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radial coordinate

axial coordinate

- initial and deformed element lengths

angle defining slope of element
element Tocal coordinate

element local dimensionless coordinate
meridional displacement

normal displacement

axial displacement

radial displacement

- strain components

N.,N MS’MG -

s’'9’
U,Ug,Us,Us
E
v
[D]
AD11,A022,AD333ADuu

[K®]

[K*]

[K]

{a}
[L1,[L7]
[A]

stress resultants

strain energy quantities
Young's modulus
Poisson's ratio
elasticity matrix

increments of diagonal elements of elasticity
matrix due to orthotropic stiffeners

element elastic stiffness matrix

element geometric stiffness matrix
structural stiffness matrix

gehera]ized coordinates

generalized coordinate transformation matrix

coordinate transformation matrix
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{P®},{P*}
(P} -
{8}
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{r*}-

strain interpolation function in terms of
generalized coordinates

strain interpolation function in terms of
element local coordinates

matrices associated with strain energy
leads to geometric stiffness

element nodal force vectors

structural nodal Toad vector
displacement vector in local coordinates
displacement vector in globe coordinates

"equivalent infinitesimal" displacement vector




INTRODUCTION

Axisymmetric shells subjected to axisymmetric loads are common
engineering structures. The failure mode for a structure of this type is
very often due to buckling or large deformation behavior. In this report
a method of analysis and a computer program are presented for the
determination of the displacements and stresses in an axisymmetric shell
loaded into the large displacement range.

The finite element idealization has been used extensively in
recent years for the analysis of axisymmetric shells. Details of its
application are presented in references [1] to [9] and only a brief out-
line will be presented in this report.

In this investigation the finite element method for the analysis
of axisymmetric shells is extended to include large displacement. The
approach seeks an equilibrium position in the deformed configuration of
the structure by a step-by-step iterative solution technique. Previously,
this approach has been successfully applied to the large deflection analysis
of plates [10].

The particular finite element which is ultilized is the truncated
cone which may be reinforced with stiffeners arranged orthotropically. The
computer program developed is for axisymmetric shells of arbitrary geometry.
Examples are presented which illustrate the accuracy of the method. The
analysis of a toroid shell subjected to deep ocean enviroment is presented

to illustrate the practicability of the program.




FINITE ELEMENT ANALYSIS OF
SHELLS OF REVOLUTION

A. Strain Enerqgy

In this investigation, both the shell and the loading are

axisymmetric, In a typical conical frustrum element as shown in figure 1,

the four strain components are given by.
e} = <c_,e >
s°%9°Xg 2 Xg
The four associated internal stress resultants are
o} = <N_N_M_M.>
$6%s®
When the shell is subjected to a system of conservative axi-
symmetric Tloads, and it is in a state of stable equilibrium, let {e°} and
{c°} be the strains and stress resultants respectively. For additional

loads, additional strains {e®} and stress resultants {c? are developed.

The total strains are

{e} {e°} + (%

The total stress resultants are

{o} {c°} + {o%}




e

- N g—

STRESS RESULTANTS IN IDEALIZED
SHELL OF REVOLUTION

ELEMENT LOCAL COORDINATES

FIG.| TYPICAL CONICAL FRUSTRUM ELEMENT




The total strain energy U may be written as
U= % [ 103} an
A
Let [D] be the stress-strain matrix, such that
{o} = [D] {e}

It follows that,

U = %-IAI'{e}T[D]{e} dA
_ 1 {0 a,T o a
—7fAf{_8_.+§_}[D]{g + €%} dA
=Ug + U1 + U,
where Ug=

%-fAf {e°}T [D] {c°} dA
_ 1 a,T a

U1— '?'IAI {8 ]‘ [D] {E } dA

U= ] f te°}’ [0] 1%} o

Up 1s simply the strain energy present prior to the imposition of the
additional loads, it can be treated as a constant, with respect to the new
Toad increment, therefore, it has no contribution to the stiffness of the

element at this stage.




U, depends on the additional strains, and as it is assumed to be
the same as the conventional, small deflection, elastic case, it must yield
elastic stiffness [k°].

U, depends on the initial stress resultants, hence, it must

yield the geometric stiffness [k!].

B. Constitutive Law

For isotropic linear elastic material, the constitutive law in

elasticity matrix form is

1 v 0 0
Vv 1 0 0
[0] - 725=

: 2 2

0 0 t vt
12 T2
vt? t?
0 0 T Tz

When axisymmetric reinforcement is used, the stiffeners are
arranged in meridional and tangential directions. In an axisymmetric
loading condition, there is no torsional deformation meridional stiffeners.
Torsional deformation in the tangential stiffeners is small and is neglected.
Along each stiffener, most places can be freely expanded in lateral direction.
Therefore, the stiffeners can be described as one dimensional structural
members in axial and bending deformations. These axial and bending rigidities are
assumed to be uniformly distributed along the meridional and tangential directions.

although the shell is made with isotropic linear elastic material. Due to geometric




arrangement of stiffeners, the structure has orthotropic behavior. Because

the coupling forces between meridional stiffeners and tangential stiffeners

are small, these effects are negelected, therefore, it is only necessary to

modify the diagonal elements in the elasticity matrix.

The modified elasticity matrix is

—
Tor v R 0
Tovr Tow a0z 0
[D] =
0 0 Et* + AD
12(1-v%) 33
vEt?
0 0 VIGEY

The meridional stiffeners are uniformly spaced along the element

circle, the number n and size tmth will change for different elements.

The total length of the midpoint circle is

1= ﬂ(ri + rj)
let
ASm = lmt
Am = ntmhm
= 3
Im = ntmhm/12.

d = Asm(t+hm)

m EIK;;:K;T




Then, AD;;, the increment of area per unit Tength times
Young's modulus, is given as
ADy1 = EAm/1m

The increment of moment of inertia per unit length times
Young's modulus, ADss , is given as
smm

AD33 = %ﬁ-[A a2 + I+ ég(t + hm=2dm)2]

The tangential stiffeners are also rectangular bars, the space

Ct and size ttxht are the same within an element.

Let
ASt = Ctt
Ay = tehy
- 3
It = ttht/]z
dt = Ast(t+ht)
2(A _+R,)
st 't
Therefore

AD3»

EA,/C,
A
MDwy = F=[Ad2 + I+ oE (¢ + hy, - 2d,)2]
t

C. Kinematic Assumptions and Strain-Displacement Relations

In a conical frustrum element between Joint I (ri,zi) and Joint

J (rjgzj), the displacement of any point in the middle surface of the

shell element, (defined by coordinate S), is defined by the displacement




u and w, meridional and normal to thg shell surface respectively.
(Because of axial symmetry, there is not dispacement in the circumferential
direction). Therefore, the disp]acement field is function of meridional

distance S only, furthermore, this displacement pattern is assumed as

u=a1+a2$

=
[}

a3 + ayS + asS? + qgS3

The continuous system is represented with six degrees of freedom, the
displacement functions can be determined in terms of the nodal point

displacements and rotations.

{8} = [LHo}
or
( u1\ H 0 0 0 0 0_ /aﬂ
W 0 0 1 0 0 0 a2
d
(-a—‘;)i 0 0 0 1 0 0 Qs
4 uj$ 1 L 0 0 0 0 { au
wJ 0 0 1 L L2 L3 | as
e 2
£Y. 0 0 0 1 2L 3 g
\ %3] C ' A\
and

o} = [L7Y]{8}




or

o 1o 0o 0o 0o oy
w | [-f 0 o0 N "

s | |0 1 0 0 0 0 {(g—g)i
<a4? 00 1 0 0o oy ?
LOLGJ _0 -E‘a Ilﬁ 0 -%3 l].___ZJ N(g—;‘—”)jj

For a thin conical shell the strain-displacement equations

are
rdu 1 ,dw ’
(o) au 1 dwo
&s & *7 (%
€g (w cosd + u sing)/r
e} = < P=idzy )
Xs ds?
_ sin¢ dw
LXGJ L r ds J
or

€. = 0o + ;— (o + 20055 + 30652)2

%—[(ul + a25)sing + (a3 + aus + ass? + 0s®)cose]

m
n

= 2065 + 6 0gS

- %(ocu + 2055 + 30457

<
(7]
i

>
<D
1]
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D. Element Elastic Stiffness

The part of strain energy which yields element elastic

stiffness is rewritten as
Uo = 5 [of 1e2)7 [0] €%} dA

Before substituting the strain vector in the above equation. It is worthwhile
to investigate the strain components first. Egs Xg » Xg ° have linear terms
of the nodal displacements and rotations, if they were substituted in Us,

the quaqratic terms in the nodal displacements and rotations are generated.

But, in the meridional strain expression:

dw 2
©)

M
wn

i
Q.'Q.
0n|c

+
NI

The first term is linear, and the second term is quadratic, if substituting
in Uz, the Tatter will only generate cubic and higher order terms of the
nodal displacements and rotations, it is obvious that the mathematical

" model is a nonlinear one. In a usual case, %{%ﬁQZ is one order smaller

than %%3 it is dropped, as in the case in the classical nonlinear theory.

After linearization, the strain vector is given as

A{e} = [W] {a}
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or =

G2

O3

Oy

Os

fesW 0 1 0 0 0 0
sing Ssing CoS Scoso S%cos¢ S3cos¢
ee r r r r r r
Xs 0 0 0 0 2 6S
sin 2Ssin 3S%sin
Lxe‘ 0 0 0 ) r¢ v - r ?
B _
It follows that
{e} = [W] {a}
= WL 8}
= [T] {&}
S.
= [T.IT.] {==
131131 b
Let g :TS-..

Carry out the multiplication, the strain interpolation function is given

as
:
T 0 0
(]'E)'S—i?ni (]-3§2+2;3)@ (€_2€2+C3)ch59
[T.1= . :
1
0 (-6+12z) —l-z (-4+61) l—

0 (67;-6122)5‘—‘1[’i (-1+47-372)3100

n
r

O )




and

[7,] -

e B

0

ST (3rr-2rt)Se (pzygs) Leoso

12

0 0

1 1
(6120},  (-2#60)

(-6z+6:2) 1S (27-372) STnG

el

Then, the strain energy is given as

U,

X J ] 48 TITI0ICTIS) oh

oy i [T1[DI[T] dAT (s}

Apply Castigliano's first theorem. The element elastic stiffness

is

since

it follows that

(K1 = 1 f [TI'[DILT] dA]

dA = 27rldg

[K1 = 2n [ f [T1'[0I(TIrdc]
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This integral is evaluated numerically within the computer

program using a 5-point gauss quadrature integration procedure.

E. Element Geometric Stiffness
| The part of strain energy which leads to the geometric stiffness
is
Us = [ [ {e°37[D] {€?} dA
using the constitutive equations A
{6°}1 = (e°}7[D]
{c°} is simply an initial stress resultants vector. It can be treated
as a constant vector with respect to the new load increment.

The components of the additional strain vector contain both
linear and quadratic terms of the nodal displacements and rotations, since
the linear terms do not contribute to the geometric stiffness. They are
dropped in the following derivation. Retaining the quadratic terms only,

the strain energy is given as

U, = fAf {o°}T{?} dA

1 ,dw,?
fAf NS 7 (ag) dA

1]

%‘fAf N (ow + 2ass + 30es%)% dA

Express U, in matrix form

[
)
1l

T’ [f [ [s] dAT fa}
A




14

where

o 0 0 0 0 0 |

0 0 0 0 0 0

0 0 0 0 0 0

[S] = . ,

0 0 NS 2NSS 3NSS

2 3

0 0 0 2NSS 4NSS 6NSS

2 3 b

0 0 0 3NSS 6NSS 9NSS
L .

From experience, the variation of NS in an element is very small, using the
midpoint (s = 0.5L) value. Also using (2r = rs * rj), the integral can

be evaluated directly. It gives:
U, = %-{a}T[G]{a}

where

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

[G] = TT(Y'_i + rJ.)Ns 0 0_ 0 L L? L3
2 4 3Lt

0 0 0 L =5 5
3 3L gL>s
¢ o o ¥ S5




15

It follows that

[
N
1

Lo el [ e

|-

(637 [K'T {8}

N

Apply the Castigliano's first theorem, the dement geometric

stiffness is

[K'] = [L777[6IL"]

or

0 0 0 0 0 0
6 1 6 1

O st 1w O - T

1 2L 1 L

1 | © w W ° 1w 3

[K'] = ﬂ(v‘1-+rj)NS

0 0 0 0 0 0

6 1 6 L

O w1 ° T -1

1 L 1 2L

O w3 ° -9 1§

— o=

F. Direct Stiffness Formulation

The element elastic stiffness and element geometric stiffness
in the local coordinate system (u,w) are transformed to the global

coordinate system (z,r), as follows:

[R] = [A1TLKI[A]
[R'] = [AITIKMI[A]
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where the transformation matrix is given as

cos¢ sing 0 0 0 0
-sing cos¢ 0 0 0 0
0 0 =1 0 0 0
[A] =
0 0 0 cos¢ sing 0
0 0 0 -sing cos¢ 0
0 0 0 0 0 -1

The element stiffness is written as

(K1 = [R] + [R']
Modifications to the element stiffness matrix to allow for
specified displacement boundary conditions are done by making the terms
of the appropriate row and column zero, and the diagonal term unity. The
load vector is also appropriately adjusted.
The structural stiffness matrix [K] is formed by adding the
stiffness coefficients of the submatrices [K?] into the proper location in

[K]. Symbolically, this process is shown as

m
[KI = ) [

=1

with the summation including all elements.
[K] is stored in symmetric banded matrix form within the

computer storage.
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G. Nodal Loading Vector

In the computer program, the input is in the form of externally
applied Toad which may be either in the form of axisymmetric line force
around the nodal r{ng, or specified nodal displacement. For water pressure
distributed over the element, the tributary area concept is used to lump
the distributed Toad for finding the equivalent nodal loading.

For water pressure P 1b./sq.in. the total pressure resultant

over the element is

-0
n

ﬂPL(Pi +Arj)

2wPL(r1 + %-sin¢)

In the global coordinates, the statical equivalent line load vector

around the nodal rings is

r. .

(—;+ ——QLZ"‘ )sino
Y.

-(—%—+ I—'-g-g-s‘-g-)COScp

(P&} = 2nLp ﬁ 0 }
Y. .

(——;-+ ___iLs;n Ysing

r.

/

The structural load vector is formed by similar technique previous used to

yield structural stiffness.
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LARGE DEFLECTION ANALYSIS

The development given in the previous section is for an
incremental displacement about a known deformed position. The basic
assumption made is that the engineering strains are small and that
the incremental rotations are large.

In the past, the most common approach to the large displace-

ment problem has been the Incremental Method, coupled with the use of

an accurate geometric stiffness. In this method, the large displacement
problem is treated as a series of linear small displacement problems,
with the load being app11ed in increments and the corresponding incremental
displacements found. The complete stiffness is recomputed at each step.
This method has been used successfully where an accurate formulation of
both the elastic and the geometric stiffness terms is possible (11).
However, the method presented in this paper (referred to here as the

Equilibrium approach) does not require the formulation of an accurate

geometric stiffness.

In the Equilibrium approach a structural configuration is sought

in which the total applied loads are equilibrated by the internal structure
resisting forces at the nodes. The final configuration is assumed to be
unique, and it is therefore irrelevant how it is obtained, provided an
equilibrium balance is achieved. A discussion on the uniqueness of the
solution is given by Murray (10).

The general approach is therefore to estimate a deformed
configuration, from which a set of out of balance forces between the applied

Toading (total) and the structure is obtained. This out of balance is
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used to compute an improved estimate of the displacements, and the

process is continued until the out of balance vanishes sufficiently.

Algorithm to Obtain an Equilibrium Balance

For each movement of Toad the following can be considered a
general interactive algorithm to obtain a configuration in which the
total external Toads are equilibrated by the internal forces:

1. Assume the displaced nodal locations (in global co-ordinate
system) by an incremental small deformation analysis; there-
by establishing a displaced local co-ordinate system for each
element.

2. Determine the true element deformations in its displaced local
co-ordinate system.

3. Using the deformations established in the displaced geometry,
compute the element resisting forces.

4. The element stiffness and resisting forces are added to the
global system. Steps (2), (3), and (4) are repeated for
each element. .

5. A set of out of balance nodal forces on the structure (in
displaced configuration) is now obtained, from the difference
between the summed element resisting forces and the total
applied loads.

6. This set of out of baiance loads is applied to the structure
in this configuration, and a set of incremental displacements
is obtained. (The stiffness matrix used in this step has

been determined in Step 3.) Hence a new and improved estimate
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of the displaced shape of the structure is obtained.

Steps (2) through (6) are repeated until an equilibrium balance

is achieved with the externally applied loads.

Some comments on the above method can now be made:

1.

Each incremental displacement analysis is a small displace-
ments analysis and hence the analysis procedure as formulated
for small displacements is still valid for this step. Because
the structural stiffness is only required to obtain a new
estimate of the displaced position, it need not be exact;
therefore, an exact Geometric stiffness is not needed.

The main problem of the method is, given an estimate of

the nodal displacements, to compute accurately the vector

of element resisting forces {P*}. The basic idea is to

find a set of nodal displacements {r*}, which, when applied

to the structure in its deformed geometry, will produce the
correct element deformations (these deformations are by
definition small). This vector of displacements {r*} can be
considered as equivalent small displacements, and the re-
quired element resisting forces are obtained using the element

stiffness [K], i.e.
P+ = [R] {i*}
The structural stiffness is always formed in the deformed

geometry, hence the effect of the change of geometry on the

equilibrium is included.
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Element Resisting Forces

It is necessary to compute a set of nodal forces which holds
the structure in a known deformed configuration. The resisting forces
of each element in the deformed shape are computed and summed at each
node point of the structure. This set of forces is compared with the
total applied loads to determine whether an equilibrium balance has been
achieved. v

The conical element is allowed to have a finite deflection
{6%}, as shown in figure (2). It is convenient to find the a
"equivalent infinitesimal" nodal displacement vector {r*}, as shown in
figure (3), such that the element resisting forces are defined by the

conventional, small deflection, elastic theory.
{P*} = [K] {r*}

where [K] is the elastic stiffness in the deformed geometry.

To establish the relationship between {s%} and {r*}. The
assumption is made that the extensions of the element in both positions
are the same.

The nodal displacements {5} yield the element extension is
given as

AL = L1-Lo

where L2 (roj-rol..)2+(zoj-zo1.)2

2 = 1. ) 24 (2 .~2,.)2
L1 (P;J lJ) (21J 211)
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The extension associated with {r*} is defined by
AL = (r¥-r¥)cos¢* + (rg-ri)sing*

Selections are made for r¥ , F; and r¥ as

it follows that

This will dintroduce additional relative rotation at both nodes of the

element.

* = .

ri U_l

ko =

ry = W

S

Ts Wj
- - AL - -
* = pk ——— - * . pk *
rE=ork+ osP* (r* - r¥)tan¢

It is given as

u Pk
P* = uj sing rqsing*
L L

To compensate for y*, r* and r¥ are selected as

r§ = Bi'— w*
F\*:B._q)*

6 F]

23
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Stress Computation

When the solution for nodal displacements has been obtained,
the stress components {c} in the shell are computed using the following

relationships

{e}
. {o}

(T1{s}
[D] {e} = [D] [T] {6}

To ensure the most accurate evaluation of shell stresses, they
are computed at the midpoint of the element, where the true slope of the
shell is most nearly represented by the straight line approximation of
the conical element. In this manner, one of the main disadvantages of
the conical element is avoided, i.e., the discontinuity of slope at
the nodal point in the finite element approximation. No stresses are
actually computed at the nodes. Hence, in this investigation, stresses

were computed using the equations:

ey = My DI

{o} = [D] {e}

It should be noted that an alternative approach exists to compute
the meridional stress components Ns and MS , that is, by using the element
stiffness matrix and the nodal displacements. (This yields nodal point

stresses.) However, this has been found to yield inaccurate results,
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especially for distributed loading. Again, this is most 1ikely due to the
poor representation of the true geometry of the shell at the nodal points.
In particular, for a shell, under pressure, where classical analyses
predict predominantly membrane action, this method produced a Targe area
of almost constant, but substantial, moment. This effect was noted by

Popov (11) and Navaratna (12).
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EXAMPLES

A. Spherical Shell-Edge Moment Loading

A uniform spherical shell, loaded with a bending moment of 10 in.
Kips/in. at the edge, was selected to illustrate the application of the method
to the elastic small deformation analysis of axisymmetric shells. The shell
has the following properties:

Radius = a = 100"

Thickness = t = 1.0"
E =30 x 10° psi

Young's Modulus

Poisson's Ratio v = 0.3
The analysis was carried out using 20 elements @ 3°.

The results are plotted on figure 4. The exact solution was obtained
from Timoshenko (14). Results compared in this case are this displacements,
i.e., the horizontal displacement and the rotation at any point. Note that, as
with most thin shells, the effect of an edge action is damped out very rapidly

across the shell.

B. Spherical Shell-Uniform Pressure Loading

A spherical shell with fixed edges was analysed and the results were
again compared with a known exact solution (Timoshenko (14). The purpose of
this example was to check that good results could also be obtained with dis-
tributed loading. The Tloading considered was uniform internal pressure. The
results are presented in figure 5 for the distribution of meridional moment

(MS) and hoopstress (Ne).
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A concrete shell was considered with the following properties:

a = 90"
a = 355 (semi-angle)
t = 3¢
v =1/6
E=1. x 10° psi
Internal pressure p =1 psi
20 elements were used (5@ 1°,15@ 2°).

Once again, the results obtained using AXISHL show very good agreement
with the correct ones, for both the moment MS and the direct stress Ne. Thus it
appears that the approach to stress computation presented here produces results

as good as possible using the simple conical element.

C. Large Displacement Analysis of A Flat Plate

The example chosen was that of a flat plate, infinite in one direction

and simply supported along its edges on unyielding subports. An "exact"

solution for this has been presented (Timoshenko (14)) and this example was also
evaluated by Murray (10).

The plate was considered as an axisymmetric shell, by considering it
as a flat "donut" shape, with a very large inside radius. Thus, the plate is
effectively infinite in the transverse direction and the curvature small. The

results are shown in Figures 6 and 7.

The properties of the plate were:
span L = 20 ins
t =0.5 ins
E = 30 x 10° psi
v =0.3
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The Toad was applied in 8 increments of 625 psi up to 5000 psi. This system
showed extreme non-linearities in both displacement and stress, and was
considered a good test of the method of analysis, e.g., under the 5000 psi
load, using simple beam theory = 30.5 ins., however, as can be seen from
Figure 6, the true deflection is little more than 1‘inch.

It is seen that the agreement with the correct solution for both

deflection and stresses is excellent.

D. Large Displacement Analysis of Torus

A toroid shell of 1%" thick, Subjected to hydrostatic pressure, is
shown in figure 6. One half of the steel torus is idealized by a finite
element model consisting of 18 elements and 19 nodal points. The numbering
sequences for.the nodes and elements is shown in figure 9. Various displacement
components are shown in figure 10, 11 and 12. The deformed shape of the torus
is shown in figure 13 for a depth of 2200 ft. The stress resultants are plotted
in figures 14, 15, 16 and 17.




31

8--
7--
6 -,
——TIMOSHENKO SOLUTION
0 AXISHL (5 ELEMENTS)
5.._
%
a [ |
n | |
S 41 | " |
X
Z K3
= g
< | PLAN |
W ! !
o 3T ! '
2
a b b d b4 bbb
3 KL ¥ 1A
ELEVATION 7
2.._
| -
SMALL DEFLECTION THEORY

0 12 14 18 18 20
CENTER DEFLECTION (IN.)

o
~t
()}
Q

FIG. 6 LOAD-DEFLECTION, PLATE BENDING EXAMPLE



32

WATER SURFACE v

1000' -0"

240" R
1] }‘;

ELEVATION OF THE TORUS

FIG.8 TORUS SUBJECTED TO HYDROSTATIC PRESSURE




LOAD INCREMENT

FIG. 7

BENDING STRESS

—— TIMOSHENKO
O AXISHL

MEMBRANE
STRESS

SIMPLE BEAM BENDING STRESS

33

50 100 150 200 250
STRESS (KSI)

LOAD - STRESS , PLATE BENDING EXAMPLE

300




34

NODAL POINT NUMBER (@)
ELEMENT NUMBER n

©
® ®
®
¢:_H 240" R ’_‘
0 7,_.@;\\ X
P N\
/ N\
/
7 \
—— A
60"R
y " TYPICAL SECTION

MATHEMATICAL MODEL

FIG.9 FINITE ELEMENT REPRESENTATION OF TORUS




35

SINJW3OVId4SId WIXY Ol 914

000l
,009I
,0002
(H1d3a ¥31vM ) ,0022

p— e —

G20

-G.0

(NI} LN3W30vdsia




36

SIN3INIOVIdSIA VIavY

IO E

N

,000I

,009!

0002
(H1d3a ¥31VM ) ,0022

— - —

-¢'0

A'NI')  LN3W30VdSIG




37

NOILV1OY <l 9l

,000I

,0002

(HLd3a ¥31vM ) 0022

0091 -

1No.l

(NVIQvd NI ) NOILvLOYH




FIG I3 DEFORMATION SHAPE AT WATER DEPTH
OF 2200 FT.

38




39

ANVLINS3Y SS3YLS WNOIQHIWN bl "9l

008l 006

1

o

oY
|

- oo e
T TT—————
o

!
@)
Y

000l

,009I

,000¢

(H1d3a ¥31vM)
,002¢

1
3
UNIZdIM NI ) LNVIINS3Y SS3MLS

-08-




40

INVIINS3Y SS3YIS IWVILNIONVL Sl 9l

008I 006

,000l
,009I

,0002

(H1d3a ¥31vMm ) ,0022

7
o
i

o
@

o
T
CNIZdIM NI INVAONS3IY SSIMLS

L08 -




41

INIANOA TWNOIQIYEW

9l 9l

('NI/'NI-di¥ NI ) INVIINS3Y SS34.1S



42

ININOW TTVILNIONVL

VARDIE

(NIZ'Ni-dIX NI) INVLINS3M SS3MLS



43

CONCLUSION

A general approach to the large displacement analysis of
Axisymmetric Shells has been presented. The method is based on a force
equilibrium balance in the deformed geometry. It has been shown also,
that the use of the simple conical element yields sufficieht]y accurate
results. Most of the problems associated with its use can be overcome
simply by using a smaller mesh size. A digital computer-program based on
this approach has been developed. A Fortron IV Tisting of the program

and a description of its usevare given in the Appendices of this report.
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APPENDIX A

Description of Computer Program




I. IDENTIFICATION

AXISHL - Axisymmetric Shell Large Deflection Analysis.

Programmed by L. Jones and T. Hsueh.

IT. PURPOSE

The purpose of this computer program is to determine nodal dis-
placements and element stress resultants of axisymmetric thin shells sub-
jected to axisymmetric Toading. The loading is applied in arbitrary
increments and a complete solution is given at each increment. The

positive definitions for the input and output data are shown below:

R(I)

Z(1)




A-2

IIT. INPUT DATA

For each shell to be analysed, a group of punch cards is required
in this sequence.
A. TITLE CARD (12A6)

Columns 1 - 72 Alphanumeric data for problem identification

B. CONTROL CARD (5I5)

Columns 1 -5 Number of nodal circles (maximum = 100)

6

10 Number of elements (maximum = 100)
11 - 15 Number of material types (maximum = 10)
16 - 20 Number of load increments (maximum = 20)

21 - 25 Maximum number of cycles of iteration allowed per Toad
increment (any number)

C. LOAD INCREMENT PROPORTIONAL FACTORS (8F10.0)

In each problem, the Toad patterns are identical for all load
increments, but the relative magnitude can be varied. The load factor for a
given increment is directly proportional to its loading level. For example,
a shell under hydrostatic pressure is to be analysed. Five load increments
are used. The corresponding water depthes are 1000, 1500', 1800', 1900'
and 2000' in sequence for the increments. Load condition as input data is
corresponding to the first load increment (i.e. water depth of 1000 feet).

The Toad increment proportional factors can be taken as following:

Columns 1 - 10 1000.
11 - 20 1500.
21 - 30 1800.
31 - 40 1900.

41 - 50 2000.
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In case more than 8 load increments are used, more than one card should

be needed -

D. MATERIAL PROPERTIES (I5, 2F10.4)

A card must be supplied for each different material.

Columns 1 - 5 Material Identification (any number)

6 - 15 Young's Modulus

16 - 25 Poisson's Ratio

E. NODAL CIRCLE DATA (I5, 2F10.4, 15, 3F10.4, I1, F11.0)

One card for each nodal circle.

Columns 1
6

16

26

31

41

51

61

62

5

15
25
30
40
50
60

72

Nodal circle number

R - coordinate

Z - coordinate

Nodal boundary code - see * below
Vertical Toad U

Horizontal Tload V

Moment Toad W

ID - See ** below

Curvature - see ** below

* The boundary code is a 3 digit number (consisting of 0 or 1) which

specifies if applied "loads" are forces or displacements.

1 specified displacement

0 specified force

e.g.

101

U(I) is specified displacement
V(I) is specified force

W(I) is specified rotation

** These are optional input data needed if automatic nodal point data is

being used. See Tater section.




F. ELEMENT DATA. (3I5, F10.4, 15, F10.4, 5F7.0)

One card for each element.

Colums 1 - 5 Element number
6 - 10 Number of node I
11 = 15 Number of node J
16 - 25 Element thickness
26 - 30 Number of material type
31 - 40 Normal pressure (force per unit area)
41 - 45 Number of meridional stiffeners
46 - 52 Depth of meridional stiffeners
53 - 59 Thickness of meridional stiffeners
60 - 66 Spacing of tangential stiffeners
67 - 73 Depth of tangential stiffeners

74 - 80 Thickness of tangential stiffeners

Automatic Data Generation
A. Nodal Circle Data
This may be used if a series of nodes lie on
a) A straight line; or

b) A circle having its center on the z axis.

Automatic data generation is activated if two successive nodal circle

numbers differ by more than one. Nodal circle cards are required for the first

and last nodes in the series. The nodes must have either

a) Zero boundary code - set ID = 0 on the last card in the serier;

or

b) Same boundary code as the last - set ID = 1 on the last card

in the series.
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The last card must also contain the curvature of the line,
a) Straight 1ine - Curvature = 0
b) Circle of radius R - Curvature = 1./R
The sketch below shows positive curvature and appropriate nodal circle

numbering sequence:

B. Element data
This may be used if a series of elements has the same
a) Material
b) Thickness
c) Reinforced stiffeners
| d) Normal pressure
and the nodal circle numbering is sequential from the first to the last. Element

cards are required for the first and last elements in the series.
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IV. OUTPUT INFORMATION

The program prints the following output:

A. Input and generated data.

B. The results of analysis for each load increment.

a)
b)

c)
d)

Summation of mean square of applied loads

Summation of mean square of out of balance forces for every
iterative cycle.

Nodal circle displacements

Stress resultants evaluated at the mid-circle of each element.
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Fortrain IV Listing of Computer Program




PROGRAM AX1ISHL (INPUTsOUTPUT»TAPES=INPUTsTAPE6=QUTPUT s TAPE1)

c***************************************************************

[aNaNaNaNaNANA]

[aNaNAN S

(2N el NN

NONONOONONN OO NN

LARGE DEFLECTION STATIC ANALYSIS OF AXISYMMETRIC SHELLS.
AXISYMMETRIC LOADING. LINEAR ELASTICsISOTROPIC MATERIAL.
INCLUDES MERIDIONAL AND TANGENTIAL STIFFENERS.

"USES SIMPLE ITERATION TO SEEK AN EQUILIBRIUM CONFIGURATION
USES CONICAL FRUSTRUM ELEMENT.

¥ 36 3 3 3 36 3 3 36 3 36 36 363 30 3 3 303 3 3 3303030 I 303 % 3 363 3090 3 3 9 3 I 3 3 F 3 3 I 96 H 3 %

COMMON NJsNEsNEQosMBANDsNL INGsNCYCoXNL(20U)9B(30 ) sSK(300920)

COMMON/JUNK/HED(13)9X(100)5Y(100)9sKODE(100)sJI(100)sJJ(100) s
IMATERL(10U) sE(1U)9PS(10)sPRES{100)sT(10U)sRMN(100)sRMH(100) s
2RMT(100) sRTC(100)sRTH(100) oRTT(100)

COMMON/EXTRA/DLO(100) sSNO(100)sDISPL(300)

COMMON/ADDNL/NLOAD sNCYCLE» IFLAGSMMMsDL 9SNsCSsP(6)9D(494)s5(696) s

1Z2(696)9S5G(656)9U(6)

INPUT AND GENERATE MISSING DATA.

500 READ (55100) HED

WRITE (6599) HED
READ AND PRINT CONTROL DATAe

READ (5s1Ul)  NJsNEsNMAT sNLINCsNCYC
WRITE (65201) NJsNEsNMAT sNLINCsNCYC

READ (55111) (XNL{(NNN)sNNN=1sNLINC)
WRITE (69301)
WRITE (639302)(IsXNL(I)oI=1sNLINC)

NEQ=3%#NJ
NLOAD=1

READ AND PRINT MATERIAL PROPERTIES.
WRITE (69210)

DO 53 I=1sNMAT
READ (55110) NoE(N)sPS(N)

53 WRITE (69211) NsE(N)sPS(N)

AUTOMATIC GENERATION OF NODAL POINT DATA.
IF A SERIES OF NODAL POINTS LIE EITHER

(1) ON A STRAIGHT LINE
(2) ON A CIRCLE HAVING ITS CENTER ON THE AXIS OF REVOLUTION.
NODAL POINT CARDS NEEDED FOR FIRST AND LAST IN SERIESe
BOUNDARY KODE FOR INTERMEDIATE NODES MAY BE EITHERosee
(1) FREE NODES (KODE=0) SET ID=0
(2) SAME KODE AS LAST IN SERIES SET ID=1
AND HAVE THE SAME LOADS,

NODAL POINTS GENERATED WHEN TwWO SUCCESSIVE INPUT
NODE NUMBERS DIFFER BY MORE THAN ONEe.




aNaNeNala

11

12

15

14

lé

68

17

18

22

67

69

B-2

NPREV=0

N=0

WRITE(692V2)

IF(N.EQeNJ) GO TO 67

NPREV=N

READ (551U3) NsX(N)’Y(N)aKODE(N)oB(B*N‘Z)oB(B*N-l)98(3*N)9 IDsCURV
IF(N=NPREV=1) 11511512

NX=N

IF(ID) 14914515
KOD=KODE (N)
Bl=B(3#N~2)
B2=B(3#N-1)
B3=B(3%#N)

GO TO 16
KOD=0

Bl'—'-OQ

B2=0,

B3=U,
KON=NX-=NPREV
KX=1

KY=1

DX=X(NX)=X(NPREV)
DY=Y{(NX)=Y{NPREV)
DL=SQRT(DX*#24DY#%2)
ANGLE=2,%ASIN (DL*CURV/2s)
AINC=ANGLE/KON
BETA=ACOS(X(NPREV)#CURV)+AINC/2
DEL=SIN(AINC/2e)/CURY
N=NPREV

N=N+1

IF(N.EQeNX) GO TO 11
IF(CURV) 17918517
DIFY=2%DEL®*COS(BETA)
DIFX=2.*DEL*¥SIN(BETA)
BETA=BETA+AINC
IFCIXINX)) oL To (XINPREV)) )KX=
IFCCYINX))eLTo (Y{NPREV) )} )KY=
GO TO 22

DIFX=DX/KON

DIFY=DY/KON
X{N)=X(N=-1)+KX#DIFX
YIN)=Y(N=-1)+KY*DIFY

KODE (N)=KOD

B(3%¥N=-2)=B1

B(3%#N-=1)=B2

B(3#*N )=B3

GO TO 68

CONTINUE .

DO 69 N=1loNJ

WRITE (69203) N'X(N)’Y(N)’KODE(N)’B(3*N-2)98(3*N°1)’B(3*N)

=1
-1

READ AND PRINT ELEMENT DATA.

AUTOMATIC GENERATION OF ELEMENT DATA.
USE IF ELEMENTS OF A SERIES HAVEeo.
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SEQUENTIAL NUMBERING OF CORRESPONDING NODAL PQINTS
AND COMMONe o »

(1)MATERIAL PROPERTIESS

(2) THICKNESS»

(3) DISTRIBUTED LOADING,
CARDS REQUIRED FOR FIRST AND LAST ELEMENT IN SERIES,.

a¥aY¥alaNaNAKS

N=0
MBAND=V
WRITE (692204)
52 READ (59105) NXsJINXoJINX9 TNsMATLSELPRESsNMRsHMRs TMRsCTRsHTRs TTK

IF (NXoGTs{(N+1)) GO TO 2
N=NX
JIN=JINX
JIN=JJINX
GO ToO 3
2 KON=NX=N -
INC=(JINX-JIN) /KON
4 JIN=JIN+INC
JUN=JIN+TINC
N=N+1
3 CONTINUE
JI(N)=JIN
JJIN)=JIN
T(N)=TN
MATERL (N)=MATL
PRES(N)=ELPRES
RMN (N) NMR
RMH(N) HMR
RMT (N) TMR
RTC(N) CTR
RTH(N) HTR
RTT(N) TTR
WRITE(692VU5) NeJINsJINosTNsMATLSELPRES s NMRoHMR s TMRs CTRsHTR S TTR

COMPUTE BANDWIDTH,

aNaXal

MB=IABS(JIN=JJN)
IF(MBsGT«sMBAND) MBAND=MB
IF (NeLToNX) GO TO 4
IF(NE=N) 51951552

51 CONTINUE
MBAND=3%*MBAND+3

ZERO INITIAL DISPLACEMENTS ESTIMATE

aNaNa]

DO 752 I=1sNEQ
752 DISPL(I)=0,
600 CONTINUE
REWIND 1
WRITE (69206) NLOAD
C 363 36 3 3 336 3636 36 36 38 303 30336 33 30 336 3330 3 33 336 336 33 90 36 336 36 56 9 96 36 303 309036 34438 96 3 36 36 96 36 36 36 3 3 20396 3 3 3 %
C SOLVE FOR NODAL DISPLACEMENTS (INCLUDING LARGE DEFLECTIONS)
CALL ANLYSE
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C**********************************************************************

C
C PRINT OUT DISPLACEMENTS,.
C

WRITE (65208)

DO 70 N=1sNJ

70 WRITE (69209) NsDISPL(3%N=2)sDISPL(3#N-1)sDISPL(3%N)

C
C**********************************************************************
C COMPUTE ELEMENT STRESSES

CALL ELSTRS
C**********************************************************************

C
C CHECK IF FINAL LOAD INCREMENT REACHED.

IF (NLOAD<EW@.NLINC) GO TO 601
C INCREMENT LOADS,
NLOAD=NLOAD+1
DO 5 I=1sNEQ
5> B(I) =B(I) *XNL(NLOAD) / XNL(NLOAD - 1)

C
C NODAL LOAD VECTOR FORMED IN CURRENT GEOMETRY.
C
DO 6 I=1sNE
6 PRES(1)=PRES(I)*XNL(NLOAD)/XNL (NLOAD~1)
GO TO 600
601 CONTINUE
GO TO 500
C

99 FORMAT (1H1513A6)
100 FORMAT (13A6)
101 FORMAT (515)
103 FORMAT (1592F106451593F10645115F1160)
105 FORMAT (3I59F10e49 159 F1Ooe4s I5s 5F760)
110 FORMAT (1552F10e4)
111 FORMAT (8F10.0)
201 FORMAT (1HOs5X»s24HNUMBER OF JOINTS =915//
6X 924HNUMBER OF ELEMENTS =915//
6X924HNUMBER OF MATERIALS =el5//
6X 9 24HNUMBER LOAD INCREMENTS =515//
6X s 24HNUMBER OF CYCLES =915)
202 FORMAT (1H1s6Xs9HNODE DATA»5Xs6HNUMBER 10X s
1 8HX CO-ORD»10Xs8HY CO-ORD»10Xs4HKODE s
2 10Xs6HLOAD Us10Xs6HLOAD Vs10Xs6HLOAD W)
203 FORMAT (1HO919X51552(9XsF10e4) 59Xs1553(6XsF10e4) )
204 FORMAT ( 1Hls 12HELEMENT DATA//// :
1 1Xs 132H NUMBER NODE I NODE J THICKNESS MATERIAL

R TV NS

'ZPRESSURE MERORONO. MERoRo De MER.R.TH. TAN.R.C‘C TANGRo De T
3ANeReTHe )
205 FORMAT (1HOs 3( 5X9I5s 1X)s FlOe&4s 1Xs 5Xs I5s 1Xs FlUs4s 1Xs

1 5Xo I5s 1Xs 5(F10e4s 1X))
206 FORMAT (1H1ls* LOAD INCREMENT NUMBERecooooo¥®s[5)
208 FORMAT(1H195Xs18HNODE DISPLACEMENTS s6X »4HNODE s5X s
! 110HY=DISPL(U) s 7X510HX=DISPL(V) s7Xs11HROTATION (W) )
E 209 FORMAT(1HU927X51503(5X9E1265))
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210 FORMAT (1H1s6X919HMATERIAL PROPERTIESs17Xs4HTYPESs
1 6X914HYOUNGS MODULUSs6X513HPOISSON RATIO)
211 FORMAT (1HOs41XsI5510X9F1061510XsF1064)
301 FORMAT (1H19s10Xs25H NUMBER OF LOAD INCREMENTs1 Xs
1 16H INCREMENT RATIO//)
302 FORMAT (1HO925Xs15920X9F1064)
C
END
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SUBROUTINE ANLYSE
C
C*********************************************M*************************
C SOLVES FOR NODAL DISPLACEMENTS (INCLUDING LARGE DISPLACEMENTS)
c***********************************************************************
COMMON NJsNEsNEWsMBAND s NL INGsNCYC o XNL (2U) s B( 30 ) »SK(300:20)
COMMON/JUNK/HED(13)9X(100)oY(lOO),KODE(IOU)9JI(100)9JJ(10U)9
lMATERL(lUU)sE(lU)’PS(lO)aPRES(lOO)’T(lOU)’RMN(IOO)’RMH(IOU)9
2RMT(100) sRTC(10U)»RTH(100) sRTT(100)
COMMON/EXTRA/DLO(IOU)9SNO(100)9DISPL(300)
COMMON/ADDNL/NLOADsNCYCLE’IFLAG’MMM’DL’SN’C59P(6)9D(494)95(696)9
12(696)95G(696) 2U(6)
DIMENSION DB(3OU)9CNFV(6)’LM(6)’XDB(300)
NCYCLE=0
IFLAG=0
50 NCYCLE=NCYCLE+1

CHECK FOR CONVERGENCE
CONVERGENCE ASSUMED WHEN RMS OF OUT OF BALANCE IS
LESS THAN 0,001 OF THE RMS OF THE APPLIED LOADSS

IF(XDBSQeLE-SQLD)IFLAG=1

ala! NNOnNnNN

CHECK IF MAX NO OF CYCLES REACHED.
IF (NCYCLE <EQe NCYC) IFLAG = 1
IF(NCYCLE«EQel)IFLAG=0
C ZERO STRUCTe STIFF,
DO 1 I=1sNEQ
DO 1 J=1»MBAND
1 SK(IsJ)=0,
C SET INITIAL OUT OF BALANCE LOADSs
DO 51 I=1sNEQ
51 DB(I)=8B(1I)

c
DO 41 MMM=1,NE
C *****************************************************
C FORM ELEMENT STIFFNESSs
C IN GLOBAL COORDSs USING CURRENT GEOMETRY.

CALL ELSTIF
C A KKK I 3K H I 3 33 9630363 36 336 3 3 3 3 H

JIN=JI (MMM)
JIN=JJ (MMM)
XI=X(JIN)

FORM CONSISTENT FORCE VECTOR DUE TO NORMAL UNIFORM LOADS
(USING CURRENT GEOMETRY)

NN NN

ELPRES=PRES (MMM)

2 CON=60283185308%DL*ELPRES
CI=(X1/26+DL#*SN/6e)
CJ=(XI/2¢+DL%¥SN/3,4)
CNFV(1)=CON#(=SN)*CI
CNFV(2)=CON*CS*CI
CNFV(4)=CON#*(-SN)*CJ
CNFV(5)=CON*CS*CJ




CNFV{3)=U,
CNFV(6)=Uo
c***********%**********************************************************

C COMPUTE ELEMENT RESISTING FORCES P(6)
CALL RESIST
C % 33636 334 36 4 30 36 36 3436 30330 03 6 3 3960303096 3638 030 3636 403 30 36 3638336 36 38 9030 303630 3330 3 30 J0SH B I H HHHH H

C
C**********************************************************************

C FORM MODIFIED STIFFNESS (ADD GEOMETRIC STIFFNESS)
CALL GEOSTI
et 2 e e e e e e L g

MODIFY (S)s(B)9 AND (CNFV) FOR DISPLACEMENT BOUNDARY CONDITIONS.

NNNONn

25 KK=KODE(JIN)
KOUNT=1
GO TO 27
26 KK=KODE(JJIN)
KOUNT=2
27 XK=KK
IF(KK) 33933528
28 CONTINUE
DO 31 K=193
XK=XK/10e
KK=KK7/10
DKK=KK
IF(XK=DKK) 31931932
32 CONTINUE

C MODIFY (B)
IJ=JIN
IF(KOUNT0EQe2) IJ=JJN
15=3#KOUNT=K+1
PARTY=DB(3#[J-K+1)
DO 30 NI=1»s3
30 DB(3#JIN=3+NI)
DO 49 NI=193
49 DB(3#JUN=3+NI) = DB(3#JUN-3+NI) = SGINI+351S) #* PARTY
DB(3#]J=K+1)=PARTY

DB(3#JIN-3+NI) - SG(NIs»IS) % PARTY

C MODIFY (5)
DO 37 NI=le6
SG(NI»sIS)

37 SGIISeNI)
SG(ISeIS)

Oe
Oe
le

C MODIFY (CNFV) AND (P)
CNFV(IS)=vVe
P(IS)=0,
31 XK=DKK
33 CONTINUE

GO TO (26935) sKOUNT
35 CONTINUE
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C ADD ELEMENT TO STRUCTURE STIFFNESSe

LM(3)=3%JIN
LM(2)=LM(3)~]
LM{1)=LM(2)=1
LM(6)=33%JUN
LM(5)=LM(6)=-1
LM(4)=LM(5)~-1
DO 20 1I=1s6
IL = LM(])
DO 20 J=1s6
JL = LM(J) - IL + 1
IF (JL) 2U»20522

22 SKUILedL) = SK(ILsJL) + SG(IsJ)

20 CONTINUE

C
o FORM STRUCTURE LOAD VECTOR.
C

DO 38 I=153

38 DB(3#JIN=3+I1)=DB(3#JIN=3+1)=CNFV(I)
DO 39 I=456

39 DB(3#JIN=6+1)=DB(3%JIN~6+1)-CNFV(I)

C

C FORM VECTOR OF OUT OF BALANCE NODAL FORCESe
DO 54 K=193

JOG=33#JI (MMM) -3+K
54 DB(JOG)=DB(JOG)=P(K)
DO 55 K=4s6
JOG=3#*JJ (MMM) -6+K
55 DB(JOG)=DB(JOG)=P(K)
41 CONTINUE
C
C CALCULATE THE SUM OF THE TOTAL APPLIED LOADS AT THE FIRST CYCLE
C
IF (NCYCLE oNEe 1) GO TO 224
IF(NLOAD.NEo1) GO TO 225
SQLD=0,
DO 226 I=1sNEQ
226 SQLD=SQLD+DB( I ) #%?
SQL=SART(SQLD)
GO TO 227
225 SQL=SQL*XNL (NLOAD) /XNL (NLOAD-1)
227 CONTINUE
WRITE (69223) SQL
WRITE (69222)

C
SQLD=0,001#5QL
C
224 CONTINUE
C

D0906 I=1sNEQ
906 XDB(I)=DBI(I)

C
C***************************************************************

C SOLVE FOR INCREMENTAL NODE DISPLACEMENTS.
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CALL SYMSOL (SKsDBsNEQeMBANDs1)
CALL SYMSOL (SK»DBsNEQsMBANDs2)
3 3 30336 3 3¢ 36 336 36 36 3 303 36 3636 H 303 30036033 236 3036 30 38 3638 36 3636 36 96 34 3 36 33 3096 26 3 936 36 96 36 36 36 36 369 36 36 3¢
C
C ESTABLISH NEW ESTIMATE OF DISPLACEMENTS AND GEOMETRY
DO 56 K=1lsNJ |
Y{K)=Y(K)+DB(3#K=2)
X(K)=X(K)+DB(3#K=-1)
56 CONTINUE
DO 57 K=1sNEQ
57 DISPL(K)=DISPL(K)+DB(K)
C
C CALCULATE THE SUM OF OUT OF BALANCE FORCES
C
XDBSQ=0e
DO 107 I=19NEQs3
107 XDBSQ=XDBSQ+XDB(I)##2
DO 1107 I=2sNEQ»3
1107 XDBSQ=XDBSQ+XDB(I)##2
XDBSQ=SQRT(XDBSQ)
WRITE (69201) NCYCLEs XDBSQ
IF (IFLAG.EQel) GO TO 59
GO TO 50
59 CONTINUE
RETURN

201 FORMAT (1HO»s20H CYCLE NUMBER»I5s 15XsE1648)
222 FORMAT (1HO»30X»30H SUM OF QUT OF BALANCE FORCES /)
223 ~ FORMAT (1HO»10X922H TOTAL APPLIED LOAD = »El6.8//)

END




C
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SUBROUTINE ELSTIF

C***********************************************************************

C

FORM ELEMENT STIFFNESS (GLOBAL CO=0ORDSe)

C***********************************************************************

[alaka!

C
C
C
C

C
C
C

COMMON NJsNEsNEQsMBANDsNLINGsNCYCsXNL(20)sB(30 )2 SK{300920)
COMMON/JUNK/HED(13)9X(100)’Y(IOO)9KODE(100)’JI(100)9JJ(100)9
lMATERL(lOU)’E(IU)’PS(10)vPRES(100)0T(lOU),RMN(IOO)’RMH(IOO)9
2RMT(100) sRTC(100)sRTH(100)sRTT(100)
COMMON/EXTRA/DLO(100)sSNO(100) sDISPL(300)
COMMON/ADDNL/NLOAD’NCYCLE,IFLAG9MMM;DL95N:CS;P(6)9D(494)’5(6o6)9
12(696)s5G(6:6)sU(6)

DIMENSION TS(696)’A(4’6)’TEMP(496)’TK(696)’TZ(6’6)

STIFFNESS 1S FURMED USING CURRENT ESTIMATE OF NODAL CO~ORDINATES

JIN=JI (MMM)
JIN=JJ (MMM)
DX=X(JIN)~X(JIN)
DY=Y(JUINI=Y(JIN)
DL = SQRT ( DX##2 +DY#*#2 )
SN=DX/DL
MUM=MATERL (MMM)
EE=E(MUM)

PPS=PS (MUM)
TT=T(MMM)
XI=X(JIN)
CS=DY/DL

SET INITIAL LENGTH AND SLOPE OF ELEMENT.

IFCINCYCLEeEQo1l) 6sANDo (NLOADoEQel)) SNO(MMM)=SN
IFCINCYCLEeEQol) s ANDo (NLOADeEQs1)) DLO(MMM)=DL

FORM 6Xé& ELEMENT STIFFNESS MATRIX

DO 15 I=196
DO 15 J=196
15 TS(IsJ)=0e0

FORM ELASTICITY MATRIX (D) 4X4 (LINEARSELASTICsISOTROPIC)

DO 3 1I=1s4
DO 3 J=l»s4
3 D(IsJ)=0,60

C=EE#TT/(lo=PPS##2)
D(lel)=C
D(192)=PPS#D(151)
D(2s2)=C
D(3e3)=CH(TTR%#2)/12.
D(39s4)=PPS#D(3,3)
D(424)=D(393)
D(2s11)=D(192)
D(4:3)=D(394)




21

22

23

a¥aNaNa k¥

nN
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IF (RMN(MMM)) 21s 229 21

RRMN = RMN(MMM)

RRMH = RMH (MMM)

RRMT =RMT (MMM)

TLM = 36141592654 * ( X(JJN) + X(JIN) )

TAMS = TLM #* TT

TAMR = RRMN * RRMH * RRMT

TMIMR = RRMN #RRMT *RRMH *¥* 3/ 12,0

DCGM = TAMR * (TT+ RRMH ) / ( 2.0 * ( TAMS + TAMR ))
DTM = EE * TAMR / TLM

DMIM=EE* (TAMS*DCGM¥#*2+TMI NR+TAMR¥ ( ( TT+RRMH) /2o DCGM)#%2)/TLM
D(1s1) = D(1s1) + DTM

D(3s3) = D(3s3) + DMIM

CONTINUE

IF ( RTC(MMM)) 23524523

RRTC = RTC(MMM)

RRTH = RTH(MMM)

RRTT = RTT(MMM)

TAR = RRTH *RRTT

TMIR = RRTT * RRTH#%¥3/ 1240

TAS = RRTC * TT

DCGT = TAR # ( TT + RRTH ) / (2¢%( TAR + TAS))

DTT = EE * TAR / RRTC

DMIT=EE* ( TAS*DCOT#%2+TMIR+TAR* (( TT+RRTH) /20=DCGT ) *#2) / RRTC
D(2s2) = D(2s2) + DTT

D(&4s4) = D(&4s4) + DMIT

CONTINUE

NUMERICAL INTEGRATION TO EVALUATE ELEMENT STIFFNESS.
GAUSS QUADRATURE METHOD (5 POINT INTEGRATION)

10

DO 4 M=ls5

IF(MoNE.1) GO TO 5
XS=0,046910077030668
XH=00118463442528094
GO TO 10

IF(MeNEo2) GO TO 6
X5=0,230765344947158
XH=0,239314335249683
GO TO 10

IF(MeNEe3) GO TO 7
XS=Oe5
XH=002844444440444444
GO TO 10

IF(MeNEe4) GO TO 8

X5=0,769234655052842
XH=0,239314335249683
GO TO 10

IF(MeNEe5) GO TO 10
X5=0,953089922969332
XH=00118463442528094
CONTINUE

EVALUATE STRAIN DISPLACEMENT MATRIX.




(aXaNa

N

aNaNaNa

XJ=X]+DL#SN

R=XI+XS*DL%SN

Allel1)==1e/DL

A(1’2)=O.

A(l93)=0,

A(leg)==A(151)

Alls5)=0,0

A(ls6)=0.0U

A(291)=(1e=XS)#SN/R
A(292)=(1e=(XSH#2)%#(3,~2,%XS))*CS/R
Al293)=DLEXS*¥(1o~XSH*(2¢~10e%XS))*#CS/R
Al(294)=XSESN/R
Al295)=(XS%%2 )% (3,2 ,%XS)*CS/R
Al296)=DL#XSHH2%#(=],4+XS)#CS/R
A(351)=060
Al(3902)=(~60+12%XS)/DL#*#*2
A(3e3)=(~4e+6B.%#XS) /DL
A{394)=0,0

A(3s5)==A(352)
A(396)=(=2e+6%XS) /DL
Al491)=0,U
Al(492)=XO#(6e=60%*XS)I#SN/ (R#DL)
AlL93)=(=1o+XS%(4,=3,%X5)) #SN/R
Al494)=0,U

Al45)==A(492)
Al(L496)=XSH(2:,=3.%XS)I%#SN/R

DO 11 I=194
DO 11 J=1s6
TEMP(IsJ)=0,0
DO 11 MM=1,4
11 TEMP(IsJ)=TEMP(IsJ)+D(IsMM)*A(MMsJ)

DO 12 1I=156
DO 12 J=15%6
TK(Ip9J)=060
DO 12 MM=1s4
12 TKUI9sJ)=TK(IsJ)+A(MMs ] )*TEMP (MM J)

DO 13 I=1%6
DO 13 J=1s6
13 TK(IoJ)=TK(IsJ)#*R#XH
ADD TERM TO SUM IN INTEGRATION
DO 14 =196
DO 14 J=196
14 TS(IeJ)=TS(IsJ)+TK(IsJ)
4 CONTINUE

FORM CO ORDINATE TRANSFORMATION MATRIXe
(Z) CHANGES GLOBAL CO-ORDS TO LOCAL.

DO 16 1I=196
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16

17

18

DO 16 J=196
Z(1eJ)=0,0
Z(191)=CS
Z(192)=5N
2(201)==5N
2(202)=CS
2{393)3=160
Z2l4o4)8CS
2l495)=SN
2(594)=s=5N
2(505)=CS
21696)==160

DO 17 I=196

DO 17 J=1lsé

TZ(1eJ)=Ue

DO 17 M=1l96
T2(1oJ)=TZ(19J)+TS(IoM)IHZ(MeJ)

DO 18 1I=1s6

DO 18 J=1+6

S(I1sJ)=0,U

DO 18 M=136
S(I1sJ)=S(IpJ)+Z(MsI)*TZ(MsJ)

ELEMENT STIFFNESS MATRIX (S) 6Xé

19

COMM=2,%3,141592654%DL
DO 19 I=196

DO 19 J=196
S(IsJ)=S{1sJ)*COMM
RETURN

END
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SUBROUTINE GEOSTI :

Cc g2 2 24 DL Lo 2 2 X TR B L TR R T BEEBEUN G NN U RN BY S BHSBAR

C FORM GEOMETRIC STIFFNESS AND ADD TO ELASTIC.

c EFFECT OF INITIAL MERIDIOMAL STRESS IS CONSIDERED

cﬂﬂ‘ﬁ'#ﬂ' L= 2o RaR gL Lo R Re R R R R R TTE R E IR R 3 ***ﬁﬂ*#*ﬂ'*%ﬁ******Gﬂ'*********************
COMMON NJoNEsNEQsMBAND osNL INGsNCYCoXNL(20)sB(30 )9 SK(300520)
COMMON/JUNKIHED(13)9X(100)vY(100)9KODE(100)9JI(100)9JJ(100)9
lMATERL(lOU)9E(IU)9P5(10)9PRES(100)9T(100)9RMN(100)9RMH(100)9
2RMT (100) sRTC(100)sRTH{ 100)sRTT(100) '
COMMON/EXTRA/DLO(100)sSNO(100) sDISPL(300)
COMMON/ADDNL/NLOAD9NCYCLE’IFLAGQMMMoDL’5N9C59P(6)9D(494)95(6!6)’
12(696)95G{696) 2U(6)
DIMENSION GS(656)9GTS(696) 9GTZ(656)

C
C CALCULATE INITIAL MERIDIONAL STRESS
C .
GSP=CS#(P(4)=P(1))/2,+SN#(P(5)=P(2))/2.
C
DO 210 | = 156
DO 210 J = 156
210 SG(Ied) = 0
DO 200 I = 196
DO 200 U = 1.6
200 GS({IeJd) = 060
GS(2s2) = GSP* 6o0 / (560 #DL )
GS(293) = GSP/ 1060
GS(295) = =GS(2:2)
GS(296) = GS(253)
" GS(393) = GSP # 2,0 # DL /15,0
GS(395) = =GS(293)
GS(396) = =GSP #* DL / 30,0
GS(595) = GS(252)
GS(596) =-GS(253)
GS(666) = GS(353)
GS(392) = GS(253)
GS(592) = GS(255)
6S(692) = GS(256)
GS(553) = GS(3,5)
GS(693) = GS(356)
GS{6s5) = GSi556)
C
C TRANSFORMATION OF GEOMETRIC STIFFNESS FROM LOCAL COORS TO GLOBAL
C
DO 270 I = 196
DO 270 J = 156
GTZ(IsJ) = Qo
DO 270 M = 196
270 GTZ{IsJ) = GTZ(IsJ) + GS(IsM) #* Z(ModJ)
DO 28V | = 196
DO 28U J = 156
SG(IsJd) = Qe
DO 280 M = 196
280 SG(IoJ) = SGIIsJd) + Z(MsI) # GTZ(MsJ)
C

C ADD GEOMETRIC STIFFNESS TO ELASTIC STIFFNESS




290

DO 290 |
DO 29V J
SG(Ied)
RETURN
END

126
126
SG(IsJ) + S(1sJ)
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SUBROUTINE ELSTRS

c***********************************************************************

C

ELEMENT STRESSES AT MIDPOINT OF ELEMENT

c***********************************************************************

[aNala!

[aXaNa!

COMMON NJsNEsNEQsMBAND s NL INGsNCYCoXNL(20)sB( 30 }9SK(300520)
COMMON/JUNK/HED(13)9X(100)9Y(100)9K0DE(100)9JI(100)9JJ(10U)9
lMATERL(lUU)sE(lU)9P5(10)9PRES(100)yT(lOU)vRMN(IOO)vRMH(lOO)9
2RMT(1U0) sRTC(100)sRTH(100) sRTT(100)
COMMON/EXTRA/DLO(10U) sSNO(100) sDISPL(300)
COMMON/ADDNL/NLOAD’NCYCLE’IFLAGoMMMsDL»SN;CS9P(6)’D(4’4)95(6;6)9
12(656)55G(6:6)sU(6)

DIMENSION EPS(8)sSTRESS(8)

REWIND 1

DISPLACEMENT VECTOR (R#) USED TO' COMPUTE STRESSES.

WRITE(692487)
DO 93 MM=1sNE

READ DISPLS OFF TAPE 1

READ (1) (UCI)sI=196)s((D(Isd)sI=1s4)sd=194)
IN=JI (MM)

JIN=JJ (MM)

DX=X{JUN)=X(IN)

XI=X({IN)

DY=Y(JN)=Y(IN)

DL = SQRT ( DX#3#2 4DY##2 )

SN=DX/DL .

CS=DY/DL

XJ=X(JIN)

IF({XIoEQeUe)oORo(XJeEQeOe)) GO TO 93
RL1=U(1)3#CS+U(2) *#35N
RL2==SN#U(1)+CS*U(2)

RL3==U(3)

RL&4=CS*¥U(4)+SN*U(5)
RL5==SN#U(4)+CS*U(5)

RLé==U(6)

EVALUATE MID-ELEMENT STRAINS

R=X1+065%#DL#SN

EPS(1)=(1e/DL)*(-RL1+RL4)
EPS(2)=(Oe5/R)*(SN*(RL1+RL4)+CS*(RL2+RL5)+(Oo25*DL)*CS*(RL3-RL6))
EPS(3)=(1le/DL)#*(=RL3+RL6)
EPS(4)=(SN/R)*((1e5/DL)*(RL2~RL5)+0e25%(RL3+RL6) )

EVALUATE MID-ELEMENT STRESSES.

DO 98 K=1ls4

STRESS(K) =0,

DO 98 J=lss
98 STRESS(K)=STRESS(K)+D(KsJ)®EPS(J)

WRITE (69488) MMes(STRESS(K)sK=194)
488 FORMAT (1HO9I1Us14X94(8XsF1265))
93 CONTINUE
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486 FORMAT (1HO94X9211094(B8X9F1265)/15X911094(8X9F12e5))

487 FORMAT (1H1s30H SHELL STRESSES/1HO»s104H ELEME
INT NODE MERIDe STRESS HOOP STRESS MERIDe
2MOMENT HOOP MOMENT )

RETURN

END
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SUBROUTINE RESIST

C**********************************#************************************
C COMPUTE ELEMENT RESISTING FORCES IN DISPLACED POSITION
CH B33 I 33 3T B30I T3 A 33 36 9 36369630936 0 TEIE 3 336 363636 3636 336 6 9636 36 36 96 36 3636 36 3 36 3 36 ¢
COMMON NJaNEoNEQsMBAND’NLINGoNCYCsXNL(ZO)98(30 )9 SK(300520)
COMMON/JUNK/HED(IB)’X(100)pY(lOO)’KODE(IOO)QJI(100)9JJ(100)9
lMATERL(IOU)sE‘lU)9P5(10)9PRES(100)9T(IOU)oRMN(IOO)’RMH(lOU)s
2RMT(100) sRTC(10U)sRTH(100) sRTT(100) :
COMMON/EXTRA/DLO(100V) sSNO(100) sDISPL(300)
COMMON/ADDNL/NLOADoNCYCLEsIFLAG:MMM;DL:SN;CSsP(b)’D(4’4)oS(6s6),
12(696)95G(696)sU(5)
J=JJ(MMM)
I=JI(MMM)

COMPUTE TRUE DEFORMATIONS IN THIS POSITION (DISPL. VECTOR (R*))

(aNake!

U(1)=DISPL(3%]-2)
U(2)=DISPL(3%]-])
U(5)=DISPL(3%#J-1)
IF(CSeEQeUe) GO TO 4
U(4)=U(1)+(DL—DLO(MMM))/CS+(U(2)-U(5))*(SN/C5)
GO 70 6
4 U(4)=DISPL(3%J=-2)
GO TO 6
6 ALPHA=(DISPL(3%J-2)%SNO(MMM)-U(4)%SN) /DL
U(3)=DISPL(3%#]1)~ALPHA
U(6)=DISPL(3%J)-ALPHA
IF (IFLAGEQ.1) WRITE (1) (U(I)sI=196)s((D(IsJ)sl=1s4)sd=1s4)
C COMPUTE (P%*) ~ ELEMENT RESISTING FORCESe
DO 3 K=1»s6
P(K)=0,
DO 3 KK=196
3 P(K)=P(K)+S{KosKK)#U(KK)
RETURN
END
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1000

240

250
260
280

(a¥aXa!

2000

285
290

NnNON

300

350

370
400

500

SUBROUTINE SYMSOL (AsBsNNsMMsKKK)

DIMENSION A(300»20)sB(300)

GO TO (10U0s2000) KKK
REDUCE MATRIX
DO 280 N=1sNN

DO 260 L=29MM
C=A(NsL)/A(Ns1)

I = N+L-1

IF(NN=I) 26052409240
J=0

DO 250 K=LsMM

J=Jd+1
AlIsJ)=A(IsJ)—=C*A(NsK)
A(NeoL)=C

CONTINUE

GO To 500

REDUCE VECTOR

DO 290 N=1eNN

DO 285 L=2sMM

I=sN+L-1

IF(NN=I) 29052855285
B(I)=B(I)-A(NsL)#B(N)
B{(N)=B(N)/A(Ns1)

BACK SUBSTITUTION

N=NN

N = N-1

IF(N) 35055005350

DO 400 K=2sMM

L = N+K-1

IF(NN-L) 40053705370

BIN) = B(N) = A(NsK) * B(L)
CONTINUE

GO TO 300

RETURN
END






