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The anatomic validity of structural connectomes remains a significant uncertainty in

neuroimaging. Edge-centric tractography reconstructs streamlines in bundles between

each pair of cortical or subcortical regions. Although edge bundles provides a stronger

anatomic embedding than traditional connectomes, calculating them for each region-pair

requires exponentially greater computation. We observe that major speedup can be

achieved by reducing the number of streamlines used by probabilistic tractography

algorithms. To ensure this does not degrade connectome quality, we calculate the

identifiability of edge-centric connectomes between test and re-test sessions as a

proxy for information content. We find that running PROBTRACKX2 with as few as 1

streamline per voxel per region-pair has no significant impact on identifiability. Variation

in identifiability caused by streamline count is overshadowed by variation due to subject

demographics. This finding even holds true in an entirely different tractography algorithm

using MRTrix. Incidentally, we observe that Jaccard similarity is more effective than

Pearson correlation in calculating identifiability for our subject population.

Keywords: connectomes, identifiability, tractography, diffusion MRI, optimization, EDI, edge-centric

1. INTRODUCTION

The structural connectome is a powerful framework for analyzing macro-scale circuity of the
living human brain and associating this connectivity with behavioral traits and health outcomes.
Streamlines (also called fiber tracks or samples) are computationally reconstructed from each seed
voxel in the white-to-gray matter boundary and connect exactly two regions of the brain. Structural
connectome analysis, or connectomics, may have the power to distinguish autism spectrum
disorder, estimate patient age and gender, and even predict cognitive ability (Betzel et al., 2014;
Ingalhalikar et al., 2014; Contreras et al., 2015; Roine et al., 2015). Furthermore, there is a significant
expectation that connectomics will provide crucial insights into otherwise difficult-to-probe
neurological conditions, such as traumatic brain injury (TBI) and other cognitive disorders.

However, the anatomic validity of connectomes based on diffusion MRI has been inconsistent
(Maier-Hein et al., 2017; Jeurissen et al., 2019). Tractography algorithms based on local fiber
orientationmay reconstruct large numbers of erroneous streamlines without additional constraints
from ground-truth observation. Furthermore, the reconstructed streamline density may differ
greatly from actual streamline density at each voxel, even when adjusted with filtering techniques
such as SIFT (Smith et al., 2014, 2015). Owen et al. (2015) propose edge density imaging
(EDI), which maps the number of region-to-region edges that pass through every white matter
voxel. EDI is generated by edge-centric tractography, which reconstructs streamlines as edge
bundles between individual pairs of cortical and subcortical regions. Each edge bundle is confined
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to its own anatomically-plausible volume, which helps to exclude
invalid streamlines. This has the advantage of normalizing
connections between regions and improving inter-subject
reproducibility, particularly between regions with high edge
density (Owen et al., 2016).

However, progress in EDI and edge-centric tractography has
been hampered by the computational cost of generating an
order of magnitude more streamlines than before. A traditional
connectome will simply seed a specific quantity of streamlines
per voxel in the white-to-gray matter boundary and determine
in which region each streamline terminates. This can be
accomplished with a few tens of millions of streamlines and
may take at most a few hours on modern computers. Edge-
centric tractography must be repeated for each region-pair,
such that each voxel (in the white-to-gray matter boundary)
will reconstruct streamlines for every single region-pair that
its streamlines could possibly intersect. Even when excluding
anatomically-implausible region-pairs, this process can easily
require billions of streamlines and consume many nodes on the
most advanced high performance computing (HPC) platforms.
Creating and curating edge-centric connectomes for a few dozen
patients, even at a research facility, may take weeks and requires
dedicated personnel familiar with computational neuroscience.
As a result, processing hundreds or thousands of patients for
a large-scale study has been cost-prohibitive. Here, we exploit
the Department of Energy’s vast HPC capabilities to examine
the probabilistic variation of edge-centric tractography and the
predictability of its computations. This aspect of EDI has not
been studied carefully because of the sheer scale of computational
and human resources required to analyze a large number
of connectomes.

In particular, we focus on the probabilistic algorithms
underpinning edge-centric tractography, particularly
PROBTRACKX2 (Behrens et al., 2003) and MRTrix (Tournier
et al., 2019). Though our thesis only applies to probabilistic
algorithms, we include the results of a deterministic algorithm
from MRTrix to demonstrate the robustness of identifiability
as a quality metric. To account for the potential of crossing
tracks, imprecise white-to-gray matter boundary estimations,
and uncertainty induced by the lack of spatial resolution in the
MRI scans, the research standard has been to compute 1,000
streamlines per voxel per region-pair (Owen et al., 2015). The
unofficial publication standard is as many as 5,000 streamlines.
However, the advantage of 1,000 streamlines per voxel remains
unclear and the results presented below suggest that there may be
little practical benefit in computing more than 1 streamline per
voxel per region-pair. This simple but significant change implies
an immediate reduction in computational cost by up to three
orders of magnitude without significant loss of information.

The tractability of structural connectomes to matrix analysis
has resulted in a variety of proposed techniques to assess
their reliability (Imms et al., 2019). But since most of these
techniques target specific medical or anatomical conditions, it
is difficult to use them as universal metrics. In this work, we
utilize a more general notion of identifiability, introduced by
Amico and Goñi (2018). Conceptually, identifiability measures
how well one can identify the connectome of a specific patient

among a cohort of participants given an independently computed
connectome from a prior MRI scan. Identifiability provides
a generic measure of the information content of structural
connectomes that is independent of any particular health
condition or metric. We use a multi-center cohort of participants
admitted for orthopedic, i.e., non-head related, injuries in order
to demonstrate that a large streamline count does not improve
identifiability in a general population. More specifically, we find
that connectomes computed using 1 streamline per voxel per
region-pair are as descriptive as connectomes that were generated
with significantly higher streamline counts. Furthermore, the
random variance induced by the probabilistic tractography is
often as big as any changes observed for higher streamline
counts. These two facts combined imply that many standard
analyses will perform just as well with connectomes generated
from a small number of streamline count than what is currently
considered the standard. Reducing streamline count drastically
reduces the computational resources required, making edge-
centric structural connectomes accessible to a much wider range
of researchers and potentially paving the way for real-time
connectome analysis in a clinical setting.

2. METHODS

The edge-centric tractography workflow consists of three major
steps (Payabvash et al., 2019): (1) calculating the probability
distributions of fibers within each voxel from the raw MRI data,
(2) parcellating the brain into structurally relevant regions, and
(3) estimating how strongly each pair of regions are connected.
The main focus of this paper is to analyze heuristics for the
connectivity between brain regions using different streamline
counts and use that information to estimate the accuracy of
different levels of optimization. These heuristics must, in essence,
estimate the likelihood that reconstructed connectomes match
the real-world connectome. Since computing this likelihood
directly is challenging, the accepted approach is to use uniform
random sampling. Specifically, we begin with a large number
of streamlines at each seed voxel and subsequently approximate
the likelihood values by dividing the number of successful
streamlines by the total number of streamlines. The likelihood
values are then normalized by the volume of the regions and
inserted into the connectome. Each cell of this upper-triangular
matrix represents the connectivity of a region-to-region pair.

When we increase the streamline count, this process will
converge to the true connectome as defined by the given
parcellation, local fiber directions, and tractography algorithm.
As the fiber directions form a very high dimensional sampling
space and a complex distribution, common wisdom would
suggest that a very large number of streamlines are required
for an accurate estimate. The exact origin of the accepted
publication standard of streamlines, between 1,000 and 5,000
streamlines per voxel. remains unclear. But these numbers are
likely the result of similar concerns regarding accuracy. However,
while more streamlines undoubtedly add more information to
the connectome, doing so repeatedly for every single region-
pair generates enormous amounts of redundant data. If we
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use 82 cortical and subcortical regions in the commonly-
used Desikan-Killiany parcellation, this results in 6642 potential
region-pairs. Even when we curate the number of plausible
region-pairs in the same way as Payabvash et al. (2019), we
have nearly 1,000 region-pairs to consider for each seed voxel.
Given between 10,000 and 100,000 seed voxels in the white-to-
gray matter boundary (depending on subject anatomy, image
resolution, and voxel density), this can result 10 to 100 billion
streamline computations. We contend that this is far in excess of
requirements for most use cases.

It is well-known that the physical aspects associated with
an MRI procedure, i.e., measurement noise, patient motion,
etc., as well as the constant change of the human brain add
significant uncertainties to the measurements made on the brain
which affect the generated connectome (Burgess et al., 2016).
Therefore, it is unproductive to compute the connectome to a
precision that is significantly higher than the maximal resolution
implied by the inherent uncertainties. However, quantitatively
assessing the “quality” of a connectome is not straight forward.
There are two significant challenges. The first challenge is the
requirement of a sufficient number of comparable MRI scans and
the resources to compute their corresponding connectomes at
different streamline counts. The second challenge is that there
is no agreed-upon comparison metric between connectomes to
understand the level of differences relevant in practice.

Here we address the first problem through a collaboration
with the Transforming Research and Clinical Knowledge in
Traumatic Brain Injury (TRACK-TBI) consortium.1 TRACK-
TBI is a longitudinal, observational study of TBI carried out at
18 Level 1 Trauma Centers across the United States. It includes
brain-injured subjects along with a matched cohort of orthopedic
injury control subjects. All participants were followed for 12
months following injury, and MRIs were collected from a subset
of both the brain-injured and orthopedic injury cohorts. To avoid
potential bias from the actual brain injuries, we are using a
cohort of 88 orthopedic injury control subjects all between ages
18 and 71 (mean 37.8 yr; SD 13.7 yr; 30 female). All patients have
no indication of head trauma based on clinical screening. We
utilize diffusion-weighted MR imaging for each patient at two
time points: 2 weeks and 6 months after injury. MR imaging is
conducted with 3T scanners at 11 sites across the United States.
All images are acquired using a uniform single-shell sampling
scheme. All sites use the same acquisition parameters, insofar
as possible across GE, Philips, and Siemens platforms (Palacios
et al., 2017). DiffusionMRI and T1-weightedMRI pre-processing
and post-processing are as reported in Owen et al. (2015, 2016).
This process ultimately provides NIfTI diffusion tensor images
with b = 1,000 s/mm2, divided into 2.7-mm isotropic voxels in a
128 L×128 W× 72 H matrix.

Given a total of 176 MRI scans we utilize MaPPeRTrac (Moon
et al., 2020), a new portable and parallel computing pipeline
that enables us to exploit large-scale computing facilities
for the necessary tractography computations.2 Our pipeline

1https://tracktbi.ucsf.edu
2https://github.com/LLNL/MaPPeRTrac

TABLE 1 | Software components of MaPPeRTrac.

Pre-processing BET, DTIFIT, FLIRT (Jenkinson et al.,

2002)

Segmentation Freesurfer (Desikan et al., 2006)

Fiber tensor estimation BEDPOSTX2 (Behrens et al., 2003)

Probabilistic tractography PROBTRACKX2 (Behrens et al., 2003)

Alternative prob. and

deterministic tractography

MRTrix3 (Tournier et al., 2019)

accomplishes the tractography workflow using the software
components shown in Table 1.

Figure 1 gives a rough illustration of how we convert NIfTI
images to connectomes matrices. When running Freesurfer, we
parcellate the brain with the Desikan-Killiany atlas. For the
PROBTRACKX2 pipeline, we use BEDPOSTX2 to estimate fiber
orientation directions (FOD). We then run PROBTRACKX2
for each region-pair while adjusting streamline count between
1 and 1,000 streamlines per voxel and using the gray-white
matter boundary as the seeding volume. All other software
components are left to their default values. Our tractography
workflow is portable across most scientific HPC clusters with
Slurm, Cobalt, or Grid Engine job scheduling. However, to
process these particular subjects, we used machines running the
TOSS 3 operating system with Slurm scheduling. Further details
can be found in Table 2 (Moon et al., 2020).

Our software can also conduct tractography using the MRTrix
library, as shown in Figure 2. It is important to note that we ran a
traditional tractography algorithm using MRTrix. Since MRTrix
lacks the ability to track the number of streamlines passing
through each voxel, as opposed to just the start and end regions,
it cannot be used to generate EDI. Our main intention with
MRTrix is to show the generalizability of the claim that extremely
high streamline counts fail to provide unique information,
regardless of algorithm details and parameters. We conducted
these experiments with the same of number of streamlines as
edge-centric tractography to demonstrate this point.

Our MRTrix pipeline uses the same pre-processing tools
and Freesurfer parcellation as the PROBTRACKX2 pipeline
(Tournier et al., 2007). However, we convert the parcellation to
five-tissue-type (5TT) format in order to use the Anatomically-
Constrained Tractography (ACT) framework (Smith et al., 2012).
This framework will more accurately terminate streamlines. We
then estimate the response function for each white-matter voxel
using the (Tournier et al., 2013) iterative algorithm, since this
is the recommended approach for single-shell data. Having
specified a mask using the whole diffusion-weighted image, we
run the spherical deconvolution algorithm proposed by Tournier
et al. (2007) on the response function estimation to generate the
FOD. After normalizing the FOD to correct for intensity outliers,
we use this FOD as the input for either the iFOD2 algorithm
for probabilistic tractography or the SD_STREAM algorithm
for deterministic tractography. The iFOD2 algorithm conducts
second-order integration of estimated fiber orientations to
determine principle streamline direction (Tournier et al., 2010).
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FIGURE 1 | Overview of MaPPeRTrac pipeline.

TABLE 2 | Hardware used to run MaPPeRTrac.

System CPU Clock speed Cores/ RAM/ GPU

node node

Quartz Intel Xeon E5-2695 2.10–3.30 GHz 36 128 GB n/a

Pascal Intel Xeon E5-2695 2.10–3.30 GHz 36 256 GB NVIDIA

Tesla P100

The SD_STREAM algorithm performs Newton optimization to
orient streamlines toward local peaks in the fiber orientation
(Tournier et al., 2012). Like with PROBTRACKX2, we seed
streamlines at the center of each voxel in the gray-white
matter boundary and adjust streamline count between 1 and
1,000 streamlines per voxel. But whereas our PROBTRACKX2
pipeline seeded only the starting region in each region-pair, our
MRTrix pipeline must combine all gray-white matter boundary
volumes to create a single seeding volume. Since masking was
performed during spherical deconvolution on our FOD, we do
not apply another mask during tractography. Unless previously
indicated, all MRTrix parameters are left to their default values.
The hardware and subject data are identical to those used
with PROBTRACKX2.

Our goal is to optimize tractography such that computation is
minimized without losing any information content. Information
content in this context refers to any biomarkers extrapolated
from the connectome which may relate to various psychiatric
disorders. These biomarkers are essentially patterns in the
connectome matrix which are valuable insofar as they can be
associated with patient outcomes, such as depressive disorder or
Alzheimer’s disease. However, despite significant advances, most
studies of structural connectomes in a clinical context remain
limited to a small number of patients. As a result, it is difficult
to point to any set of best practices for tractography optimization
in studies with dozens or hundreds of patients.

As previously mentioned, we use the notion of identifiability
introduced by Amico and Goñi (2018). Whereas they measured
identifiability in functional connectomes, we extend the concept
to structural connectomes in order to estimate the information
content across different streamline counts. Identifiability assumes
that the connectome must capture unique characteristics of
the individual, or at least distinct enough to make accurate

medical and/or scientific predictions. Given the evidence for
this assertion (Finn et al., 2015), we should be able to identify
individual patients within a cohort of similar patients as long
as each patient’s unique characteristics are borne out in their
connectome. Identifiability formalizes this concept and provides
a quantitative measure of how well we can identify connectomes.

Aij = corr(pi, qj) (1)

Iself =
1

N

∑
Aii and Iothers =

1

N2 − N

i6=j∑
Aij (2)

Idiff = (Iself − Iothers) ∗ 100 (3)

The identifiability score for each patient is computed by
comparing their connectome at one timepoint p to every
connectome generated at different timepoints, q. As discussed in
more detail below we have experimented with various forms of
connectome metrics such as correlation, L2 distance, and Jaccard
similarity. Equation (1) shows that this results in an N × N
matrix A, composed of correlations between the two timepoints
where N is the number of patients. The average of diagonal
elements, Iself , measures correlation between connectomes of
the same patient. The average of off-diagonals, Iothers, measures
correlation between connectomes of different patients. These
can be expressed as in Equation (2). Identifiability Idiff , as seen
in Equation (3), is measured as the difference between Iself
and Iothers.

Amico and Goñi (2018) improve identifiability by reducing
connectome dimensionality. If we perform principal component
analysis (PCA) reconstruction withm components, then the best
possible identifiability we can extract from the data is

Idiff ∗ = arg max
mǫM

Idiff (m) (4)

We express identifiability as Equation (4) in all subsequent
sections, as it represents the strongest identification ability for any
set of connectomes.

Identifiability can be used to compare the success of different
procedures at preserving the connectomes’ information content.
However, larger study populations will necessarily have lower
identifiability, since each patient must self-identify out of a
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FIGURE 2 | Overview of alternative pipeline with MRTrix.

FIGURE 3 | Mean identifiability with all patients (q = 4 random seeds per

streamline count, k = 20 subset size, r = 10 repetitions). For each streamline

count, there are q data points with tractography running a unique random

seed. Each data point represents the average of r repetitions of k randomly

selected patients in order to normalize for dataset size.

wider pool of candidates. To mitigate this, we calculate the
mean identifiability of repeated k-fold validation with fixed-
size subsets. We randomly select a subset of k patients out
of n total population, calculate identifiability of the subset,
repeat this r times, and average the repetitions. The resulting
mean identifiability enables comparison between differently-
sized populations.

Aij =
|pi − qj|

|pi| + |qj|
(5)

Aij =
pi

|pi|
·
qj

|qj|
(6)

Aij =

∑
kmin(pik, qjk)∑
kmax(pik, qjk)

(7)

It is possible to calculate identifiability using correlation metrics
other than Pearson correlation. The comparison between test

and retest connectomes (see Equation 1) can be expressed
using any linear correlation algorithm. For example, Equation
(5) demonstrates a comparison using L2 distance, normalized
against each connectome. We also examine the normalized
dot product (Equation 6) and the Jaccard similarity coefficient
(Equation 7).We experiment withmultiple correlationmetrics to
help demonstrate the robustness of our optimization argument.

3. RESULTS

We re-ran probabilistic tractography with the same MRI scans
for twenty iterations: at five streamline counts with four samples,
each initialized with different random seeds. Note that we do not
present median or standard deviation for these figures—this is
because the cost of computation is so high that generating more
than four samples per streamline count would be prohibitive.
The five streamline counts are 10, 50, 200, 500, and 1,000
streamlines per voxel per region-pair. In the following figures,
each data point represents the mean identifiability at a particular
streamline count and random seed. Our tractography workflow
re-calculates streamlines for every region pair, so each white
matter voxel at the gray-white matter boundary will actually
originate many more streamlines than this number suggests. We
do not observe a relationship between mean identifiability and
streamline count, especially considering stochastic variation and
the narrow Y-axis. Since identifiability is the total percentage
difference in correlation between Iself and Iothers (see Equation
3), small stochastic variations of fractions of a percent have
little impact. However, even stochastic variation appears to
have a greater impact than streamline count. This suggests that
connectomes generated with low streamline counts contain just
as much information as high streamline counts, at least for
identification tasks.

Due to the small number of data points (related to the extreme
cost of compute), it would be unhelpful to evaluate correlation
metrics between streamline count and identifiability such as
coefficient of determination or error bars. We do not deny
that correlation may exist between identifiability and streamline
count. Because we argue that this correlation is not significant
compared to variations due to demographics, we instead consider
the absolute variations of identifiability within a category and
between categories. In Figure 3, we see variation within all
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FIGURE 4 | Mean identifiability by category (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).
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subjects of just 0.25 percent. In comparison, most categories in
Figure 4 differ from each other by much greater than 1 percent.

If we zoom in to individual categories, we see that mean
identifiability does not strongly vary with streamline count no
matter how patients are grouped together. Variation within each
category is an average of 0.6 percent. The greatest variation is
within 50–74 year olds at 2.1 percent, but this variation shows
no positive relationship streamline count and identifiability. In
addition, we observe that certain categories present stronger

differences than others. Male and female identifiability differ
by 3.9 percent, the youngest and oldest patients by 4.1 percent
on average, and various MRI platforms by less than 1 percent.
Though this does not confirm that identifiability is reading
population differences between categories, it does suggest that
those differences would be more significant than any increase in
identifiability from a higher streamline count.

One could argue that by comparing connectomes only against
other connectomes at the same streamline count, identifiability

FIGURE 5 | Mean identifiability across streamline counts (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).
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is biased by processing artifacts unique to that streamline
count. Considering this, we compared identifiability with test
connectomes pi against retest connectomes qj from different
streamline counts. Figure 5 appears to confirm this bias because
identifiability is higher when the test and retest share the same
streamline count. But to some degree, this is expected, as
information particular to that streamline count is shared between
its tests and retests, whereas those from different streamline
counts may not carry that information. Nevertheless, the degree
of bias does not seem to be significant compared to the overall
success in identification. Again note the narrow Y-axis - even
identifiability as low as 13% is more than sufficient to distinguish
a retest from all 87 other retest connectomes.

We observe the same trend of weak correlation between
streamline count and identifiability in Figure 6. Incidentally, we
find that L2 distance yields somewhat better identification power
than Pearson correlation. The normalized dot product appears
relatively weak in comparison. However, the Jaccard similarity
coefficient demonstrates significantly stronger identifiability than
Pearson correlation. This is particularly unusual since Jaccard
similarity discards much information from its inputs by only
selecting the maximum and minimum of the test and retest
values. Although we use Pearson correlation in all other figures

due to its prevalence in existing literature, Figure 6 suggests that
there may be room for improving the identifiability algorithm.

For sake of completeness, we examine the edge-centric
connectomes using alternative graph metrics common in
neuroimaging literature. Details of these graph metrics for the
purpose of investigating test-retest reliability have been described
by Imms et al. (2019). For each connectome, we (1) calculate each
graph metric at each streamline count, (2) normalize the graph
metric at each streamline count against the value of the graph
metric at 1,000 streamlines, and (3) plot each normalized graph
metric in Figure 7. The resulting plots demonstrate no added
value above 1 streamlines per voxel per region-pair, similar to our
results for identifiability.

We ran the same subjects with MRTrix to generate traditional
connectomes, again using five streamline counts with four
samples each and k-fold validation. The results in Figure 8

demonstrate the same trend—an extremely slight variation in
identifiability with streamline count. In fact, the relationship
between streamline count and identifiability appears so tenuous
that higher counts have slightly lower identifiability. In Figure 9,
it is unsurprising to see the deterministic algorithm sees no
variation with streamline count at all. This indicates that the
deterministic algorithm used by MRTrix is conducting needless

FIGURE 6 | Mean identifiability by correlation metric (q = 4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions).
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FIGURE 7 | Comparison of graph metrics.

computation beyond the first streamline per voxel, since there is
no remaining decision space for tractography to explore.

4. DISCUSSION

By comparing edge-centric connectomes with the concept
of identifiability, we find that probabilistic and deterministic
algorithms do not significantly benefit from high streamline
counts. This has major ramifications for the computational cost
and availability of edge-centric tractography, as similar results
can be achieved with a fraction of the streamlines. However,
there is a major risk that optimization would lose information
not captured by identifiability. The ability to identify a patient
is necessary to connectome analysis—otherwise one could argue
that a connectome is indistinguishable and therefore dominated
by noise and external variables. But even if we could perfectly
identify patients from connectomes, this may not be sufficient for
more complex analyses.

There is also the risk that we did not compute sufficient
samples. To address this, we re-ran probabilistic tractography on
all patients with five streamline counts and four different random
seeds, for a total of twenty iterations. With that amount of

data, streamline count does not appear to significantly influence
identifiability. Even if correlation can be established, the slope of
such a curve is so flat as to be swamped by noise and subject
demographics. However, it is remotely possible that running far
more than twenty iterations would show strong variation. We do
not pursue this possibility owing to the computational expense of
tractography with high streamline counts - generating our data
already consumed over 300,000 CPU hours.

We also find that Jaccard similarity outperforms more
commonly used connectome correlation metrics such as Pearson
correlation in the calculation of identifiability. Though we
are surprised that this is the case, it is possible that Jaccard
similarity increases the weight of low-frequency information by
effectively binarizing the non-shared values. When calculating
identifiability, high-frequency values, such as dense contiguous
sections of the brain, may often match to the wrong subject.
Subjects are better distinguished by low-frequency areas with
unique structures. Given an incorrect match, choosing a
minimum or maximum of the test and retest value in low-
frequency areas will create a strongly fluctuating test-retest
variation since values tend not to overlap. And whereas Pearson
correlation and other metrics would dilute this variation by
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FIGURE 8 | Mean identifiability with all patients using probabilistic MRTrix (q =

4 random seeds per streamline count, k = 20 subset size, r = 10 repetitions,

iFOD2 algorithm).

FIGURE 9 | Mean identifiability with all patients using deterministic MRTrix

(SD_STREAM algorithm).

the weight of high-frequency areas, Jaccard similarity would
provide consistent test-retest variation in high-frequency areas
since it does not combine the test and retest in each voxel. As a
result, Jaccard similarity improves identifiability similarly to PCA
reconstruction, by pruning low-information data. However, this
is mostly speculation and would require further study beyond the
scope of this paper.

There is also the concern that our findings lack external
physiological data. Brains do not exist in a vacuum, so key
markers such as clinical survey results, blood pressure, and body
weight may influence connectome analysis in subtle ways. We
mitigate this to an extent by categorizing patients by age and
gender and find that nothing in these categories undermines our

argument regarding streamline count. Furthermore, it has been
demonstrated that tractography is highly sensitive to choice of
processing method. If the method itself diverges from ground
truth, there is little that reproducibility can do to recover accurate
results. Ideally, we would approach ground truths using phantom
studies on the MRI processing techniques (Nath et al., 2020)
or histological studies on ex vivo specimins (Schilling et al.,
2018, 2019). However, we do not possess further anatomical or
physiological data for this patient population, so the influence of
other external variables remains unexplored.

We are also limited to using a particular set of acquisition and
pre-processing parameters. Previous studies have used a broad
array of parameters on the same subjects to make generalizable
observations (Côté et al., 2013). Though our narrow parameters
may appear to limit the generalizability of our findings, we
contend that differences between scans of the patients are subtle
enough that the ability of distinguish between them is more
significant than the ability to compare alternative parameters on
the same data. For example, a slightly different parcellation would
result in changes to the overall structure of the connectome
matrix, but identifiability would not greatly change since the
relative differences between connectomes would be much less
affected. Since we can even find the same results with two entirely
different tractography softwares, PROBTRACKX2 and MRTrix,
then minor changes on tractography parameters are unlikely to
change our overall findings.

5. CONCLUSIONS

Progress in EDI connectomics has been limited by the
steep computational cost of probabilistic white matter fiber
tractography. Creating diverse datasets with large numbers of
patients requires optimizations of the tractography workflow.
However, excessive optimization may degrade the connectome’s
information content. To measure the extent to which we can
optimize tractography, we use identifiability as an approximate
measure of the average information content in a set of
connectomes. Identifiability is a quantifiable metric for
identification tasks predictiveness using a patient’s test and retest,
based on MRI conducted 6 months apart. This enables us to
optimize computation by determining whether information
is lost.

Edge-density probabilistic tractography is computationally
expensive because it simulates massive quantities of white-matter
fiber streamlines. We find that the number of streamlines can be
greatly reduced from current practice. This optimization appears
to have no impact on identifiability; ergo, it does not degrade the
connectome’s information content for most purposes. Reducing
the number of streamlines yields direct linear efficiencies, such
that using half the streamlines takes approximately half the time
to compute. Existing literature uses between 1,000 and 5,000
streamlines per voxel per region-pair to ensure a well-converged
solution. We find that identifiability is stable with as few as 1
streamlines per voxel per region-pair.

We find that low streamline counts perform just as well as high
streamline counts even when analyzing our study population

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 752471

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Moon et al. Optimized Tractography

with different demographics. These findings hold true for male
and female patients, different age ranges, different correlation
metrics, and all three common MRI hardware platforms. The
choice of populationmakes a far greater impact than any decision
on streamline count. In fact, variations in mean identifiability
due to streamline count are even less than those from stochastic
variation due to probabilistic tractography.

Using low streamline counts promises to greatly accelerate
study of EDI and edge-centric connectomes. High streamline
counts do not appear to harm identifiability in any scenario,
and will likely continue to be the standard for small-scale
studies. But by reducing the computational cost of tractography,
this simple optimization will enable hundreds to thousands
of edge-centric connectomes to be generated on systems that
previously handled a few dozen. Many open neuroimaging
questions related to EDI cannot be answered with small-scale
studies alone, particularly those on subtle population differences
such as behavioral disorders. As the field of connectomics grows,
optimizations such as these will be necessary to keep up with
the large amount of clinical data and computational resources
applied to human brain research as well as foster clinical
applications that require faster results for real-time patient care.
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