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ARTICLE

An interactive atlas of three-dimensional
syndromic facial morphology

J. David Aponte,1,2 Jordan J. Bannister,2 Hanne Hoskens,1 Harold Matthews,3 Kaitlin Katsura,4

Cassidy Da Silva,1 Tim Cruz,2 Julie H.M. Pilz,2 Richard A. Spritz,5 Nils D. Forkert,6 Peter Claes,3,7

Francois P. Bernier,8 Ophir D. Klein,4,9 David C. Katz,1,2 and Benedikt Hallgrı́msson1,*
Summary
Craniofacial phenotyping is critical for both syndrome delineation and diagnosis because craniofacial abnormalities occur in 30%

of characterized genetic syndromes. Clinical reports, textbooks, and available software tools typically provide two-dimensional,

static images and illustrations of the characteristic phenotypes of genetic syndromes. In this work, we provide an interactive

web application that provides three-dimensional, dynamic visualizations for the characteristic craniofacial effects of 95 syndromes.

Users can visualize syndrome facial appearance estimates quantified from data and easily compare craniofacial phenotypes of

different syndromes. Our application also provides a map of morphological similarity between a target syndrome and other syn-

dromes. Finally, users can upload 3D facial scans of individuals and compare them to our syndrome atlas estimates. In summary,

we provide an interactive reference for the craniofacial phenotypes of syndromes that allows for precise, individual-specific com-

parisons of dysmorphology.
Introduction

Most syndrome diagnoses are initially based on clinical

assessment. Craniofacial phenotypes are central to a large

fraction of those assessments because craniofacial abnor-

malities are present in 30% of known genetic syndromes.1

It is left to the clinician, over many years of training and

patient encounters, to develop their own sense of how

syndromic phenotypes vary. While definitive molecular

diagnoses are theoretically possible, they are expensive,

frequently not practically available, and even when avail-

able are not always diagnostically conclusive.2–6 As a

result, adjunct tools to facilitate and enhance clinical im-

pressions are highly valuable and are likely to continue to

play a prominent role in diagnosis for the foreseeable

future.

Characteristic craniofacial phenotypes of genetic syn-

dromes have been extensively documented in case re-

ports, books, and web resources using facial images of pa-

tients or representative drawings.7,8 Although useful as a

reference, a static image can only capture an individual

or, at best, an average syndromic phenotype for a specific

age, sex, ethnicity, and body type. Individuals with a spe-

cific diagnosis, however, can exhibit wide phenotypic

variation depending on these same metrics. Bias can

also be introduced from illustrations in cases where high-

lighting or exaggerating features does not take into ac-
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count that other features of the face will tend to correlate

with those features and so should also be changed accord-

ingly. This tendency to overlook the integrated nature of

facial shape variation can result in illustrations that do

not accurately reflect the typical syndrome phenotype.

Finally, clinical illustrations do not typically focus on

phenotypic heterogeneity or demographic influences,

which are observed in virtually all craniofacial syn-

dromes.9 As an example, Figure 1A highlights the range

of syndromic facial features in a sample of 50 individuals

with achondroplasia.

Fortunately, adjusting characteristic phenotypes for de-

mographic influences is a natural application of quantita-

tive analysis. A number of studies have demonstrated the

utility of statistical approaches to generating demographi-

cally specific estimates of syndromic facial form.10,11 Several

studies have taken a quantitative approach to characterizing

syndromic facial phenotypes by deriving facial shape mea-

surements from 2D or 3D images and estimating a mean

shape.12,13 An alternative method is to produce a 2D or

3D ‘‘facial archetype’’ or ‘‘gestalt.’’13 Figure 1B demonstrates

an average image for achondroplasia (MIM: 100800). Modi-

fying these facial archetypes to illustrate demographically

specific syndromic representations then becomes a matter

of acquiring a dataset of sufficient diversity.

Shape and facial archetype approaches have also been

used for 3D syndromic facial data.14,15 As with 2D
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Figure 1. Syndromic heterogeneity and
measurements of syndromic gestalts us-
ing achondroplasia as an example
(A) The most-severe, average, and least-se-
vere shape gestalts from a sample of 50 in-
dividuals with achondroplasia. Heatmaps
represent the per-vertex deformation rela-
tive to the achondroplasia mean shape.
(B) An image of ‘‘facial archetype’’ gener-
ated with non-linear deformation of 2D
screenshots to the achondroplasia mean.
landmarks, 3D landmarks allow the positions and devia-

tions of characteristic features to be measured. With 3D

scans, facial archetypes can be described with visualiza-

tions of average 3D meshes as well as facial heatmaps.

Compared to 2D image averages, 3D visualizations can

better represent differences in depth, which may better

match what the clinician observes meeting with patients

(Figure 1A).

Such quantitative studies, be they 2D or 3D, tend to be

more concerned with capturing means than with efforts to

represent the rangeofvariation in thecorrespondingclinical

population. In addition, theyprimarily focus on the face as a

whole,whereas some local featuresmaybemore informative

to distinguish between syndromes. In contrast, the present

study introduces a model-driven approach to produce age-

and sex-specific estimates of dense syndromic morphology

and texture for 95 syndromes. Our model can be used as a

detailed reference for visualizing individual syndromic ef-

fects, directly comparing the expectedmorphology between

syndromes, and understanding both local and holistic simi-

larities between syndromic phenotypes. The model is avail-

able both as an interactive web application and an applica-

tion programming interface (API) that allows users to

apply the syndrome model to their own uses.
40 The American Journal of Human Genetics 111, 39–47, January 4, 2024
Material and methods

Dataset collection
Subjects were enrolled at outpatient

clinics and disease-specific patient group

meetings in the United States and

Canada. The training sample consists of

3,076 individuals comprising 95 syn-

dromes, each represented by 5 or more

individuals, as well as 2,273 unrelated

non-syndromic individuals. Of these 95

syndromes, 18 have subtypes specified,

and within this group, 5 have more than

one such subtype represented by sample

sizes of 5 or more. Of the 3,076 syndromic

individuals, 44.9% were diagnosed with a

molecular test while 55.1% have only a

clinical diagnosis. The overall sample is

�57.6% female, with ages ranging from

<6 months to 78 years old. A by-syn-

drome breakdown of the sex distribution

and age demographics are provided in

Table S1.
Enrollment occurred from 2013 to 2023 at both outpatient clinics

and rare disease community organization meetings in the United

States and Canada. Subjects, or legal guardians when applicable,

provided written consent for inclusion in this study. This study in-

volves secondary use of datasets as well as analyses of data obtained

by the Hallgrı́msson, Spritz, and Klein groups under reviewed proto-

cols that meet ethical standards of the responsible committees on

human experimentation (REB14-0340, REB15-1342, University of

Calgary).

Nosology
Some syndromes are known to have subtypes associated with

different clinical phenotypes. While subtype information may

be lacking for some of these, enrolled syndromic subjects over-

whelmingly represent the most common subtype. This is the

case, for example, for Gaucher disease (MIM: 230800, 230900,

231005) where type 1 (MIM: 230800) represents 95% of the

affected population. For other included diagnoses, it may not be

obvious why a facial shape phenotype might be present. For

example, with polycystic kidney disease (MIM: 173900, 613095,

600666, 61861) it is likely that the vast majority have autosomal

dominant polycystic kidney disease (MIM: 173900). While this

condition is not classically recognized to have a recognizable facial

appearance, prior work in humans and mice has suggested cranio-

facial effects associated with this disease.16 Similarly, autism spec-

trum disorder is a heterogeneous group (390 OMIM entries), and



Figure 2. Age- and sex-specific syndrome atlas estimates for
Crouzon syndrome and Sotos syndrome
The left column shows the age- and sex-specific estimated facial
shape, and the right column shows a heatmap comparison be-
tween the syndrome and the age-/sex-matched non-syndromic
expectation.
several studies have revealed subtle, if highly varied, facial shape

manifestations associated with this phenotypic designation.17,18

Mesh processing
We used the 3dMDface stereophotogrammetry scanner to acquire

initial 3D facial images for all subjects.We then used an atlas-based

approach to non-linearly register each mesh to a common dense

mesh topology. The atlas was generated by first choosing a non-

syndromic mesh, decimating the mesh to 5,629 vertices, and

non-linearly registering ten randomly chosen non-syndromic

meshes to the reference 5,629 vertex mesh using the optimal

step non-rigid iterative closest point algorithm.19,20 The final atlas

was generated by averaging the registered non-syndromic meshes.

The remaining subject meshes were then registered to the average

mesh.

Score projection for modeling syndromic severity
Syndromic severity is modeled by projecting principal component

scores for a selected syndrome onto the normalized syndrome co-

efficient vector where the non-syndromic mean shape was used as

the model intercept. These scores can be used to estimate a syn-

dromic severity shape component that can be added directly to

an age- and sex-specific syndrome estimate. Severity estimates

are constrained to 1.5 standard deviations to prevent extrapola-

tion of a shape estimate from the model.

Shape and texture model
The syndromic shape model is fit using multivariate multiple

regression. We first reduced the dimensionality of the dense

mesh dataset by using only the first 200 principal components

of facial shape variation (explaining>99% of the phenotypic vari-

ance). We used the principal component axis scores of this prin-

cipal component analysis (PCA) tomodel the effects of sex, a cubic

effect of age, syndrome, and an age by syndrome interaction as

follows:
The Am
Y � b0 þ Sex� bsex þ Age� bage þ Age2� bage2

þ Age3� bage3þSyndrome� bsynd þ Age � Syndrome� bage�syndþε

Y is comprised of principal component scores for shape (x, y, z

coordinates).

Model predictions (i.e., syndromic phenotype expectations for

various demographic criteria) are initially rendered as axis scores

but are then reprojected to 3D coordinates for visualization. For

example, Figure 2A depicts an expected 4-year-old female with

Crouzon syndrome (MIM: 154400), and Figure 2B shows an ex-

pected 26-year-old male with Sotos syndrome (MIM: 117550)

derived from the model. Both gestalts are provided with heatmaps

describing the differences from an age- and sex-matched non-syn-

dromic estimate.

Real-time registration of novel meshes
The interface facilitates submission of novel facial meshes to

compare the morphology of an individual to estimates from the

syndrome atlas, as well as submitting a face to an updated version

of our previously published syndrome classifier.9,20 It supports

submission of both object replacement character (OBJ) and poly-

gon (PLY) 3D formats with a 50-MB size limit on uploads. Standard

facial representations were obtained by registering the atlas to

each facial image using the Meshmonk toolbox21 in Matlab.22

The atlas was first roughly aligned to each individual image by

manually placing 5 positioning landmarks (glabella, pronasale,

pogonion, left and right tragion) onto the images. This was fol-

lowed by rigid and non-rigid registration steps, resulting in homol-

ogous correspondence across all 5,629 points.

Imaging and registration errors were detected by measuring de-

viations from the global mean shape. Procrustes distances were

converted to Z scores, and individuals with Z > 2 were visually in-

spected and excluded as needed. The percentage of correspon-

dence outliers (reported by the Meshmonk toolbox) was used as

an additional quality control measure.

Application framework
The syndrome atlas uses two core technologies to serve content

over the web. Facial archetype shape estimation, calculation of

syndrome scores, syndrome classification, and mesh registration

are handled using an application programming interface (API).

Our API runs as an independent process. Documentation for

each function can be accessed at https://genopheno.ucalgary.ca/

api/__docs__/. The API was written using the Plumber package

in R.23 The user interface and requests to the API were written in

Javascript with BabylonJS used for 3D rendering. The code for

the web application, API, as well as a script for making API requests

can be found at https://github.com/J0vid/Syndrome_modelJS. A

deployable environment is provided for the application in the Gi-

thub repository using Docker. The provided dockerfile will install a

local instance of the syndrome atlas using the official RStudio im-

age as a template (https://hub.docker.com/r/rocker/rstudio). The

syndrome atlas can be accessed at https://syndrome-atlas.ca/.
Results

Assessment of model predictions

We assessed model predictions in two ways. First, we

calculated each individual’s residuals to directly compare

each syndromic facial shape to the model’s prediction of
erican Journal of Human Genetics 111, 39–47, January 4, 2024 41
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Figure 3. Comparison of age- and sex-matched model predictions for Nager syndrome and Van der Woude syndrome
Each point in the plot represents themean of the residuals across all mesh vertices for one syndromic individual. The heatmaps represent
the differences between themodel prediction and an age-, sex-, and syndrome-matched individual for the prediction with the least error
(left) and most error (right). The mesh shows the shape of the individuals, and the heatmap colors show the differences to the model
estimate with red showing areas that project outwards from the average shape mesh and blue showing areas that project inwards
from the mesh.
the expected facial shape for a person of the same age,

sex, and syndrome. Figure 3 gives two examples of the

residual shape of the best and worst model estimates

for Nager syndrome (MIM: 154400) and Van der Woude

syndrome (MIM: 119300). These are presented as heat-

maps that describe deviations from the expected shape

in red and blue colors. Green colors represent areas

where the facial shape of the individual closely matches

the model predicted shape. The full table of best and

worst estimates for each syndrome is provided in

Figures S1–S8. The worst demographically matched pre-

dictions tend to be syndromic individuals with facial fea-

tures less typical of their syndrome. For instance, a com-

mon deviation from age-matched atlas predictions are

individuals with atypically broad chins (see Figures S1

and S7: achondroplasia, Rubinstein-Taybi syndrome

[MIM: 180849]).

The second way we evaluated model predictions was to

assess the degree to which the model generates realistic in-

stances of the syndromes. This specifically tests for overfit-

ting. One can think of the predicted faces as anonymized
42 The American Journal of Human Genetics 111, 39–47, January 4, 2
representations of the underlying data. If these representa-

tions classify poorly by using the classifier that is based on

the original data, then the predicted faces are not good

anonymized representations. To test this, we estimated

how well predicted faces could be classified into their

respective diagnostic groups using a classifier trained on

real instances of the syndromes. Classification was done

using high-dimensional regularized discriminant analysis

(HDRDA), which we have previously used to classify syn-

dromic facial shape.9 To generate simulated faces for classi-

fication, we first limited syndromic model estimates to the

observed age ranges for each syndrome.We then simulated

faces for each syndrome in one-year increments between

the minimum and maximum observed age for a syndrome

and classified each simulation (Figure 4A). The majority of

syndromes classify with 100% sensitivity, suggesting that

syndromemodel predictions do not produce extreme devi-

ations from their intended syndromic phenotypes, even

for age and sex combinations that are not directly observed

in the original demographic makeup of the sample. In

Figure 4B, we show the relationship between classification
024
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Figure 4. Classification of syndrome atlas predictions and determinants of classification sensitivity
(A) Classification of interpolated syndrome atlas predictions. Predicted shapes for syndromes were constrained to the age range observed
for each syndrome and classified.
(B) Classification of syndrome atlas prediction solely for age ranges not observed for each syndrome.
(C) Relationship between classification sensitivity and sample size, average Procrustes distance to the non-syndromic mean face, the
standardized variance of the eigenvalues, and the trace of the covariance matrix for each syndrome. Procrustes distance measures shape
differences among configurations of landmark coordinates. The variance of eigenvalues measures the extent to which variation in shape
is concentrated on the first few principal components. Each point represents an individual syndrome.
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Figure 5. Panel views of the syndrome atlas application
The application supports a mobile view driven by touch interactions (A–C) as well as a desktop view with mouse/keyboard controls
(Figures S9–S11).
(A) The gestalt tab focuses on individual syndrome visualization. Here we see an estimated face that would correspond to a 6-year-old
male with severe craniofrontonasal dysplasia.
(B) The comparison tab allows for the comparison between any syndrome or non-syndromic group. Comparisons can be limited to sub-
sets of the facial morphology shown in the bottom box. The morphospace plot on the bottom shows the similarity of all syndromes to
the specified syndrome.
(C) The submitted face tab allows for the submission and registration of a novel mesh. The registered mesh is then run through a syn-
drome classifier (middle row) and projected onto syndromic principal component axes (bottom row). In the principal component space,
the registered mesh is highlighted among age- and sex-matched projected atlas predictions for each syndrome.
sensitivity and various properties of each syndrome. Clas-

sification of syndrome atlas estimates is generally not asso-

ciated with the sample size, severity, integratedness, or

variance of the syndrome. This suggests that the model is

robust to biases due to low syndrome sample size or to syn-

dromes with extreme phenotypes and high variability.

Figure 4C focuses on classifying syndrome atlas predic-

tions for extrapolated age ranges for each syndrome. Clas-

sification for many syndromes is poor when extrapolated

to more extreme unobserved age ranges, suggesting that

there may be non-linear or unique age-by-syndrome inter-

actions that require higher sample size to model more

accurately.
44 The American Journal of Human Genetics 111, 39–47, January 4, 2
Web-based atlas of syndrome morphology

Finally, we have developed an atlas of syndromic

morphology web application, which may be of use to the

clinical and academic community. The application is orga-

nized into three sections: gestalts, comparisons, and sub-

mitted face.

The gestalt visualizations (Figure 5A) are interactive.

They can be rotated and zoomed using a mouse on a

desktop or with touch input on a mobile device. The

gestalt visualizations are also dynamic with respect to

age, sex, and severity. For syndrome subtypes with at least

5 observations, we provide additional visualization op-

tions. The default is a consensus gestalt that pools all
024



observations for that syndrome. The second is an unspec-

ified subtype which provides an estimate from only indi-

viduals with unknown subtypes. Finally, we provide indi-

vidual subtypes unique to each syndrome.

When a syndrome is selected, a gestalt for a specific age-

sex combination is automatically generated. Age can be

modified by dragging the age slider manually or by

entering a specific age. To avoid extrapolation beyond

the observed data, each syndrome’s selectable age range

and sex is determined by the syndrome sample composi-

tion (Table S1).

The syndrome web application also includes features for

visualizing within-syndrome phenotypic heterogeneity. In

general, syndromic faces are more variable than non-syn-

dromic faces, and heterogeneity itself is a characteristic

feature of syndromic facial morphology.9,15 To illustrate

heterogeneity, the application allows the user to modify

the severity of the syndromic phenotype. For a given syn-

drome, severity is defined by the range of variation of syn-

dromic individuals along the axis through shape space that

passes through the mean shape for the syndrome. Individ-

uals that are more severe than the mean will have residual

shapes that score higher along the syndromic vector. Like

age parameters, the magnitude of modifiable severity is

determined by the range of syndromic severities observed

in the sample. A selected syndrome visualization can be

made 1.5 standard deviations more mild or more severe us-

ing the severity slider.

Gestalts can be displayed with or without texture. By

default, the syndrome application uses one of nine select-

able generic skin textures. Three-dimensional visualiza-

tions of syndrome morphology have traditionally been

presented without skin texture to maintain the privacy of

the participants that have been scanned. We aimed to

generate useful texture visualizations that are derived

from the diversity of skin texture in our dataset without

relying on any one individual. To do so, we measured

mesh texture by registering the texture images of a small

sample of meshes for each syndrome, producing texture

images with UV correspondence to the dense registered

mesh. We then generated novel synthetic textures by aver-

aging textures within syndromes. Figure 5A shows a gestalt

of a 6-year-old male with severe craniofrontonasal

dysplasia (MIM: 304110) with the default generic skin

texture applied.

The second section of the syndrome atlas is the ‘‘compar-

isons’’ tab. The features in the comparisons tab allow users

to visualize quantitative morphological differences be-

tween any two syndromic estimates, as well as to an age-

and sex-matched non-syndromic equivalent. Compari-

sons are displayed with a heatmap, which uses red colors

to represent local expansion and blue colors to denote

local contraction; white shades denote areas of shape sim-

ilarity between the two estimates. This feature may be

particularly useful for understanding trajectories of facial

phenotypes for syndromes that tend to produce similar

characteristic features during some parts of development.
The Am
For example, Figure 5B compares a 33-year-old male with

Nager syndrome (MIM: 154400) estimate to an age- and

sex-matched Treacher Collins syndrome (MIM: 154500,

248390, 613717) estimate. Users can visualize differences

in pre-defined specific facial regions of interest

(Figure 5B, bottom box); the comparison in Figure 5B fo-

cuses on nasal morphology. The heatmap is updated in

real-time as the age slider changes, allowing users to see

how the difference between syndromes changes with age.

To compare a syndrome of interest to multiple syn-

dromes simultaneously, the comparisons tab includes a

plot that summarizes shape information across the dataset

for the selected syndrome (Figure 5B). Each data point in

the plot represents the average projected scores for each

syndrome along the selected syndrome coefficient vector.

The five most similar syndromes are labeled. When a

morphological subset is selected, the average similarity

score for each syndrome to the selected syndrome in the

selected subset is provided on the x axis. The y axis always

provides full face scores for reference.

The third component of the syndrome atlas can be

found under the ‘‘submitted face’’ tab (Figure 5C). This

tab allows for the submission of novel meshes with age

and sex covariates that will be registered to the syndrome

atlas. There are several analysis options for a submitted

mesh. The first is the ability to make direct comparisons,

presented as a heatmap, to any age- and sex-matched syn-

dromic estimate in order to identify which syndromes

have the most similar phenotype to themesh.We also pro-

vide an estimate of the syndrome classification probabili-

ties for the mesh with an updated version of our previously

published classifier with 82 syndrome classes.9 Finally, we

provide a scatterplot showing the position of the submit-

ted face shape (highlighted in red) in the principal compo-

nent shape space of the syndromic dataset.
Discussion

Medical geneticists have long relied on facial features as a

component of clinical diagnosis. In practice, this can range

from informal clinical gestalt to structured use of deep phe-

notyping methods such as phenotype ontologies24 or

quantitative classification based on two- or three-dimen-

sional facial images.9,20,25 Here, we leverage the growing

database of 3D facial images of individuals with rare dis-

ease diagnoses to create an online reference tool to aid clin-

ical diagnosis. This tool is intended to provide a systematic

representation of the facial shape effects associated with

genetic diseases. It also allows clinicians to visualize varia-

tion in manifestation and severity of those facial shape ef-

fects as well as their interactions with sex and age.

Quantitative gestalts, such as those that we provide here,

are only as representative as the underlying data that have

been collected (see Table S1 for a demographic summary of

the dataset used herein). Our current dataset is of over-

whelmingly European ancestry and thus has as-yet
erican Journal of Human Genetics 111, 39–47, January 4, 2024 45



unknown generalizability to other ethnicities. Moreover,

the syndromes represented in the dataset are rare in the

population at large. It is challenging to collect enough syn-

dromic examples across their full range of ages and ethnic-

ities to confidently estimate an age- or ethnicity-specific

gestalt. This limitation can be mitigated if there are no

strong age/ethnicity-by-syndrome phenotypic interac-

tions. While recent concerted efforts to expand our under-

standing of the relationship between syndromic facial phe-

notypes and ethnicity are a step in the right direction,

most utilize 2D images.26 Our prior work does not reveal

significant race or ethnicity effects on overall classification

accuracy from facial shape.9 This does not mean, however,

that there might not be significant interactions that could

affect accuracy for individual syndromes. International

collaboration focused on the collection of 3D facial images

from syndromic subjects of diverse racial and ethnic back-

grounds should be a greater priority in the future.

The syndrome gestalt model presented here also does

not explicitly model asymmetric aspects of craniofacial

syndromes. This should not affect classification efforts

for syndromes in which the asymmetry is randomly

distributed between the left and right sides of the face

(e.g., Cornelia de Lange syndrome27 [MIM: 122470]), since

these deviations will tend to cancel out in the overall anal-

ysis. However, in syndromes in which asymmetry is consis-

tently sided (directional asymmetry), such as with

oculoauriculovertebral spectrum (MIM: 164210), that

asymmetry will tend not to be exploited for its diagnostic

value in our model.

The ability to submit novel faces to the syndrome atlas

raises several considerations. The first pertains to the com-

parison of an individual’s facial morphology to the syn-

drome atlas. Upon registration of a face to a homologous

topology, we project the face into the principal component

space of our dataset.We then show the individual’s similar-

ity to others in the dataset as a reference for where their

face resides in the atlas of syndromic morphology. It is

important to note that the combined effects of sex, age,

syndrome, allometry, and ethnicity all contribute to the

variation in the atlas. One must take care not to interpret

a subject’s location in the space solely as a syndromic ef-

fect. There is substantial facial shape heterogeneity in syn-

dromic directions even in non-syndromic popula-

tions,28,29 so similarity to syndromic morphology should

not automatically be assumed to imply potential syn-

dromic genetic mutations. This is equally true when inter-

preting the results of the syndromic classifier. Facial shape

with no additional contextual information may be useful

for delineating a set of potential syndromes for further vali-

dation, but it should not be used as a substitute for genetic

screening, clinical assessment, and testing. Machine

learning algorithms may incorrectly classify an individual

as syndromic when they do not have a genetic syndrome,

and they may incorrectly classify an individual with a syn-

drome as non-syndromic. It is possible the occurrence of

such false positives and false negatives would be exacer-
46 The American Journal of Human Genetics 111, 39–47, January 4, 2
bated by ethnic and other demographic insufficiencies pre-

sent in the training data. There is a history of sex and

ethnic bias in facial recognition algorithms, so syndrome

classification algorithms that rely on facial shape from im-

ages and 3D scans may be susceptible to analogous

problems.30,31

The aim of this work is to provide a detailed reference for

the characteristic phenotypes of craniofacial syndromes

for clinical geneticists. Phenotyping continues to be inte-

gral to clinical assessment because of its utility for diag-

nosis. This tool is positioned as a reference tool for clini-

cians to visualize specific syndromic presentation. It is

also a powerful tool for the comparison of an individual’s

morphology to demographically matched syndrome visu-

alizations. Current methods for automated syndrome clas-

sification require clinician interpretation, emphasizing the

continued need for phenotype references. Aids that pro-

vide context for the clinician’s needs are increasingly

important for diagnosis. Finally, there is substantial prom-

ise in expanding the utility of the syndrome atlas by tar-

geted collection of ethnically diverse additional syndromic

facial shape data.
Data and code availability

All of the primary data used to create the syndrome atlas

application are shared via Facebase (accession numbers

FB00000861 [https://doi.org/10.25550/TJ0], FB00000892

[https://doi.org/10.25550/TK0], and FB00000491 [https://

doi.org/10.25550/VWP]). Code is available at https://

github.com/J0vid/Syndrome_modelJS. The exception to

this is the optimized code for mesh upload and registration

as this is proprietary to DeepSurfaceAI.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.11.011.
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