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Abstract

This paper summcirizes the Java Bytecode Annotations currently supported or under implementation

in our Annotation-generating Java Bytecode Compiler (AJBC) and in our Annotation-aware JIT com

pilation system (AJIT). We explain the meaning of the cumotations types, how they are generated by

the Java Bytecode compiler, the formats for encoding annotations in the class file and how annotations

cire employed by a JVM engine (an interpreter or a JIT compiler) to produce high performance code.

We analyze the potential benefits and costs of the different types of annotations and identify possible

improvement and extensions.

1 Introduction

We designed the Java Bytecode Annotations [3, 7, 8] as an engineering solution to improve the speed of Java

interpretation or JIT compilationand the quality of the codegenerated by JVM engines. Weare investigating

a complete set of annotations that can simplify the work of an interpreter and JIT compiler in producing

high performance code by overcoming the Java stack language lack of expressiveness for traditional compiler

optimizations and by passing on to the JVMs compiler analyses free of run-time costs. We have an initial list

of annotations that can support building fast and efficient run-time algorithms for register allocation, code

improving transformations, simple and advanced instruction scheduling optimizations and memory system

optimizations. Our annotations carry information at bytecode level and at the level of the intrinsic implicit

sub-operations that compose some bytecodes.

The annotations are extra information that offer benefits but do have a cost associated with them.

Annotation overhead results from many factors: (1) the larger class file size (which increases download

time), (2) the interpretation of the information conveyed in the annotation bytes, and the demand for

*This work simportedja-p^rt by CAPES.,

Nofce; This
may be protected
by Copyright Law
(Title 17 U.S.C.)

LIBRARY

University of California



extra resources (memory for storing annotations). However, given the complexity of the information they

can convey, annotations require simple run-time intermediate representation (IR) and we believe that the

overhead of processing the annotations, storing them and building a simple run-time IR will ultimately be

less than the overhead of building, storing and manipulating a complex IR in optimizing JVM engines tha,t

need complex IR to enable advanced compiler transformations. Another aspect of our annotations scheme

is that annotations need to be verified before employed, just like untrusted bytecodes do. This is a parallel

research direction we are pursuing.

Annotations types and formats have been presented along our previous works [3, 7, 8] and this current

paper we lead a detailed discussion on each of them. Figure 1 summarizes the various annotations types we

havethought as important and in the sections to follow shortly we explain eachofthe components integrating

the Annotation Generator in our AJBC annotation-generating Java Bytecode Compiler.
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Figure 1; Annotation-generating compiler (AJBC) and annotation-aware JIT (AJIT) system



2 Annotations Types and Formats

2.1 Annotations for Register Allocation Optimizations

Register allocation is the most important optimization to exploit today's CPUs. Therefore annotations

for register allocation were the first ones we designed and implemented in our annotation-aware compi

lation system [3]. We divide our register allocation annotations in 3 different types: Virtual Register

Allocation (VRA) annotations, Spilling Virtual Register Allocation (SVRA) annotations and Parameter

Passing Virtual Register Allocation (PVRA) annotations. VRA annotations provide the minimum informa

tion to guide an efficient method level register allocation at run-time. SVRA annotations can be combined

with the first to reduce the amount of spilling at method call boundaries. PVRA annotations are a more

specific type of annotations that can be added to take advantage of calling conventions on machines that

have such feature. An important aspect to remark is that these annotations are all machine independent

optimization information.

2.1.1 Virtual Register Allocation (VRA)

Annotations Semantics

Virtual Register Allocation annotations represent the result of performing register allocation assuming an

infinite number of registers, therefore virtual registers. The information provided by the VRA annotations

is then used by the JVM engine to

1. perform a fast and efficient dynamic mapping-based register allocation

2. perform elimination of common sub-expressions that could not be removed due to the Java stack

language restrictions. The annotations indicate which bytecodes (or bytecode sub-operations) are

redundant or subsumed by preceding operations; such operations need not be translated into native

code.

Each instruction defined in the Java Bytecode language is mapped into operations in our Java IR. Annotations

for virtual register allocation basically hold information on the operands of the Java IR operations. The

VRA annotations represent source operands, destination operands, and any intermediate values implicitly

calculated by the bytecode sub-operations (e.g., array index calculation in an array load operation). Foreach

bytecode instruction one or more VRA annotation formats exist. Each format indicates how a particular

bytecode sub-operation should be translated: where to read its input operands, where to write the result,

and perhaps whether or not this operation should be skipped entirely (e.g. when a previous operation has

already computed the needed value).

Figure 2 shows an example of correspondence between bytecodes, Java IR and VRA annotations for

mats. Each SRC, EXTRA and DEST fields hold virtual register numbers representing the operands for the



sub-operations. In Case 1 of Figure 2, the Java IR code sequence for the computation performed by the

bytecode iaload is illustrated. The most general format of an iaload operation includes 2 SRC fields, 2

EXTRA fields and one DEBT field with SRC-SRC-EXTRA-EXTRA-DEST as annotation header format. The first SRC

field represents the virtual register that holds the array object reference; the second SRC field represents the

virtual register that holds the index; the first EXTRA field represents the result of the array index calculation;

the last EXTRA field represents the result of the array address calculation; and the BEST field represents the

virtual register holding the array element read from memory. If the address computation has already been

computed, as in Figure 2 Case 2, the header SRC-DEST indicates that the SRC field holds the array element

address and BEST field is the suggested virtual register to hold the value read from memory, meaning that

the translation process can skip the sub-operations for array index and address calculation and the bytecode

iaload can be translated into a single load operation.

Case 1:Array element address calculationand array load

Bytecode Java IR

VO holds array address
VI holds index

iaload
1 : ishl VI, "ishift", V2
2 : iadd V2, "arraySizeOffset",
3 : aadd VO, V2, V3
4 : ild (V3), V4

V2

Annotated Bytecode
opcode SRC SRC EXTRA EXTRA DEST
iaload VO VI V2 V3 V4

Case 2: Array load
Bytecode Java IR

iaload VO holds array element address

4 : ild (VO), VI

Annotated Bytecode
opcode SRC DEST
iaload VO VI

Figure 2: Example of VRA annotations for iaload operation

Local variables and compiler generated temporaries (e.g., the operands for bytecode sub-operations in

Figure 2) are treated the same way. They are directly mapped to virtual registers. As shown in Figure 3
local variable accesses (c.g, iload and istore) are represented in our Java IR as nop operations or move

operations, annotated as SRC-BEST, CONST-BEST, CONST or SRC, depending on the result ofoptimizing the

Java IR via copy propagation. When the JIT interprets the annotation formats SRC or CONST, it has the

information that either (a) the local variable isina virtual register indicated by thebyte following theformat

header, or (b) it is a constant. In both cases, no machine code is generated for the bytecode.

In ourVRA annotations class member variables are kept asvariables inmemory in ourfront-end compiler

and are accessed via load and store operations, as shown in Figure 4 for bytecodes getstatic, getf ield,

putstatic and putf ield. As a consequence, these variables are also kept in memory in our AJITsystem. To

enable some optimization on accesses to class member variables, we devised annotations that make explicit

the variable address calculation, just like those in array references. For example, bytecode getf ield has



Bytecode JavaIR VRA Annotation Formats

CONST
iload nop SRC

imcv VI, V2 SRC DEST

istore imov CONST, VI CONST DEST

nop
CONST

SRC

Figure 3: Example of VRA annotations for local variables accesses

Bytecode JavaIR VRA Annoatioo Fonaau

amovi "addressOfClsssField", VI
(b,c,s,i,l,d,f.a)ld (VI), V2

EXTRA DEST

getstatic SRC DEST

nop SRC

amovi 'addressOfClassField', V2
(b,c,s,i,l,d,f,a)st VI, (V2) SRC EXTRA

putstatic
amovi ^addressOfClassFleld', V2

CONST EXTRA

SRC SRCADDR

{b,c,s,i,l,d,f,a}sC CONST, (V2) CONST SRCADDR

(b,c,5,i,l,d,f,a)mov VI, V2 SRC DEST

(b,C.S,i,l,d,f,a)mov CONST, V2 CONST DEST

nop SRC

amovi -offsetOfField", V2
aadd VI, V2, V3
(b,c,3,i,l,d,f,a)ld (V3), V4 SRC EXTRA EXTRA DEST

getCield
aadd VI. V2, V3
(b,c,s,i,l,d,£,ajld (V3), V4 SRC SRC EXTRA DEST

(b,c,3,i,l.d,f,aHd (VI), V2 SRC DEST

SRC

amovi "offsetOfField", V3
aadd V2, V3, V4
|b,c,s,i,l,d,f,a}st VI. (V4)

SRC SRC EXTRA EXTRA

amovi "ofEsetOfField", V3
aadd V2, V3, V4
(b,c,s,i,l,d,f,a)sC CONST. (V4)

CONST SRC EXTRA EXTRA

pufield

aadd V2, V3, VA
{b,c,s,i,l,d,f,a)st VI, (V4)

SRC SRC SRC EXTRA

aadd V2, V3, V4
{b,e,s,i,l,d,£,a)st CONST, (V4)

CONST SRC SRC EXTRA

(b,e,s,i.l,d,f,a)sc VI, (V2) SRC SRCADDR

(b,c,s,i,l.d,f,a)st CONST, (VI) CONST SRCADDR

|b,c,s,i,l,d,£,a)mov VI. V2 SBC DEST

(b,c,s,i,l,d,£.a)mov CONST, VI CONST DEST

nop SRC

Figure 4: Example of VRA annotations for class member variables accesses



the different annotation formats SRC-BEST and EXTRA-EXTRA-EXTRA-DEST which state whether or not the

variable's address has already been computed. We allow another optimization where class member variables,

for somespecific pieces ofcodehavea chance ofbeingdirectly mapped into physical registers skippingthe load

and store operations above mentioned. This information is conveyed to the JVM engine by annotating the

bytecode getf ield with the SRC, CONST, just like we do for local variables. Bytecodes putf ield, getstatic

and putstatic have similar annotations. Without interprocedural analyses, this optimization can be done

for sequences of code where accesses to class member variables are not intercalated with method calls or the

accesses occur at program points where exceptions cannot be thrown. In the presence of certain method calls

it is still possible to allow this optimization if it can be checked by the compiler that the method call has

no side effect on the variable. Figures 5, 6, 7 and 8 show several optimizations that are possible with class

member accesses. They vary from simple common sub-expression elimination of addresses computation to

mapping of class members directly to virtual registers. The figures show the Java source code, the Java IR

generated in our AJBC system and the resultant annotated bytecode stream. Figure5 shows the annotated

bytecode with no optimizations. Figure 6 shows the result ofeliminating addresses computation. Figure 7
shows what happens to the code when there is a method call we do not know its side effects. Optimizations

could not be applied in this case. Finally, in Figure 8 all class member variables were directly allocated to

virtual registers and at run-time will become candidates for register allocation.

Annotations Encoding Format

Each bytecode annotation has a header that indicates how the following annotation bits should be read

and interpreted. In our initial encoding strategy all operations have a byte-long header followed by a variable
number of bytes representing each virtual register number. An alternative encoding strategy is to let the
header vary in size as for some operations few bits are enough to encode the header format. In this encoding
scheme up to 255 virtual registers can be labeled. This is afairly high amount of virtual registers to represent
long Java method codes given that the register allocation algorithm always try to reuse virtual registers (see
the details on our compile-time virtual register allocation algorithm in [3]).

Generating Annotations in a Java Bytecode Compiler

The choice of which virtual register to hold an operation's operand is crucial to the register allocation
done at run-time. In order to enable a fast and efficient dynamic register allocation, the VRA annotations

must convey the order in which variables should be allocated to physical registers (and thus which should be

spilled ifnecessary). This is accomplished by assigning, at compile-time, the lowest virtual register numbers
to the most important variables in the code. Then, atrun-time, the register allocator should assign the lowest
virtual register numbers to the physical machine registers. Our compile-time register allocation algorithm
[3] implements a modified priority-based graph-coloring algorithm.

Employing Annotations in a JVM engine

The run-time register allocator is afast and effective algorithm that essentially maps each virtual register
to a machine register, prioritizing the assignment of lower virtual register numbers. This guarantees that



high priority values (program variables represented by lower virtual register numbers) have preference in
the register assignment. When the number of physical registers is exhausted, virtual registers are mapped
to temporaries on the stack. The register allocator reserves some of the machine registers for evaluating

expressions that involve such variables that are not mapped into machine registers. Our register allocation

algorithm uses a mapping table as an auxiliary data structure. The mapping table stores information on

a virtual register number, a pointer to the corresponding physical register table entry, and the stack offset

value it should use in case of spilling. In [3] we explain the details of the implementation of a mapping-based

dynamic register allocator for the SPARC machine.

Annotations Benefits sind Cost

The benefit of VRA annotations is that they provide a scheme that allows a graph-coloring quality register

allocation with very lowrun-time cost as no time is spent on conflict graph construction, coloringnor dataflow

analysis. It also conveys information on common sub-expression elimination and copy propagation. The cost

of this type of annotation is high and is mainly determined by the cost of encoding virtual registers.

Java Source Code

public static void updateFieldl (obj o, int x, int y)(
c.x = x;

o.y = y;

©.ratio •• o.x/o.y;

Java IR with class members la memory

amovit"of£set_obj.x",_templ(VR4)
aadd o(VRl), ( _tenipl{VR4) ), _temp2|VR4)
ist x(VR2), ( cemp2{VR4) )
amovi fi"offset_o5j.y", _terap3(VR2)
aadd o(VRl), ( _tenip3(VR2) ), _cerop4 (VR2)
ist y(VR3), ( _Ceinp4(VR2J )
amovi s"offset_obj.x", _temp5(VR2)
aadd o(VRl), ( _tenip5 (VR2) ), _temp6(VR2)
ild (_temp6(VR2> ), _teinp7 {VR2)
amovi 6"offset_obj.y", _tempe(VR3)
aadd o(VRl), (_tempe(VR3) ), _temp9{VR3)
ild ( _cemp9(VR3) ), _templO(VR3)
idiv _temp7(VR2), _cemplO{VR3), _templl(VR2)
amovi t'"offset_obj .ratio", _templ2(VR3)
aadd o(VRl), ( _templ2(VR3) ), _templ3(VRl)
ist _templl(VR2), ( _templ3(VRl) )
return

Annotated Bytecode with class members in memory

Method void updaterield(obj, int, int]
0: aload_0 SRC SRC- 1
1: iload_l SRC SRC- 2
2: putfield <Field int x> SRC_SRC_EXTRA_EXTRA SRC- 2 SRC- 1 EXTRA- 4 EXTRA- 4
5: aload_0 SRC SRC- 1
6: iload_2 SRC SRC- 3
7: putfield <Field int y> SRC_SRC_EXTRA_EXTRA SRC- 3 SRC- 1 EXTRA- 2 EXTRA- 2
10: aload_0 SRC SRC- 1
11: aload_0 SRC SRC- 1
12: getfield <Field int x> SRC_EXTBA_EXTRA_DEST SRC- 1 EXTRA- 2 EXTRA- 2 DEST- 2
15: aload_0 SRC SRC- 1
16: getfield <Filed int y> SRC_EXTBA_EXTFA_DEST SRC- 1 EXTRA- 3 EXTRA- 3 DEST- 3
19: idiv SRC_SRC_DEST SRC- 2 SRC- 3 DEST- 2
20: putfield <Field int ratio> SRC_SRC_EXTRA_EXTRA SRC- 2 SRC- 1 EXTRA- 3 EXTRA- 1
23; return

Figure 5: Resultant annotated bytecodes when class member variables are in memory



Java Soarce Code

pijblic static void updateFieldl (obj o, int x, int y) (
o.x • x;

o.y - y;

©.ratio - o.x/o.y;

Optimized Java IR with class members in memory

amovi fi"offset_obj.x", _templ(VR4)
aadd o(VRl), ( _teinpl (VR4) ), _tenp2(VR4)
ist x(VR2), ( _temp2(VR4) )
amovi s"offset_obj.y", _temp3(VR2)
aadd o(VRl), (_temp3(VR2) ), _temp4(VR2j
ist y(VR3), ( _temp4(VR2) )
ild ( _tenip6(VR4) ), _temp7(VR3)
ild { _temp9(VR2) ), _templO{VR2)
idiv _temp7{VR3», _teraplO (VR2), _tenipll (VR2)
amovi t"offset_obj.ratio", templ2{VR3)
aadd o(VRl), ( _templ2(VR3)~), _templ3(VRl)
ist _templl(VR2), ( _templ3(VRl) )
return ~

Optimized Annotated Bytecodewith class members in memory

Method void updateField(obj, int. int)
0; aload 0 SRC SRC- 1
1: iload~l SRC SRC- 2
2: putfield <FieId int x> SRC_SRC EXTRA EXTRA SRC- 2 SRC- 1 EXTRA- 4 EXTRA- 4
Si aload_0 SRC SRC- 1
6: iload_2 SRC SRC- 3
7: putfield <Field int y> SRC_SRC EXTRA EXTRA SRC- 3 SRC- 1 EXTRA- 2 EXTRA- 2
10: aload_0 SRC SRC- 1
11: aload_0 SRC SRC- 1
12: getfield <Fleld int x> SRC DEST SRC- 4 DEST- 3
15: aload_0 SRC SRC- 1
16; getfield <Filed int y> SRC_DEST SRC- 2 DEST- 2
19: idiv SRC SRC_DEST SRC- 3 SRC- 2 DEST- 2
20; putfield~<Field int ratio SRC SRC_EXTRA EXTRA SRC- 2 SRC- 1 EXTRA- 3 EXTRA- 1
23; return

Figure 6: Resultant annotated bytecodes when class member variables are in memory and redundant ad

dresses computations are eliminated

Java Source Code

public Static void updateField2 (obj o, int x, int y)(
o.x - x;

O.y - y;
class2.unknown (o);
o.ratio - o.x/o.y;

OptimizedJava IR with class member in memory

amovi S"offset_obj.x", _templ{VR4)
aadd o(VRl), ( _templ(VR4) ), temp2(VR4)
ist x(VR2), ( temp2(VR4) )
amovi s"offset_o5j.y", _temp3(VR2)
aadd o(VRl), ( _temp3(VR2) ), cemp4(VR2)
ist y(VR3), ( _temp4(VR2) )
amovi £*class2 .unlcnovn", _temp5{VR2)
call indirect _temp5(VR2) o(VRl)
amovi «"offset_obj.x", _temp6(VR2)
aadd o(VRl), (_temp6(VR2) ), temp7(VR2)
ild (_temp7(VR2) ), _tempe(VR2)
amovi fof fset_obj .y", _temp9(VR3)
aadd o(VRl), ( _temp9(VR3) ), templO(VR3J
ild ( _tetnplO(VR3) ), _templl(VRl)
idiv _temp8(VR2), _templl{VR3), _templ2(VR2)
amovi 6"offset_obj.ratio", _cerapl3(VR3)
aadd o(VRl), ( _templ3{VR3) ), templ4(VRl)
ist _teiiipl2 (VR2), { _tertgjl4 (VRl) )
return

Optimized Annotated Bytecode withclassmembers Inmemory

Method void updateField2(obj, int, int) ' '
0: aload_0 SRC SRC- 1
1: iload_l SRC SRC- 2
2: putfield <Field int x> SRC_SRC EXTRA EXTRA SRC- 2 SRC- 1 EXTRA- 4 EXTRA- 4
5: aload_0 SRC SRC- 1
6: iload_2 SRC SRC- 3
7: putfield <Field int y> SRC_SRC EXTRA EXTRA SRC- 3 SRC- 1 EXTRA- 2 EXTRA- 2
10: aload_0 SRC SRC- 1
11: invo)iBStatic <Method void un)cnown(obj)> EXTRA NARGS: 2(r-2, c-0) EXTRA- 2 P- 2
14: aload_0 SRC SRC- 1
15: aload_0 SRC SRC- 1
16: getfield <Field int X> SRC EXTRA EXTRA DEST SRC- 1 EXTRA- 2 EXTRA- 2 DEST- 2
19: aload_0 SRC SRC- 1
20: getfield <Field int y> SRC_EXTRA EXTRA DEST
23: idiv SRC_SRC_DEST SRC- 2 SRC- 3 DEST- I
24: putfield <Field int ratio> SRC SRC EXTRA EXTRA SRC- 2 SRC- 1 EXTRA- 3 EXTRA- 1
27; return

SRC- 1 EXTRA- 3 EXTRA- 3 DEST- 3

Figure 7. Resultant annotated bytecodes when class member variables are in memory and no optimization
is possible



Java Source Code

public static void updateFieldl (obj o, int x, int y){
o.x " x;

o.y = y;

c.ratio = o.x/o.y;

OptimizedJava IR with classmembersdirectly io virtual registers
imov x(VR21, o.x(VR3)
imov y(VR3), o.y(VR4)

idiv O.XJVR3), o.y(VR4), o.ratio(VR5)

return

Optimized Anuotated Bytecodewith class members directly iu virtual registers

Method void updaterield(obj,int, int)
0: aload 0 SRC SRC- 1
1; iload_l SRC SRC- 2
2: putfield <Field int x> SRC_DEST SRC- 2 DEST- 3
5: aload_0 SRC SRC- 1
6: iload 2 SRC SRC- 3

7: putfield <Field int y> SRC_DEST SEC- 3 DEST- 4
10: aload_0 SRC SRC- 1
11; aload_0 SRC SRC- 1
12: getfield <Field int x> SRC SRC- 3
15: aload_0 SRC SRC- 1
16: getfield <Filed int y> SRC SRC- 4
19: idiv SRC_SRC_DEST SRC- 3 SRC- 4 DEST- 5
20: putfield <Field int ratio SRC SRC- 5
23: return

Figure 8: Resultant annotated bytecodes when class member variables are directly allocated to virtual

registers

2.1.2 Spilling Virtual Registers Allocation Annotations (SVRA)

Annotations Semantics

When using VRA annotations to generate run-time register allocation at method call boundaries all

virtual registers that got previously mapped into a physical register and are still active at the method call

point have to be spilled and later reloaded to maintain correctness of the mapping-based register allocation.

An improvement to our basic VRA scheme is to provide spill code annotations. This is accomplished with

our SVRA annotations that indicate which virtual registers should be spilled at each method call.

Annotations Encoding Format

Each method call bytecode is annotated with a sequence of virtual registers numbers representing the

values that should be spilled across the method call. Figure 9 shows the SVRA annotations format.

Bytecode SVRA Annotation Fomiats

invokevirtual

invokestatic
invokespecial
invokeinterface

TOTAL SRC SRC ... SRC

1 byte 1 byte

Figure 9: Example of SVRA annotations

Generating Annotations in a Java Bytecode Compiler

Traditional dataflow analysis can be used to generate SVRA annotations.

Employing Annotations in a JVM engine

When translating method call bytecodes the corresponding SVRA annotations are checked and spill code

9



is generated for each referenced virtual register that has been mapped to a machine register.

Annotations Benefits cind Cost

The obvious benefit of this annotation is to reduce the amount of spilling code at method calls. The

cost of this kind of annotations is moderate as method calls are frequent in Java and the number of method

parameters is small in general [5].

2.1.3 Parameter Passing Virtual Register Allocation Annotations (PVRA)

Annotations Semantics

This is a machine independent annotation that allows the JVM engine to take advantage of calling

conventions on certain machines. In SPARC, for example, arguments to functions are passed through special

registers ol-07. If the values to be passed are not in the these machine registers, copy operations have to

be inserted to move the values to respect the calling conventions. The idea of having PVRA annotations

is to avoid such copy operations. If a value defined at a certain program point is later used as an input

parameter to some method call in some path reached by this definition of the value then PVRA annotations

would mark this value definition as a method argument giving hint to the run-time register allocator to do

the correct mapping from virtual to physical register.

Annotations Encoding Format

Each bytecode that defines a variable is annotated with a bit PARAM indicating whether in the list of

uses of this definition it is passed as an argument to a method. If positive other pieces of information that

may be useful for the run-time register allocator are (l)the order in which the parameter is passed; (2)the
types of the preceding parameters; (3) the target method call site; (4) whether the mapping from virtual

register to the specific machine register should be fixed after the call. The first three information types can
be encoded in two ways as illustrated in Figure 10. The first alternative encodes the bytecode sequence
number that corresponds to the method call site (2 bytes at minimum and 4 bytes at most are needed

to represent a bytecode address). With this information, the run-time system can load the corresponding
class and retrieve the method signature. The second encoding scheme provides the same information by
annotating the bytecode with the argument passing order and the Java types of all preceding arguments.
The last annotation information is a bit-long field FIXED-MAPPING in the PVRA annotations that instructs

the JVM engine to keep the mapping fixed and survive the method call.

Bytecode PVRA Annotation Formats

opcode
variable
definition

PAR^ ORDER [I,L,F,D,A] . . . [I, L, F, D,A) FIXED-MAPPING
1 bit 5 bits up to 9 parameters 1 bit
1 bit 5 bits up to 16 parameters 1 bit

PARAM BYTECODE-OFFSET FIXED-MAPPING
1 bit 2-4 bytes 1 bit

Figure 10: Example of PVRA annotations

10



Generating Annotations in a Java Bytecode Compiler

PVRA annotations can be generated using traditional data flow analysis and profiling information or

static counts to estimate method calls priorities. As in Java method calls are very frequent, the potential

cost ofspilling a virual register assigned to a calling convention machine register to free the latter for other

method calls may offset the cost of producing the copy operations we want to avoid. We initiallymark only

(1) definitions which last use is a method call, and alloperations in the code between the definition and the

method call are not method calls or are method calls that require no parameter passing or require parameter

passing in non-conflicting order; (2) or definitions for which all their uses following the method call are not

other method calls requiring parameter passing. If there is more than one method call reached by the value

definition, the method call with higher priority is the one annotated.

Employing Annotations in a JVM engine

A JVM engine uses PVRA annotations information when mapping a virtual register to a physical register.

It first checks whether the annotation bit indicates the value is a method argument. If yes, it assigns a physical

register respecting calling convention. For doing so, the allocator checks the rest of the PVRA annotation

bits for the order of arguments and their types in the target method call. This assignment is fixed up

to the method call. At this point the machine register may be freed, according to the information in the

FIXED-MAPPING annotation bit.

Annotations Benefits and Cost

These annotations are useful on machines with special calling conventions. They have less performance

impact as compared to the two previous annotations. The cost is low to moderate as method calls are frequent

in Java programming but our conservative code analysis reduces the number of method call candidates.

2.1.4 Virtual Register Allocation Annotations Improvement and Extensions

A first improvement in our VRA scheme is to allow global virtual register allocation. In this way class

variables are directly mapped into virtual registers much like the way local variables and compiler generated

temporaries are treated. Class member variables are prioritized together with all other variable types and

get a chance to be fixedly mapped to a machine register at run-time. This optimization is possible if we

have whole program information, i.e., all class files of an application are available at bytecode generation

time. If in the application there are calls to methods we do not have the code or the code is available but

may have some side effect on these variables (e.g., an exception may be thrown), at the entry point of these

unsafe program points a spill annotation is generated. When implementing global virtual register allocation

we make use of SYRA annotations and extend these annotations not only for method calls but for all

bytecode operation types. An extra annotation bit indicates whether SYRA annotations are present or not

at a bytecode. Traditional interprocedural analysis together with profiling information or static frequency

of methods and call graph analysis can be done at compile time to extract information for global register

allocation annotations.
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Related to our global virtual register allocation is Wall's approach for interprocedural register allocation

at link-time introduced in [11], In that case, all object files, i.e., the whole program, is available for the

link-time register allocator. His approach allows object files to be compiled separately and implements local

register allocation. While doing this register allocation annotations are generated containing actions to be

taken in case at link-time global register allocation is attempted. At link-time his approach "fixes" the

register allocation of individual modules to decrease the interference between the independent allocation

decisions.

Though we can do global virtual register allocation to guide our mapping-based dynamic global register

allocation much like in the way Wall's approach does link-time global register allocation, the Java contextwe

work onissometimes different asclasses andmethods are loaded ondemand andwhole program information

is not available not even at run-time.

Our annotations scheme provides a way to do efficient local register allocation at run-time and we can

think of further improvement that allows incremental cross module register allocation even if not all classes

and methods are available at run-time. In this new scheme the annotations for register allocation described

above do not change. What changes is the way our dynamic register allocation works. In this new approach,
a method gets loaded and the dynamic register allocation is invoked at each bytecode. For method call

instructions for which profiling information or static frequency for the method being called indicate it is
more frequently executed than the one been compiled, and if it is a leaf method, the register allocation for

the current method is interrupted, and register allocation of the called method is done first. Combining
the information provided by the SVRA annotations together with new annotations for static frequency or
profiling information on methods, locals and global variables accessses per method it is possible to identify
the virtual register to physical register mappings that should be maintained fixed in the calling method and
which physical registers are not available for allocation in the called method. After identifying such machine
registers, local register allocation in the called method proceeds as normal, using the VRA annotations and

only then the calling method register allocation is subsummed. If it happens that the called method is

not a leaf method or profiling information indicates it has no priority over the calling method, there is no
interruption in the allocation of the latter. This kind of cross module register allocation helps optimizing
call costs at some program points.

2.2 Annotations for Code Improving and Instruction Scheduling Optimizations

Our VRA scheme serves as a mechanism for identifying redundant bytecode operations and also redun
dant bytecode sub-operations and eliminating them, conveying information to the JVM engine to do local
common subexpression elimination and copy propagation with no run-time cost (except for the annotations
overhead). In this section we identify other common compiler optimizations that would be interesting for the
JVM engine to apply to generate high performance code at low cost. We designed annotations that carry
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information on code replacement and alternative schedules, annotations for run-time check elimination, an

notations for memory disambiguation and annotations for simple post-scheduling optimizations (peephole

optimizations). These annotations convey information of different levels of complexity targetting a wide

range of optimizations, some more applicable to interpreters others more to optimizing JIT compilation

systems.

2.2.1 Code Replacement and Alternative Schedules Annotations

Annotations Semantics

In Code Replacement annotations each bytecode is annotated with a future bytecode operation that can

be moved up and code for it can be generated at the time of producing code for the current bytecode, or

each bytecode can be annotated with a future bytecode it can be moved down with, delaying its translation.

In case the bytecode operation candidate for replacement is composed of implicit sub-operations, each sub-

operation will have an independent annotation of how far it can be moved. This kind of annotation is useful

for simple optimizations such as expressing loop invariant removal or instruction scheduling optimizations

such as branch scheduling. At run-time the JVM engine can ignore this extra annotation or use it if it results

in some benefit in the target architecture.

Extending on the idea of Code Replacement Annotations, we designed the Alternative Scheduling anno

tations that improve on the former by supporting fancier instruction scheduling optimizations such as, list

scheduling, trace scheduling and software pipelining. These traditional compile-time optimizations depend

on machine specific information but the annotations can carry the best machine independent scheduling al

ternatives that are evaluated only at run-time for selection of the best choice for the target architecture the

code is being compiled to. When encoding such annotations we indicate the corresponding virtual register

allocation annotation that should be used in case the optimization is carried out.

Annotations Encoding Format

Our current annotations for code replacement supports loop invariant removal and is illustrated in

Figure 11. It is encoded as a list of pairs (bytecode sequence number, (bytecode sequence number,

sub-operation sequence number) . . . ). The first bytecode number represents the point where translation

process should consider the translation of other bytecode sub-operations suggested in the subsequent pairs

(bytecode sequence number, sub-operation sequence number) in the alternative schedule annotation.

Generating Annotations in a Java Bytecode Compiler

We have experimented with generating annotations for loop invariant removal. Traditional compilation

analysis techniques could be applied for generating the Code Replacement annotation. All that was necessary

was to keep track of which operations in our Java IR corresponded to which bytecode operation. If after

applying the optimization the bytecode sub-operations did not get split, or a valid bytecode sequence can be

generated from the optimized Java IR, no annotation is generated. Otherwise, an annotation is generated

indicating how the bytecode sub-operations should be split.
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Bytecode Code Replacement Table Annotation Format

generalopcode

BYTECODE-OFFSET

2-4 bytes

BYTECODE-OFFSET SUB-OPERATION-OFFSET

2-4 bytes 3 bits

Figure 11; Example of Code Replacement Annotation Format

Other optimizations for instruction scheduling may require a changein the traditional compilation tech

niques to adapt them back to moremachine independent optimizations or their respective heuristics adjusted

to other cost functions that take into account the fact that we are trying to generate the best machine inde

pendent optimization we can and the encoding of it as annotations has an associated cost, such as the size

of the annotated class file, the complexity for interpreting the annotations in the JVM engine. As we try

with other optimizations the format of alternative schedule annotations will be redefined and improved.

Employing Annotations in a JVM engine

When doing our virtual register allocation all basic compiler optimizations such ascommon sub-expression

elimination, copy propagation and loop invariant removal have already been applied to the code. Therefore,

the VRA annotationsgenerated take into account the effect of all these optimizations and the annotation for

code replacement is not optional and has to be encoded inthe class file and interpreted by the JVM engine as
they carry extra information that could not be conveyed in the Java stack language program representation.

The first action of the JVM engine is to check the presence of Code Replacement annotations in the class

file and as it translates the bytecode stream it checks whether a bytecode sequence number matches the

pairs listed in the annotations bytes. If so, translation of the named referenced bytecode sub-operations is
carried out. This ordering is a consequence of our implementation. It does not reflect a restriction on the

interaction among different annotations types.

Annotations Benefits and Cost

The benefits and costs of such annotations depend on the optimizations we want the annotations to

support. For loop invariant removal optimization the cost of the annotations is low in space consumption

and the benefit is high as we allowed the JVM engine perform a very basic and traditional optimization

with no run-time cost and we completely overcame the innefficiency of Java stack language in expressing
this optimization.

2.2.2 Run-Time Checks Annotations (RTC)

Annotations Semantics

Our run-time check elimination annotations have been explained in [8]. They serve as a mechanism for

selectively disabling implicit Java run-time array bounds checks.
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Annotations Encoding Format

As specified in [5], for array references, three kinds of run-time checks need to be performed; whether the

array object reference is not NULL, the array index is greater than zero and less than the array size. This

information can be encoded using 3 bits as shown in Figure 12. Another possible encoding combines the

array index range checks annotation bits into 1 bit, assuming the JVM engine, via an unsigned comparison

can check both range limits.

Java Source Code

a[i] = 2*a[i] + b[i]

Bytecodes RTC Annotations

a 1 o a d a

i 1 o a d i

i c 0 n s t 2

a 1 o a d a

i 1 o a d i

iaload 111

i mu 1

aload b

i 1 o a d i

iaload 10 1

iadd

las tore 0 0 0

Figure 12: Example of Run-Time Checks Annotations

Generating Annotations in a Java Bytecode Compiler

For generating RTC annotations we reused array bound checks analyses as decribed in [6, 9].

Employing Annotations in a JVM engine

The JVM engine uses this annotation in a very simple way. Depending on the value of the annotation

bits, extra code for performing the checks is generated when translating the bytecode.

Annotations Benefits amd Cost

The cost of RTC elimination annotations is low and the benefit is high. It eliminates redundant checks

that involve branches that are always expensive operations even in current CPUs.

2.2.3 Memory References Tags Annotations

Annotations Semantics

Memory References Tags annotations were introduced in [8] and they were designed based on our past

experience with instruction scheduling optimizations [10] where we noticed the need for high level source

code information to produce better memory disambiguation analyses. Pointer analyses are an important

problem in optimizing C, C-|—I- code. Though Java disallows explicit pointer arithmetic it also suffers from

ambiguity in memory references which prevent code optimizations. Figure 13 shows such problem, where

array references a and b may be alias to the same array object.

This kind of annotation could be useful in choosing among alternative schedulings for a method code.
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Figure 13: Example of memory ambiguation problem

For example, observe the code in Figure 14. Suppose when compiling class Classl, the code for method

Class2.foo2() was not available and therefore in the compilation of classes Classl and Class2 we could not

use the information that the parameters to Class2.foo2()) reference the same objects. When compiling

Class2, suppose method

ttClass2.foo2 was identified as having high execution frequency. In this case two alernative schedules were

generated for method Class2.foo2(). At run-time, having the memory reference tag annotation helps the

JVM engine to choose the correct and most optimized code for method Class2.foo2(). If the alternative

schedule is not generated at compile time, we can use the memory reference annotations to help the JVM

engine implement such optimization at run-time.

class Classl{

public static void fool(){
a =. . .

b =. . .

Class2.foo2 (a, a);
}

class Class2{
public static void foo2(int a[], int b[], int i){

aii] = 2*a[i] + b[i];

optimized code: a(i] = 3*a[i]
non-optimized code; a[i] = 2*a[i] + b[i]

Figure 14: Example of Memory Reference TagAnnotations use in selecting alternative instructionschedules

Annotations Encoding Format

Different encoding formats can be designed depending on the target optimization. We can propose an

encoding scheme where each bytecode that manipulates a variable is annotated with an encoded form of the

name of the variable and of its memory allocation strategy as shown in Figure 15. This information can be

used as memory disambiguation information in an optimizing JVM engine. If the JVM is not anoptimizing

engine, still better code quality can be achieve by having annotations for alternative method scheduling and

opting for one ofthem depending onthe information provided bymemory reference tagsannotations. In this

second case we could think of an encoding scheme that for each method call bytecode annotates information

on the variables passed as argument. At translation time, the JVM engine checks the presence ofmemory

reference tags annotations in the calling method and alternative scheduling annotations in the called method

and a decision is made to pick the most appropriate one.

Generating Annotations in a Java Bytecode Compiler

Traditional memory disambiguation analyses can be used to generate memory reference tags annotations.
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Java Source Code

a[i] = 2*a[i] + b[i]

Bytecodes Memory Reference Tags Meaning ofAnnotations
Annotations

a 1o ad a /O/l/Ol /stack/obj ref/a
i 1 o a d i /O/O/ll /stack/int/i

i c o n s t 2

a1o ad a /O/l/Ol /stack/obj ref/a
i1o ad i /0/int/ll /stack/int/i

iaload /1/array/O/OO /heap/array/int/*
i mu 1

a1oad b /O/l/lO /stack/obj ref/b
iload i /O/O/ll /stack/int/i

iaload /1/1/Q/QO /heap/array/int/*
i add

iastore /l/l/G/GO /heap/array/int/*

Allocation Type:
|0 stack
J1 heap
I

[Variable Type :
mon-reference 0

[reference 1
I

[variable names
[unnamed 00
la 01

[b 10
li 11
I

I

Obj ect Types:
iarra_y 1

Figure 15; Example of Memory Reference Tag Annotations Encoding

Employing Annotations in a JVM engine

The Memory Reference Checks annotations can be used in guiding run-time code optimizations, elimi

nating the need for memory disambiguation analyses at run-time or can be used by a non-optimizing JVM to

decide on alternative scheduling annotations, and therefore producing high quality code without no run-time

overhead.

Annotations Benefits £ind Cost

The cost of Memory Reference Checks annotations can be high due to the potential need for encoding all

method variables and their memory hierarchy paths and the frequency of method calls in Java codes. The

benefits, bearing on paat experience, are moderate.

2.2.4 Simple Post-Scheduling Annotations

Simple Post-Scheduling annotationshelp the JVMengine to produce codethat better uses the target machine

idioms. Although these annotations are still machine independent, the idea is to identify and mark blocks

of bytecode instructions that can be performed by commonspecial machine instructions. Special machine

instructions can be seen as super-operators that combine two or more basic machine instructions. This kind

of instructions are very commonin current architectures such as Sun SPARC, IBM PowerPC, DEC Alpha,

Intel 1386, HP PA-RISC, Motorola 68000, MIPS.

Annotations Semantics

Some machines combine simple operations into more powerful ones. For example, in SPARC, a simple

translation of the machine code sequence sub i,10, result; subcc result, 0, 0; be can be simplified

by subcc b,c, 0; be;. In PA-RISC, a loop condition test and the increment of the condition variable can

be transformed into addBT, <= i limit Label. Using annotations we can mark the bytecodes that form

a common instructions combinations listed in a predefined set of super-operators. At run-time it is up to
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the run-time engine to check the applicability of this instruction combination for the target machine it is

generating code for and, if super-operators overlap, the order in which the instruction combination is applied

depending on the benefit it results.

Annotations Encoding Format

Figure 16 shows an example of how Post-scheduling annotations can be encoded. When generating code

for SPARC machines, bytecodes 3 and 4 can be combined and the translation produces one less machine

instruction. When generating code for PA-RISC, bytecodes 3, 4 and 10, representing a loop construct can

be combined and only one machine instruction is generated. One possible annotation encoding scheme

would create a table of pointers to bytecodes that should be combined forming a certain pattern and which

bytecodes should be skipped if this particular combination is valid on the target machine.

Bytecode

1 iload limit

2 iload i

3 isub

4 iflt 10

10 inc i

Goto 1

Annotations Encoding

TYPE BYTECODE-OFFSET BYTECODE-OFFSET BYTECODE-OFFSET SKIP
Patternl 3 4

Pattern2 3 4 10 10

Figure 16; Example of Post-Scheduling Annotations Encoding

Generating Annotations in a Java Bytecode Compiler

By studying the instruction set of common architectures we can identify common combinations of basic

machine instructions and use this information for producing the annotations. The analysis required in the

front-end is basically pattern matching. For some fancier instruction combinations, control flow information

(e.g., identification of loop constructs, for statements, if-then-else statements) may be necessary.

Employing Annotations in a JVM engine

These annotations can be used in a JVM engine as the last phase of the code optimizing process or after

all scheduling annotations and register allocation annotations have been processed. The run-time effort it

demands is minimum as the JVM only has to check whether a certain marked bytecode block corresponds

to a supported machine idiom. If yes, the substitution is carried out. An improvement when no other

alternative scheduling annotation is present and that avoids any code rewriting is to process post-scheduling

annotations as the bytecodes get translated.

Annotations Benefits and Cost

The benefit of this annotation type remains to be anlyzed. Most instruction combinations are very

simple and should not be time consuming to be implemented in a JVM engine, either an interpreter or JIT

compiler. However, ifpresent, these annotations do save time as it frees the run-time engine from searching
for bytecodes pattern matching, rewriting ofcode to correct instructions addresses, and in the case ofmore
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complicate instructions combination, frees the JVM engine from producing control flow analysis to find out

high level constructs, such as loops. The space cost is low to moderate.

2.3 Annotations for Memory System Optimizations

Another area we believe annotations information can speed up or improve on the work done in a Java run

time system is to provide information for efEcient memory management. We have thought about kinds of

information that can improve the efficiency of garbage collection and also that can reduce the frequency

garbage collection is invoked. Precise information on variables types and objects liveness are compiler

analyses information useful for the run-time system to accomplish such goals.

Related work in this area has shown how such analyses information can be generated at compile-time

and at run-time and how a compiled code can carry such information. In [4] Diwan shows several things:

how tidy and untidy pointers (those derived from expressions that use tidy pointers, resultant from program

computation or compileroptimizations) can be tracked; their liveness information collected; at which program

points garbage collection should be invoked and liveness information is needed (basically method calls and

loops); when code has ambiguity on the values of pointers, how it can be modified to remove the ambiguity;

and how liveness information can be efficiently encoded as sets of tables per garbage collection points and

input in the compiledobject code makingit available to the run-time memorymanagementsystem. In [2] the

authors report an extension of the former work that brings it to the Java language context. They show how

type information and liveness information can be combined to implement a more precise garbage collection

system. Even in the strongly typed Java language type information can be ambiguous at certain program

points and the authors describe a compiler analysis that can be done at load time to solve this problem.

They show how liveness analysis can be collected at load-time and how it is useful in controlling heap size.

In their findings they concluded that augmenting a type-precise garbage collector with live variable analysis

reduces heap size by an average 11% and the cost of generating this information at load-time is 50% greater

than the cost of generating only type information. The authors consider the possibility of pre-analyzing

the code and inserting information into class files as additional attributes. They claim that this would be

a solution for trusted class files only because for classes obtained over a network the verification process is

more expensive than the re-computation of the information.

We can contribute in this area by proposing a good annotation encoding of the liveness information

and encode a solution for ambiguity type information without code rewriting as the work listed above

does. This guarantees a speed up for trusted classes. The paper does not comment on the complication

of rewriting instructions at load-time (to remove code ambiguities that complicate garbage collection) but

acknowledges the complexity of generating type and liveness information as classes are dynamically loaded.

Having annotations canspeedup part ofthe process andmaybe helpful as a starting information for tracking

liveness of untidy pointers that can appear as a result of translating bytecodes into machine codes.
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A more original work direction is to use livessness information to identify short-lived objects and for them

allocation is done on the stack instead of on the heap. These objects get allocated and freed by the JVM

engine without calling garbage collection memory management functions. Short-lived objects do not have

much impact on heap size but they reduce the amount of garbage collection points decreasing the frequency

garbage collection is invoked.

2.3.1 Object Liveness and Heap/Stack Allocation Annotation

Annotations Semantics

Object liveness annotations, indicate, which variables are object references and are live at each garbage

collection point, providing information for more precise garbage collection. Heap and Stack Allocation

annotations use this liveness information and the object structure and size to suggest an allocation strategy

for the object. Object allocation bytecodes get annotated with this information.

Annotations Encoding Format

What needs to be encoded by object liveness information is not program variables (Java method local

variables) but stack slot positions these program variables are mapped to. This happens because in Java,

variables of different types may end up been allocated in the same stack slot in the stack frame (depending

on how the compiler generates code, as shown in the code example in Figure 17 extracted from [1]. As seen

in this example, the stack layoutis not simple to figure out and in some cases may be control flow dependent.

The difficulty is to calculate precise stack layout for each garbage collection point at run-time. If we can

have this information already computed, timeis saved. Schemes for encoding this information already exist

and our work would be to adapt them to our annotations scheme with low decoding overhead. Most stack

maps are encoded as tables. As tables tend to repeat from one GC point to another, only the differences

from a common main base table are annotated. In Java, GC points would be object allocation bytecodesj
method invokations we do not know the code at compilation-time or that include instructions for allocating

objects; and loops (to avoid storage retention ifthe loop operations do not include allocation instructions).
Our Heap/Stack allocation is much less expensive to encode. For each object allocation bytecode a bit

STACK-ALLOCATION-SUGGESTED is set according to the result of the compiler analysis.

if (b)(
int i;

1
else{

object o;

}

Figure 17: Example ofJava code that can lead to ambiguous stack slot mapping

Generating Annotations in a Java Bytecode Compiler
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We would reuse the compiler analyses from [2, 4] and we would create new analysis for choosing objects

for stack allocation. The size of an object, the types of the object's fields (whether the fields are reference

or non-reference fields) are the information that will guide our analysis.

Employing Annotations in a JVM engine

Annotations for liveness information are used by garbage collection functions as described in the literature.

Annotations for stack/heap allocation guide the invokation of memory allocation functions that reserved

memory space that may be garbage collected or not.

Annotations Benefits eind Cost

Previous work has analyzed the benefits of liveness information for precise garbage collection in the

context of non-generational collector. Remains to be seen how it impacts other types of collectors. We are

not aware of any JVM implementation that has tried different strategies for Java objects allocation. The

benefits of our stack/heap allocation annotations remains to be checked. Previous work report that the cost

of encoding liveness information is as high as 16% of the code size. The cost of annotations for allocation

strategy is very low, one bit per allocation bytecode.

3 Conclusions

In this report we listed an initial set of annotations that we believe are useful in speeding up the work and

the quality of code generated by JVM engines. This is not yet a complete set of Java Bytecode annotations

but they represent attempts to optimize three important aspects of any high performance Java application

code: the quality and run-time applicability of register allocation and instruction scheduling optimizations

and the reduction of the impact of the Java memory management scheme on the application running time.

The annotations set presented here reflects what we have implementedand what is under implementation in

our annotation-generating compilation system and in our Annotation-aware Java Virtual Machine (AJVM)

engines.
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