ∪ (0,−M1) := H.

We design a sequential proposal g(X) that is more likely to generate X with h(X) ∈
H. Suppose that we have generated X1, · · · , Xk−1 (1 ≤ k ≤ w) from this proposal. Let

hk−1 = β̃0 +
∑k−1

i=1 β̃iXi
, in particular h0 = β̃0. We determine B

(L)
k+1 =

∑

i>k minj β̃ij

and B
(U)
k+1 =

∑

i>k maxj β̃ij , the bounds for
∑

i>k β̃iXi
. If Xk = j then the range for

h(X) is

hk−1 + β̃ij + [B
(L)
k+1, B

(U)
k+1] := [Lkj , Ukj ].

The larger the overlap between this interval and H, the more likely thatX will belong
to the desired set Bf (β̂m). Thus, we propose Xk with probability

gk(Xk = j | X1, · · · , Xk−1) ∝ |[Lkj − ǫ, Ukj + ǫ] ∩H| , (36)

where | · | returns the length of an interval and ǫ is a small positive number to allow
the generation of Xk = j when Lkj = Ukj ∈ H. Proposing Xk sequentially by (36)
for k = 1, · · · , w generates an X from g(X). With N proposed samples {X(t)}Nt=1 we
estimate the summation (33) by

1

N

N
∑

t=1

tanh
∣

∣

∣
h(X(t))/2

∣

∣

∣

θ0(X
(t))1{X(t) ∈ Bf (β̂m)}

g(X(t))
.

In this work, we propose N = 5×106 samples for this importance sampling estimation.
We verified that the estimations were very close to the exact summations. With differ-
ent bounds for h1(x) and h(x), this approach is applied to other similar summations
in (26) and (35).

5. Numerical study. A numerical study was performed under the WMM to
confirm and quantify the lower predictive efficiency of the FE-based estimator β̂f

compared to the WM-based estimator β̂m discussed in Section 3.1. We randomly
selected 200 TFs from the database TRANSFAC (Matys et al. 2003). For each TF,
experimentally verified binding sites were used to construct a weight matrix with a
small amount of pseudo counts. Then we randomly sampled 5,000 human upstream
sequences, each of length 10 kilo bases, and calculated their nucleotide frequency θ̂0 =
(0.263, 0.234, 0.237, 0.266). The 200 weight matrices display large variability. The
width w ranges from 6 to 21 and the information content,

∑w
i=1{2 + Eθi(log2 θiXi

)},
ranges from 5.1 to 17.5 bits (Figure 1). These statistics show that our selection has
covered the typical width and strength of DNA motifs.

A constructed weight matrix was regarded as the parameter Θ and the nucleotide
frequency θ̂0 was used for the i.i.d. background in the WMM. Since the prior odds ratio
(q1/q0) of a binding site over a background site is usually small, we chose three typical
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Fig 1. Histograms of the width and the information content of 200 WMs.

Table 2

Summary of AREm(β̂f , β̂m)

λ Min. Q1 Median Q3 Max.

200 0.134 0.391 0.490 0.595 0.849
500 0.183 0.475 0.555 0.638 0.849
1000 0.217 0.508 0.560 0.675 0.918

Q1,3: the first and the third quartiles.

values for the inverse of the prior odds, λ = q0/q1 = 200, 500, 1000, for numerical
calculations. We evaluated the AREs of the FE-based prediction w.r.t. the WM-based
prediction, defined by AREm(β̂f , β̂m) = αm(β̂f )/αm(β̂m) in Section 3.1, for the 200
WMs. As discussed in Section 4, our evaluation of AREs was exact for WMs of w ≤ 12
and was carried out with simulated annealing for w > 12. In addition, Monte Carlo
average was utilized, before simulated annealing, to approximate Covm(

√
ndβ̂f ) (22)

by simulating 5× 106 w-mers from the i.i.d. background.
The asymptotic relative efficiencies AREm(β̂f , β̂m) on the 200 TFs are summarized

in Table 2 for the three inverse prior odds. It is seen that for all the WMs the FE-based
prediction shows lower efficiency than the WM-based prediction, and that the median
AREs of β̂f to β̂m are between 50% and 60% and the third quartiles (Q3) between
60% and 70%. Thus, for more than 75% of the TFs, the FE procedure is less than
70% as efficient as the WM procedure in terms of prediction. This confirms the loss of
efficiency of the FE-based prediction under the WMM, although both estimators are
consistent. We note that the increase of ARE with higher λ (smaller q1) is consistent
with the lower bound defined in Proposition 3.

6. Applications. In this section, we apply the WM and the FE approaches to
ChIP-seq data and protein binding microarray (PBM) data. We perform cross valida-
tion (CV) with training data of different size, ranging from 20 to 500 binding sites,
for two purposes. First, with the large scale of both types of data, we can compare
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empirical error rates in cross validation against theoretical error rates. This may allow
us to verify some of the model assumptions and propose further improvement on the
models. Second, we are also interested in examining the practical performance of the
two computational methods when the number of observed binding sites varies in a
wide range, which will provide useful guidance for future applications.

6.1. ChIP-seq data. In the recent two years, the ChIP-seq technique (Johnson et
al., 2007; Mikkelsen et al., 2007; Robertson et al., 2007) has become a powerful high-
throughput method to detect TFBS’s in whole genome scale. A binding peak in ChIP-
seq data can usually narrow down the location of a TFBS to a neighborhood of 50 to
200 bps (Johnson et al., 2007). ChIP-seq data that contain thousands of binding sites
for a number of TFs have been generated in a study on mouse embryonic stem cells
(Chen et al., 2008). We chose five TFs, Esrrb, Oct4, STAT3, Sox2 and cMyc, in this
study to compare the WM and the FE methods. The five TFs all have well-defined
weight matrices in literature and each contains more than 2,000 detected binding
peaks in ChIP-seq, and their data quality was confirmed by motif enrichment analysis
in Chen et al. (2008). To identify the exact binding site of a ChIP-seq binding peak, we
searched the 200-bp neighborhood of the peak, 100 bps on each side, to find the best
match to the known weight matrix of the TF. Given the very small search space, the
uncertainty in the exact location of the binding site should be minimal. If the motif
width of a TF is w, background w-mers were extracted from genomic control regions
that match the locations of the binding sites relative to nearby genes. The ratio of the
number of background sites over the number of binding sites was set to 200 for every
TF, that is, the inverse prior odds ratio λ = q0/q1 = 200. A transition matrix was
estimated from the extracted background sites for each TF, since the log Bayes factor
of a Markov background model over an i.i.d model was > 105.

Based on the way we composed the data sets, the WMM with Markov background
(Section 3.2) seems a more plausible data generation model. Clearly, a data set was a
mixture of detected binding sites and random background sites, and the background
distribution was close to a Markov chain. If there is no within-motif dependence,
binding sites can be regarded as being generated from a WM model, and consequently,
the WM-based prediction is expected to have a smaller error rate compared to the FE-
based prediction. However, if there exists within-motif dependence in binding sites, the
FEM, which is able to capture such dependence, may outperform the WM approach
regardless of the mixture nature of the data sets. We computed theoretical error rates
of the two approaches under the WMM with Markov background. For each TF, we
estimated aWM from all the binding sites and a transition matrix from the background
sites. Regarding them as the model parameters, we calculated the asymptotic error
rate of the WM-based prediction, which is the ideal error rate (27), and the incremental
rate of the FE-based prediction (26). Note that the bias due to mis-specification of the
constant term in the FE approach needs to be included for the calculation of equation
(26). These theoretical error rates are reported in Table 3 (the column of n+ = ∞).

To compare with theoretical results, we performed cross validation to compute em-
pirical error rates of the WM and the FE procedures on each data set. We randomly
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Table 3

Predictive error rates (in the unit of 10−3) for ChIP-seq data

TF n+ 20 50 100 200 500 ∞

WM 2.66 2.49 2.43 2.40 2.36 2.30
Esrrb FE 4.30 2.77 2.54 2.45 2.37 2.45

(FE-WM)/WM (%) 61.7 11.2 4.5 2.1 0.4 6.5

WM 3.68 3.54 3.50 3.47 3.44 2.98
Oct4 FE 4.81 3.71 3.53 3.45 3.41 3.06

(FE-WM)/WM (%) 30.7 4.8 0.9 −0.6 −0.9 2.7

WM 3.03 2.84 2.78 2.72 2.69 2.57
STAT3 FE 4.69 3.09 2.84 2.75 2.70 2.74

(FE-WM)/WM (%) 54.8 8.8 2.2 1.1 0.3 6.6

WM 2.95 2.75 2.68 2.65 2.63 2.53
Sox2 FE 3.44 2.89 2.73 2.68 2.66 2.59

(FE-WM)/WM (%) 16.6 5.1 1.9 1.1 1.1 2.4

WM 2.67 2.49 2.42 2.38 2.34 2.07
cMyc FE 3.30 2.51 2.34 2.26 2.23 2.24

(FE-WM)/WM (%) 23.6 0.8 −3.3 −5.0 −4.7 8.2

Note: Reported are average error rates over 100 CVs. WM and FE refer to the WM and the FE
procedures, respectively.

sampled (without replacement) n+ binding sites and λ · n+ background sites from
a full data set to form a training set. Both approaches were applied to the training
set to estimate their respective decision functions. For WM-based prediction, a WM
and a transition matrix were estimated from the training data set to construct a de-
cision function (24) with β0 = − log(λ). For FE-based prediction, we applied logistic
regression to the training set to obtain ĥf (x) = β̂0 + xβ̂f . Then we predicted the
class labels of the remaining unused sequences (test set) by each of the two decision
functions and calculated empirical error rates (CV error rates). This procedure was
repeated 100 times independently for each value of n+ to obtain the average CV error
rate. To examine performance with a varying sample size (the number of sequences in
a training set), we chose n+ from 20 to 500.

The average CV error rates are reported in Table 3. The theoretical results give a
reasonable approximation to the CV error rates for both approaches when the training
sample size n+ ≥ 200. The asymptotic error rates of the WM approach are uniformly
lower than its CV error rates for all the TFs, while the FE approach achieves a smaller
CV error rate with n+ = 500 than its asymptotic rate for three TFs. Consequently, the
incremental percentage of the FE-based prediction for n+ = 500 is less than the ex-
pected level calculated from the theory. This comparison implies that the WMM may
not match the exact underlying data generation process, although it is more plausible
than the FEM given the mixture composition of the data sets. As we discussed, poten-
tial dependence within a motif may cause possible violation to the WMM. To verify
our hypothesis, we conducted the χ2-test for every pair of motif positions (Xi and Xk,
1 ≤ i < k ≤ w) given the binding sites in each data set. At the significance level of
0.005, we identified 25, 19, 17, 8, and 12 pairwise correlations for Esrrb, Oct4, STAT3,
Sox2, and cMyc binding sites, respectively, which gives a false discovery rate of < 2%
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for all the TFs. By capturing such correlations the FEM is able to achieve compara-
ble or even slightly better prediction than the WMM with a moderate-size training
sample (n+ ≥ 100, Table 3). Finally, it is important to note that even under the exact
model assumptions of the WMM, the FE-based prediction only results in a marginal
increment in error rate (< 10%) compared to the WM approach asymptotically (Ta-
ble 3, n+ = ∞). Together with the superior or comparable CV performance when the
training size is reasonably large, this result suggests the use of the FE approach, when
we have a sufficient number of observed binding sites.

6.2. PBM data. Protein binding microarrays (Mukherjee et al., 2004) provide a
high throughput means to interrogate protein binding specificity to DNA sequences.
Quantitative measurement of the binding specificity of a protein to every short nu-
cleotide sequence designed on a DNA microarray can be obtained simultaneously. The
PBM data in Berger et al. (2008) quantified DNA binding of homeodomain proteins via
the calculation of an enrichment score, with an expected false discovery rate (FDR),
for each double-stranded nucleotide sequence of length eight (w = 8). The data set for
each protein contains 32,896 8-mers, each with an enrichment score and an FDR. We
identified as the consensus binding pattern for a protein the 8-mer with the highest
enrichment score, and then labeled as binding sites those 8-mers whose FDR < 0.005
and which differ by no more than three nucleotides from the consensus after consid-
ering both the forward and the reverse complement strands. The remaining 8-mers
were labeled as background sites and we randomly determined their strands (orien-
tations) to avoid potential artifacts. In this study we included five proteins, Hoxa11,
Irx3, Lhx3, Nkx2.5, and Pou2f2, each from a different family, and called 134, 190, 267,
145, and 213 binding sites, respectively.

The FEM, developed by the biophysics of protein-DNA binding, is expected to
be a better model that matches the design of PBM data than the WMM. Thus,
theoretical analysis was conducted under the FEM for the five PBM data sets. We
applied logistic regression to estimate β̃ and β̃0 (9) with all the labeled 8-mers in a
data set, where the 8-mer ‘AAAAAAAA’ was regarded as the reference sequence, i.e.,
βi1 ≡ 0. We calculated the ideal error rate (Rf )∗ (34) of the FE-based prediction,
with an i.i.d. uniform background (by design the background distribution is uniform).
For the WM approach, we chose β̂0 as the log-ratio of the number of binding sites
over that of background sites, and calculated its asymptotic error rate by equation
(33), in which the bias in the constant term (∆β̂0) was included. The theoretical error
rates are reported in Table 4 (n+ = ∞), where we find that the WM approach gives
a significantly higher error rate, between 14% and 56%, than the FE approach.

The same CV procedure as in the previous section was performed on the PBM data
sets to compare the empirical predictive error rates of the two approaches, with n+

varying between 20 and 100 (Table 4). There is a clear decreasing trend in error rate
for both approaches with the increase of the training sample size n+, although for
some data sets the difference between the CV error rate for n+ = 100 and the asymp-
totic rate is still quite obvious. Such discrepancy is probably due to the following two
reasons. First, the parameters (β̃, β̃0) used for the calculation of asymptotic rates were
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Table 4

Predictive error rates (in the unit of 10−3) for PBM data

Protein n+ 20 50 100 ∞

FE 3.57 2.62 2.43 1.63
Hoxa11 WM 3.51 3.22 3.05 2.10

(WM-FE)/FE (%) −1.7 22.9 25.5 28.8

FE 5.91 4.71 4.54 3.26
Irx3 WM 5.06 4.85 4.79 3.71

(WM-FE)/FE (%) −14.4 3.0 5.5 13.8

FE 7.51 4.64 4.20 3.18
Lhx3 WM 6.90 6.54 6.47 4.97

(WM-FE)/FE (%) −8.1 40.9 54.0 56.3

FE 3.73 2.31 2.12 1.80
Nkx2.5 WM 3.64 3.29 3.16 2.36

(WM-FE)/FE (%) −2.4 42.4 49.1 31.1

FE 6.25 4.91 4.56 3.31
Pou2f2 WM 5.79 5.57 5.49 4.02

(WM-FE)/FE (%) −7.3 13.4 20.4 21.5

estimated from data sets which only contain 100 to 200 binding sites. This resulted in
a high variance in the estimated parameters: The median ratio of the standard error
over the absolute value of an estimated coefficient was between 10% and 30% for the
five data sets. Second, the training sample size, n+ = 100, is still too small to achieve
a comparable error rate as n+ → ∞. However, we have already seen substantially in-
creased error rates of the WM-based predictions compared to the FE-based predictions
for n+ = 100, which is very consistent with the theoretical results. This comparison
confirms that unless the training sample size is really small, using the WM approach
may degrade predictive performance dramatically if the data generation mechanism is
close to the FEM.

7. Discussion. Combining results on the ChIP-seq data and the PBM data, this
study provides some general guidance for practical applications of the WM and the
FE approaches, irrespective of underlying data generation. When the training sample
size is small, the WM procedure seems to produce fewer errors than the FE procedure.
But when we have observed enough binding sites, the advantage of the FE procedure
is clearly seen. On one hand, it gives a comparable or slightly better prediction than
the WM approach even if the WMM is more likely for the data (Table 3, n+ ≥ 100).
On the other hand, when the data are generated in a way that matches the biophysical
process of protein-DNA binding such as the PBM data, the reduction in error rate
of the FE approach can be substantial compared to the WM approach (Table 4,
n+ ≥ 50). The relative performance between the two approaches reflects a typical
variance-bias tradeoff. Estimation under the WMM is simple and more robust, which
typically has a smaller variance than the FEM. For a small sample size, predictive
errors are mostly caused by variance in estimation and thus, WM-based predictions
may outperform FE-based predictions. When the sample size increases, estimation
variance decreases for both approaches and the potential bias in the WM approach
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becomes the main factor for predictive errors. Given that its primary principle comes
from the biophysics of protein-DNA interactions, the FEM has become more attractive,
based on which many computational methods have been developed for predicting TF-
DNA binding. In these methods a weight matrix is sometimes used as a first order
approximation for computing free energy-based binding affinity. This work suggests
that this approximation must be applied with caution. The results on the PBM data
have demonstrated that the WM procedure may give a prediction with 50% or more
errors compared to the FE-based decision for a reasonably large sample size (Table 4).

In recent years, a substantial amount of large-scale TF-DNA binding data have been
generated for many important biological processes. As demonstrated by the applica-
tions to ChIP-seq data and PBM data, large-sample theory is able to provide valuable
insights on statistical estimation and prediction for such large-scale data. The results
in this article can be regarded as a first step towards a theoretical development on
computational approaches for gene regulation analysis. Incorporation of within-motif
dependence in the WMM and interaction effects in the FEM is a direct next step
of this work, for which the model selection component needs to be considered in a
theoretical analysis. Although desired, further generalizations to methods for de novo
motif discovery, identification of cis-regulatory modules and predictive modeling of
gene regulation will be more challenging future directions.

Appendices.

Appendix A: Proof of Proposition 3.

Proof. Let θk(−j) = 1− θkj for k = 0, i. The second order partial derivative of the
marginal log-likelihood l(Θ |X) = log{q0θ0(X) + q1Θ(X)} w.r.t. θij is

∂2l(Θ |X)

∂θ2ij
= −

q21{Θ[−i](X[−i])}2
{q0θ0(X) + q1Θ(X)}2 ,

where Θ(X) = Θ[−i](X[−i]) · θiXi
for Xi = j, (−j) and similarly for θ0(X). Thus, the

Fisher information on θij given X is

I(θij |X) = −E

{

∂2l(Θ |X)

∂θ2ij

}

=
∑

x

q21{Θ[−i](x[−i])}2
q0θ0(x) + q1Θ(x)

= q1
∑

x

q1Θ(x)

q0θ0(x) + q1Θ(x)
· 1

θixi

·Θ[−i](x[−i])

= q1
∑

x∈{j,(−j)}

1

θix
· EΘ[−i]

{

(

q0θ0xθ0(X[−i])

q1θixΘ[−i](X[−i])
+ 1

)−1
}

.

Because EΘ[−i]

{

θ0(X[−i])/Θ[−i](X[−i])
}

= 1, Jensen’s inequality implies that

I(θij |X) ≥
∑

x∈{j,(−j)}

q21
q0θ0x + q1θix

=
q21

θ̄ij(1− θ̄ij)
.
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The lower bound B(q1, θij , θ0j) is obtained by dividing the R.H.S. of this inequality
by the Fisher information on θij given X and Y jointly,

I(θij |X, Y ) = −E

{

∂2l(Θ |X, Y )

∂θ2ij

}

=
q1

θij(1− θij)
,

where l(Θ |X, Y ) = logP (X, Y | Θ) is the joint log-likelihood.

Appendix B: Derivation of E[∆Rf
1 (β̂

m)] (35). Given the estimated weight matrix
Θ̂m based on observed binding sitesD+

n , the constructed decision function of the WM
approach

ĥm1 (x) = log(q1/q0) +
w
∑

i=1

[log θ̂mixi
− logψ0(xi−1, xi)]

P→ β̃0 +

w
∑

i=1

{

log
θfixi

θfisi

− log
ψ0(xi−1, xi)

ψ0(si−1, si)

}

, as n→ ∞, (37)

where θfij = P (Xi = j | Y = 1) under the FEM with Markov background, (s1, · · · , sw)
is the reference sequence, and

β̃0 = log(q1/q0) +
w
∑

i=1

log{θfisi/ψ0(si−1, si)}.

Let x[−i](s) = (x1, · · · , xi−1, s, xi+1, · · · , xw). Following a similar derivation in Sec-

tion 3.3, we have θfij ∝ exp(β̃ij + ηij), where

ηij = log







∑

x[−i]

eui

1 + eβ̃ijeui

ψ0(x[−i](j))







− log







∑

x[−i]

eui

1 + eui
ψ0(x[−i](si))







with ui = β̃0 + x[−i]β̃[−i]. Since β̃isi = ηisi = 0, log(θfij/θ
f
isi
) = β̃ij + ηij for all i and j.

Thus, equation (37) becomes

ĥm1 (x)
P→ β̃0 +

w
∑

i=1

{

β̃ixi
+ ηixi

− log
ψ0(xi−1, xi)

ψ0(si−1, si)

}

= h(x) + δ(x),

where δ(x) =
∑w

i=1 ηixi
− log{ψ0(xi−1, xi)/ψ0(si−1, si)}. Let ∆ĥm1 (x) = ĥm1 (x)−h(x).

The asymptotic normality of
√
ndΘ̂m implies that

√
n{∆ĥm1 (x) − δ(x)} follows a

limiting normal distribution with mean 0 and a finite (possibly zero) variance for
every x. Equation (35) then follows from Theorem 2.
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