Lawrence Berkeley National Laboratory
 LBL Publications

Title
ELECTRON-TRANSFER REACTIONS OF DIVALENT YTTERBIUM METALLOCENES: SYNTHESIS OF THE SERIES [(Me5C5) 2Yb]2[E] WHERE E IS O, S, Se, OR Te AND THE CRYSTAL STRUCTURE OF [(Me5C5)2Yb]2 [Se.]

Permalink

https://escholarship.org/uc/item/39r5f5bw
Author
Berg, D.J.
Publication Date
1987-02-01

Lawrence Berkeley Laboratory
 UNIVERSITY OF CALIFORNIA

Materials \& Chemical Sciences Division

Ark 221987

DeCL... _UTS UーCI:CM
Submitted to Inorganic Chemistry
ELECTRON-TRANSFER REACTIONS OF DIVALENT
YTTERBIUM METALLOCENES: SYNTHESIS OF THE SERIES
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu$-E] WHERE E IS O, S, Se, OR Te AND
THE CRYSTAL STRUCTURE OF $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-\mathrm{Se}]$
D.J. Berg, C.J. Burns, R.A. Andersen, and
A. Zalkin

February 1987

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

```
Electron-Transfer Reactions of Divalent Ytterbium Metallocenes;
Synthesis of the Series [(Me ( C C % )
```


David J. Berg, Carol J. Burns, Richard A. Andersen, ${ }^{*}$ and Allan Zalkin

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

```
*Address all correspondence to this author at Chemistry Department,
University of California, Berkeley, California 94720.
```


Abstract

The preparation of the divalent, base-free compounds, $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{M}$ where $M=E u$ or $S m$, from their respective diethyl ether complexes is described. Reaction of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} M$, where $M=Y b$ or Sm with $N_{2} O$ gives $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{M}_{2}[\mu-0]\right.$ in high yield. Additionally, $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} Y \mathrm{~B}$ reacts with $\mathrm{Ph}_{3} \mathrm{PS}$ or $\mathrm{As}_{2} \mathrm{~S}_{3}$ or $\mathrm{COS}, \mathrm{Ph}_{3} \mathrm{PSe}$ or elemental $\mathrm{Se}, \mathrm{n}-\mathrm{Bu} \mathrm{H}_{3} \mathrm{PT}$ Te or elemental Te , to give the bridging chalcogenides $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-E]$ where E is S, Se, or Te, respectively. Magnetic susceptibility studies show that there is no magnetic exchange between the paramagnetic f-metals across the bridging group 16 dianions. The variable temperature magnetic studies also show that $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}$ and $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0]$ display temperature independent paramagnetism as predicted by Van Vleck. The orystal structure of $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-\mathrm{Se}]$ is tetragonal, $\mathrm{P} \overline{4} 2, c$, with $a=$ 14.984(5) A and $c=19.165(9)$ A. For $Z=4$ the calculated density is $1.491 \mathrm{~g} / \mathrm{cm}^{3}$. The structure was refined by full-matrix least-squares to a conventional R factor of 0.031 , [3797 data, $\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$. The selenium atom is on a two-fold axis and bonds to two $Y b$ atoms in a nearly linear structure (Yb-Se-Yb angle, 171.09(6) $)$. The Yb atom is η^{5}-bonded to two cyclopentadienyl rings and is on a plane defined by the centers of the two rings and the selenium atom. Distances are: Yb-Se, 2.621(1) A; Yb-C (ave), 2.609(7) A; 〈Yb-Cp(ring)> 2.319(2) A, and Yb-Se-Ybis 171.09(6)。.

The divalent lanthanide metallocene, $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}(\mathrm{OEt} 2)$, has been shown to be an electron-transfer reagent towards a variety of organic and organo-transition metal compounds. 1 In these reactions $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ acts as a soluble source of an electron (the reduction potential of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ in acetonitrile is $-1.35 \mathrm{v}(\mathrm{SCE})^{1 \mathrm{~d}}$) and the tight ion-pair complexes that result are often readily soluble in and crystallize from hydrocarbon solvents. The tight ion-pairs are of considerable interest since deductions about the electronic structure of the anionic fragments can be made from the solid state structure. In this way insight into the bonding in negative ions, radical anions, and dianions have been obtained. The electron-transfer chemistry of the trivalent uranium metallocene, $\left(\mathrm{RC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$, has been explored pair-wise with $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}$ and the results have been used in a similar way. ${ }^{2}$ One of the most interesting structural features in the uranium studies is the reaction product of $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}(\mathrm{thf})$ and $\mathrm{Ph}_{3} \mathrm{PS},\left[\left(\mathrm{Me}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\right][\mu-\mathrm{S}]$, in which the U-S-U angle is $164.9(5)^{\circ}$ and the $U-S$ distance of $2.60(1) \mathrm{A}$ is the shortest $U-S$ distance so far determined. There is no magnetic interaction in the chalcogenide-bridged complexes, $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\right][\mu-\mathrm{E}]$ where E is S, Se, or $T e$, since the magnetic susceptibility as a function of temperature $(4-300 \mathrm{~K})$ shows that the $5 f^{2}$-ions behave as isolated paramagnets. ${ }^{2 b}$ The related ytterbium(III) complexes, $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-$ E], were of interest to see if the behavior patterns discovered in the 5f-series applied to the $4 f$-series.

In this paper we describe the series $\left[\left(\mathrm{Me}_{5} C_{5}\right)_{2} Y b\right]_{2}[\mu-E]$ where E is $0, S$, Se, or $T e$, and the crystal structure of the selenium compound.

Results and Discussion

The bridging chalcogenides were prepared by reaction of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ and $\mathrm{R}_{3} \mathrm{PE}$, where R is Ph or Bu^{n} and E is S , Se , or Te . The sulfide can be prepared by reaction of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(0 \mathrm{Et}_{2}\right)$ with either COS or $\mathrm{As}_{2} \mathrm{~S}_{3}$, but not from elemental sulfur. The selenium and tellurium complexes can be prepared from the non-metals in their massive state with the metallocene in hydrocarbon solvent. The bridging oxide can be made from $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ and nitrous oxide in hexane, though the yield is low. A better synthetic method is to use base-free $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} Y \mathrm{Yb}$ rather than its diethyl ether complex.

Some physical properties are shown in Table I. The melting points monotonically decrease down the series as does the Yb-E-Yb stretching frequency in the infrared spectrum. The solubility in hydrocarbons is inversely related to the melting point, the oxide being only sparingly soluble whereas the telluride is very soluble in hexane. All the compounds give molecular ions in the mass spectrum and the molecules have substantial thermal stability. The trends in physical properties are similar to those found for the related tetravalent uranium compounds, $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\right]_{2}[\mu-\mathrm{E}] .{ }^{2 c}$ It is interesting to note that chemical shift of the $\mathrm{Me}_{5} \mathrm{C}_{5}$-group in the ${ }^{1} \mathrm{H}$ NMR spectra moves downfield on going from oxygen to selenium then moves upfield on going to tellurium, and the width at half-height decreases substantially from oxygen to tellurium.

Magnetic susceptibility data for all of ytterbium compounds were measured as a function of temperature ($4-280 \mathrm{~K}$) and these data are tabulated in Table II. A plot of the X_{M}^{-1} vs. $T(K)$ for the bridging
sulfide is shown in Figure I. All of the compounds prepared in this study give similar plots. The plots of X_{M}^{-1} are similar in shape and the value of the effective magnetic moment are similar to other mononuclear compounds of the type $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}(\mathrm{X})(\mathrm{L})$ whre X is an anionicligand and L is a neutral ligand ${ }^{1,3}$ and to the free-ion and its coordination compounds. ${ }^{4}$ This suggests that the extent of magnetic exchange between the $4 f^{13}$ ions across the bridging ligand is very small or non-existent and the $\mathrm{Yb}($ III) centers behave as independent paramagnets. A similar conclusion was reached about the U(IV) centers in $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\right]_{2}[\mu-E] .{ }^{2 c}$ The plot of X_{M}^{-1} vs. T from $5-35 \mathrm{~K}$ follows the Curie-Weiss law with a small θ and μ is slightly lower than that found from $100-280 \mathrm{~K}$. The behavior in the high temperature regime also follows Curie-Weiss behavior with θ slightly larger than that found at lower temperature and the magnetic moment is ca. 4.4 B.M. for all of the complexes. For the free-ion the term symbol is ${ }^{2} F_{7 / 2}$ and the magnetic moment is predicted to be 4.50 B.M. at 300 K . 4 The crystal field splitting, the values of which are on the order of $k T \quad\left(k T=208 \mathrm{~cm}^{-1}\right.$ at 300 K), will remove the degeneracy of the ${ }^{2} \mathrm{~F}_{7 / 2}$ state and as a consequence at temperatures less than 100 K the slope of X_{M}^{-1} vs. T changes as the population of the crystal field levels changes. The crystal field splittings cannot be specified more precisely due to the low symmetry of the complexes, but a rigorous analysis has been done for a $Y b(I I I)$ complex in $D_{3 h}$ symmetry. $5 a$

With regards to magnetism studies of lanthanide ions with pentamethylcyclopentadienyl ligands, it was of interest to examine the behavior of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}^{6 \mathrm{a}}$ and $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0]^{6 \mathrm{~b}}$ as a function of
temperature since $\operatorname{Sm}(I I)$ and $\operatorname{Sm}(I I I), f^{6}$ and f^{5} ions, respectively, have interesting magnetic properties as a function of temperature because the splitting of the free-ion energy levels is small relative to kT . This behavior has been termed anomalous by Van vleck. ${ }^{4 a}$ Trivalent europium compounds are the molecules usually studied as representative f^{6} ions, though a trivalent, pentamethylcyclopentadienyl compound cannot be prepared since the $\mathrm{Me}_{5} \mathrm{C}_{5}{ }^{-}$is too strongly reducing and the divalent complexes, $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) 2_{2} \mathrm{Eu}(\mathrm{L})$, are isolated from $\mathrm{EuCl}_{3}{ }^{\circ}$. The $\mathrm{Eu}(\mathrm{II})$ ion is a f^{7} ion with term symbol ${ }^{8}$. The plot of X_{M}^{-1} vs. T for the base-free $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) \dot{2}^{\mathrm{Eu}}{ }^{\mathrm{Tb}}$ follows essentially Curie behavior from 5 to 280 K since θ is near 0 K at 5 and 40 kGauss with $\mu=7.70$ and 7.84 B.M., respectively, close to the spin-only value of 7.94 B.M.

The anomalous magnetic behavior of $\mathrm{Eu}($ III) and Sm(III) has been treated by Van Vleck for free-ions and applied to simple salts. ${ }^{4 a}$ The anomaly is due to the fact that for the $E u(I I I)$ and $\operatorname{Sm}(I I)$ free-ions of $f^{6 \cdot}$ electron configuration with term symbol ${ }^{7} \dot{F}_{0}$, the separation of the J $=0$ and $J=1$ states is ca. $300 \mathrm{~cm}^{-1}$ and the separation of the $J=1$ and $J=2$ states is ca. $200 \mathrm{~cm}^{-1}$, both of which are on the order of kT . Similarly for Sm(III), the free-ion ground state term symbol is ${ }^{6} \mathrm{H}_{5 / 2}$ and the $J=5 / 2$ to $J=7 / 2$ transition energy is ca. $900 \mathrm{~cm}^{-1}$, again on the order of 3 kT . In contrast, in the free-ion $\mathrm{Yb}(\mathrm{III})$ the $\mathrm{J}=7 / 2$ to J $=5 / 2$ transition energy is ca. $10,000 \mathrm{~cm}^{-1}$, much larger than $k T$. When the separation of the ground state from the excited state or states is on the order of $k T$, complex behavior results. Plots of X_{M}^{-1} vs. T for simple salts show that f^{5} and f^{6} ions show temperature independent paramagnetism (T.I.P.)..4 The plot of X_{M}^{-1} vs. T for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)$ S Sm shown in

Figure IIa is similar to that found for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) \mathrm{Sm}(\mathrm{thf})\left(0 E t_{2}\right)$ and these are very similar to those found in simple europium(III) salts. ${ }^{4}$ The slope of X_{M}^{-1} vs. T, when most of the electrons are in the ground state at low T, shows that X_{M} is independent of temperature and as T increases the $J=1$ and $J=2$ states become populated so that at $300 \mathrm{~K}, \mu=3.4$ to 3.5 B.M. according to Van Vleck. For $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) 2_{2} \mathrm{Sm}(\mathrm{thf})\left(\mathrm{OEt}_{2}\right)$ at 40 kGauss the value of x_{M} (Corr) at 280.0 K is 4.74×10^{-3} emu mol ${ }^{-1}$ which gives $\mu(280.0 \mathrm{~K})$ of 3.26 B.M. since $\mu=2.828\left(X_{M} T^{1 / 2} .8\right.$ For $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Sm}$ at 5 kGauss the value of X_{M} (corr) at 281.7 K is $5.016 \times 10^{-3} \mathrm{emu} \mathrm{mol}^{-1}$ and $\mu(281.7 \mathrm{~K})$ is 3.36 B.M. At $40 \mathrm{kGauss} \mathrm{X}_{\mathrm{M}}$ (corr) is $5.032 \times 10^{-3} \mathrm{emu} \mathrm{mol}^{-1}$ and $\mu(282.7 \mathrm{~K})$ is 3.37 B.M. These solid state values are in good agreement with the literature values for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \operatorname{Sm}(\text { thf })_{2}$ of $X_{M}(296 \mathrm{~K})=$ $5.490 \times 10^{-3} \mathrm{emu} \mathrm{mol}^{-1}$ and $\mu(296 \mathrm{~K})=3.6 \mathrm{B.M} .{ }^{6 \mathrm{C}}$ and for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Sm}$ of X_{M} $(297 \mathrm{~K})=5.70 \times 10^{-3} \mathrm{emu} \mathrm{mol}^{-1}$ and $\mu(297 \mathrm{~K})=3.7 \mathrm{~B} . \mathrm{M} .{ }^{6 \mathrm{a}}$ as reported by Evans using the Evans' NMR method.

As stated above, Sm (III) shows temperature independent paramagnetism (T.I.P.) and $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0]$ illustrates this very well. The plot of X_{M}^{-1} vs. T is shown in Figure IIb and it is similar to that observed for simple $\operatorname{Sm}\left(\right.$ III), salts and explained by Van Vleck. ${ }^{4}$ The magnetic moment, evaluated at 300 K is 1.53 B.M. per Sm (III) is close to that predicted by Van Vleck of 1.55 to 1.65 B.M. and found in solution by Evans of 1.8 B.M. at 298 K . ${ }^{6 \mathrm{~b}}$

The detailed magnetic susceptibility studies of the pentamethylcyclopentadienyl complexes of the lanthanides reported here and elsewhere ${ }^{1}$ are revealing relative to the nature of the metal-ring bonding. In the mononuclear compounds the observed shape of the $X_{M}{ }^{-1}$
vs. T plots and the value of μ shows that the crystal field splitting caused by the pentamethylcyclopentadienyl ligand is not very different from that caused by negatively charged ligands in simple salts or that of the free-ion. The small crystal field splitting due to the $\mathrm{Me}_{5} \mathrm{C}_{5}$ ligand in the lanthanide complexes is in contrast to the high crystal field splitting caused by this ligand in d-transition metal chemistry. 10 It is particularly noteworthy that $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Mn}$ is a low spin complex in solid state and in gas phase, $11 \mathrm{a-c}$ whereas the $\left(\mathrm{RC}_{5} \mathrm{C}_{4}\right){ }_{2} \mathrm{Mn}$ compounds are either high spin or spin equilibrium molecules. ${ }^{11 d}$ The $\mathrm{Me}_{5} \mathrm{C}_{5}{ }^{-}$ligand molecular orbitals do not interact (mix) with the lanthanide metal atomic orbitals as much as they do with the d-transition metal atomic orbitals and the crystal field splitting in the lanthanide metallocenes is small relative to that found in d-transition metallocenes. The small crystal field splitting is consistent with the widely held view that the $4 f$-transition metal to ligand bonds are rather more ionic than equivalent bonds in the d-transition metal series. ${ }^{12,7 b}$ The orbital energy mismatch also rationalizes why the bridging complexes, $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{M}\right]_{2}[\mu-\mathrm{E}]$, do not show magnetic exchange coupling.

The principal structural features of interest in the bridging chalcogenide molecules were the angle at the chalcogenide atom and the metal-chalcogenide distance. The only complex that we have been able to get as X-ray quality crystals to date is the bridging selenide complex. An ORTEP diagram is shown in Figure III, positional parameters are in Table III, some bond lengths and angles are in Table IV, and crystal data are in Table V. The molecule lies on a crystallographic two-fold axis with a Yb-Se-Yb angle of $171.09(6)^{\circ}$. If the Yb-Se-Yb angle were
linear, then the molecule would have idealized S_{4}-symmetry like the samarium complex $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0] .6 \mathrm{~b}$ The averaged $\mathrm{Yb}-\mathrm{C}$ distance is $2.609 \pm 0.007 \mathrm{~A}$ and the $\mathrm{yb}-\mathrm{ring}$ centroid distance is 2.32 A , consistent with Yb (III) in seven coordination. ${ }^{1,11}$

The Yb-Se distance is 2.621(1) A. The only other ytterbiumselenium distances are $2.89 \AA$ in $\mathrm{CdYb}_{2} \mathrm{Se}_{4}^{12 \mathrm{a}}$ and $2.83 \AA$ in $\mathrm{Yb}_{2} \mathrm{Se}_{3}^{12 \mathrm{~b}}$ in which each trivalent ytterbium is six coordinate. The Yb-Se distance in $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-\mathrm{Se}]$ is short by this comparison. Using $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0]$ as a reference and correcting the bond length for the change in bridging ligand ${ }^{13}$ and for the change in the identity of the metal atoms from $S m$ to $Y b$ in seven coordinations ${ }^{14}$ predicts that the YbSe distance should be ca. 0.40 A longer than the $\mathrm{Sm}-\mathrm{O}$ disance. In fact the Yb -Se distance is 0.63 A longer. Using the $\mathrm{U}-\mathrm{S}$ distance in $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\right]_{2}[\mu-\mathrm{S}]^{2 \mathrm{C}}$ as a reference and correcting the radius of tetravalent uranium in ten coordination for trivalent ytterbium in seven coordination ${ }^{14}$ and the radius of sulfur for selenium predicts that the Yb-Se distance should be 0.26 A longer than the U-S distance whereas it is only 0.02 A longer. Clearly the standard for shortness determines our operational definition of shortness or longness. As pointed out previously, ${ }^{2 c}$ the near linear $Y b-S e-Y b$ bond angle and the short $Y b-S e$ bond length, as determined by comparison with $\mathrm{Yb}_{2} \mathrm{Se}_{3}$ or $\mathrm{Cd}_{2} \mathrm{Yb}_{2} \mathrm{~S}_{4}$, could imply Yb -Se π-bonding though the lack of magnetic interaction argues against appreciable covalent mixing. On the other hand the near linear Yb-Se-Yb geometry could be as bent as it can be; the intramolecular $\mathrm{Me}_{5} \mathrm{C}_{5}$ non-bonded repulsions preventing further bending and therefore hindering the development of the lone-pairs on the bridging selenide.

On the basis of the structural information that is currently available to us it is impossible to choose between these two extreme explanations. More structural information is desireable; we are trying to grow single crystals of the other chalcogenide molecules reported here.

Experimental Section

All reactions were done under nitrogen. Analyses were done by the microanalytical laboratory of this department. Infrared spectra were recorded as Nujol mulls with the use of a Nicolet 5DX-FTIR instrument. Proton NMR spectra were measured on a JEOL FX-90Q instrument operating at 89.56 MHz on solutions in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{7} \mathrm{D}_{8}$. Chemical shifts are expressed in δ-values with positive values to high frequency of tetramethylsilane. Magnetic susceptibility studies were done similar to those previously described. ${ }^{17}$ The mass spectra were recorded on a AEI-MS-9 instrument using electron impact ionization and are expressed as M^{+} (observed intensity, calculated intensity).
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \underline{Y b}\right]_{2}[\mu-0]$. Base-free $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}^{7 \mathrm{~b} .18}(0.41 \mathrm{~g}, 0.92 \mathrm{mmol})$ in pentane (40 mL) was treated with nitrous oxide (3 atm) in a heavy-walled pressure bottle for 4 h . The pressure was released and the orange solution and precipitate was transferred to a Schlenk tube. The volume of the solution was reduced to ca. 5 mL and the solution was cooled to $-25^{\circ} \mathrm{C}$ to effect complete precipitation. The solid was collected and then crystallized from a minimum amount of not toluene as orange crystals in 55% (0.23 g) yield. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{OYb}_{2}: \mathrm{C}, 53.2$; H , 6.70. Found: C. 52.7 ; H, 6.78. IR: $2728 \mathrm{w}, 1650 \mathrm{w}, 1497 \mathrm{~m}, 1302 \mathrm{w}, 1168 \mathrm{sh}$,

1154w, 1133sh, $1024 \mathrm{~m}, ~ 957 \mathrm{w}, ~ 895 \mathrm{sh}, 863 \mathrm{w}, 756 \mathrm{w}, 735 \mathrm{sh}, 724 \mathrm{w}, 695 \mathrm{~m}, 673 \mathrm{~s}$, $641 \mathrm{w}, 625 \mathrm{~m}, 593 \mathrm{w}, 566 \mathrm{w}, 478 \mathrm{w}, 432 \mathrm{sh}, 384 \mathrm{mbr}, 309 \mathrm{sh}, 301 \mathrm{vs} \mathrm{br}, 283 \mathrm{sh} \mathrm{cm}^{-1}$. MS: $\mathrm{M}^{+}, 897(11.9,3.82) ; 898(20.2,15.1) ; 899$ (44.0, 34.6); 900 (45.2, 58.3); 901 ($61.3,85.5$); $902(100,100) ; 903(78.6,90.9) ; 904(87.5$, 92.4); $905(46.4,49.5) ; 906(25.0,45.3) ; 907(19.0,16.5) ; 908(11.3$, 9.70). Reaction of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ with $\mathrm{N}_{2} \mathrm{O}$ in hydrocarbon solution gives a low yield (18\%) of the bridging oxide.
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \underline{\mathrm{Yb}}\right]_{2}^{[\mu-\mathrm{S}]}$. An intimate mixture of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)(0.81 \mathrm{~g}, 1.6$ mmol) and $\mathrm{Ph}_{3} \mathrm{PS}(0.238,0.78 \mathrm{mmol}$) was dissolved in toluene (60 mL) and the red solution was refluxed for 5 h . After cooling to room temperature the red solution was concentrated to ca. 20 mL and cooled to $-20^{\circ} \mathrm{C}$. The sulfide was isolated as deep red needles by filtration in 49\% yield (0.35 g). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{SYb}_{2}: \mathrm{C}, 52.3 ; \mathrm{H}, 6.58$; S, 3.49. Found: C, 53.6; H, 6.71; S. 3.44. IR: 2725m, 1492m, 1256m, 1212 m , 1152w, 1092m, 1064w, 1022m, 800w, 728s, 694w, 666m, 638w, 588w, 517w, 482w, 462w, 379vs $310 \mathrm{vs} \mathrm{cm}^{-1}$. MS: $\mathrm{M}^{+}, 914(9.0,15.0)$; $915(36,34)$; $916(61,57) ; 917(91,85) ; 918(100,100) ; 919(97,92) ; 920(96,94)$; $921(55,52) ; 922(50,48) ; 923(20,18)$. The bridging sulfide can also be prepared from $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ and $\mathrm{As}_{2} \mathrm{~S}_{3}$ in hexane in 51% yield or with carbonylsulfide in diethyl ether in 17% yield. In each case the isolated material was identified by mp and IR.
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \underline{\mathrm{Yb}}\right]_{2}[\mu-\mathrm{Se}]$. An intimate mixture of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)(0.67 \mathrm{~g}$, 1.3 mmol) and $\mathrm{Ph}_{3} \mathrm{PSe}^{19}(0.22 \mathrm{~g}, 0.65 \mathrm{mmol})$ was stirred in hexane (70 mL) for 1 hr . The purple solution was filtered and the filtrate was
concentrated to ca. 15 mL . Cooling the filtrate to $-25^{\circ} \mathrm{C}$ for 2 days afforded purple crystals which were collected and dried under reduced pressure in 64% (0.40 g) yield. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{SeYb}_{2}: \mathrm{C}, 49.7$; H , 6.26. Found: C, 49.9; H, 6.49. The infrared spectrum is essentially superimposable on that of the bridging sulfide spectrum with exception of the bands at 379 and $247 \mathrm{~cm}^{-1}$. MS: $\mathrm{M}^{+} ; 959(9,7) ; 960(16,15) ; 961$ $(33,27) ; 962(50,44) ; 963(76,64) ; 964(84,82) ; 965(100,93) ; 966$ $(92,100) ; 967(70,82) ; 968(56,80) ; 969(31,45) ; 970(15,40) ; 971$ $(8,16)$. The bridging selenide can also be prepared by stirring $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ with selenium metal in hexane for 12 h in 66% isolated yield.
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{-2} \underline{\mathrm{Yb}}_{2}[\underline{[\mu-\mathrm{Te}}]^{[}\right.$. Tri-n-butylphosphinetelluride ${ }^{20}$ (0.37g, 1.1 mmol) in hexane (45 mL) at $-30^{\circ} \mathrm{C}$ was added to $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)(1.2 \mathrm{~g}, 2.2$ mmol) in hexane (80 mL) at room temperature and the blue-green solution was stirred for 1 h . The solution was filtered, the filtrate was concentrated to ca. 20 mL and cooled $\left(-20^{\circ} \mathrm{C}\right)$ for several days to give black-green crystals, 0.47 g (41% yield), which were collected and dried under reduced pressure. Anal: Caled for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{TeYb}_{2}: \mathrm{C}, 47.4 ; \mathrm{H}, 5.96$. Found: C, 48.4; H, 6.37. The infrared spectrum was essentially identical to that of the bridging sulfide except for the absorption at $379 \mathrm{~cm}^{-1}$. in the latter compound. MS: $\mathrm{M}^{+}, 1008(14,11) ; 1009(22,21)$; $1010(33,36) ; 1011(54,53) ; 1012(76,71) ; 1013(85,87) ; 1014(92$, 100); $1015(100,96) ; 1016(97,99) ; 1017(67,68) ; 1018(63,65) ; 1019$ (32, 31): 1020 (19, 25). The bridging telluride may be prepared by
stirring $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\left(\mathrm{OEt}_{2}\right)$ and an excess of tellurium metal in hexane for 3 days in 54% isolated yield.
$\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{-2} \mathrm{Sm}\left(\mathrm{OEt}_{2}\right)$ (thf). A solution of $\mathrm{NaC}_{5} \mathrm{Me}_{5}(1.73 \mathrm{~g}, 10.9 \mathrm{mmol})$ in tetrahydrofuran (50 mL) was added to $\mathrm{SmI}_{2}(\mathrm{thf})_{2}^{21}(3.00 \mathrm{~g}, 5.47 \mathrm{mmol})$ in tetrahydrof uran (80 mL) and the brown-red suspension was stirred for 1 h . The solution was filtered and the filtrate was evaporated to dryness. The residue was extracted with diethyl ether (50 mL) and the brown solution again was evaporated to dryness. The brown residue was redissolved in diethyl ether (25 mL) and the solution was concentrated to incipient crystallization, then cooled to $-25^{\circ} \mathrm{C}$. The brown prisms were collected and dried under reduced pressure. The mother liquor gave a second crop of crystals in a combined yield of 78% (2.1 g), mp 134$137^{\circ} \mathrm{C}$. A sample of the complex was dissolved in benzene- d_{6} and then hydrolyzed with water. The ${ }^{1} H$ NMR spectrum of the benzene solution contained equal amounts of diethyl ether and tetrahydrofuran. ${ }^{1}$ H NMR $\left(C_{7} D_{8}, 32^{\circ} \mathrm{C}\right): \delta 16.03,4 \mathrm{H}\left(v_{1 / 2}=16 \mathrm{~Hz}\right) ; 10.99, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}$; 2.98, $30 \mathrm{H}\left(\nu_{1 / 2}=2 \mathrm{~Hz}\right) ; 2.52,4 \mathrm{H}\left(\nu_{1 / 2}=11 \mathrm{~Hz}\right) ;-0.59, q, \mathrm{~J}=6.6 \mathrm{~Hz}$, 4H. IR: 2720m, 1148m, 1120w, 1080s, 1061m, 1035s, 1009w, 949w, 932w, $897 \mathrm{vs} .838 \mathrm{w}, 797 \mathrm{w}, 725 \mathrm{w}, 258 \mathrm{vs} \mathrm{cm}^{-1}$.
$\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)-2 \mathrm{Sm}(\mathrm{thf})$. The mixed diethyl ether, tetrahydrof ur an complex prepared above ($0.30 \mathrm{~g}, 0.53 \mathrm{mmol}$) was dissolved in toluene (30 mL) and stirred for 1 h , then the brown solution was warmed to $45^{\circ} \mathrm{C}$ and the toluene was removed under reduced pressure to yield a green residue. The residue was dissolved in hexane and the now brown-red solution was
filtered and the filtrate was concentrated to ca. 10 mL and cooled $\left(-25^{\circ} \mathrm{C}\right)$. The large green-brown needles ($0.25 \mathrm{~g}, 96 \%$ yield) were collected and dried under reduced pressure, mp $155-157^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{OSm}$; C, 58.5; H, 7.77. Found: C, 58.1; H, 7.75. A sample of the compound was dissolved in benzene $-d_{6}$ and then hydrolyzed with water. The ${ }^{1} H$ NMR spectrum of the benzene phase showed resonances due to tetrahydrofuran and no resonances due to diethyl ether. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{7} \mathrm{D}_{8}$, $\left.32^{\circ} \mathrm{C}\right): \delta 11.94,4 \mathrm{H}\left(\nu_{1 / 2}=29 \mathrm{~Hz}\right) ; 3.73,30 \mathrm{H}\left(\nu_{1 / 2}=2 \mathrm{~Hz}\right) ;-0.11,4 \mathrm{~Hz}\left(\nu_{1 / 2}\right.$ $=12 \mathrm{~Hz}$). IR: $2720 \mathrm{~m}, 1307 \mathrm{w}, 1255 \mathrm{~m}, 1208 \mathrm{w}, 1150 \mathrm{~m}, 1084 \mathrm{~s}, 1031 \mathrm{w}, 977 \mathrm{w}$, $945 \mathrm{~m}, 890 \mathrm{sbr}, 800 \mathrm{~s}, 726 \mathrm{vs} 61 \mathrm{w}, 576 \mathrm{w}, 350 \mathrm{mbr}, 280 \mathrm{vs} \mathrm{cm}^{-1}$.
$\left(\mathrm{Me}_{5} \mathrm{C}_{5}-_{2}\right.$ Sm(OEt $_{2}$). Samarium diiodide bis(tetrahydrofuran) was ground into a fine powder and heated under reduced pressure at $160^{\circ} \mathrm{C}$ for 16 h : During this time the color changed from blue-grey to deep green. The green material was shown to be essentially free of tetrahydrof uran by a very thick Nujol mull infrared spectrum. The base-free $\operatorname{SmI}_{2}(4.34 \mathrm{~g}$, $10.7 \mathrm{mmol})$ and $\mathrm{NaC}_{5} \mathrm{Me}_{5}(3.17 \mathrm{~g}, 20.0 \mathrm{mmol})$ in diethyl ether (250 mL) were stirred for 17 h . The brown-green solution was filtered and the volume of the filtrate was reduced to ca. 125 mL . Cooling ($-15^{\circ} \mathrm{C}$) yielded large deep green needles. Two additional crops of crystals were harvested from the mother 1 iquor giving a combined yield of $3.6 \mathrm{~g}(73 \%)$, $\operatorname{mp} 190-192^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{OSm}: \mathrm{C}, 58.2$; $\mathrm{H}, 8.15$. Found: C , 58.0; H, 8.20. A sample of the complex was hydrolyzed in $C_{6} D_{6}$ with $D_{2} 0$. Examination of the $C_{6} D_{6}$ layer by ${ }^{1} H$ NMR spectroscopy showed resonances due to diethyl ether and $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) \mathrm{D}$ in a $1: 1$ ratio. ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{C}_{7} \mathrm{D}_{8}, 31^{\circ} \mathrm{C}\right)$: $\delta 20.73,6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz} ; 2.77,30 \mathrm{H}\left(\nu_{1 / 2}=4 \mathrm{~Hz} ;-4.50,4 \mathrm{H}, q, \mathrm{~J}=\right.$
$6 \mathrm{~Hz} .{ }^{13} \mathrm{C}\left\{1^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{7} \mathrm{D}_{8},-30^{\circ} \mathrm{C}\right): \delta 136\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 102.6\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right), 94.94$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right),-137.9\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$. The methylene carbon resonance of the diethyl ether could not be observed at $30^{\circ} \mathrm{C}$ as it overlapped with the aryl resonances of $\mathrm{C}_{6} \mathrm{D}_{6}$: IR: $2723 \mathrm{~m}, 1468 \mathrm{~m}, 1164 \mathrm{~m}, 1145 \mathrm{~s}, 1080 \mathrm{vs}, 1038 \mathrm{~s}$, $1018 \mathrm{~m}, ~ 929 \mathrm{~m}, ~ 837 \mathrm{~s}, ~ 818 \mathrm{w}, 79 \mathrm{w}, 774 \mathrm{w}, 731 \mathrm{w}, ~ 635 \mathrm{w}, ~ 611 \mathrm{~m}, ~ 589 \mathrm{w}, 443 \mathrm{w}$, $364 \mathrm{mbr}, 307 \mathrm{~m}, 268 \mathrm{sbr} \mathrm{cm}{ }^{-1}$. This complex has been characterized by a single crystal X-ray crystallographic study. ${ }^{22}$
$\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{-2} \mathrm{Sm}$. The diethyl ether complex ($3.9 \mathrm{~g}, 7.8 \mathrm{mmol}$) was dissolved in toluene (200 mL) and the deep green solution was heated to $100^{\circ} \mathrm{C}$ and the solvent was slowly removed (ca. 2h) under reduced pressure. The residue was dissolved in an additional 100 mL of toluene and the "toluene reflux" was repeated. The green residue was dissolved in toluene (200 mL), filtered, and the filtrate was concentrated to ca. 120 mL . Cooling to $-25^{\circ} \mathrm{C}$ gave large brown-green blocks. Two additional crops of crystals were obtained from the mother liquor in a combined yield of 2.7 (80%), mp $214-217^{\circ} \mathrm{C}$. The compound sublimed at $120-130^{\circ} \mathrm{C} / 10^{-3} \mathrm{~mm}$. A sample of the compound was hydrolyzed with water in $C_{6} D_{6}$ and examination of the hydrolysate by ${ }^{1}$ H NMR spectroscopy showed no diethyl ether resonances. The IR and ${ }^{1}$ H NMR spectra were identical to those previously reported, ${ }^{6 \mathrm{a}, \mathrm{d}}$ though the region below $800 \mathrm{~cm}^{-1}$ was not measured. IR: $271 \mathrm{Ww}, 1649 \mathrm{wbr}, 1577 \mathrm{vw}, 1497 \mathrm{w}, 1436 \mathrm{~s}, 1162 \mathrm{w}, 1146 \mathrm{w}$, 1058w, 1018w, 950w, 721w, 656w, 628w, 602w, 557w, 477w, 372sh, 359 m , $299 \mathrm{sh}, 268 \mathrm{~s} \mathrm{~cm}^{-1}$. MS: $\mathrm{M}^{+}, 414(12,12) ; 415(2.5,2.6) ; 417(62,56)$; $418(55,55) ; 419(60,63) ; 420(37,40) ; 421(8.8,7.4) ; 422(100$, 100) ; $423(26,23) ; 424(79,87) ; 425(16,19) ; 426(1.4,2.0)$. Higher
mass peaks due to $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}_{2}$ and $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{3} \mathrm{Sm}_{2}$ ions are observed in variable abundances though always in small to moderate amounts relative to M^{+}.
$\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}_{2} \underline{[\mu-0]}\right.$. Base-free $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}(0.31 \mathrm{~g}, 0.74 \mathrm{mmol})$ was dissolved in toluene (30 mL) and the solution was transferred to a thick-walled pressure bottle and the bottle was pressurized to 3 atm with $\mathrm{N}_{2} \mathrm{O}$. The color of the solution changed from green to yellow and the solution was stirred for 6h. The solution was transferred to a Schlenk flask and the volume of the solution was reduced to ca. 10 mL . Cooling afforded yellow flakes. A second crop of crystals was obtained from the mother liquor in a combined yield of $60 \%(0.19 \mathrm{~g})$. The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that previously reported. ${ }^{6 b}$ The mass spectrum does not show a M^{+}, but a $\mathrm{M}_{-} \mathrm{C}_{5} \mathrm{Me}_{5}{ }^{+}$envelope is observed. The bridging oxide can also be prepared from $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\left(\mathrm{OEt} \mathrm{f}_{2}\right)$ and $\mathrm{N}_{2} \mathrm{O}$ in toluene in 43\% yield.
 or by heating $E I_{2}(t h f)_{2}{ }^{21}$ at $180^{\circ} \mathrm{C}$ for 15 h under reduced pressure, $(2.7 \mathrm{~g}, 6.7 \mathrm{mmol})$ and $\mathrm{NaC}_{5} \mathrm{Me}_{5}(2.0 \mathrm{~g}, 13 \mathrm{mmol})$ were stirred in diethylether (150 mL) for 17 h . The solution was filtered and the volume of the filtrate was reduced to ca. 180 mL ; cooling ($-25^{\circ} \mathrm{C}$) gave dark red crystals which were collected and dried under reduced pressure. A second crop of crystals was obtained from the mother liquor in a combined yield of $2.2 \mathrm{~g}(69 \%)$, mp $192-195^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{40}$ OEu: C, 58.1; H, 8.12. Found: C, 57.9; H, 8.07. IR: 2721w, 1488w, 1284m,

1163w, 1144s, 1079s, 1037s, $1017 \mathrm{~m}, ~ 929 \mathrm{~m}, ~ 838 \mathrm{~s}, 819 \mathrm{w}, 797 \mathrm{~m}, 590 \mathrm{~m}, 551 \mathrm{w}$, $442 \mathrm{w}, 358 \mathrm{~s}, 270 \mathrm{~s} \mathrm{~cm}^{-1}$. A sample of the complex in $\mathrm{C}_{6} \mathrm{D}_{6}$ was hydrolyzed with $D_{2} O$. Examination of the benzene extract by ${ }^{1} H$ NMR spectroscopy showed that diethyl ether and $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{D}$ were present in a $1: 2$ ratio. The single crystal X-ray structure of this complex has been done. ${ }^{22}$
$\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2}$ Eu. The europium diethyl ether complex ($2.2 \mathrm{~g}, 4.4 \mathrm{mmol}$) was dissolved in toluene (200 mL) and the orange-red solution was heated to $100^{\circ} \mathrm{C}$ and the toluene was removed slowly under reduced pressure ($2-3 \mathrm{~h}$) in a grease-less Schlenk flask. The residue was dissolved in toluene (200 mL) and the solvent was removed as before. The orange residue was dissolved in hexane (250 mL), the volume was reduced to ca. 180 mL , cooling to $-25^{\circ} \mathrm{C}$ afforded a total of two additional crops of crystals in a total yield of $1.6 \mathrm{~g}(87 \%)$, mp $219-222^{\circ} \mathrm{C}$. The complex sublimed at $120-$ $130 \% / 10^{-3} \mathrm{~mm}$. Anal: Calcd for $\mathrm{C}_{20} \mathrm{H}_{30^{\mathrm{Eu}}} \mathrm{C}, 56.9$; H, 7.17. Found: C , 55.1; H, 7.18. A sample of the compound in $\mathrm{C}_{6} \mathrm{D}_{6}$ was hydrolyzed with $\mathrm{D}_{2} \mathrm{O}$. Examination of the benzene extract by ${ }^{1} \mathrm{H}$ NMR showed resonances due to $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{D}$ only. IR: $2725 \mathrm{w}, 164 \mathrm{w}, 1494 \mathrm{~m}, 1434 \mathrm{vs}, 1160 \mathrm{w}, 1149 \mathrm{sh}, 1017 \mathrm{~s}$, $948 \mathrm{w}, 720 \mathrm{w}, ~ 628 \mathrm{w}, ~ 602 \mathrm{w}, 584 \mathrm{w}, 569 \mathrm{sh}, 547 \mathrm{w}, 478 \mathrm{wbr}, 398 \mathrm{sh}, 364 \mathrm{sh}, 351 \mathrm{~m}$, $263 \mathrm{vsbr} \mathrm{cm}^{-1}$. MS: $\mathrm{M}^{+}, 421(90.5,89.6) ; 422(10.6,20.0) ; 423$ (100, 100); $424(11.8,22.0)$. This compound has been studied by single crystal X-ray crystallography. ${ }^{6 d}$ In an attempt to get base-free $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) 2^{\mathrm{Eu}}$, the "toluene-reflux" method was applied to $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Eu}(\mathrm{thf})\left(\mathrm{OEt}_{2}\right) .^{7 \mathrm{a}}$ The mono-tetrahydrof uran complex, $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Eu}(\mathrm{thf})^{7 \mathrm{a}}$ was isolated as shown by mp and ir.

X-Ray Crystallography of $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \underline{Y b}_{2} \underline{[\mu-S e]}^{[\mu}\right.$

Purple air-sensitive crysals were sealed inside quartz capillaries in an argon filled drybox. X-ray diffraction intensities ($\theta-2 \theta$ scans) were obtained using a modified Picker FACS-I automatic diffractometer equipped with a Mo X-ray tube and a graphite monochromater. The data were corrected for absorption (analytical method), crystal decay and Lorentz and polarization effects. Experimental details of the data collection are tabulated in Table V. The ytterbium position was deduced from three-dimensional Patterson maps, and subsequent least-squares refinements and electron density maps revealed the rest of the nonhydrogen positions. Positional and anisotropic thermal parameters were refined by full-matrix least-squares; hydrogen atoms were not included. Atomic scattering factors and anomalous dispersion terms were taken from the International Tables for X-ray Crystallography. 24 Statistical results and other details of the least-squares refinements are tabulated in Table V.

Acknowledgement. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF-00098. We thank NSERC (Canada) (D.J.B.) and the Fannie and John Hertz Foundation (C.J.B.) for fellowships.

Supplementary Material Available. Thermal parameters, additional distances and angles, least-squares planes, and structure factor tables (21 pages).

References

(1) (a) Tilley, T.D.; Andersen, R.A. J. Chem. Soc. Chem. Comm. 1981, 985; J. Am. Chem. Soc. 1982, 104, 1772. (b) Boncella, J.M.; Andersen, R.A. Inorg. Chem. 1984, 23, 432; J. Chem. Soc. Chem. Comm. 1984, 809. (c) Boncella, J.M. Ph.D. Thesis, University of California, Berkeley, 1984. (d) Finke, R.G.; Keenan, S.R.; Schiraldi, D.A.; Watson, P.L. Organonmetallics, 1986, 5, 598.
(2) (a) Brennan, J.G.; Andersen, R.A. J. Am. Chem. Soc. 1985, 107 , 514. (b) Brennan, J.G.; Andersen, R.A.; Zalkin,A. Inorg. Chem. 1986, 25, 1756. (c) Ibid. 1986, 25, 1761. (d) Brennan, J.G. Ph.D. Thesis, University of California, Berkeley, 1985. Berg, D.J., unpublished results. Van Vleck, J.H. "The Theory of Electronic and Magnetic Susceptibilities" Clarendon Press, Oxford, 1932. (b) Boudreaux, E.M.; Mulay, L.N. "Theory and Applications of Molecular Paramagnetism," Wiley, New York, 1976. (c) Edelstein, N.M. in "Organometallics of the f-Elements" ed. by Marks, T.J. and Fischer, R.D., D. Reidel, Dordrecht, Holland, 1979, p. 37. (d) Edelstein, N.M. in "Fundamental and Technological Aspects of Organo-f-Element Chemistry," ed. by Marks, T.J. and Fragala, I.L., D. Reidel, Dordrecht, Holland, 1985, p. 229.

Gerlach, M.; Mackey, D.J. J. Chem. Soc (A), 1970, 3030.
(6) (a) Evans, W.J.; Hughes, L.A.; Hanusa, T.P. J. Am. Chem. Soc. 1984, 106, 4270. (b) Evans, W.J.; Grate, J.G.; Bloom, I.;

Hunter, W.E.; Atwood, J.L. Ibid. 1985, 107, 405. (c) Evans, W.J.; Bloom, I.; Hunter, W.E.; Atwood, J.L. Ibid. 1981, 103, 6507. (d) Evans, W.J.; Hughes, L.A.; Hanusa, T.P. Organometallics 1986, 5, 1285.
(7)(a) Tilley, T.D.; Andersen, R.A.; Spencer, B.; Ruben; H.; Zalkin, A.; Templeton, D.H. Inorg. Chem. 1980, 19, 2999. (b)

Andersen, R.A.; Boncella, J.M.; Burns, C.J.; Green, J.C.;
Hohl, D.; Rösch, N. J. Chem. Soc. Chem. Comm. 1986, 405. Using the slope of X_{M} (corr) $)^{-1}$ vs. T from $T=100$ to 280 K to calculate the magnetic moment, since $X_{M}=C(T-\theta)^{-1}$ and $\mu=$ $2.828 C^{1 / 2}$, gives $\mu=3.76$ B.M. and $\theta=-93 \mathrm{~K}$ for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right){ }_{2} \mathrm{Sm}(\mathrm{thf})\left(\mathrm{OEt}_{2}\right)$ and $\mu=3.84 \mathrm{~B} . \mathrm{M}$. and $\theta=-84 \mathrm{~K}$ for $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}$, at 40kGauss.
Evans, D.F. J. Chem. Soc. 1959, 2003.
(10) (a) Robbins, J.L.; Edelstein, N.M.; Spencer, B.; Smart, J.C. J. Am. Chem. Soc. 1982 , 104, 1882. (b) Lever, A.B.P. "Inorganic Electronic Spectroscopy" 2nd Ed. Elsevier, Amsterdam, 1984.
(11)(a) Robbins, J.L.; Edelstein, N.M.; Cooper, S.R.; Smart, J.C. J. Am. Chem. Soc. 1979, 101, 3853. (b) Freyberg, D.D.; Robbins, J.L.; Raymond, K.N.; Smart, J.C. Ibid. 1979, 101, 892. (c) Fernholt, L.; Haaland, A.; Seip, R.; Robbins, J.L.; Smart, J.C. J. Organomet. Chem. 1980, 194, 351. (d) Hebendanz, N.; Köhler, F.H.; Müller, G.; Riede, J. J. Am. Chem. Soc. 1986, 108, 3281-3289.
(12)(a) Raymond, K.N.; Eigenbrot, C.E. Acc. Chem. Res. 1980, 13, 276.
(b) Green, J.C.; Kelly, M.R.; Long, J.A.; Kanellakopulos, B.;

Yarrow, P.I.W. J. Organomet. Chem. 1981, 212, 329. (c) Green, J.C. Structure and Bonding 1981, 37.
(13)(a) Tilley, T.D.; Andersen, R.A.; Zalkin, A.; Templeton, D.H. Inorg. Chem. 1982, 21, 2644. (b) Tilley, T.D.; Andersen, R.A.; Spencer, B.; Zalkin, A. Ibid. 1982, 21, 2647. (c) Tilley, T.D.; Andersen, R.A.; Zalkin, A. Ibid. 1983, 22, 856.
(14)(a) Pokrzywnicki, S.; Czopnik, A.; Wrobel, B.; Pawlak, L. Phys. Status Solid; 1974, 64b, 685. (b) Pawlak, L.; Duczmal, M.; Pokr zywnicki, S.; Czopnik, A. Solid State Comm. 1980, 34, 195. (c) Range, K.J.; Lange, K.G.; Drexler, H. Comments Inorg. Chem. 1984, 3, 171.

Pauling, L. "The Nature of the Chemical Bond" 3rd ed. Cornell University Press, Ithaca, New York, 1960. Shannon, R.D. Acta Cryst. 1976, 32A, 751. Boncella, J.M.; Andersen, R.A. Inorg. Chem. 1984, 23, 432. Boncella, J.M.; Burns, C.J.; Andersen, R.A. Inorg. Chem. submitted. Screttas, C.; Isbell, A.F. J. Org. Chem. 1962, 27, 2573. Zingaro, R.A.; Steeves, B.; Irgolic, K. J. Organomet. Chem. 1965, 4, 320.

Girard, P.; Namy, J.L.; Kagan, H.B. J. Am. Chem. Soc. 1980, 102, 2693.

Watson, P.L. personal communication, 1981.
Howell, J.K.; Pytlewski, L.L. J. Less Common Metals 1969, 18, 437.
(24) International Tables for X-ray Crystallography (1974). Vol. IV; Table 2.2, pp. 71-102. Birmingham: Kynoch Press.

Figure Captions
Figure 1. Plot of $X_{M}(\text { corr })^{-1}$ vs. $T(K)$ for $\left[\left(M e_{5} C_{5}\right)_{2} Y b\right]_{2}[\mu-S]$.
Figure II. Plot of $X_{M}(c o r r)^{-1}$ vs. T(K) for (a) $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) 2_{2} \mathrm{Sm}$ and (b) $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Sm}\right]_{2}[\mu-0]$.

Figure III.
ORTEP drawing of $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}_{2}[\mu-\mathrm{Se}]$ viewed down a line connecting the centroids of the rings; thermal ellipsoids are at 50\% probability level.

Figure 1

Figure $2 a$

Figure 2b

Figure 3

Table I.

Some Physical Properties of $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-E]$
E M.P. $\left(^{\circ} \mathrm{C}\right) \quad$ Color $\quad \mathrm{Yb}-E-Y b\left(\mathrm{~cm}^{-1}\right)^{a} \quad 1_{H} \operatorname{NMR}\left(\nu_{1 / 2}\right)^{b}$

0	$334-337$	orange	673	$24.4(980)$
S^{-}	$278-282$	red	379	$13.4(640)$
Se	$265-270$	purple	247	$12.1(500)$
Te	$235-238$	green	-	$12.6(290)$

$a_{\text {The }}$ asymmetric stretching frequency, assuming a linear molecule, in the
infrared spectrum. The assignment is made by comparison of the
individual spectra. The band is. of strong intensity.
${ }^{\mathrm{b}}$ The ${ }^{1} \mathrm{H}$ NMR spectrum in toluene $-\mathrm{d}_{8}$ at $32^{\circ} \mathrm{C}$; the chemical shift is expressed in δ-units and the width at half-height expressed in Hertz.

E	Magnetic Susceptibility Studies on $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-E]$			
	6-35k		100-280K	
	$\mu^{\text {a }}$	$\theta^{\text {b }}$	μ	θ
0	4.07	-2	4.31	-14
S	3.86	-2	4.32	-23
Se	4.14	-1	4.45	-15
Te	4.20	-2	4.42	-10
${ }^{\text {a }}$ The magnetic moment, μ, is calculated as $\mu=2.828 \mathrm{C}^{1 / 2}$ where C, the				
Curie constant, is the reciprocal slope from the plot of $\left[x_{M} \text { (corr) }\right]^{-1}$				
vs. T. Moments are expressed in Bohr magnetons per Yb(III). The				
values of μ and θ are averaged over two field strengths (5 and				
40 kGauss). The X_{M} (corr) values are corrected for container and sample				
diamagnetism.				
$\mathrm{b}_{\text {in degrees Kelvin. }}$				

Table III. Positional and Thermal Parameters with Estimated Standard deviations for $\left[\mathrm{Me}_{5} \mathrm{C}_{5}\right]{ }_{2} \mathrm{Yb}[\mu-\mathrm{Se}]$

Atom	x	y	z	$\mathrm{B}_{\mathrm{eq}}{ }^{\text {a }}$
Yb	$0.04694(2)$	$0.33203(2)$	$0.15232(2)$	3.266(6)
Se	0	1/2	$0.14169(6)$	4.85(3)
C(1)	-0.0506(6)	$0.3107(5)$	$0.0406(4)$	4.9(2)
C(2)	-0.1001 (5)	$0.2757(6)$	$0.0958(4)$	$4.9(2)$
c(3)	-0.0561 (5)	0.1980(5)	$0.1196(4)$	4.5(2)
C(4)	$0.0212(5)$	$0.1870(4)$	$0.0792(4)$	4.6(2)
C (5)	$0.0254(6)$	0.2569(5)	$0.0314(4)$	4.6(2)
C(6)	$0.1364(5)$	0.2381 (5)	$0.2434(5)$	4.9(2)
C(7)	$0.1027(6)$	$0.3127(6)$	$0.2805(4)$	5.1(2)
C(8)	$0.1468(6)$	$0.3893(5)$	0.2551 (4)	4.8(2)
C(9)	$0.2049(6)$	$0.3652(6)$	$0.2033(5)$	5.2(2)
C(10)	$0.1998(5)$	0.2691 (6)	$0.1955(5)$	5.3(2)
$C(11)$	-0.0800(11)	$0.3876(8)$	-0.0077(7)	8.5(4)
C(12)	-0.1896(7)	$0.3104(8)$	0.1199(8)	8.6(4)
C(13)	-0.0951(8)	$0.1354(7)$	$0.1757(6)$	7.2(3)
C(14)	$0.0816(7)$	$0.1036(6)$	0.0776 (6)	6.5(3)
C(15)	$0.0967(10)$	$0.2681(11)$	-0.0249(7)	9.1(5)
C(16)	$0.1213(8)$	$0.1390(7)$	$0.2630(7)$	7.6(3)
c(17)	$0.0366(8)$	$0.3086(12)$	$0.3413(7)$	9.1(4)
C(18)	$0.1414(9)$	$0.4835(8)$	0.2874 (6)	7.5(3)
C(19)	$0.2677(8)$	$0.4245(8)$	0.1595(8)	$8.0(4)$
C(20)	$0.2642(7)$	$0.2145(7)$	$0.1517(8)$	8.5(4)

$$
\underline{\mathrm{a}} \mathrm{~B}_{e q}=1 / 3 \Sigma B_{i j}{ }^{a}{ }_{i}^{*} a_{j}^{*} a_{i} \cdot a_{j}
$$

Table IV. Selected Distances (\AA) and Angles (${ }^{\circ}$) in $\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right) \mathrm{O}_{2} \mathrm{Yb}\right]_{2}[\mu-\mathrm{Se}]$

Yb	- $\operatorname{Cp}(1){ }^{\text {a }}$	2.317
Yb	- Cp(2)	2. 321
Yb	- Se	2.621(1)
Yb	- C(1)	2.612(7)
Yb	- C(2)	2.596(7)
Yb	- $\mathrm{C}(3)$	2.610(6)
Yb	- C(4)	2.615(6)
Yb	- C(5)	2.596(7)
Yb	- C(6)	$2.613(7)$
Yb	- C(7)	$2.611(7)$
Yb	- $\mathrm{C}(8)$	$2.618(7)$
Yb	- C (9)	2.608(8)
Yb	- C(10)	$2.612(7)$
<C (cp)	- $C(C p)>$	1.406(21)
<C (Cp)	- C(Me)>	1.535(12)
Yb - S	e - Yb	171.09(6)
$C p(1)-Y$	b - Se	110.39
$C p(2)-Y$	$b-\mathrm{Se}$	110.63
$C p(1)-Y$	b - $\mathrm{Cp}(2)$	138.94

$C p(1)$ and $C p(2)$ are the centroids of atoms $C(1)-C(5)$ and $C(6)-C(10)$ respectively.

Table V. Crystallographic Summary and Data Processing for

$$
\left[\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}\right]_{2}[\mu-\mathrm{Se}]
$$

a, $\mathrm{A}^{\text {a }}$	14.984(5)
c, A	19.165(9)
cryst syst	tetragonal
space group	P42, ${ }^{\text {c }}$
volume, A^{3}	4302.9
$d(\mathrm{calcd}), \mathrm{g} / \mathrm{cm}^{3}$	1.491
z	4
temp (${ }^{\circ} \mathrm{C}$)	23.0
empirical formula	$\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Se}_{1} \mathrm{Yb} \mathrm{C}_{2}$
$f(000), e^{-}$	1896
fw	965.96
wave-length ($\mathrm{K} \alpha_{1}, \mathrm{~K} \alpha_{2}$), \&	0.70930,0.71359
crystal size (mm)	$0.30 \times 0.30 \times 0.72$
abs coeff, cm^{-1}	51.68
abs corr range	3.30-4.28
cryst decay corr range	0.97-1.13
2θ limits, ${ }^{\circ}$	14.7-55.1
nkl limits	h 0,19;k0, 19; $\ell-24,19$
scan width, -	$1.20+0.693 \times \tan \theta$
no. of standards	3
no. reflections between stds	250
variation of standards (\%)	3.44,2.60,2.46
no. scan data	9998
no. unique reflections	4830

Table V. (continued)

$\mathrm{R}_{\text {int }}{ }^{\text {b }}$	0.033
no. non-zero weighted data	$3797\left(\mathrm{~F}^{2}>2 \sigma\right)$
$\mathrm{p}^{\text {c }}$	0.060
extinction $\mathrm{k}^{\text {d }}$	5.91×10^{-8}
max \% extinction corr	8.1\%
no. parameters	195
R (non-zero wtd dat) ${ }^{\text {e }}$	0.031
$\mathrm{R}_{\mathrm{W}} \mathrm{f}$	0.039
R (all data)	0.048
Goodness of fit ${ }^{\underline{8}}$	1.00
max shift/esd in least-square	0.0027
	0.96,-0.67

a Unit cell parameters from a least-squares fit to the setting angles of the unresolved MoK α components of 32 reflections ($21^{\circ}<2 \theta<36^{\circ}$).
$\underline{b} R_{\text {int }}=$ agreement factor between equivalent or multiply measured reflections $=\Sigma\left[I_{n k l}-\left\langle I_{h k l}\right\rangle\right] / \Sigma\left\langle I_{n k l}\right\rangle$
C The assigned weights to $\mathrm{F}, 1.0 /[\sigma(F)]^{2}$, derived from $\sigma\left(\mathrm{F}^{2}\right)=\left[S^{2}+(\mathrm{pF})^{2}{ }^{2}\right]$, where S^{2} is the variance of counting statistics and p is an empirical value that results in the weighted residuals of the strong and weak reflection being- comparable.
d Simple extinction correction, Fobs (corr) $=(1+k I)$ Fobs, where I is the uncorrected intensity and Fobs is the observed scattering amplitude $\underline{e}_{R}=\Sigma\left(\left|F_{o b s}\right|-\left|F_{c a l}\right|\right) / \Sigma\left|F_{o b s}\right|$

Table V. (continued)
$\underline{f}_{R_{W}}=\sqrt{ }\left[\sum \mathrm{w}\left(\left|F_{o b s}\right|-\left|F_{c a l}\right|\right)^{2} / \sum w F_{o b s}{ }^{2}\right]$
$\underline{g}_{\sigma_{1}}=$ error in observation of unit weight $=\sqrt{ }\left[\Sigma\left(w\left(\left|F_{o b s}\right|-\left|F_{c a l}\right|\right)^{2}\right) /\left(n_{0}-n_{v}\right)\right]$, where n_{0} is the number of observations and n_{v} is the number of variables.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

