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Abstract 

Recent re-analysis of traditional Categorical Perception (CP) 
effects show that the advantage for between category 
judgments may be due to asymmetries of within-category 
judgments (Hanley & Roberson, 2011). This has led to the 
hypothesis that labels cause CP effects via these asymmetries 
due to category label uncertainty near the category boundary. 
In Experiment 1 we demonstrate that these “within-category” 
asymmetries exist before category training begins. Category 
learning does increase the within-category asymmetry on a 
category relevant dimension but equally on an irrelevant 
dimension. Experiment 2 replicates the asymmetry found in 
Experiment 1 without training and shows that it does not 
increase with additional exposure in the absence of category 
training. We conclude that the within-category asymmetry may 
be a result of unsupervised learning of stimulus clusters that 
emphasize extreme instances and that category training 
increases this caricaturization of stimulus representations. 

Keywords: Categorical Perception, Category Labels, 
Perceptual Learning, Category Learning, and Language 

Introduction 
Categorical perception. Our perceptual systems fail 
overwhelmingly to be precise replicators of reality in the way 
a camera or a microphone is, because these systems have not 
evolved to create a veridical representation of reality. Though 
constrained by overall neural architecture and the inertia of 
representations in primary sensory areas (Petrov et al., 2005), 
our perceptual systems consistently learn to create useful, but 
potentially distorted, representations of reality (Landy & 
Goldstone, 2005). 

Often, this perceptual learning produces experiences that 
do not reflect the continuous variation of reality. Instead they 
warp that variability into discrete groupings such that entities 
that fall within a group are less discriminable than physically 
equally spaced entities that fall in different groups, a process 
known as categorical perception (CP; Harnad, 1987). 

While some of the focus in CP research has been on 
assessing if particular categories are innate through cross-
cultural studies (Kay & Reiger, 2003; Roberson & Davidoff, 
2000; Sauter et al., 2011), early studies of CP focused on 
phonemes (Liberman et al., 1957) which show systematically 
different category boundaries based on an individual’s native 
language (Logan et al., 1991).  

Learned CP has been shown in the visual modality across a 
variety of dimensions including hue and saturation 
(Goldstone, 1994), line drawings (Livingston et al., 1998), 
and morphs between arbitrarily paired faces (Kikutani et al., 
2008; 2010). 

Category labels and CP. An alternative framework suggests 
that the presence of category labels, and not perceptual 
changes, are responsible for CP effects (Pisoni & Tash, 
1974). In this view the category label can be seen as an 
additional feature: entities in different categories have 
different labels thus having an additional feature unique for 
each category. This causes similarity to decrease and 
discrimination accuracy to rise. Items in the same category 
have the same label and thus either their similarity increases 
or remains constant leading to discrimination accuracy that 
does not increase. 

Hanley and Roberson (2011) point out that the accuracy in 
assigning category labels is not constant across distance to 
the category boundary. Items farther away from the boundary 
are more likely to be categorized correctly than items closer 
to the category boundary. This viewpoint is consistent with 
many models of category learning that do not incorporate 
perceptual learning, including decision boundaries (Ashby & 
Maddox, 1990) and many exemplar-based (Nosofsky, 1986) 
models of category learning. 

 
Within-category discrimination asymmetries. In 
perceptual discrimination testing in which a target object (X) 
must be held in memory and compared to itself and a foil 
object (A and B, respectively), if A is more likely to be 
assigned the same category label as X than B, then the 
probability of selecting A as the answer should increase 
relative to if A and B are equally likely to be assigned to 
categories. Therefore, when the target object is farther away 
from the category boundary than the foil and thus more 
consistently labeled in the category, accuracy will increase 
because the target object is more likely to be selected. 
Similarly, when the foil object is farther away, accuracy will 
decrease because the foil object will be selected more 
frequently (compared in both cases to cases in which no 
labeling asymmetry exists). 

Hanley and Roberson (2011; see also Roberson et al., 
2007) find this asymmetric within-category advantage for 
more perceptually extreme targets across a wide array of 
stimuli for which CP effects have been shown, including 
color across cultures (Roberson & Davidoff, 2000; Roberson 
et al., 2000; Roberson et al., 2005), facial emotions 
(Roberson et al., 2007), morphed celebrity faces and 
morphed unfamiliar but trained faces (Kikutani et al., 2008; 
2010). They failed to find an advantage for more extreme 
faces among morphed unfamiliar and either untrained 
(Kikutani et al., 2008) or covertly exposed (Kikutani et al., 
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2010) conditions. Recently, Sauter et al. (2011) failed to 
replicate the within-category asymmetry across cultures for 
morphed facial emotions despite showing CP effects. 

 
CP within categories. Recent evidence has demonstrated 
(Gureckis & Goldstone, 2008; Hendrickson et al., 2010) that 
CP effects emerge not only between categories but also 
within categories. For example, two objects that belong to the 
same learned category (receiving the same label) may 
nonetheless have increased discriminability if they belong to 
different clusters within the category when compared to the 
case in which they belong to the same cluster. Within-
category CP effects occur when the distribution of members 
of a category is structured into clusters (sub-groups within 
each category) rather than distributed uniformly (e.g. 
Goldstone, 1994) or normally (e.g. Ashby & Maddox, 1990).  

These within-category CP effects are consistent with 
models of categorization in which the discriminability of 
items is not only affected by their category label but also by 
the learned clustering of items regardless of their labels 
(Love et al., 2004; McDonnell & Gureckis, 2011). These 
learning processes account for both within and between 
category CP effects through representational change: learning 
new clusters or prototypes that warp the similarity between 
entities either within or between categories (Goldstone & 
Hendrickson, 2009). 
 
Within-cluster discrimination asymmetry. Interestingly, 
Gureckis and Goldstone (2008; see also Hendrickson et al., 
2010) also found that the magnitude of the CP effects on both 
the category relevant and the category irrelevant dimensions 
increased as categorization accuracy improved. Importantly, 
neither of these CP effects were found before training. 

Using this kind of stimuli space, the label ambiguity 
account of CP hypothesizes that the within-category 
asymmetry should emerge with the CP effect along the 
category-relevant dimension and is in fact causing the 
categorical perception effect. This would be for 
discriminations perpendicular to the category boundary in a 
two-dimensional space (see Fig. 1). 

What remains unclear is if, within each category, a similar 
asymmetry should emerge parallel to the category boundary. 
A strict category label account suggests this should not occur 
because all stimuli would be equidistant to the category 
boundary and thus categorized equally accurately. This strict 
viewpoint would need to postulate a second mechanism to 
account for within-category CP effects. 

Conversely, a category label ambiguity theory of CP that 
allows each cluster within a category to have a unique label 
would predict that the asymmetry will occur along the 
category-irrelevant dimension and that the emergence of the 
asymmetry will cause the within-category CP effect. The 
main purpose of this work was to investigate the emergence 
of within-category asymmetries along both the category 
relevant and irrelevant dimensions. A pre-post design was 
used to assess the relative timing during training of the 
emergence of CP effects and within-category asymmetries. 

Experiment 1 
In the first experiment we tested these predictions by 
measuring perceptual discrimination accuracy along both 
relevant and irrelevant dimensions before and after category 
training. The stimuli and category structures were identical to 
previous studies (Gureckis & Goldstone, 2008; Hendrickson 
et al., 2010) that showed CP effects both dimensions. The 
perceptual discrimination task was a two alternative forced 
choice (2AFC) XAB task similar to those reported by Hanley 
and Roberson (2011). The within-cluster asymmetry and the 
standard CP effect were measured along the category 
relevant and category irrelevant dimensions before and after 
category training. 

Method 
Participants. 80 Indiana University undergraduates 
participated in this experiment for course credit. 1 participant 
was excluded from analyses for failing to conclude the 
experiment within the allotted time (60 min). 

 

 
Fig. 1: Stimuli varied along two arbitrary dimensions (1 and 2) 

forming a 10-by-10 grid of blended faces.  The light grey stimuli 
were not used in discrimination or categorization, introducing a 
source of within-category structure (two clusters of faces within 

each category).  The vertical line between columns E and F shows 
an example category boundary used during category learning (the 

other boundary was a horizontal line between rows 5 and 6). 
 
Materials. A 2-dimensional 10 by 10 matrix of bald male 
faces was created using a standard morphing technique 
(Steyvers, 1999). Each dimension was created by morphing 
between two faces selected from Kayser (1997). The two 
selected faces were roughly equally spaced in the multi-
dimensional space based on a pilot similarity judgment task. 
The 100 stimuli that constitute the full matrix were created 
by equally morphing between all unique pairs of 10 faces in 
each of the two dimensions of faces (see Fig. 1). 
 
Procedure. The task consisted of a block of 192 
discrimination trials (pre-categorization phase), followed by 
8 blocks of 16 categorization trials (categorization phase), 
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and a second block of 192 discrimination trials (post-
categorization phase). 

Each discrimination trial followed the XAB pattern: a 
target stimulus (X) was presented for 500 ms in the center of 
the screen followed by a response screen containing a target 
and a foil (A and B) stimulus presented horizontally until a 
response was made. A 500 ms blank screen was presented 
between the two screens and between trials there was a pause 
of 1000 ms. Participants were instructed to determine 
whether A or B was identical to X.  The “target” is the option 
identical to X, and the “foil” is the other choice. 

Target and foil face stimuli were selected such that they 
were identical along one dimension and were separated by 2 
face stimuli in the 10 X 10 stimulus space along the other 
dimension. This spacing was determined by pilot studies to 
avoid ceiling or floor performance. The two central rows and 
columns were not used as either targets or foils. 

Participants completed 384 discrimination trials broken up 
into the two blocks). Each block of 192 trials consisted of 12 
unique trials in each row (and each column): the first and 
fourth stimuli in the row were compared four times, the 
fourth and seventh were compared four times, and the 
seventh and the tenth stimuli were compared four times (see 
Fig.1). Within each pair each stimulus was the target twice 
and with the target occurring equally often on the left and 
right position. These comparisons were made for 8 rows 
(excluding the middle two) and 8 columns (or rows), both 
parallel and perpendicular to the category boundary. 

Each categorization trial consisted of a face stimulus 
appearing in the center of the screen. The two category labels 
appeared below the stimulus indicating which key (“q” or 
“p”) should be pressed to indicate that category label. The 
assignment of labels to keys was randomized on each trial. 
After participants respond, feedback indicating the correct 
category label was presented for 1000 ms followed by a 
pause of 1000 ms between trials. Each non-grey stimulus 
from Fig. 1 was presented twice in random order during 
category training. 

Results 
Categorization Performance. A repeated measures 
ANOVA with block as a factor revealed a significant effect 
on categorization accuracy F(7,546) = 21.75, p < .0001, 
categorization accuracy improved throughout training.  

A linear regression between distance to the center of the 
category space and categorization accuracy was performed 
separately for each dimension (category relevant and 
irrelevant). There was a significant improvement in accuracy 
for stimuli more distant on the category relevant dimension, 
F(1,236) = 73.7, p < .0001 but no significant change in 
categorization accuracy as a function of distance along the 
irrelevant dimension F(1,236) = 1.47, p = .23. 
 
Discrimination Performance. All discrimination trials were 
coded in three ways. Half the trials varied along the category 
relevant dimension (perpendicular to the category boundary) 
and half along the irrelevant dimension. Discrimination trials 

were also coded on the relative extremeness of the target and 
foil objects: an equal number of trials were coded as “foil 
more extreme”, “target more extreme” and “equal.” Finally, 
for traditional CP analyses, the “foil more extreme” and 
“target more extreme” trials were grouped as Within trials, 
“equally” extreme trials were coded as Between trials. 
Between and Within trials could be relative to the category 
relevant or irrelevant dimension. 

  
Fig. 2: Experiment 1 Results. Top-left: pre-categorization target-foil 

extremeness. Top-right: change in target-foil extremeness after 
categorization. Bottom-left: pre-categorization CP effects, split by 
dimension. Bottom-right: change in CP effects after categorization, 

also split. Error bars represent standard errors. 
 
Pre-categorization phase. The graph in the top-left panel of 
Fig. 2 depicts the pre-categorization results, divided by 
extremeness condition. A 3 x 2 repeated measures ANOVA 
with relative extremeness (Equal vs. Foil vs. Target) and 
dimension (Relevant vs. Irrelevant) revealed a main effect of 
stimulus extremeness, F(2,156) = 16.15, p < .0001, but no 
main effect of dimension, F(1,78) = 2.06, p = .16, or 
interaction, F (2,156) < 1. Pairwise comparisons revealed 
that discrimination accuracy is higher when the target is the 
more extreme stimulus when compared to when the foil is 
more extreme, p = .0001, and when they are equally extreme, 
p = .001. The last two types of discrimination trials did not 
differ, p = 1. All p values were adjusted for multiple 
comparisons using a Bonferroni correction. 

The results from the pre-categorization task considering 
the traditional CP analyses are depicted in the bottom-left 
panel of Fig. 2. A 2 x 2 repeated measures ANOVA with CP 
type (Within vs. Between) and dimension (Relevant vs. 
Irrelevant) as factors revealed a main effect of CP type, 
F(1,78) = 4.34, p = .04, with Within more accurate than 
Between, but no effect of dimension, F(1,78) = 1.68, p = .20, 
or interaction between the two variables, F(1,78) < 1. 
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Change in discrimination performance after learning. The 
pre-categorization analyses of extremeness and CP type were 
performed on the change in discrimination performance due 
to categorization. The change was computed by subtracting 
the pre-categorization discrimination accuracy from the post-
categorization. The top-right panel in Fig. 2 depicts the 
results for the extremeness effects and the bottom right 
depicts the same results in terms of CP type.  

A 3 x 2 repeated-measures ANOVA with relative 
extremeness and dimension as factors revealed a main effect 
of extremeness, F(2,156) = 6.89, p = .001 but no main effect 
of dimension, F(1,78) = 1.33, p = .25 or interaction, F(2,156) 
< 1. Pairwise comparisons revealed that performance 
changed equally for target more extreme and equally 
extreme, p = 1. The change in accuracy for the foil more 
extreme condition was significantly less than the other types: 
target more extreme (p = .03) and equal (p = .005). 

To further investigate if accuracy performance improved 
with categorization, we performed a series of one-sample t-
tests for each one of the extremeness conditions. The change 
in accuracy did not significantly differ from 0 for the target 
more extreme condition, t(78) = 1.11, p = .27 but was 
significantly lower for foil more extreme, t(78) = -2.75, p = 
.007. The change in accuracy of the equal condition was 
marginally greater than 0, t(78) = 1.87, p = .06. 

A 2 x 2 repeated-measures ANOVA revealed a main effect 
of CP type, F(1,78) = 5.75, p = .02 but no main effect of 
dimension, F(1,78) = 1.38, p = .24, or interaction between the 
two variables, F(1,78) < 0 (Fig. 2, bottom-right). 

Discussion 
The results of Experiment 1 are not consistent with the 
hypothesis that category label ambiguity causes CP patterns. 
The pre-categorization phase in Experiment 1 indicates that 
the asymmetries seen in 2AFC tasks do not depend on the 
category or verbal codes assigned. More specifically, the 
results show that discrimination accuracy is higher when the 
target is more extreme than the foil alternative in the absence 
of any previous categorization learning. CP patterns were not 
observed before categorization despite the presence of the 
within-category asymmetry; in fact the reverse of the CP 
effect was marginally significant before categorization. 

That the asymmetry exists before categorization suggests 
that it is a result of unsupervised learning processes rather 
than explicit category labels (Gureckis & Goldstone, 2008; 
Love et al., 2004). It remains unclear if the unsupervised 
mechanism is cluster labeling or perceptual change. We 
revisit this point in the general discussion. 

Extremeness along the category relevant dimension 
predicted categorization accuracy but extremeness along the 
irrelevant dimension did not. This suggests that the 
asymmetry along the irrelevant dimension, both before and 
after categorization training, was not produced by differences 
in category labeling accuracy. 

Categorization training did produce the expected CP effect: 
Between improved more than Within. This effect was 
modulated by an asymmetry among the Within trials, the foil 

more extreme trials showed decreased performance and the 
target more extreme showed significantly higher change. 
This asymmetry is consistent with the category label 
ambiguity hypothesis and occurred after category training. 

The changes in discrimination performance differ between 
the relevant and irrelevant dimensions. This may have been 
due to the extensive opportunity for unsupervised learning of 
cluster structure during pre-categorization discrimination. 

Experiment 2  
One hypothesis that must be tested is if the asymmetric 
change in discrimination performance found after 
categorization training in Experiment 1 can be accounted for 
by the increased exposure to the stimuli instead of learning 
categories. This hypothesis is tested in Experiment 2, which 
is similar to Experiment 1 in that it consists of two critical 
blocks of discrimination judgments. However, another block 
of discrimination trials was substituted for the categorization 
task. Thus, by comparing performance in the first and last 
blocks of discrimination trials, which had roughly the same 
number of exposures to the stimulus as in Experiment 1, we 
can test the effect of experience with the stimulus space in 
the absence of categorization experience. 

Method 
Participants. 76 Indiana University undergraduate students 
participated in this experiment for course credit. Two 
participants were excluded from analyses because they did 
not conclude the experiment in the allotted time (60 min). 
 
Procedure. This experiment followed the same general 
procedure of Experiment 1 except for the exclusion of the 
categorization phase. Participants completed 3 blocks of 
discrimination trials. Each block was identical to those in 
Experiment 1. 

Results 
All discrimination trials were coded similar to Experiment 1 
but collapsed across dimension because no category 
boundary was learned. Discrimination trials were coded on 
the relative extremeness of the target and foil stimuli: an 
equal number of trials were coded as “foil more extreme”, 
“target more extreme” and “equal.” Finally, to compare to 
traditional CP analyses, the “foil more extreme” and “target 
more extreme” trials were grouped as Within trials, “equally” 
extreme trials were coded as Between trials. 
 
1st discrimination block. The accuracy results for the first 
block of discrimination by extremeness condition are shown 
in the upper left corner of Fig. 3.  

A repeated measures ANOVA revealed a main effect of 
stimulus extremeness, F(2, 146) = 9.03, p < .0001. Pairwise 
comparisons further revealed that trials in which the target 
was more extreme resulted in better discrimination than trials 
in which the foil was more extreme, p = .006, and also trials 
in which the two stimuli were equally extreme, p = .01. 
Finally, there is no difference in accuracy between trials in 
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which the foil was more extreme and trials in which both 
stimuli were equally extreme, p = 1 (Fig. 3, top-left panel). 

In the traditional CP analysis (despite no category training 
occuring), discrimination accuracy is higher for Within than 
Between discrimination trials, t(73) = -2.01, p = .05 (see Fig. 
3, bottom-left panel). 

 

 
 

Fig. 3: Experiment 2 results. Top-left: Block 1 target-foil 
extremeness. Top-right: change in target-foil extremeness after 

prolonged exposure. Bottom-left: Block 1 CP effects. Bottom-right: 
change in CP effects after exposure. Error bars represent standard 

errors. 
 
Change in discrimination performance. We computed the 
difference in accuracy between the last and first blocks to 
analyze the possible learning effect through successive 
exposure to discrimination trials. The top-right panel in Fig. 3 
depicts the results considering the extremeness analysis while 
the bottom-right panel shows the results organized in terms 
of CP analyses. 

A within-subjects ANOVA performed on these data 
revealed no main effect of stimulus extremeness, F(2,146) = 
1.22, p = .30. Similarly, when analyzing the change in 
performance between the last and first blocks of 
discrimination trials for Within and Between discriminations 
(see bottom right panel of Fig. 3) there are no significant 
differences in performance between the two types of 
discrimination trials, t(73) = -1.65, p = .1. 
 
Categorization (Exp. 1) vs. Exposure (Exp. 2) 
Categorization training (M = 0.011) led to significantly 
higher change in discrimination performance relative to 
exposure (M = -0.031) for target more extreme, t(151) = 
2.62, p = .01, as well as for equal trials, (cat. M = 0.020, exp. 
M = -0.015, t(151) = 2.16, p = .03). On the contrary, there 
was not a significant difference between the change in 
discrimination accuracy for categorization (M = -0.026) and 
exposure (M = -0.036) for foil more extreme trials, t(151) = 
0.72, p = .47). 

Discussion 
The results from the first block of discrimination trials 
replicate those found in the pre-categorization phase of 
Experiment 1. The asymmetry between the target and foil 
more extreme trials existed without category training and 
when CP patterns were not found. 

Without category training, however, comparing the first 
and last blocks of discrimination in Experiment 2 did not 
show a change in performance consistent with the CP effect 
or a change in the difference between equal, target or foil 
more extreme trials. Performance for all trial types decreased 
in a consistent way across all trial types. This is likely due to 
fatigue considering the great number of trials participants 
complete without any feedback. 

Finally, the categorization in Exp. 1 resulted in 
significantly different performance change for equal and 
target more extreme trials than what was seen with exposure 
alone (Exp. 2). However, this was not the case for foil more 
extreme trials. This suggests that category training improves 
discrimination for between-category judgments as well as for 
within-category judgments in which the target is more 
extreme than the foil. 

General Discussion 
The presence of the within-category asymmetry before 
categorization and for each of the clusters refutes the 
hypothesis that the asymmetry alone can account for CP 
patterns or that the asymmetry is a direct result of explicit 
category labels. Instead these results are consistent with an 
unsupervised learning mechanism that is sensitive to the 
distribution of items within categories (Love et al., 2004; 
McDonnell & Gureckis, 2011) and a decision process for 
discriminations that distorts extreme exemplars to produce 
category caricatures in the distribution of items (Goldstone, 
1996; Goldstone et al., 2003; Roberson et al., 2007).  

The change in discrimination performance after 
categorization shows an increase in the asymmetry in 
Experiment 1 but not in Experiment 2. The fact that the 
asymmetry increases on the category relevant dimension as 
well as the irrelevant dimension is a challenge to the category 
label ambiguity hypothesis (Hanley & Roberson, 2011). To 
account for this behavior, the labeling hypothesis must be 
expanded to allow individual clusters within categories, 
learned via unsupervised mechanisms, to be assigned unique 
labels as in SUSTAIN (Love et al., 2004) or other semi-
supervised learning models (McDonnell & Gureckis, 2011). 

However, the fact that the effect of extremeness in a 2AFC 
task is observed before any category learning has taken place 
points to a biasing effect of extremeness within a stimulus set 
rather than category learning per se. Consequently, the 
relative change in performance seen after category learning 
might result from category learning processes that produce 
warped caricatures by shifting perceptual representations 
toward the stimulus extremes (Goldstone, 1996; Goldstone et 
al., 2003). This account is consistent with the relative 
improvement in between-category (and cluster) judgments as 
well as target more extreme judgments after categorization 
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relative to exposure alone for both the relevant and irrelevant 
dimensions. 

We believe the strongest message from this work is the 
critical importance of measuring the change in perceptual 
discrimination performance to understand the learning 
mechanisms that underlie CP. Going forward, we plan to 
expand this analysis to look at changes in within-category 
asymmetries under conditions of verbal interference that may 
impair label usage (Hendrickson et al., 2010; Roberson et al., 
2007) and formalize the unsupervised learning predictions in 
an extension of the SUSTAIN computational modeling 
framework (Love et al. 2004; Gureckis & Goldstone, 2008). 
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