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ABSTRACT OF THE DISSERTATION

A Tensor Product Operation for Higher Representations

by

Matthew Ian McMillan

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Raphaël Alexis Rouquier, Chair

We construct an explicit abelian model for the tensor 2-product of 2-representations of sl2,

specifically the product of a simple 2-representation Lp1q with a given abelian 2-representation

V . Both are taken from the 2-category of algebras, and V is assumed to satisfy two further

hypotheses.

The existence of an abelian model like this one, or a generalization of it, was conjectured

by Rouquier in 2008.

We study the output of our construction in detail in the case V “ Lp1q, and we show that

the 2-representation it determines recovers the expected structure of a categorification that

is already known for that case.

We form the product construction first for 2-representations of the positive half U` (a

monoidal category) of the 2-category associated to the Lie algebra sl2. In a subsequent

chapter we show that the same construction gives a 2-representation of the full 2-category

U when the inputs are also 2-representations of the full 2-category U .

ii



The dissertation of Matthew Ian McMillan is approved.

Paul Balmer

Sergei Gukov

Burt Totaro
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CHAPTER 1

Introduction

This dissertation consists in the proof of a single theorem. The theorem establishes the

existence of an abelian 2-representation inside the derived 2-representation that is naturally

associated to a pair of abelian 2-representations of sl2. This 2-representation is a kind of

tensor product of the pair of 2-representations, so we call it a ‘tensor 2-product’.

We only consider the case where one member of the pair is a certain simple 2-representation

called Lp1q, and the other member V is an abelian 2-representation satisfying two additional

hypotheses. We do not know how to define the general case. Both 2-representations are

given as categories of modules over algebras. The theorem is proved by giving concrete

formulas for the structure it postulates, and the formulas are of considerable importance for

the potential applications we envision.

The theorem is a major first step toward a fully general construction of an abelian tensor

2-product of 2-representations of Kac-Moody algebras. The existence of an abelian con-

struction (in full generality) was conjectured by Rouquier in 2008, shortly after the modern

concept of 2-representation was first defined.
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1.1 Categorical representations of Lie algebras

1.1.1 Concepts

Representations of the Lie algebra sl2

The enveloping algebra U of the Lie algebra sl2pCq is generated by elements e and f , with

the notation h “ re, f s. A finite dimensional representation of sl2, i.e. a U -module V , may

be decomposed into eigenspaces Vλ of h (the ‘weight spaces’) for λ P Z, so V “
À

λ Vλ, and

the relations rh, es “ 2e, rh, f s “ ´2f imply that e and f restrict to linear maps:

e : Vλ Õ Vλ`2 : f,

and from re, f s “ h we have a relation between linear maps on Vλ:

e ¨ f ´ f ¨ e |Vλ
“ λ ¨ IdVλ

. (1.1.1)

Promotion to categorical structures

In a categorical representation, the role of the collection of weight spaces Vλ is played by a

collection of additive ‘weight categories’ Vλ, and the role of an element v P Vλ is played by

an object M P Vλ. The linear maps e, f are replaced by a pair of linear functors given for

each λ:

Eλ : Vλ Õ Vλ`2 : Fλ`2.

It is useful to package these functors as the restrictions of a single pair of endofunctors E and

F of V “
À

λ Vλ. Now, we need a categorical version of the formula (1.1.1) that is induced

by the equation re, f s “ h.

2



At least when λ ě 0, it is natural to replace λ ¨ IdVλ
by the functor:

Id‘λ
Vλ

: Vλ Ñ Vλ,

M ÞÑ M‘λ.

Then the formula (1.1.1) can be expressed in the categorical theory by an isomorphism of

functors ρλ : Eλ´2 ˝ Fλ
„
ÝÑ Fλ`2 ˝ Eλ ‘ Id‘λ

Vλ
. When λ ă 0 we can use the same Id‘λ

Vλ
on the

other side and require an isomorphism ρλ : Eλ´2 ˝ Fλ ‘ Id‘´λ
Vλ

„
ÝÑ Fλ`2 ˝ Eλ.

In the general philosophy of categorification, elements are promoted to objects, and one

supplies to every pair of objects the additional data of a Hom space such that the Hom

spaces jointly have the structure implied by compositionality. The notion of equivalence of

objects in a category is more complex than the notion of identity of elements in a vector

space, involving as it does the structure of these Hom spaces: a single object may have a

variety of isomorphisms to itself, which express its symmetries, and therefore also a variety

of isomorphisms to another object. A consequence is that when a categorical structure

is defined by generators and relations, it is possible to give a ‘weak’ or ‘naive’ definition

where the relations simply postulate the existence of isomorphisms between the functors,

and a ‘strong’ or ‘genuine’ version where the relations stipulate that a certain morphism of

functors, which they name, is an isomorphism of functors. Usually the strong definition is

preferable. So, to complete the idea of categorical representation of sl2, we need names and

packaging for many morphisms:
$

’

’

&

’

’

%

ρλ : Eλ´2 ˝ Fλ Ñ Fλ`2 ˝ Eλ ‘ Id‘λ
Vλ

λ ě 0

ρλ : Eλ´2 ˝ Fλ ‘ Id‘´λ
Vλ

Ñ Fλ`2 ˝ Eλ λ ă 0.

The data of a 2-representation will include these morphisms, and the definition of 2-representation

will require that they are isomorphisms.

At this juncture the idea of ‘categorifying’ the U -module V ceases to be procedural.
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The theory of higher representations began in earnest with the discovery of a symmetry

describable among these morphisms of functors that may be justified from several points of

view. The symmetry is that of a certain Hecke-type algebra. We prepare the way for this

algebra next.

Adjunction

Observe first that the data of the morphisms of functors consists of various morphisms

EF Ñ Id, Id Ñ FE, and EF Ñ FE. With this in view, it is very natural to require that

pE,F q be an adjoint pair. (And, notice that with respect to the Shapovalov form on V , e

and f act by adjoint linear maps.) Adding this hypothesis allows one to package the data

of the various morphisms in a simple way. From the adjunction we have isomorphisms:

HompId, FEq – EndpEq – HompEF, Idq,

HompEF, FEq – EndpEEq.

This means that all the morphisms of functors in question can be determined by the data of

various elements of EndpEq and EndpEEq. The unit η : Id Ñ FE and counit ε : EF Ñ Id

are determined, of course, by the natural element IdE. But there is a further aspect, since

EndpEq and EndpEEq have natural ring structures using composition for multiplication.

This feature implies that a single element x P EndpEq generates a potentially infinite list

of morphisms EF Ñ Id and Id Ñ FE, namely by interpreting the powers xn P EndpEq

through the above isomorphisms of Hom spaces.

Let us say that the modern definition of categorical representation makes two major

moves, both of which concern the assembly of functors we are discussing. The first is to

insist that the pair pE,F q form an adjunction, and then to define the constituent maps

EF Ñ Id, Id Ñ FE, and EF Ñ FE in the above manner in terms of a single generator

x P EndpEq and another generator τ P EndpEEq. In precise detail, we let σ : EF Ñ FE by

4



σ “ FEε ˝ FτF ˝ ηEF , and for λ ą 0 we let ε ˝ xiF : EF Ñ Id, i P t0, . . . , λ ´ 1u give the

maps EF Ñ Id, and for λ ă 0 we let Fxi ˝ η : Id Ñ FE, i P t0, . . . ,´λ ´ 1u give the maps

Id Ñ FE.

The second major move is to introduce relations on the generators. These will be re-

lations between Ex and xE and τ inside EndpEEq, as well as relations between Eτ and

τE inside EndpEEEq. It is much harder to motivate the details of these relations purely

from considerations of the original Lie algebra structure, even granting a desire to recast

it in categorical terms. The move was not made for a decade after the concept of naive

categorical representation was introduced, probably for that reason, and there remains some

variety when it comes to the details used in the literature for the relations. The relations do

have the common feature of a ‘Hecke-type’, and that may be, as we have mentioned, justified

from several points of view, to which we now turn.

Hecke relations

The categorical version of Lie theory did not originate as a sophistication of classical Lie

theory. Some of the momentum it has, to be sure, derives from an ambitious vision of Crane-

Frenkel to make Lie theory a suitable receptacle of 4d topological information. Were it not

for these laudable motivations, namely their extrinsic goals, adherents of the Crane-Frenkel

TQFT program would lie somewhat exposed to a charge – not infrequently levied by repre-

sentation theorists – of dressing classical theory in complicated clothing without increasing

its real content. But, we hasten to insert, the origin of the categorical theory, to include, if

only implicitly, the ‘Hecke-type’ actions that are now seen to have central importance, can

be found in the geometrical manifestation of the ‘canonical bases’ in quantum groups. These

were discovered by Lusztig, and used by him to prove positivity statements by interpreting

integer coefficients as dimensions of spaces of perverse sheaves. An analogous strategy also

worked for the positivity conjecture of Kazhdan-Lusztig.
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The point, the first point of view, is that one must acknowledge a close connection between

the very idea of categorical Lie theory and the passage to geometrical settings, and that the

modules playing the role formerly occupied by elements have a natural meaning in the

geometrical settings. With this admitted, the Hecke-type relations on x and τ may be

justified by their occurrence in the geometrical settings. We will say more about those

settings below.

A second point of view is that a definition should be judged by the theorems one can prove

using it. The Hecke-type relations on the generators x and τ , when added to the definition

of 2-representation, enable one to define ‘minimal’ 2-representations Lpλq that have the

irreducible 1-representations Lpλq of g as their Grothendieck groups, and that also have a

universal property analogous to that of Verma modules. Those 2-representations enable the

proof of a categorical analogue of the Jordan-Hölder series decomposition, and this in turn

allows one to reduce some statements about general 2-representations to statements about

the minimal ones. This technique was used by Chuang-Rouquier in the course of their proof

of the symmetric group case of Broué’s Abelian Defect Conjecture about finite groups.

Let us say a brief word about how the Hecke-type relations lead to structure theorems

in the case of sl2. Firstly, the (nil affine) Hecke algebras have the structure of n! ˆ n!

matrix algebras, the idempotents of which yield decompositions of the powers of E, namely

En – Epnq ‘ ¨ ¨ ¨ ‘ Epnq, where Epnq is called a ‘divided power’. (Similarly F n – pF pnqq‘n!.)

The divided powers are shown to be indecomposable modules, in appropriate circumstances,

whose classes give Lusztig’s canonical basis elements in the Grothendieck group. If the

structure of the Grothendieck group is known in advance, which it typically is, then the

divided powers and their endomorphism algebras determine the structure of the whole 2-

representation.

We may add a third point of view. In representation theory, one looks for structures with

interesting sets of representations. In categorical representation theory, it has proven difficult
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to say as much as in the classical theory about the (internal) structure of the set of categorical

representations of a Lie algebra. (This dissertation adds something to remedy the deficit.) It

is difficult partly because a categorical representation is a more complicated structure, owing

to the Hecke-type symmetry in the 2-morphisms. On the other hand, one can find interest

in the diversity of domains in which categorical representations (with the Hecke symmetry)

can be found. We alluded in the previous paragraph to an appearance in connection with the

Broué conjecture. This has to do more specifically with the modular representation theory

of symmetric groups, where the categorical ‘E’ is given by a restriction functor and the

generator x arises from Jucys-Murphy elements. Perhaps unsurprisingly, considering Schur-

Weyl duality, one can also provide the structure of categorical representation to several

categories of representations of gln, such as parabolic category O. And, of course, there is

thirdly the class of geometrical categorical representations that we will address shortly.

Categorical enveloping algebra Upgq

Categorical representations can be described with a little more abstraction as ‘2-representations’

of certain 2-categories. Let us illustrate the idea first with the categorical version of the pos-

itive half Upsl2q
` of the enveloping algebra associated to sl2. One forms a monoidal category

U` generated by a single object E. The morphisms are generated by x P EndpEq and

τ P EndpEEq modulo the Hecke-type relations, see (1.3.1). Then a ‘2-representation’ of U`

on a monoidal category V is a strict monoidal functor U` Ñ V . For example, when V is

the category BimkpAq of pA,Aq-bimodules for a k-algebra A, then a 2-representation on V

amounts to the data of such a bimodule AEA, together with bimodule maps x P EndpEq and

τ P EndpEEq satisfying the Hecke-type relations. This setup can be generalized to other Lie

types by including generators Ei for simple roots i of a root system, and augmenting the set

of morphisms and relations accordingly. We generalize ‘Hecke-type relations’ from ‘nil affine

Hecke relations’ to ‘quiver Hecke relations’.
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When considering the full algebra Upsl2q, and the categorical setting where we are in-

terested in representations having weight decompositions, it is sensible to expand Upsl2q

somewhat and form a 1-category 9Upsl2q in which the generators of Upsl2q become arrows,

and we include an object 1λ for each weight λ. Now, instead of forming a monoidal cate-

gory as for U`, one forms a 2-category U , where the single object is expanded to the set of

weight objects t1λu, the monoidal structure is promoted to the arrows of a 1-category, and

the old morphisms become the new 2-morphisms. A ‘2-representation’ of U on a 2-category

V , such as the category Cat of categories, is then a strict 2-functor U Ñ V . The data of

such a map U Ñ Cat consists in the choice of ‘weight categories’ Vλ, i.e. the images of t1λu

in Cat, together with 1-morphisms Eλ : Vλ Ñ Vλ`2 and Fλ : Vλ Ñ Vλ´2, and 2-morphisms

xλ P EndpEλq and τλ P EndpEλ`2Eλq, such that the Hecke-type relations are satisfied, and

the maps ρλ they determine are isomorphisms. The same upgrade procedure can be per-

formed in other Lie types, and the resulting Upgq is said to be the 2-category that categorifies

9Upgq. A technical complication comes in defining the general version of Hecke-type relations.

Let us also remark that a graded version ‘Uqpgq’ or ‘Upgq-gr’ gives the categorical counterpart

of the quantum group Uqpgq.

It turns out that the positive half U` has an increased significance in the categorical

setting, relative to the full 2-category U , when compared to the significance of Upgq` relative

to Upgq. In the next section, U` will be given a geometric meaning that does not generalize

to U . This meaning was essential for the discoveries and constructions in the history of U .

Geometry

One can realize U` as the monoidal category of perverse sheaves on a moduli stack of

representations of a quiver. While there is not a similar realization known for the whole

of U , one can provide a geometric realization of the minimal 2-representations of U , those

mentioned above in connection with Jordan-Hölder series, by using Nakajima quiver varieties.
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(These varieties were designed to provide a geometric realization of the whole of Upgq, as

well as its irreducible integrable representations, i.e. at the level of the Grothendieck ring.)

This construction generalizes to a geometric realization of the categorical representations

having Grothendieck group a tensor product of irreducibles. (More on that later.)

Let Q be a quiver with I its set of vertices, where Q is the Dynkin diagram of g with

added orientation. Let ReppQq be the moduli stack of representations of Q over C. We have

ReppQq “ \νReppQqν where ReppQqν collects the representations with dimension vector

ν P NI. The derived category DpReppQqq “ ‘νDpReppQqνq has a monoidal structure

given in the manner of convolution, as follows. There is a stack of exact sequences of Q-

representations, S “ t0 Ñ V1 Ñ V3 Ñ V2 Ñ 0u, with three projections πi : S Ñ ReppQq.

Given A P DpReppQqνq, B P DpReppQqµq, we form a product:

A ˚ B “ π3˚pπ˚
1A b π˚

2Bq P DpReppQqν`µq.

Let P pReppQqνq collect the direct sums of shifts of simple perverse sheaves in DpReppQqνq.

Then P pReppQqq “ ‘P pReppQqνq is a monoidal category by the decomposition theorem,

and it has a homological grading. Lusztig showed that the Grothendieck ring of P pReppQqq

is isomorphic to Uqpgq`.

There is an isomorphism of monoidal categories pU`
q qi

„
ÝÑ P pReppQqq. (Here pU`

q qi refers

to an idempotent-completion of U`
q .) We do not spell out any details, but this isomorphism

entails the presence of the Hecke-type symmetry in P pReppQqq. This should be viewed as

a fundamental source for the Hecke relations appearing in higher representation theory, and

the isomorphism in question may be viewed as contributing to the definition of U .

In the case of sl2, Q is a single vertex α, and an object V P ReppQq is a vector space. Then

ReppQqnα is the stack pt{GLn. One can find the (nil affine) Hecke algebra 0Hn in P pReppQqq

as follows. Let Z “ ČReppQqnα ˆReppQqnα
ČReppQqnα, where ČReppQqnα is the stack of complete

flags of representations of Q with top dimension vector nα. So ČReppQqnα is FlpCnq{GLn

9



and Z “
`

FlpCnq ˆ FlpCnq
˘L

GLn. Then the convolution algebra H˚pZq is an Ext-algebra

in P pReppQqq isomorphic to 0Hn. It can also be computed as HGLn
˚

`

FlpCnq ˆFlpCnq
˘

. The

latter may be viewed as the most basic appearance of Hecke-type relations in geometry.

We briefly turn to the Nakajima quiver varieties. Let Y “ YµY pλ, µq be a Nakajima

quiver variety. It is an open subset of T ˚Mpλ, µq, where Mpλ, µq is a stack naturally defined

in Nakajima’s context. There is a category Dpλ, µq of constructible sheaves on Mpλ, µq. In

the case of sl2, with λ “ n and µ “ n´ 2k, this is Dpλ, µq “ Db
cpGrpk,Cnqq. It is a theorem

that, for general g, the categories Dpλ, µq give the µ-weight categories of a 2-representation

of Upgq with Grothendieck group the irreducible representation Lpλq of g.

1.1.2 History

So far as the author is able to see into the past, the main idea of categorical representation

theory originated with C. Ringel in 1990 [Rin90]. Ringel discovered that the isomorphism

classes of representations of a Dynkin quiver, over a finite field Fp, has the structure of the

positive half of the quantized enveloping algebra Uqpgq`, where q is a function of the prime p,

and g is determined by the quiver. The ‘structure of isomorphism classes’ refers to the ring

structure of extensions that was defined much earlier by P. Hall. This discovery of Ringel

inspired1 G. Lusztig’s work using perverse sheaves on the space of representations of a quiver

[Lus90, Lus91].2 The description in terms of perverse sheaves is what gives the canonical

bases for Uqpgq` and the irreducible Uqpgq-modules.

In 1994, L. Crane and I. Frenkel made explicit a proposal to recast many algebraic struc-

tures in representation theory into categorical terms [CF94]. The reason for their interest

in this project was that the higher dimension of categorical terms could allow some exist-

ing ideas through which 3d topological information is rendered into representation-theoretic

1Cf. [Lus10, note 5, p. 127].
2Another part of Lusztig’s innovation was inspired by his own earlier work on character sheaves [Lus85].
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structures to be ‘upgraded’ to ideas through which 4d topological information is rendered

into categorical analogues of the same representation-theoretic structures. These ideas in-

cluded, especially, the invariant of 3-manifolds discovered by Witten and Reshetikhin-Turaev

(WRT) [Wit89, RT91]. The WRT invariant relies on the Hopf structure of a quantum group

Uqpgq, which provides tensor product and dualization structures for the category of repre-

sentations of Uqpgq. Crane and Frenkel recognized in Lusztig’s canonical bases the traces of

a world of higher algebras, higher representations, and higher Hopf structure.

M. Broué’s Abelian Defect Conjecture [Bro86] motivated J. Chuang and R. Rouquier’s

study [CR08] (released 2004) of the representation category for symmetric groups, where

they incorporated the structure of higher representation we have discussed, describing for

the first time endomorphisms x P EndpEq and τ P EndpEEq that carry the data of the

maps involved in the categorical commutator relations, as well as the Hecke-type relations

that x and τ should satisfy. Rouquier extended this work to a systematic theory of cate-

gorical Kac-Moody algebras U in [Rou08a] (see also [Rou12]), introducing the ‘quiver Hecke

algebras’ that generalize the Hecke-type symmetry of x and τ . Around the same time, in-

dependently, M. Khovanov and A. Lauda [KL09, Lau10, KL10] found a special case of the

Hecke-type relations in the cohomology of partial flag varieties, and used those to produce

categorical representations, as well as to inspire their own definition of essentially the same

U , given by diagrammatic generators with the Hecke-type relations that they saw in the co-

homology. The connection between these cohomology rings and quantum groups was known

from Beilinson-Lusztig-MacPherson’s geometric model of Uqpslnq [BLM90], which had in

turn been interpreted categorically already by Grojnowski-Lusztig [GL92]. Khovanov and

Lauda recognized that the Hecke-type action on 2-morphisms in U leads to the existence

of commutator isomorphisms ρλ, although they did not emphasize the way the ρλ are de-

termined by x and τ together with the one adjunction pE,F q, as Rouquier had done. In

Rouquier’s approach only one adjunction is postulated, and the morphisms ρλ are inverted
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formally to define U . In Khovanov-Lauda’s approach, a bi-adjunction is postulated, and the

existence of commutator isomorphisms is established using the bi-adjunction and the Hecke

action. Brundan has shown [Bru16] that the two definitions of U essentially agree.

The geometric description of categorical representations using the quiver varieties of

H. Nakajima [Nak94] was given first for tensor products of Uqpsl2q-representations in 2007

by H. Zheng [Zhe07], and extended in 2008 to 2-representations with Grothendieck group

either irreducible or a tensor product of irreducibles [Zhe14]. Zheng did not show that the

ρλ as determined by x and τ were isomorphisms, but he showed that some commutator

isomorphisms existed, and Rouquier was able to deduce the former from this fact and his

own theory [Rou12, Thm. 5.10].

1.2 Tensor product

1.2.1 Concepts

The operation of tensor product is ubiquitous in representation theory and its applications.

The tensor product is a primary means of generating new representations from old ones. In

this thesis we develop a tensor product for 2-representations. The nature of the problems

arising at the categorical level should be set against the structure of the classical theory, so

we summarize the classical theory first.

Let us be given two representations of sl2pCq, called V1 and V2. Form the vector space

V1 bC V2. This space has two commuting actions of sl2: in the first, e P sl2 acts by eb 1, in

the second it acts by 1 b e. The tensor product representation consists in a new, ‘diagonal’,

action in which e acts by eb1`1be. It is not hard to see that this rule gives an action. It’s a

little harder to see, but this action has the property that the canonical (trivial) isomorphism

pV1 bC V2q bC V3
„
ÝÑ V1 bC pV2 bC V3q commutes with the actions determined on each side by

12



applying the above procedure twice. Now there is an anti-automorphism S of Upsl2q given

by X ÞÑ ´X. Using this, V1 can be viewed as a Upsl2qop-module, which is to say, as a right

Upsl2q-module, and we can form the tensor product over the sl2 action, written V1 bU V2.

This product is smaller, lacking the diagonal symmetry. Now, observe a simple relationship

between the diagonal action on V1 bC V2 and the smaller product V1 bU V2: the latter is the

largest quotient of the former on which sl2 acts diagonally by zero.

In the case of Upgq or Uqpgq, the discussion above can be expressed in the language of

Hopf algebras. Suppose HM and HN are two representations of a Hopf k-algebra H with

coproduct ∆ : H Ñ H b H and antipode S : H Ñ H. There is a large outer product

M bk N with two commuting actions of H on the two factors, and a third, diagonal, action

given by first applying ∆. The coassociativity property of ∆ implies that the trivial map

pM bNq bL Ñ M b pN bLq is an isomorphism of H-modules. By using S to view M as a

right H-module, we can form the smaller product M bH N . The smaller product is related

to the larger as follows: M bHN is the largest quotient of M bkN on which H acts through

∆ by 0. For Upgq or Uqpgq, the formulas ∆phq “ h b 1 ` 1 b h and Sphq “ ´h can be used

to write the condition ∆phq.pm b nq “ 0 as the equality of elements m.h b n “ m b h.n.

We do not have a Hopf structure on the categorical analogue U . We are interested in

building such a structure, or at least the expression of such structure on the collection of

2-representations. Let Vi be an abelian category of Ai-modules for i “ 1, 2, where Vi is

a 2-representation of U given by the data pEi, x
i, τ iq. We can easily define a large ‘outer

product’ category V1 bk V2, with objects generated by pairs of modules M bk N , and it has

two commuting actions of U . We seek a kind of diagonal action of U on V1 bk V2, but we do

not at the outset insist on the coassociativity feature or the use of an antipode.

The fundamental conceptual choice of our method, advocated by Rouquier since at least

2008 [Rou08b], is to define the diagonal 2-representation, call it V1 b V2, by first imagining

the smaller product taken over U , written perhaps V1 bU V2, and then defining V1 b V2 so

13



that it bears an analogous relation to V1 bU V2 as V1 bC V2 does to V1 bU V2 or M bkN does

to M bH N . That is to say, one should be able to realize V1 bU V2 as the largest quotient

of V1 b V2 on which U acts diagonally by zero. Then, if we can define first V1 bU V2, the

relationship will point us toward the definition of V1 b V2.

Now there is a natural way to define V1 bU V2, at least in principle. In this category, there

should be isomorphisms of modules αN
M : E1pMq bkN

„
ÝÑ M bkE2pNq. (And they should be

equivariant over the actions of xi on Ei and τ
i on E2

i .) These isomorphisms would induce the

conditions ∆peq.pmbnq “ 0 on the Grothendieck group, where e “ rEs, m “ rM s, n “ rN s.

As in our first discussion about the commutator isomorphisms, the category V1 bU V2 should

include the data of the morphisms αN
M . Of course, the collection should be functorial, so

really we want a single Hecke-equivariant morphism of functors α : E1 b Id Ñ IdbE2. This

α should be formally inverted in the definition of the product V1 bU V2.

At this point one can see a way to define the larger category V1 b V2, namely as the outer

product V1bkV2 with the additional data of a Hecke-equivariant morphism α of functors. The

smaller category is determined from this by adding the condition that α is an isomorphism.

What is the diagonal action of E on V1 b V2? This should be a functor that acts by zero

on a simple tensor of modules M bk N for which αN
M is an isomorphism. Recall that αN

M is

a quasi-isomorphism if and only if its cone is acyclic. The second basic idea of our method,

also due to Rouquier, is to use the cone of α for this functor, and to move to a homotopy or

derived setting. Needless to say, this move opens the door to myriad technical complications,

and it is the procedural reason that the definition of V1 b V2 we study in this thesis belongs

in its ‘full’ nature to the homotopy or derived setting.

To complete the concept of V1 b V2, it is necessary to supply natural x- and τ -equivariant

morphisms α
pIdbE2qC
pE1bIdqC (where C “ ConepαN

Mq) in order to make ConepαN
Mq an object in

V1 bV2, and to supply endomorphisms x and τ of ConepαN
Mq and ConepConepαN

Mqq satisfying

Hecke-type relations in order to make a 2-representation of U using ConepαN
Mq for the image

14



of E. Here one encounters further technical difficulties. We continue in §1.4 a discussion

about how the construction in this thesis overcomes those difficulties.

We may include here an important observation about the idea sketched thus far. In

the concept of V1 bU V2, the isomorphisms are, naturally, bidirectional. In the definition

of V1 b V2 on the other hand, we have broken the symmetry by preferring a choice of

domain and codomain for the morphism α. It may seem at first that this asymmetry is

unnatural and undesirable, but deeper consideration suggests that thought to be premature.

Recall that the tensor product M1 b M2 of representations of the quantum group Uqpgq is

isomorphic to the tensor productM2 bM1, but not by the trivial exchange of factors. Indeed

the usual isomorphism is by the highly nontrivial action of the quantum R-matrix. In this

way the quantum group tensor product is not symmetric. Given that a graded version of

categorical tensor product should categorify the quantum tensor product, we might in fact

expect asymmetry in the categorical setting for the undeformed Lie algebra.

1.2.2 History

The original Crane-Frenkel program included the idea of building a ‘Hopf category’ upgrad-

ing the Hopf structure of quantum groups that was central to the WRT invariant. Early

work on ‘categorification’ that explicitly participated in this program, such as Bernstein-

Frenkel-Khovanov’s [BFK99], sought and studied categorical representations including cate-

gorifications of tensor products of simple representations of Upsl2q. In [FKS07] the authors

extended this theory to the quantized case Uqpsl2q using graded versions of similar structures.

The main structures used were singular blocks of Harish-Chandra bimodules considered in

category O of gln, and parabolic subcategories of the regular block of the same category

O. (They are related by a Koszul duality.) These methods were carried further by Sussan

[Sus07] and Mazorchuk-Stroppel [MS09], and then by Sartori-Stroppel [SS15] who formu-
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lated categorifications of arbitrary tensor products of finite dimensional simples in type A.

All these categorifications were eventually understood to possess the Hecke symmetries of

their 2-morphisms that Rouquier had incorporated in his 2004 definition.

The theory of tensor product categorifications with broadest coverage was developed

by B. Webster [Web17]. He defined an algebra T λ depending on a list λ “ pλ1, . . . , λnq of

dominant weights of any symmetrizable Kac-Moody algebra g, and showed that the category

Repf.d.pT λq of its finite dimensional representations categorifies the tensor product Vλ1 b

¨ ¨ ¨bVλn of simple representations with highest weights λi. The Repf.d.pT λq categorifications

(and their derived categories DpT λq) were sufficient for Webster to define link invariants

for all symmetrizable g, although these invariants have not been amenable to computation.

The algebras T λ are defined using diagrammatic generators and relations, similarly to the

algebras defined by Khovanov and Lauda that categorify quantum groups ([KL09], [KL11]).

According to a unicity theorem of Losev-Webster [LW14], Webster’s Repf.d.pT λq in type A

is equivalent to the categorifications by Sartori-Stroppel and others.

The categorifications of Stroppel et al. and Webster do not give the categorical analogue of

the operation of tensor product: such an operation must by definition start with the abstract

data of given 2-representations, and determine a third 2-representation from this data. It

is a fact that 2-representations are not in general semisimple, and the tensor 2-product of

given simple 2-representations having certain simple 1-representations for their Grothendieck

groups is not expected to agree with a direct sum of simple 2-representations having for their

Grothendieck groups the direct summands of the tensor 1-product of those certain simple

1-representations. (Symbolically, if K0pV1q “ V1 and K0pV2q “ V2 and K0pWiq “ Wi with

V1 b V2 – ‘iWi, then V1 b V2 is not going to agree with ‘iWi.) Furthermore, a natural

product operation should be functorial in its arguments, and this desideratum cannot even be

stated for the ad hoc categorifications of the kind constructed before this thesis. We hasten

to add, though, that Losev-Webster’s axiomatic description of Webster’s 2-representations,
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and the agreement of the latter with Sartori-Stroppel et al.’s constructions in type A, is very

strong evidence that these constructions have the right structure for the tensor 2-product of

simple 2-representations with irreducible Grothendieck groups. So, we expect a 2-product

definition to determine structures equivalent to these when the factors are simple.

We are informed that Rouquier has a broad definition of tensor 2-product given in an

A8 setting that encodes the technical complications as higher homotopies. (We anticipate

a future publication [Rou].) This setting brings its own technical complications, and the

construction does not provide any explicit formulas for the product action even in that

setting. Rouquier has conjectured (we believe in [Rou08b]) that there should exist an abelian

subcategory of the derived category of the 2-product he defines, a subcategory which affords

an abelian 2-representation. Abelian 2-representations are the sort we handle in this thesis

and the sort usually intended in the literature.

The main construction of this thesis partially verifies Rouquier’s conjecture by defining

an abelian 2-product when one factor is Lp1q and the other factor V is taken from the 2-

category of algebras (and satisfies two further hypotheses). In addition, our construction

takes a step toward defining a practically useful 2-product by providing explicit formulas for

the component structures.

In certain cases the homotopical complications in Rouquier’s A8 approach naturally dis-

appear. This happens in the case of the super Lie algebra glp1|1q`, and A. Manion and

Rouquier [MR20] have developed the theory in that case. They show that the 2-product can

be used to describe the Bordered Heegaard-Floer theory for surfaces [LOT18].

The Manion-Rouquier work is in the direction of perhaps the most compelling motivation

to find a 2-product that is properly native to the theory of 2-representations, and that is

the ambition of Crane-Frenkel to build a 4d TQFT. In particular, in the case of the 2-

algebra Uqpsl2q, such a 2-product may be expected to play a central role in a prospective

4d TQFT that extends the Jones polynomial. It may be possible to build this TQFT as a
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4d layer on the 3d TQFT of Witten-Reshetikhin-Turaev. Glimmers of this 4d theory have

been seen by physicists [GPV17], and some aspects are defined rigorously in some cases

[GM21]. We emphasize that the rank one case of Upsl2q theory, and the tensor product

of simple 2-representations such as the minimal one Lp1q, are expected to be sufficient for

many topological applications, for the same reason that tensor products of the fundamental

representation Lp1q of Uqpsl2q were enough for the Jones polynomial and WRT invariants.

1.3 The theorem

Let us be given a field k and the data of a triple pA,E, x, τq as follows. Let A be a k-algebra

and E an pA,Aq-bimodule, let x P EndpEq and τ P EndpE2q be bimodule endomorphisms,

and suppose that x and τ generate an action of the nil affine Hecke algebra, that is, that

they satisfy the following relations:

τ 2 “ 0,

τE ˝ Eτ ˝ τE “ Eτ ˝ τE ˝ Eτ,

τ ˝ Ex “ xE ˝ τ ` 1, Ex ˝ τ “ τ ˝ xE ` 1.

(1.3.1)

(Here we write xE for the endomorphism xb IdE in EndpE2q, and similarly for the others.)

Let U` denote the monoidal category associated to the positive half of the enveloping

algebra of sl2. The data above determines a 2-representation V of U`.

We can give such data for a simple 2-representation Lp1q of U` whose Grothendieck group

is the fundamental representation Lp1q of sl2. The data is
`

krys`1 ˆkrys´1, krys, y, 0
˘

, where

the algebra is given in its weight decomposition. Here y P krys´1 acts on krys on the right

by multiplication, and y P krys`1 acts by zero. These roles are reversed for the left action.

The endomorphism x acts by multiplication by y.

Let Pn “ krx1, . . . , xns be the polynomial algebra. Then Pn acts on En with xi P Pn
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acting by the endomorphism En´ixEi´1.

The second chapter is organized around a proof of Part I of our main theorem.

Theorem (Main Theorem Part I: Positive Half). Suppose x and τ satisfy the nil affine

Hecke relations, so pA,E, x, τq gives the data of a 2-representation of U`, denoted V, and

suppose the bimodule E has the following additional properties:

� AE is finitely generated and projective,

� En is free as a Pn-module.

Then we define explicitly:

� a k-algebra C (Def. 2.2.32),

� a pC,Cq-bimodule Ẽ (Def. 2.2.38),

� bimodule endomorphisms x̃ and τ̃ of Ẽ (Def. 2.3.4),

such that x̃ and τ̃ satisfy the nil affine Hecke relations, so pC, Ẽ, x̃, τ̃q gives the data of a

2-representation of U` that we denote Lp1q b V.

The constructions defined by Stroppel, Webster, Zheng, Lauda and others include 2-

representations having Grothendieck group Lp1q b Lpnq, where Lpnq is the irreducible rep-

resentation of sl2pCq of dimension n ` 1. In the last section of Chapter 2, we study the

output of our construction for V “ Lp1q, and show that it is equivalent to a known 2-

representation having Grothendieck group Lp1q bLp1q. We can describe the algebra for that

known 2-representation.

Let P2 “ krx1, x2s and let P S2
2 be the subalgebra of symmetric polynomials. Let Bs1 “

P2 b
P

S2
2
P2 be the pP2, P2q bimodule; it is also a P2-algebra with structure map P2 Ñ Bs1

given by f ÞÑ 1 b f . Now let T “ T`2 ‘ T0 ‘ T´2 be the P2-algebra:

T`2 “ P2, T0 “ EndBs1
pP2 ‘ Bs1q

op, T´2 “ P2.
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One can define a pT, T q-bimodule and bimodule endomorphisms that, together with T , give

the data of a 2-representation of U , denoted T . This 2-representation is known to have

Grothendieck group Lp1q b Lp1q. See §2.4.1 for more details.

Theorem (Comparison Theorem). There is an equivalence Lp1q b Lp1q
„
ÝÑ T of

2-representations.

Now let U be the 2-category associated with the enveloping algebra of sl2, as given in

Rouquier [Rou08a] or Vera [Ver20, §3.2]. Since we only work with 2-representations of U

and not U itself, completeness does not demand a definition of U . See [Rou08a, §5.1.1] for

the definition of 2-representation of U .

Assume we are given pA,E, x, τq as above, determining a 2-representation of U`. Now

assume also that pA,E, x, τq has a weight decomposition A “
ś

λPZAλ (Def. 2.3.25 below).

The data pA,E, x, τq extends to determine a 2-representation of the full 2-category U when

the functor E bA ´ admits a right adjoint functor F such that certain maps ρλ are isomor-

phisms in each weight λ P Z. The maps ρλ are determined by x and τ . See §3.1.2 below for

the definition of ρλ.

The simple 2-representation Lp1q of U` extends to a 2-representation of the full U in

this way, where the right adjoint is given by tensor product with the bimodule F “ krys –

Homkryspkrys, krysq.

The third chapter is a proof of Part II of our main theorem.

Theorem (Main Theorem Part II: And Negative Half). Suppose pA,E, x, τq gives the data

of a 2-representation V of U` such that V has a weight decomposition. Define the left-dual

pA,Aq-bimodule F “ HomApAE,Aq. Suppose E has the following properties:

� AE is finitely generated and projective (as in Part I), so pEbA´, FbA´q is an adjunction,

� En is free as a Pn-module (as in Part I),
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� E and F are locally nilpotent (i.e. the 2-representation is integrable),

� The maps ρλ defined using x and τ are isomorphisms for each λ P Z, so pA,E, x, τq gives

a 2-representation of U and AF is finitely generated and projective. (See §3.1.2.)

Let C be the k-algebra, Ẽ the pC,Cq-bimodule, and x̃ and τ̃ the endomorphisms from the

Main Thorem Part I. Note that Ẽ is locally nilpotent. Let F̃ “ HomCpCẼ, Cq. Then:

� The unit η̃ and counit ε̃ of the duality pairing give an adjunction pẼ bC ´, F̃ bC ´q,

� The new maps ρ̃λ defined as in §3.1.2 using x̃, τ̃ , ε̃, η̃ are isomorphisms, so:

� AF̃ is finitely generated and projective, and F̃ is locally nilpotent,

� pC, Ẽ, x̃, τ̃q gives the data of an integrable 2-representation of U for C.

We emphasize that for a 2-representation of U` (with weight decomposition) given by the

data pA,E, x, τq, the fact that the data extends to determine a 2-representation of the full

2-category U is equivalent to a property of that data: namely that the canonical commutator

maps ρλ determined by x and τ are isomorphisms. When this holds, then (according to the

theorem) the maps ρ̃λ of the product are also isomorphisms. So the new data pC, Ẽ, x̃, τ̃q

inherits the property of extending to an action of the full U .

In this thesis, a symbol V is used sometimes to denote a 2-representation of U`, and

sometimes to denote the ‘extension’ to a 2-representation of U . This is an abuse of notation

because in the first instance V is a monoidal category, and in the second instance it is a

2-category. The meaning of our abuse is that the data determining the monoidal category

may also determine a (related) 2-category. Thinking in terms of the underlying 4-tuple of

data may prevent misunderstandings.

21



1.4 Remarks on the method

Assume the setting of the previous section, so Lp1q is given by the data pA1, E1, x
1, τ 1q “

pA˝, krys, y, 0q with A˝ “ krys`1 ˆ krys´1, and V is given by the data pA2, E2, x
2, τ 2q “

pA,E, x, τq. One can define a tensor algebra B1:

B1
“ TA˝bkA

`

_krys bk E
˘

.

There is a canonical isomorphism _krys bk E
„
ÝÑ Erys, and another A˝ bk A

„
ÝÑ Arys ˆArys.

The data of a B1-module is equivalent to the data of a triple pM,N,αN
Mq where M,N P

Arys-mod and αN
M : Erys bArys M Ñ N . Since τ 1 “ 0 in this case, α is automatically

τ -equivariant. We can enforce x-equivariance of α by taking a quotient by I “ Impx ´ yq,

where x´y is understood in EndAryspErysq. Define B “ B1{I. Write Ey for the pArys, Arysq-

bimodule Erys
L

px ´ yqErys. Then we can present B using matrices by:

B “

¨

˚

˝

Arys Ey

0 Arys

˛

‹

‚

.

The ring structure is given by matrix multiplication, using the pArys, Arysq-bimodule struc-

ture of Ey as well as the algebra multiplication in Arys to define the multiplication of matrix

coefficients. The category B-mod is our initial candidate for the underlying category of

Lp1q b V .

To develop a 2-representation, we seek a pB,Bq-bimodule for the image of E from U , and

bimodule endomorphisms x and τ . There is a natural candidate for the image of E, we will

call it E∆, but it is a complex of pB,Bq-bimodules, not a bimodule. It is given as a complex

(in degrees 0 and 1) by:

E∆
“

¨

˚

˝

Erys ErysEy

0 Erys

˛

‹

‚

d
Ñ

¨

˚

˝

Ey EyEy

Arys Ey

˛

‹

‚

.
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(The differential and action data are described in Definition 2.2.2. There E∆ is written E 1

for convenience, as elsewhere in Chapters 2 and 3 below.) There is also a natural candidate

for x P EndB-cplxpE∆q arising from the data of Lp1q and V , but that x is not equivariant over

the action of generators in Ey in B. (It is equivariant in a derived category.) There is no

natural candidate for τ P EndB-cplxpE∆E∆q, though that appears to be for technical reasons.

Let e1 “

¨

˚

˝

1 0

0 0

˛

‹

‚

P B. Our technique in this thesis is to define a new algebra C, derived-

equivalent to B, that is the End-algebra of a complex X:

X “ Be1 ‘ E∆e1,

C “ EndKbpBqpXq.

In particular, we show that H omBpX,´q defines an equivalence of triangulated categories:

per B
„

ÝÝÝÝÝÝÝÝÑ
H omBpX,´q

per C,

where per B is the full subcategory of the derived category of complexes quasi-isomorphic to

strictly perfect complexes of B-modules, and similarly for per C. The bimodule complex E∆

may be transported through the equivalence, and the result is quasi-isomorphic to a complex

Ẽ of pC,Cq-bimodules that is concentrated in degree 0 and such that CẼ is projective as a

module. We construct explicit bimodule endomorphisms x̃ P EndpẼq (compatible with x1

and x2) and τ̃ P EndpẼ2q that satisfy the nil affine Hecke relations. The data pC, Ẽ, x̃, τ̃q

gives a 2-representation.

In order to define x̃ and τ̃ and verify the relations, we study the tensor powers Ẽn. These

powers can be parametrized by explicit models containing HomKbpBq

`

E∆e1, pE
∆qne1

˘

. We

give presentations of these modules by generators and relations for n “ 1, 2, 3, 4 in the second

chapter. To add the structure of the lower half and obtain a 2-representation of the full U ,

we also need models for HomKbpBq

`

pE∆q2e1, pE
∆qne1

˘

for n “ 1, 2, and those are developed

in the third chapter.

23



1.5 Directions for future work

Considering our 2-product as part of a 2-representation theory of the 2-category U , several

questions are very natural.

� Given the asymmetry entailed by the choice of direction for α, can we define a product

Lp1q bV by making the opposite choice?

� A small modification of our method should also lead to the reverse product V b Lp1q. Is

there a natural equivalence between V b Lp1q and Lp1q bV?

� Is our product functorial in the second argument V?

� Our methods appear amenable to generalization to a product Lpnq b V , albeit with a

complexity of description that seems unmanageable. Is there a way to simplify or package

the technical aspects in order to give explicit formulas for Lpnq b V?

The following deeper questions would contribute to a general theory of the 2-product:

� Rouquier’s construction gives a derived category DbpLp1q b Vq. Can we explain our 2-

product as the abelian core of DbpLp1q b Vq determined by a t-structure or something

similar? ‘Perverse tilts’ might give the higher analogues of the crystal bases of Uqpgq-

modules. (The crystal basis is compatible with the operation of tensor product, while the

canonical basis is not.)

� Could a t-structure enable us to define a 2-product for higher rank Kac-Moody algebras?

� Could a t-structure determine a new class 2-ReppUq of 2-representations, for any two

members V , W of which, the 2-product V b W is defined?

The search for a 4d TQFT motivates additional questions that should be reasonably straight-

forward to answer:
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� Does the 2-product output pC, Ẽ, x̃, τ̃q have the property that Ẽn is free as a krx̃1, . . . , x̃ns-

module? (Here x̃i acts by Ẽ
n´ix̃Ẽi´1.) The input is assumed to have this property. The

other assumption of left-projectivity is already known to be satisfied by the output.

� Answering the above question affirmatively will enable a definition of the n-fold iterate:

Tn “ Lp1q b

´

Lp1q b
`

Lp1q b . . .
˘

¯

.

This product is of great importance for topological applications. It will be valuable to

compare Tn with the (equivalent) 2-representations already defined by Lauda, Stroppel,

Webster, Zheng and others; we expect to find that Tn is equivalent to theirs.

� When the reverse product V b Lp1q is also defined, we will have in hand the definition

of the iterate Lp1qbn with any given choice of parenthesization. Obvious questions about

associativity of the 2-product will make sense at that point.

� We anticipate a braid group action on Tn, or on a dg or derived precursor. It will be

determined by an auto-equivalence R1 of
`

Lp1q b Lp1q
˘

b V that is functorial in V .

Some significant questions in low-dimensional topology would be very interesting to address

with the 2-product construction:

� By defining ‘cup’ and ‘cap’ morphisms and using a braid action on Tn, can we give a new

definition of Khovanov homology?

� How fast is the new definition to compute? (Is it comparable to the fast procedure of Bar-

Natan?) Fast procedures to compute link homologies in higher rank are not yet known,

and this approach using a 2-product might provide them, giving access to a large new

volume of computable information about links.

� There is a spectral sequence from Khovanov homology to knot Floer homology. Can it

be explained using the 2-product we have developed, in conjunction with the 2-product ap-
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plied by Manion-Rouquier [MR20] to cast Heegaard-Floer theory in terms of 2-representations

of glp1|1q`?

� With a new definition given for Khovanov homology, can we extend it from links to

3-manifolds?

1.6 Outline summary

� In §2.1 we describe some conventions and background theory. The data of a 2-representation

of U` consists of an algebra A, a bimodule AEA, and endomorphisms x P EndpEq and

τ P EndpE2q satisfying nil affine Hecke relations. This data determines a monoidal cate-

gory: the object is the bimodule E, tensor product over A gives the monoidal structure,

and morphisms are bimodule maps.

� In §2.2 we begin with a naive product algebra B and complex of bimodules BE
1
B. We

construct a derived-equivalent algebra C. We define a pC,Cq-bimodule Ẽ and study a

new class of bimodules we call Gn that arise inside the tensor powers of Ẽ. This study

has a technical and computational flavor.

� In §2.3 we construct the new nil affine Hecke action, with generators x̃ and τ̃ , on powers

of the new bimodule Ẽ. More computations are required to establish the properties we

need. They rely on results about Gn proved in §2.2.

� In §2.4 we write out explicit details for the most basic example of our construction:

Lp1q b Lp1q. This product agrees with a well-known categorification of Lp1q b Lp1q,

where Lp1q is the fundamental representation of sl2.

� In §3.1 we discuss the adjunction and the maps ρλ that are needed to define the extension

of a 2-representation of U` to a 2-representation of the full 2-category U .
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� In §3.2 we define and study more bimodules, giving concrete algebraic models for them

in the manner of §2.2.

� In §3.3 we consider the right adjoint to ẼbC ´, namely F̃ bC ´ where F̃ “ HomCpCẼ, Cq,

and we show how to describe it concretely by making use of the B side of the equivalence

constructed in §2.2.

� In §3.4.1 we compute explicitly the tensor products needed to write explicit formulas for

ρ̃λ, namely the products Ẽ bC Ẽ and Ẽ bC F̃ and F̃ bC Ẽ. In §3.4.2 we compute explicit

formulas for ρ̃λ. In §3.4.3 we show directly that ρ̃λ is an isomorphism for each λ P Z.
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CHAPTER 2

Construction of the product: the positive half

2.1 Background structures

Let k be a field.

2.1.1 Nil affine Hecke algebras

The nil affine Hecke algebra 0Hn is the k-algebra with generators x1, . . . , xn, τ1, . . . , τn´1 and

relations:

xixj “ xjxi, τ
2
i “ 0,

τiτi`1τi “ τi`1τiτi`1,

τiτj “ τjτi if |i ´ j| ą 1,

τixj “ xjτi if j ´ i R t0, 1u,

τixi “ xi`1τi ` 1, xiτi “ τixi`1 ` 1.

Define si “ τipxi ´ xi`1q ´ 1. Observe that s2i “ 1 and si ˝ τi “ τi.
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2.1.2 U`psl2q and its 2-representations

2.1.2.1 Monoidal category U`

Definition 2.1.1. Let U`psl2q (hereafter ‘U`’) be the strict monoidal k-linear category

generated by an object E and maps x : E Ñ E and τ : E2 Ñ E2 subject to the relations:

τ 2 “ 0, (2.1.1)

τE ˝ Eτ ˝ τE “ Eτ ˝ τE ˝ Eτ, (2.1.2)

τ ˝ Ex “ xE ˝ τ ` 1, Ex ˝ τ “ τ ˝ xE ` 1. (2.1.3)

We write s “ τ ˝ pEx ´ xEq ´ 1. Observe that s2 “ 1 and s ˝ τ “ τ .

One easily checks that non-trivial Hom spaces of U` are Hecke algebras:

Proposition 2.1.2. The objects of U` are the En for n P Zě0, and

HompEn, Em
q –

$

’

’

&

’

’

%

0Hn n “ m

0 n ‰ m

with the isomorphism from 0Hn given by xi ÞÑ En´ixEi´1, τi ÞÑ En´i´1τEi´1. Using the

obvious morphism 0Hn b 0Hm Ñ 0Hn`m, the diagram commutes:

0Hn b 0Hm
0Hn`m

EndpEnq b EndpEmq EndpEn`mq.

– –

b

2.1.2.2 2-representations of U`

Definition 2.1.3. A 2-representation of U` on a category V is a strict monoidal functor

U` Ñ EndpVq. The data of such a functor consists of an endofunctor E of V and nat-
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ural transformations x P EndpEq, τ P EndpE2q satisfying (2.1.1)–(2.1.3). A morphism of

2-representations pV , E, x, τq Ñ pV 1, E 1, x1, τ 1q consists of a functor Φ : V Ñ V 1 and an

isomorphism of functors φ : ΦE
„
ÝÑ E 1Φ such that:

φ ˝ Φx “ x1Φ ˝ φ : ΦE Ñ E 1Φ,

E 1φ ˝ φE ˝ Φτ “ τ 1Φ ˝ E 1φ ˝ φE : ΦE2
Ñ E 12Φ.

Note that EndpVq is the full sub-2-category of the 2-category of categories Cat generated

by the object V . One can define U` as a 2-category with a single object, so that the data of

2-representation is the data of 2-functor from U` to Cat. This justifies our ‘2’ prefixes.

In this chapter we study monoidal functors from U` to monoidal categories of the form

BimkpAq which are defined for k-algebras A as follows: the objects of BimkpAq are pA,A)-

bimodules, and the morphisms of BimkpAq are bimodule maps. The monoidal structure on

BimkpAq is given by tensor product of bimodules over A.

Note that there is a 2-category Algk with k-algebras, bimodules, and bimodule maps as

the objects, 1-morphisms, and 2-morphisms. Then BimkpAq is the full sub-2-category of Algk

generated by the object A.

Proposition 2.1.4. The data of a 2-representation U` Ñ BimkpAq for a k-algebra A consists

of a bimodule AEA and bimodule maps x P EndpEq, τ P EndpE2q that satisfy (strictly) the

relations of U`.

We will use ‘xi’ and ‘τi’ to denote the generators in any 0Hn (where i ď n for xi and

i ă n for τi are assumed). Given a 2-representation for a k-algebra A with bimodule E,

these symbols are also used to denote the corresponding elements in each EndpEnq.
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2.1.2.3 The 2-representation Lp1q

A simple 2-representation of U` is given for the algebra A “ A`1 ˆ A´1, Ai “ krys, by the

bimodule E “ krys, where y P A´1 acts on the left by 0 and on the right by multiplication by

y, and y P A`1 acts on the right by 0 and the left by y. The Hecke actions are generated by

x P EndpEq acting by multiplication by y, and τ P EndpE2q satisfies τ “ 0 because E2 “ 0.

2.1.3 Further conventions

Assume we are given a k-algebra A and a 2-representation for A with data pAEA, x, τq, and

fix these through §4. Assume that AE is finitely generated projective and that En is free as

a Pn-module.

Consider the endomorphism x´y of the pArys, Arysq-bimodule Erys. Its image px´yqErys

is a sub-bimodule of Erys. Write Ey for the quotient Erys
L

px´yqErys. (Alternatively: Ey is

E extended to an pArys, Arysq-bimodule by specifying that y acts on both sides by x.) The

projection

π : Erys Ñ Ey

eyn ÞÑ xnpeq

is a surjection of bimodules.

We simplify notation for tensor products by adopting a convention that concatenation

indicates the tensor product over an algebra that is clear from the context. Sometimes it will

be unclear whether a tensor product is meant over A or over Arys, so we further stipulate

that if the expression for a module contains ‘y’, it will be understood as an Arys-module,

and if the expression lacks ‘y’, it will be understood as an A-module. Concatenation will

indicate tensor product over Arys if both are Arys-modules, otherwise it will indicate tensor

product over A.
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We will tacitly use canonical isomorphisms such as

M rys bArys N rys
„
ÝÑ M rys bA N

„
ÝÑ pMNqrys

forM a right A-module andN a left A-module. For example, EEy denotes EbAEy according

to our convention, but this is canonically isomorphic to Erys bArysEy, and the latter may be

written ErysEy. So we may write either EEy or ErysEy with equivalent meanings.

Extend x to EndpErysq by x : eyn ÞÑ xpeqyn and τ to EndpE2rysq by τ : eeyn ÞÑ τpeeqyn.

The map s defined above in terms of x and τ extends in the same manner to a map in

EndpE2rysq. Note that we denote an arbitrary element of Erys by the single letter ‘e’.

Similarly an arbitrary element of E2rys is denoted by the doubled symbol ‘ee’, which may

well not be a simple tensor of the form e b e. Later we will use ‘eee’ or ‘eeei’ as suggestive

notation for elements of E3rys, and so on.

Define δ “ τ ˝ pEx ´ yq P EndpE2rysq. We also consider the extensions of xi and τi to

Enrys, and then si and δi defined by their same formulas but replacing x with xi and τ with

τi. Some important identities are quickly verified:

Lemma 2.1.5. We have

� s2 “ 1, so s is an isomorphism

� δ2 “ δ, so δ is an idempotent,

and we also have s2i “ 1 and δ2i “ δi.

We adopt a flexible notation yi “ xi ´ y until §5. Here yi indicates
`

EjxEi´1 ´ y
˘

for

some j, and context will determine the value of j. Note that δi “ τiyi.

One may check that s ˝ x2 “ x1 ˝ s and s ˝ x1 “ x2 ˝ s. It follows that s exchanges y2 and

y1 and descends to a map:

s : Ey bArys Erys Ñ Erys bArys Ey.
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So we have s : E2 Ñ E2 a map of pA,Aq-bimodules, and this induces s : E2rys Ñ E2rys as

well as s : EyE Ñ EEy, maps of pArys, Arysq-bimodules. Context will determine the domain

and codomain for the symbol s.

Lemma 2.1.6. We also have:

� π1 ˝ δ “ s ˝ π2 : E
2rys Ñ EEy.

We define projections πi : Enrys Ñ En´iEyE
i´1 “ Enrys

L

pyi) by πi “ En´iπEi´1.

The same names may be used for maps between products with Ey factors, for example

π2 : EEy Ñ EyEy.

Given a module AM , its algebra of endomorphisms EndApAMq will use the traditional

order of composition for multiplication: pf ˝ gqpmq “ fpgpmqq. Typically, but not always,

‘˝’ is written to emphasize this convention. A consequence is that for a ring A, the algebra

EndApAAq is identified with Aop.

Given two complexes M , N of A-modules, we will write H omApM,Nq for the complex

generated by homogeneous A-module homomorphisms from M to N . In degree n it is given

by homogeneous maps of degree n, and the differential is dpfq “ d ˝ f ´ p´1q|f |f ˝ d for f a

homogeneous map of degree |f |. The notation ZiM refers to the degree i part of the kernel

of d.

Given an algebra R, we write DbpRq for the derived category of bounded complexes of left

R-modules. A strictly perfect complex of left R-modules is a bounded complex of finitely

generated projective R-modules. The category per R Ă DbpRq is the full subcategory of

complexes quasi-isomorphic to strictly perfect complexes. Given M P DbpRq, we write

xMy∆ for the smallest triangulated strictly full subcategory of DbpRq closed under direct

summands and containing M .

Lemma 2.1.7. We have xRy∆ “ per R.
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2.1.4 Generalized matrix algebras and tensor product

Suppose we are given k-algebras A and D, bimodules ABD and DCA, and bimodule maps

AB bD CA
γ1
ÝÑ A

DC bA BD
γ2
ÝÑ D.

With this data we can define a new k-algebra R:

R “

¨

˚

˝

A B

C D

˛

‹

‚

,

where multiplication of matrices is defined with the customary formulas using the above

bimodule structures and maps.

A right R-module consists of the data of M1 a right A-module, M2 a right D-module, a

map M1 bA B
α
ÝÑ M2 of right D-modules, and a map M2 bD C

β
ÝÑ M1 of right A-modules,

such that the latter two maps are compatible with γ1 and γ2. Here compatibility with γ1,

for example, means that the following compositions agree:

M1 bA pB bD Cq
IdM1

bγ1
ÝÝÝÝÝÑ M1 bA A

„
ÝÑ M1

pM1 bA Bq bD C
αbIdC
ÝÝÝÝÑ M2 bD C

β
ÝÑ M1.

The data of a left R-module may be given in a similar form.

Let

M “

ˆ

M1 M2

˙

be a right R-module, and

N “

¨

˚

˝

N1

N2

˛

‹

‚

a left R-module. Their tensor product M bRN may be formed as follows. Consider the pair
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of maps given by the R action data:

M1 bA B bD N2
IB

ÝÑ M1 bA N1 ‘ M2 bD N2

M2 bD C bA N1
IC

ÝÑ M1 bA N1 ‘ M2 bD N2

by IBpm b b b nq “ m b b.n ´ m.b b n and likewise for IC . Then we have an isomorphism:

pM1 bA N1 ‘ M2 bD N2q
L

pIB ` ICq
„
ÝÑ M bR N.

Now let F P EndRpNq be an endomorphism of left R-modules. It determines an endomor-

phism IdM bR F P EndkpM bR Nq which will be denoted MF . We can study this on com-

ponents as follows. There are induced endomorphisms F1 P EndApN1q and F2 P EndDpN2q

given by restriction of F . These determine endomorphisms M1F1 P EndkpM1 bA N1q and

M2F2 P EndkpM2 bD N2q, and these in turn provide together an endomorphism

¨

˚

˝

M1F1 0

0 M2F2

˛

‹

‚

of M1 bA N1 ‘M2 bD N2. The property of full R-linearity of F implies that this morphism

preserves the submodules IB and IC , and descends to the quotient M bR N where it agrees

with MF .

Lemma 2.1.8. In the notations used above, an element of EndkpM bRNq of the form MF

for F P EndRpNq is uniquely determined by the induced maps M1F1 and M2F2.

2.2 Product category

Given a 2-representation V for A with U`-action data pE, x, τq, we seek a 2-representation

for C with data pẼ, x̃, τ̃q to serve as the tensor 2-product Lp1q b V . In this section we

describe our proposal for the algebra C and data pẼ, x̃, τ̃q, and in the next section we study

this data and verify that the nil affine Hecke relations hold for x̃ and τ̃ .
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2.2.1 Naive product category

2.2.1.1 Naive product algebra B

Definition 2.2.1. Let B be the k-algebra:

B “

¨

˚

˝

Arys Ey

0 Arys

˛

‹

‚

.

Here the algebra structure of B is given by matrix multiplication, with the pArys, Arysq-

bimodule structure of Ey contributing for products with generators in B12.

A left B-module consists of a pair
`

M1
M2

˘

of left Arys-modules, together with a morphism

α : Ey bArysM2 Ñ M1 of left Arys-modules. A right B-module is the data of a pair p N1 N2 q of

right Arys-modules, together with a morphism β : N1 bArys Ey Ñ N2 of right Arys-modules.

It follows that a pB,Bq-bimodule can be written as a matrix of pArys, Arysq-bimodules with

accompanying maps α and β giving left and right actions of Ey. Such a matrix with α, β

determines a pB,Bq-bimodule only if the actions commute. Usually this commutativity is

obvious and we do not bother to check it.

A complex of left B-modules is the same data as a pair of complexes of Arys-modules

together with a morphism α of complexes; note that the differential of Ey bM2 for a complex

pM2, dq is just Ey b d. Similarly for right B-module complexes.

2.2.1.2 Endofunctor E 1 of B-cplx

Definition 2.2.2. Let E 1 be the following bounded complex of pB,Bq-bimodules concen-

trated in degrees 0 and 1:

E 1
“

¨

˚

˝

Erys ErysEy

0 Erys

˛

‹

‚

d
Ñ

¨

˚

˝

Ey EyEy

Arys Ey

˛

‹

‚

.
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Here the left action data ‘α’ for B generators in Ey is given on the degree 0 part as a matrix

using the decompositions 0 ‘EyErys and Erys ‘ErysEy by p 0 0
0 s q, and on the degree 1 part

by
´

IdEy 0

0 IdEyEy

¯

. The right action on the degree 0 part is by
´

IdErysEy 0

0 0

¯

and on degree 1 it

is by
´

IdEyEy 0

0 IdEy

¯

. The differential d is given componentwise by
`

π πbIdEy

0 π

˘

.

Tensoring by E 1 on the left gives an endofunctor BE
1 bB ´ of the category of complexes

of B-modules. It is convenient to have a formula for the action of this endofunctor on an

arbitrary complex of modules:

Lemma 2.2.3. Let M “
``

M1
M2

˘

, α
˘

be a complex of B-modules. The functor E 1 bB ´ acts

on M by:

¨

˚

˝

¨

˚

˝

M1

M2

˛

‹

‚

, α

˛

‹

‚

E1

ÞÝÑ

¨

˚

˚

˝

¨

˚

˚

˝

ErysM1

πM1
ñ

‘ EyM1r´1s

ErysM2

α˝πM2
ñ

‘ M1r´1s

˛

‹

‹

‚

,

¨

˚

˝

Erysα ˝ sM2 0

0 IdEyM1

˛

‹

‚

˛

‹

‹

‚

.

Here the top and bottom rows express cocones of the maps πM1 and α ˝ πM2.

Remark 2.2.4. It may help motivation to consider the effect of E 1 at the level of the

Grothendieck group when M1 and M2 are just modules, not complexes. The following

discussion is not intended to be precise or complete.

SupposeM 1
1 andM

1
2 are projective left A-modules, and R1 and R2 are projective left krys-

modules. Consider the projective left Arys-modules M1 “ R1 bk M
1
1 and M2 “ R2 bk M

1
2.

These are elements of the outer product of categories pkrys-projq bk pA-projq. Suppose

α : EyM2 Ñ M1 is given. Apply E 1 to
``

M1
M2

˘

, α
˘

. The upper row is quasi-isomorphic to:

ker
`

ErysM1
πM1
ÝÝÑ EyM1

˘ „
ÝÑ py1ErysqM1

„
ÝÑ ErysM1

„
ÝÑ R1 bk pE bA M

1
1q,

where the first isomorphism follows by flatness of M1. Letting e denote the action of

E on the Grothendieck group, we have p1 b eq
`

rR1s bk rM 1
1s

˘

for the upper row in the

Grothendieck group. The lower row is the cocone of α, which contributes rErysM2s ` rM1s
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in the Grothendieck group. Now recall that the raising functor for Lp1q is just krys. So:

M1
„
ÝÑ pkrys b 1q

`

R1 bk M
1
1

˘

, rM1s “ pe b 1q
`

rR1s bk rM 1
1s

˘

,

and we should interpret the copy ofM1 coming from the lower row in this way, since the factor

of krys in the Arys – krysbkA of the lower left corner of B is the higher weight copy. We also

have rErysM2s “ pe b 1q
`

rR2s bk rM 1
2s

˘

. Finally, it is a fact that pe b 1q
`

rR2s bk rM 1
2s

˘

“ 0

because Lp1q has only two weight categories. It follows from these calculations that the

action of e1 “ rE 1s on the Grothendieck group of the derived category has the form:

e1
r
``

M1
M2

˘

, α
˘

s :“ rE 1
``

M1
M2

˘

, α
˘

s

“ pe b 1 ` 1 b eq
`

rM 1
1s bk rR1s ` rM 1

2s bk rR2s
˘

.

This agrees with the Hopf coproduct formula ∆peq “ e b 1 ` 1 b e.

Proof of the lemma. We first check that the matrix specifying the new Ey action gives a

morphism of complexes. The diagonal coefficients of the matrix give morphisms of the

separate summands, and these commute with the differentials on the separate summands.

It remains to see that πM1 ˝Erysα ˝ sM2 “ IdEyM1 ˝Eypα ˝ πM2q, and these agree because

πEy ˝ s “ Eyπ.

Now we compute the tensor product following the recipe of §2.1.4. We have:

E 1
bB M “

¨

˚

˚

˚

˝

´

ErysM1 ‘ ErysEyM2

¯

L

I1

πM1
ñ

‘

ˆ

´

EyM1 ‘ EyEyM2

¯

L

I 1
1

˙

r´1s

´

0 ‘ ErysM2

¯

L

I2

α˝πM2
ñ

‘

ˆ

´

ArysM1 ‘ EyM2

¯

L

I 1
2

˙

r´1s

˛

‹

‹

‹

‚

.

Here the submodule I1 is generated by all terms of the form e b αpe1,m2q ´ e b e1 b m2 for

e P Erys, e1 P Ey,m2 P M2. So every element of the quotient has a canonical representative

in ErysM1, and the quotient is isomorphic to ErysM1. With analogous reasoning we see that

the quotient by I 1
1 is isomorphic to EyM1, that by I2 is isomorphic to ErysM2, and that by
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I 1
2 is isomorphic to M1. The differential may be written before taking quotients as dM1 on

the top and dM2 on the bottom. The images of dM2 in EyM2 represent elements in M1 by

way of α, and this determines the differential component α ˝πM2 between summands of the

bottom row.

Now we calculate the new Ey action in order to view this as a complex of B-modules.

Using the description of the left B-action on E 1, one sees that the action on the left summand

is by sM2, which is represented in ErysM1 through α, so the action written on the quotients

as described above is given by Erysα˝sM2. The action is obvious on the right summand.

2.2.1.3 Category per B and generator X

Definition 2.2.5. Let X be the following complex of B-modules:

X “ X1 ‘ X2

X1 “

¨

˚

˝

Arys

0

˛

‹

‚

X2 “ E 1
pX1q “

¨

˚

˝

Erys
π

ÝÑ Ey

0 ÝÑ Arys

˛

‹

‚

where X1 lies in degree 0 and X2 in degrees 0 and 1. The Ey action on X2 is by Ey bArys

Arys
„
ÝÑ Ey, e b 1 ÞÑ e.

One can see that X1 “ Be1 and X2 “ E 1e1, with ei P B the standard matrix idempotent.

Observe that there is a canonical right Arys action on Bei and on Xi given componentwise.

Proposition 2.2.6. The complex X is strictly perfect and generates per B.
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Proof. We can write X in terms of B:

X1 “ Be1

X2 “ Be1 bA E Ñ Be2,

where the differential is by π on the upper row. This is a complex of finitely generated

projective B-modules because AE is finitely generated and projective. So X is strictly

perfect. To see that X generates per B, first note that Be1 “ X1 P xXy∆. Now consider

Be1 bA E as a complex in degree 0. There is a map of complexes X2 Ñ Be1 bA E given

by the identity in degree 0 and by 0 in degree 1. Then Be2r´1s (a complex in degree 1) is

quasi-isomorphic to the cocone of this map. So Be2 P xXy∆.

Recall our notation πi “ En´iπEi´1 : Enrys Ñ En´iEyE
i´1.

Lemma 2.2.7. The kernel of φ : Enrys
pπiqi
ÝÝÑ

Àn
i“1E

n´iEyE
i´1 is py1 . . . ynqEnrys.

Proof. We have assumed that En is free as a Pn-module. It follows that Enrys is free as a

Pnrys-module. Let e P kerφ. So πipeq “ 0 and therefore e P yiE
nrys for each i P t1, . . . , nu.

Let B be a basis of Enrys over Pnrys. Write

e “ yi

ℓ
ÿ

j“1

f i
jpx1, . . . , xn, yq ¨ bj

for bj P B distinct and f i
j P Pnrys. It follows that yif

i
j “ ykf

k
j in Pnrys for each pi, kq P

t1, . . . , nuˆ2 and j P t1, . . . , ℓu. Then e “ y1 . . . yne
˝ for some e˝ P Enrys because Pnrys is a

unique factorization domain and each yi is irreducible.

Lemma 2.2.8. The complex E 1X2 is concentrated in degrees 0, 1, and 2:

E 1X2 “

¨

˚

˝

¨

˚

˝

E2rys
pπ2,π1q
ÝÝÝÝÑ EyE ‘ EEy

p´π1,π2q
ÝÝÝÝÝÑ EyEy

0 ÝÑ Erys ‘ Erys
p´π,πq
ÝÝÝÝÑ Ey

˛

‹

‚

, α

˛

‹

‚

,
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where

α0 “ 0

α1 “
`

IdEyE 0

0 s

˘

α2 “ IdEyEy .

Proof. Computation. The minus signs arise from shifting differentials.

Proposition 2.2.9. The complex E 1X is quasi-isomorphic to a finite direct sum of sum-

mands of X.

We define two complexes of B-modules before proving the proposition.

Definition 2.2.10. Let R,X 1
2 P B-cplx be given by

R “

¨

˚

˝

E2rys
p

π2
π2˝τ q

ÝÝÝÝÑ EyE ‘ EyE

0 Ñ Erys ‘ Erys

˛

‹

‚

,

X 1
2 “

¨

˚

˝

τy1E
2rys

π2
ÝÑ EyE

0 ÝÑ Erys

˛

‹

‚

,

both lying in degrees 0 and 1, and the Ey action on R is by the canonical map

Ey b pErys ‘ Erysq Ñ EyE ‘ EyE,

and on X 1
2 by the canonical map Ey b Erys Ñ EyE.

Lemma 2.2.11. We have that X 1
2 is a finite direct sum of summands of X.

Proof. Observe first that X2 bA E is a finite direct sum of summands of X because AE is

finitely generated projective. (Here we use the componentwise right A-action on X2.) Using
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the formulas

π2 ˝ δ “ π2,

π2 ˝ p1 ´ δq “ 0,

and δ ¨ p1 ´ δq “ 0, one has the decomposition of X2 bA E:

X2 bA E “

¨

˚

˝

E2rys
π2

ÝÑ EyE

0 ÝÑ Erys

˛

‹

‚

“

¨

˚

˝

δ ¨ E2rys
π2

ÝÑ EyE

0 ÝÑ Erys

˛

‹

‚

‘

¨

˚

˝

p1 ´ δq ¨ E2rys

0

˛

‹

‚

.

The matrix algebra structure of the nil-affine Hecke algebra gives the following isomor-

phism of left Arys-modules:

E2
rys

„
ÝÝÝÝÑ
p τy1

τ q
τy1E

2
rys ‘ τy1E

2
rys.

Lemma 2.2.12. There is an isomorphism R
„
ÝÑ X 1

2 ‘ X 1
2 in B-cplx given by the above

isomorphism on the degree 0 term of the upper row, and the identity on all other terms. So

R is a finite direct sum of summands of X2, and hence of X. In particular, R is strictly

perfect.

Lemma 2.2.13. There is a quasi-isomorphism R
q.i.
ÝÝÑ E 1X2 determined by IdE2rys on the

degree 0 term of the upper row and
`

1 0
1 ´y1

˘

on the degree 1 term of the lower row.

Proof. We first check that the map is a morphism in B-cplx. The matrix of the morphism

on the degree 1 part of the upper row, as determined by equivariance over generators of B
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in Ey, is given by
`

Id 0
s s˝px2´x1q

˘

. Observe that:

Id ˝ π2 ` 0 ˝ π2 ˝ τ “ π2;

s ˝ π2 ` s ˝ px2 ´ x1q ˝ π2 ˝ τ

“ π1 ˝ s ` px1 ´ x2q ˝ s ˝ π2 ˝ τ

“ π1 ˝ s ` π1 ˝ px1 ´ x2q ˝ s ˝ τ

“ π1 ˝

´

px2 ´ x1q ˝ τ ` Id

` px1 ´ x2q ˝
`

px2 ´ x1q ˝ τ ` Id
˘

˝ τ
¯

“ π1.

This shows compatibility with the differential from degree 0 in the upper row. The other

compatibility checks are easier.

Now we show that the map is a quasi-isomorphism. The lower row of E 1X2 has H
1 given

by:

tpe1, e2q P Erys
‘2

| e1 ´ e2 “ y1e for some e P Erysu.

This is also the image of the (injective) map from R in degree 1 of the lower row. The upper

row of E 1X2 has H0 “ kerpd0q “ y1y2E
2rys by Lemma 2.2.7. The cohomology of the upper

row of R is computed as follows. We have an isomorphism:

E2
rys

„
ÝÑ τy1E

2
rys ‘ ´y2τE

2
rys.

Notice that π2 ˝ τ vanishes on the first summand, and π2 vanishes on the second. Then one

may compute:

ker
`

τy1E
2
rys

π2
ÝÑ EyE

˘

“ τy1y2E
2
rys Ă y1y2E

2
rys

and

ker
`

´y2τE
2
rys

τ
ÝÑ
„
τy1E

2
rys

π2
ÝÑ EyE

˘

“ ´y2τy1y2E
2
rys Ă y1y2E

2
rys.
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So

ker
`

p
π2

π2˝τ q
˘

Ă y1y2E
2
rys.

The reverse inclusion is obvious, so H0 of the upper row is y1y2E
2rys. This shows that IdE2rys

induces an isomorphism on homology in degree 0 of the upper row. Using the decomposition

and inspecting the maps above, we also see that d0 on the upper row of R is surjective.

Finally we consider H1 of the upper row of E 1X2 and show it is zero. (Clearly the H2 is

zero.) Let pee1, ee2q P EyE ‘ EEy be in kerpd1q, i.e. such that π1pee1q “ π2pee2q. Then

ee1 “ ee2 ` pEx ´ xEqee˝ for some ee˝ P E2. (Note that EyEy – E2
L

pEx ´ xEq where y

acts by Ex or xE.) Then consider ee2 ` pEx´ yqee˝ P E2rys. The differential d0 sends this

to ee1 in EyE and to ee2 in EEy.

Proof of Proposition 2.2.9. The proposition follows from the preceding three lemmas.

Corollary 2.2.14. Tensoring with BE
1
B gives an endofunctor E 1 bB ´ of per B.

Proof. We know that X P per B, and it follows from Prop. 2.2.9 that E 1 bBX P per B. The

corollary follows because X generates per B.

Remark 2.2.15. We do not know that E 1 bB ´ on KbpBq is exact, so we do not know that

it descends to an endofunctor defined on all of DbpBq.

2.2.2 Bimodules Gn

The constructions of this chapter make use of certain bimodules that we describe next.

Definition 2.2.16. Let Gn denote HomKbpBqpX2, E
1nX1q.

Every Gn has the structure of pGop
1 , Arysq-bimodule by pre- and post-composition. Here

we understand Arys – EndKbpBqpX1q
op and use functoriality of E 1 for the action. Note that
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G1 “ HomKbpBqpX2, X2q has an algebra structure, and the right regular action of Gop
1 on G1

extends the right Arys action.

In this section we gather some facts regarding these bimodules and give concrete presen-

tations in small cases that are easier to handle. Given n P t1, 2, 3, 4u, we define Ḡn as an

pArys, Arysq-sub-bimodule of En´1rys‘n ‘HomApAE,E
nqrys. (By E0rys we mean Arys.) We

give isomorphisms Ḡn
„
ÝÑ Gn for such n. These isomorphisms induce left Gop

1 -actions on Ḡn

that extend the left Arys-actions. In future sections we do not distinguish Gn from Ḡn and

write only the former.

Definition 2.2.17. Define the following pArys, Arysq-sub-bimodule of Aoprys‘EndApAEqrys:

Ḡ1 “

B

pθ, φq P Aop
rys ‘ EndApAEqrys

ˇ

ˇ

ˇ

ˇ

φ “ .θ ` y1φ1

for some φ1 P EndApAEqrys

F

.

This bimodule also has a k-algebra structure with componentwise multiplication (using the

opposite multiplication on generators in Arys).

Note that Ḡ1 contains a copy of Aoprys, namely the subspace with φ “ .θ.

Proposition 2.2.18. There is an isomorphism of pArys, Arysq-bimodules Ḡ1
„
ÝÑ G1 deter-

mined by:

pθ, φq ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

p0, 1q

˛

‹

‚

ÞÑ

¨

˚

˝

pφpeq, 0q

p0, θq

˛

‹

‚

˛

‹

‚

.

Here pe, 0q P Erys ‘ Ey is an element of the upper row of X2, with e in degree 0 and 0 in

degree 1. Analogously with the lower row. This isomorphism respects the k-algebra structure.

Proof. The condition φ “ .θ`y1φ1 in the definition of Ḡ1 is equivalent to the statement that

the morphism given as the image of pθ, φq defined in the proposition has zero differential.
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Definition 2.2.19. Define the following pArys, Arysq-sub-bimodule ofErys‘2‘HomApAE,E
2qrys:

Ḡ2 “

B

pe1, e2, ξq P Erys
‘2

‘ HomApAE,E
2
qrys

ˇ

ˇ

ˇ

ˇ

e1 ´ e2 “ y1e
1

ξ “ b e1 ` y2ξ1

“ δp b e2q ` y1ξ2

for some e1
P Erys and ξℓ P HomApAE,E

2
qrys

F

.

Proposition 2.2.20. There is an isomorphism of pArys, Arysq-bimodules Ḡ2
„
ÝÑ G2 deter-

mined by:

pe1, e2, ξq ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

p0, 1q

˛

‹

‚

ÞÑ

¨

˚

˝

pξpeq, 0, 0q

p0, p e1
e2 q , 0q

˛

‹

‚

˛

‹

‚

.

Proof. Use the description of E 1X2 in Lemma 2.2.8. As in Prop. 2.2.18, the condition of

the definition of Ḡ2 is equivalent to the statement that the image of pe1, e2, ξq has zero

differential.

In order to parametrize G3, we compute the components of E 12X2 “ E 13X1 in degrees 0,

1, and 2:
¨

˚

˝

E3rys Ñ EyEE ‘ EEyE ‘ EEEy Ñ EyEyE ‘ EyEEy ‘ EEyEy Ñ . . .

0 Ñ E2rys ‘ E2rys ‘ E2rys Ñ EyE ‘ EEy ‘ EEy Ñ . . .

˛

‹

‚

.

The upper left differential map is pπ3, π2, π1q. We don’t make use of the upper right. The

bottom right differential map is given by the matrix:
¨

˚

˚

˚

˚

˝

´π2 π2 0

´π1 0 π1 ˝ δ

0 ´π1 π1

˛

‹

‹

‹

‹

‚

.
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Definition 2.2.21. Define the following pArys, Arysq-sub-bimodule ofE2rys‘3‘HomApAE,E
3qrys:

Ḡ3 “

B

pee1, ee2, ee3, χq P E2
rys

‘3
‘ HomApAE,E

3
qrys

ˇ

ˇ

ˇ

ˇ

ee1 ´ ee2 “ y2ee
1

ee3 ´ ee2 “ y1ee
2

δpee3q ´ ee1 “ y1ee
3,

χ “ b ee1 ` y3χ1

“ δEp b ee2q ` y2χ2

“ Eδ ˝ δEp b ee3q ` y1χ3

for some eek P E2
rys and χℓ P HomApAE,E

3
qrys

F

.

Proposition 2.2.22. There is an isomorphism of pArys, Arysq-bimodules Ḡ3
„
ÝÑ G3 deter-

mined by:

pee1, ee2, ee3, χq ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

p0, 1q

˛

‹

‚

ÞÑ

¨

˚

˝

pχpeq, 0, . . . q

p0,
´

ee1
ee2
ee3

¯

, . . . q

˛

‹

‚

˛

‹

‚

.

Proof. The condition of the definition of Ḡ3 is equivalent to the statement that the image

of pee1, ee2, ee3, χq has zero differential.
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Definition 2.2.23. Define the following pArys, Arysq-sub-bimodule ofE3rys‘4‘HomApAE,E
4qrys:

Ḡ4 “

B

peee1, eee2, eee3, eee4, ψq P E3
rys

‘4
‘ HomApAE,E

4
qrys

ˇ

ˇ

ˇ

ˇ

eee3 ´ eee4 “ y1eee
p1q

eee2 ´ eee3 “ y2eee
p2q

Eδpeee4q ´ eee2 “ y1eee
p3q

eee1 ´ eee2 “ y3eee
p4q

eee1 ´ δEpeee3q “ y2eee
p5q

eee1 ´ δE ˝ Eδpeee1q “ y1eee
p6q

ψ “ b eee1 ` y4ψ1

“ δE2
p b eee2q ` y3ψ2

“ EδE ˝ δE2
p b eee3q ` y2χ3

“ E2δ ˝ EδE ˝ δE2
p b eee4q ` y1χ4

for some eeek P E3
rys and ψℓ P HomApAE,E

4
qrys

F

.

Lemma 2.2.24. Under the conditions on eeei in the definition, there is a unique eee P E3rys

such that:

eeep5q
´ eeep2q

“ y3eee,

eeep4q
´ τEpeee3q “ y2eee.

Proof. Subtracting two equations from those conditions:

y2
`

eeep5q
´ eeep2q

˘

“ eee1 ´ eee2 ´ y3τEpeee3q

“ y3
`

eeep4q
´ τEpeee3q

˘

By Lemma 2.2.7 we know there is some eee satisfying the claim. It is unique because the yi

48



are injective.

Proposition 2.2.25. There is an isomorphism of pArys, Arysq-bimodules Ḡ4
„
ÝÑ G4 deter-

mined by:

peee1, eee2, eee3, eee4, ψq ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

p0, 1q

˛

‹

‚

ÞÑ

¨

˚

˝

pψpeq, 0, . . . q

p0,

ˆ

eee1
eee2
eee3
eee4

˙

, . . . q

˛

‹

‚

˛

‹

‚

.

Proof. The reader may compute the first terms of E 14X1 and show that the condition of the

definition of Ḡ4 is equivalent to the statement that the image of pee1, ee2, ee3, ee4, ψq defined

in the proposition has zero differential. There is some ambiguity in the order of summands

in degree 1 of the lower row. The convention we have used is that the first summand arises

from the latest application of E 1 which moves a term from degree 0 of the upper row to

degree 1 of the lower (and increments the exponents on existing terms in the lower row).

It will be useful to describe alternative, equivalent, conditions defining Ḡ2 and Ḡ3. It is

sometimes easier to work with them.

Proposition 2.2.26. Given pe1, e2, ξq P Erys‘2 ‘ HomApAE,E
2qrys with e1 ´ e2 “ y1e

1, the

following conditions are equivalent:

ξ “ b e1 ` y2ξ1

“ δp b e2q ` y1ξ2

for some ξℓ P HomApAE,E
2
qrys

and

ξ “ b e1 ` y2ξ1

ξ1 “ τp b e2q ` y1ξ
1

for some ξ1
P HomApAE,E

2
qrys.

When these conditions hold, the ξℓ and ξ
1 are uniquely determined by the data pe1, e2, ξq, and
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ξ2 “ b e1 ` y2ξ
1.

Proof. Suppose the first condition holds. Using δ “ y2τ ` Id and e1 ´ e2 “ px´ yqe1, we can

rearrange the first equality:

b e1 ` y2ξ1 “ y1ξ2 ` y2τp b e2q ` b e2,

from which

y2

´

ξ1 ´ τp b e2q
¯

“ y1

´

ξ2 ´ b e1
¯

.

By Lemma 2.2.7, the image of ξ1 ´ τp b e2q is in y1y2E
2rys. We can then make the following

definition:

ξ1
“ y´1

1 pξ1 ´ τp b e2qq.

The second condition and the final claim follow from this.

Starting now with the second condition, plugging the second equation into the first, we

find:

ξ “ b e1 ` y2
`

τp b e2q ` y1ξ
1
˘

“ δp b e2q ` b pe1 ´ e2q ` y2y1ξ
1

“ δp b e2q ` y1
`

b e1
` y2ξ

1
˘

.

This is the second line of the first condition, and it establishes the final claim.

The uniqueness claims are clear.

Proposition 2.2.27. Given pee1, ee2, ee3, χq P E2rys‘3 ‘ HomApAE,E
3qrys with

ee1 ´ ee2 “ y2ee
1 (2.2.1)

ee3 ´ ee2 “ y1ee
2 (2.2.2)

δpee3q ´ ee1 “ y1ee
3, (2.2.3)
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the following conditions are equivalent:

χ “ b ee1 ` y3χ1

“ δEp b ee2q ` y2χ2

“ Eδ ˝ δEp b ee3q ` y1χ3

for some χℓ P HomApAE,E
3
qrys

and

χ “ b ee1 ` y3χ1

χ1 “ τEp b ee2q ` y2χ
1
1

χ1
1 “ Eτ ˝ τEp b ee3q ` y1χ

2

for some χ2
P HomApAE,E

3
qrys.

When the conditions hold, the χℓ and χ
2 are uniquely determined by the data pee1, ee2, ee3, χq,

and there is a unique ee P E2rys such that

τpee3q ´ ee1
“ y1ee

ee3
´ ee2

“ y2ee.

Define a map χ1
2 “ ´ b ee ` y3χ

2. Then we also have

χ2 “ Eτ ˝ δEp b ee3q ` y1χ
1
2

and

χ3 “ ´δEp b ee2
q ` y2χ

1
2.

Assuming χ “ b ee1 ` y3χ1, the other two conditions together are equivalent to a single

51



condition on χ1:

χ1 “ ´τEy1p b ee2
q ` Eδ ˝ τEp b ee3q ` y2y1χ

2.

Proof. Suppose the first condition holds. Equating the first two formulas for χ in the first

condition and using δE “ y3τE ` Id gives:

b ee1 ` y3χ1 “ y3τEp b ee2q ` b ee2 ` y2χ2

thus

y3
`

χ1 ´ τEp b ee2q
˘

“ y2
`

χ2 ´ b ee1
˘

.

By Lemma 2.2.7 again, the image of this function lies in y2y3E
3rys, and since each yi is

injective, we can define a new function χ1
1 such that:

χ1 “ τEp b ee2q ` y2χ
1
1

χ2 “ b ee1
` y3χ

1
1.

Equating now the second and third formulas, we have:

y2Eτ ˝ δEp b ee3q ` δEp b ee3q ` y1χ3 “ δEp b ee2q ` y2χ2

so

y2
`

χ2 ´ Eτ ˝ δEp b ee3q
˘

“ y1
`

χ3 ` δEp b ee2
q
˘

,

so for some χ1
2 we can write:

χ2 “ Eτ ˝ δEp b ee3q ` y1χ
1
2

χ3 “ ´δEp b ee2
q ` y2χ

1
2.

We will need a fact derived from the relations (2.2.1)–(2.2.3) of the eek. Adding the first
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and third relations and subtracting the second yields

y1
`

ee3
´ ee2

˘

“ y2
`

τpee3q ´ ee1
˘

,

from which we see there must be a (unique) ee with

τpee3q ´ ee1
“ y1ee

ee3
´ ee2

“ y2ee.

This gives the third claim of the proposition.

Equating now the two formulas we derived for χ2:

y3Eτ ˝ τEp b ee3q ` Eτp b ee3q ` y1χ
1
2 “ b ee1

` y3χ
1
1

so

y3
`

χ1
1 ´ Eτ ˝ τEp b ee3q

˘

“ y1
`

χ1
2 ` b ee

˘

.

Therefore

χ1
1 “ Eτ ˝ τEp b ee3q ` y1χ

2

χ1
2 “ ´ b ee ` y3χ

2

for some χ2, as desired.

In the reverse direction, starting with the second condition, plugging the χ1 and χ1
1

formulas into the first χ formula gives:

χ “ b ee1 ` y3

´

τEp b ee2q ` y2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

¯

,
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so

χ ´ δEp b ee2q “ b pee1 ´ ee2q

` y2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ y2

´

b ee1
` Eτ ˝ τEp b ee3q ` y1χ

2
¯

,

as desired. Similarly:

χ ´ Eδ ˝ δEp b ee3q “ χ ´ y3y2Eτ ˝ τEp b ee3q

´ y3τEp b ee3q ´ Eδp b ee3q

“ b ee1 ` y3
`

τEp b ee2q ` y1y2χ
2
˘

´ y3τEp b ee3q ´ Eδp b ee3q

“ b
`

ee1 ´ δpee3q
˘

` y1

´

´y3τEp b ee2
q ` y2y3χ

2
¯

“ y1

´

´ b ee3
´ y3τEp b ee2

q ` y2y3χ
2
¯

.

The final statement of the proposition is a rearrangement of the second and third equalities

of the second condition.

Remark 2.2.28. We will not need to use alternative conditions for Gn for n ě 4.

2.2.3 Product category C-mod

Let C “ Endper BpXqop. We ‘change basis’ from Be1 ‘Be2 to X1 ‘X2, i.e. from complexes

of modules over B to complexes of modules over C. This is performed by H omBpX,´q:

per B
„

ÝÝÝÝÝÝÝÝÑ
H omBpX,´q

per C,

which is a restricted Rickard (derived Morita) equivalence. It has an inverse given by XbC´.

Under this equivalence, the action of BE
1 bB ´ on per B translates to CẼ bC ´ on per C,

where Ẽ is a pC,Cq-bimodule that is finitely generated and projective on the left. Our main

54



theorem says that BimkpCq has the structure of 2-representation of U` using Ẽ. In this

section we describe C and the derived equivalence in more detail.

2.2.3.1 New algebra C

Let C “ E ndBpX1 ‘ X2q
op be the dg-algebra of endomorphisms of X (with left-to-right

composition).

Definition 2.2.29. Define two pArys, Arysq-bimodules:

G1
1 “ Arys ‘ HomAryspArysErys, Erysq

and

G2
1 “ HomAryspArysErys, Eyq.

The complex E ndBpX2q is given in degrees 0 and 1 by

G1
1

d0
Ñ G2

1

where

d0
`

pθpyq, φq
˘

“ π ˝ φ ´ πp´q.θpxq.

The direct sum decomposition X1 ‘X2 provides a matrix presentation for C with Cij “

H omBpXi, Xjq.

Definition 2.2.30. Let F denote the pA,Aq-bimodule

F “ HomApAE,Aq.

Note the canonical isomorphism

HomApAE,Aqrys
„
ÝÑ HomAryspArysErys, Arysq

that exists because AE is finitely generated. Since AE and ArysErys are both finitely generated
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projective, we also have canonical isomorphisms of functors:

HomApAE,´q
„
ÝÑ HomApAE,Aq bA ´

HomAryspArysErys,´q
„
ÝÑ HomAryspArysErys, Arysq bArys ´.

Proposition 2.2.31. The algebra C is isomorphic to a generalized matrix algebra of com-

plexes concentrated in degrees 0 and 1:
¨

˚

˝

Arys Erys
π
ÝÑ Ey

F rys G1op
1

d0
ÝÑ G2op

1

˛

‹

‚

„
ÝÑ

¨

˚

˝

C11 C12

C21 C22

˛

‹

‚

.

The map is given on components by:

� for C11:

Arys Q a ÞÑ

¨

˚

˝

¨

˚

˝

1

0

˛

‹

‚

ÞÑ

¨

˚

˝

a

0

˛

‹

‚

˛

‹

‚

� for C12:

pErys Ñ Eyq Q pe, e1
q ÞÑ

¨

˚

˝

¨

˚

˝

1

0

˛

‹

‚

ÞÑ

¨

˚

˝

pe, e1q

0

˛

‹

‚

˛

‹

‚

� for C21:

F rys Q f ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

1

˛

‹

‚

ÞÑ

¨

˚

˝

fpeq

0

˛

‹

‚

˛

‹

‚

� for C22:

`

G1op
1 Ñ G2op

1

˘

Q
`

pθ, φ1
q, φ2

˘

ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

1

˛

‹

‚

ÞÑ

¨

˚

˝

`

φ1peq, pπ ˝ φ2qpeq
˘

θ

˛

‹

‚

˛

‹

‚

.

Proof. Computation.

Definition 2.2.32. Let C denote the k-algebra EndKbpBqpXqop.
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Sometimes we consider C to be a dg-algebra concentrated in degree 0.

Lemma 2.2.33. The projection Z0pC q Ñ H0pC q “ C is an isomorphism. Its inverse gives

an injection C ãÑ C which is a quasi-isomorphism of dg-algebras.

Proof. The first claim follows because C lies in degrees 0 and 1. For the second claim we

just need that H1pC q “ 0. It is clear that the map π : Erys Ñ Ey is surjective. We can see

that d0 is surjective as well: since ArysErys is projective, HomAryspArysErys,´q is exact, so

HomAryspArysErys, πq : HomAryspArysErys, Erysq Ñ HomAryspArysErys, Eyq

is surjective.

The injection of the lemma gives a right action of C on X.

Lemma 2.2.34. The algebra C is isomorphic to a generalized matrix algebra:
¨

˚

˝

Arys y1Erys

F rys Gop
1

˛

‹

‚

„
ÝÑ

¨

˚

˝

C11 C12

C21 C22

˛

‹

‚

,

with component maps given by (restrictions of) those in Proposition 2.2.31.

Proof. We have d0
`

pθ, φq
˘

“ 0 exactly when φ “ .θ`y1φ
1 for some φ1 P HomAryspArysErys, Erysq,

and it follows that the map to C22 is an isomorphism.

2.2.3.2 Derived equivalence

Since X is strictly perfect, the triangulated functor

H omBpX,´q : Kb
pBq Ñ Kb

pCq

descends to the derived categories and resolutions are not needed:

H omBpX,´q : Db
pBq Ñ Db

pCq.
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Since X generates per B, it is perfect as a right C -dg-module, and then also as a complex of

C-modules because the inclusion C ãÑ C is a quasi-isomorphism. It follows that the functor

restricts to a functor

H omBpX,´q : per B Ñ per C,

and this is essentially surjective because C is in the essential image. To show that the

functor is fully faithful, it is enough to check endomorphisms of X and its translates, since

X generates per B. The induced map:

HomDbpBqpX,Xrisq Ñ HomDbpCqpE ndBpXq,E ndBpXqrisq

is an isomorphism for all i: with i “ 0 both sides are canonically isomorphic to C, and the

map induces the identity on C; with i ‰ 0 both sides are 0.

The endofunctor E 1bB´ on per B induces an endofunctor on per C using this equivalence:

first apply X bC ´, then E 1 bB ´, then H omBpX,´q. Since X is finitely generated and

strictly perfect, this induced endofunctor is isomorphic to H omBpX,E 1Xq bC ´.

Remark 2.2.35. In the above context a theorem of Rickard shows that H omBpX,´q :

DbpBq Ñ DbpCq is also an equivalence of categories. We do not know E 1 bB ´ to be exact,

however, so we use the restricted equivalence of perfect complexes, and the full version of

Rickard’s theorem is not needed.

Definition 2.2.36. In §2.2, let E denote the pC,Cq-bimodule complex H omBpX,E 1Xq.

Then we have the following:

Proposition 2.2.37. For each n, the morphism of pC,Cq bimodule complexes

n-times
hkkkkkkkikkkkkkkj

E bC ¨ ¨ ¨ bC E Ñ H omBpX,E 1nXq

given by

f1 b ¨ ¨ ¨ b fn ÞÑ E 1n´1
pfnq ˝ E 1n´2

pfn´1q ˝ ¨ ¨ ¨ ˝ f1

58



is a quasi-isomorphism. These maps give the vertical maps in diagrams of the following

form, which commute:

H omBpX,E 1Xqbn bC H omBpX,E 1Xqbm H omBpX,E 1Xqbn`m

H omBpX,E 1nXq bC H omBpX,E 1mXq H omBpX,E 1n`mXq.
fbg ÞÑE1npgq˝f

Proof. All diagrams contained in the following diagram commute, up to canonical isomor-

phisms in per B and per C:

per B per C

per B per C

per B per C.

H omBpX,´q

H omBpX,´q

H omBpX,´q

E1bB´

E1bB´

E bC´

E bC´

XbC´

XbC´

XbC´

This gives the first statement of the proposition. The diagrams commute by functoriality

of E 1.

2.2.4 New bimodule Ẽ

2.2.4.1 Definition of Ẽ

Now we define the lead actor of this chapter.

Definition 2.2.38. Define a pC,Cq-bimodule:

Ẽ “ HomKbpBqpX,E
1Xq,

with left C action given by precomposition with φ P C, and right C action given by post-

composition with E 1pφq for φ P C.
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Lemma 2.2.39. For each n, the complex H omBpX,E 1nXq of pC,Cq-bimodules is concen-

trated in nonnegative degree.

Proof. The lower row of E 1nX has components in degrees at least 1, and the upper row

has components in degrees at least 0. This is shown by a simple inductive argument using

the formulas for X and E 1 in §2.2.1.2. It follows that there are no nonzero morphisms in

H omBpX,E 1nXq of negative degree.

Proposition 2.2.40. The complex E “ H omBpX,E 1Xq of pC,Cq-bimodules has cohomol-

ogy concentrated in degree 0.

Proof. We consider separately the matrix components H omBpXi, E
1Xjq :

� H omBpX1, E
1X1q: since X1 “ Be1 this is isomorphic to e1E

1X1 which is Erys
π
ÝÑ Ey,

and π is surjective.

� H omBpX1, E
1X2q: this is isomorphic to e1E

12X1, which is

E2
rys

p
π2
π1 q

ÝÝÝÑ EyE ‘ EEy
p ´π1 π2 q
ÝÝÝÝÝÝÑ EyEy.

The second map is clearly surjective. Its kernel consists of pairs pee1, ee2q P E2 such that

ee1 ´ ee2 “ pEx´xEqee˝ for some ee˝ P E2. Such a pair is the image of ee2 ` pEx´yqee˝

in E2rys.

� H omBpX2, E
1X1q: this is isomorphic to C22, and we saw that d0 is surjective.

� H omBpX2, E
1X2q: this is isomorphic to G1

2
d0
ÝÑ G2

2
d1
ÝÑ G3

2 , where

G1
2 “ Erys

‘2
‘ HomAryspArysErys, E2

rysq

G2
2 “ Ey ‘ HomAryspArysErys, EyE ‘ EEyq

G3
2 “ HomAryspArysErys, EyEyq,
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with

d0 : pe1, e2, ξq ÞÑ
`

πpe2 ´ e1q, pπ2 ˝ ξ; π1 ˝ ξq
˘

d1 :
`

e, pξ1; ξ2
q
˘

ÞÑ ´π1 ˝ ξ1
` π2 ˝ ξ2.

It is easy to see thatH1 “ 0 andH2 “ 0 by applying the exact functor HomAryspArysErys,´q

to the sequence considered in the second bullet.

Corollary 2.2.41. The surjection

Z0H omBpX,E 1Xq Ñ H0H omBpX,E 1Xq “ Ẽ

is an isomorphism. Its inverse gives an injection

Ẽ ãÑ E

which is a quasi-isomorphism of complexes of pC,Cq-bimodules.

Remark 2.2.42. Whereas E 1 is a complex of bimodules, Ẽ is just a bimodule. This observation

is the starting point for our construction. The basisX1‘X2 is designed to be more compatible

with the U` action in this sense.

Lemma 2.2.43. As a left C-module, Ẽ is finitely generated and projective.

Proof. In Prop. 2.2.9 we saw that E 1X is quasi-isomorphic to a finite direct sum of summands

of X, so CẼ is a finite direct sum of summands of C.

Lemma 2.2.44. The map Ẽn Ñ H omBpX,E 1nXq of complexes of pC,Cq-bimodules given

by

f1 b ¨ ¨ ¨ b fn ÞÑ E 1n´1
pfnq ˝ E 1n´2

pfn´1q ˝ ¨ ¨ ¨ ˝ f1

is a quasi-isomorphism.
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Proof. Use a copy of the morphism

Ẽ
q.i.
ãÑ E

from Corollary 2.2.41 onto each factor of the product on the left in Proposition 2.2.37, and

the fact that Ẽ is finitely generated and projective on the left.

Lemma 2.2.45. The maps of Lemma 2.2.44 induce isomorphisms of pC,Cq-bimodules

Ẽn „
ÝÑ HomKbpBqpX,E

1nXq

making the following diagrams commute:

Ẽn bC Ẽ
m Ẽn`m

HomKpBqpX,E
1npXqq bC HomKpBqpX,E

1mpXqq HomKpBqpX,E
1n`mpXqq.

„ „

„

„

Proof. By Lemma 2.2.44, the cohomology of H omBpX,E 1nXq is concentrated in degree 0.

By Lemma 2.2.39,

Z0H omBpX,E 1nXq “ H0H omBpX,E 1nXq.

So the degree 0 part of the map of Lemma 2.2.44 is an isomorphism from Ẽn to Z0H omBpX,E 1nXq,

which is HomKbpBqpX,E
1nXq. The diagrams commute because the morphisms are restric-

tions of the morphisms of Proposition 2.2.37.

Definition 2.2.46. We let Ẽn
ij denote HomKbpBqpXi, E

1nXjq.

Defined in this way, Ẽn
ij lies in HomKbpBqpX,E

1nXq, not in Ẽn, but we consider it also in

the latter through the isomorphism of Lemma 2.2.45.
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2.2.4.2 Some low powers of Ẽ

The bimodule Ẽ can be presented as a matrix with ij-component Ẽij given by HomKbpBqpXi, E
1Xjq.

This component is an pEndpXiq
op,EndpXjq

opq-bimodule. Recall that EndpX1q
op – Arys and

EndpX2q
op – Gop

1 .

Lemma 2.2.47. We have

py1 . . . ynqEn
rys

„
ÝÑ HomKbpBqpX1, E

1nX1q,

where y1 . . . yne is sent to the map in KbpBq determined by:
¨

˚

˝

1

0

˛

‹

‚

ÞÑ

¨

˚

˝

py1 . . . yne, 0, . . . , 0q

0

˛

‹

‚

.

Proof. Computation. Note that E 1nX1 has just one term in degree 0, which is Enrys in the

upper row. The differential of E 1nX1 out of this term is the map whose kernel is computed

in Lemma 2.2.7.

Proposition 2.2.48. We have:
¨

˚

˝

y1 . . . ynE
nrys y1 . . . yn`1E

n`1rys

Gn Gn`1

˛

‹

‚

„
ÝÑ

¨

˚

˝

Ẽn
11 Ẽn

12

Ẽn
21 Ẽn

22

˛

‹

‚

,

where the maps on the upper row are from Lemma 2.2.47, and on the lower they are from

the definition of Gn.

Together with Lemma 2.2.45, this gives a parametrization of Ẽn. We may record the

matrix presentations for the first few powers:

¨

˚

˝

y1Erys y1y2E
2rys

G1 G2

˛

‹

‚

„
ÝÑ Ẽ,
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¨

˚

˝

y1y2E
2rys y1y2y3E

3rys

G2 G3

˛

‹

‚

„
ÝÑ Ẽ2,

¨

˚

˝

y1y2y3E
3rys y1y2y3y4E

4rys

G3 G4

˛

‹

‚

„
ÝÑ Ẽ3.

2.3 Hecke action

In this section we introduce pC,Cq-bimodule endomorphisms x̃ of Ẽ and τ̃ of Ẽ2, and show

that they satisfy the relations of U`.

2.3.1 Definition of the action

In §2.3.1.1 we give formulas for endomorphisms of the separate components of Ẽ and Ẽ2. A

few lemmas are needed first in order to show that the formulas are well-defined on components

of the form Gn, n “ 1, 2, 3. Then in §2.3.1.2 we argue that these componentwise definitions

jointly determine a morphism of pC,Cq-bimodules.

2.3.1.1 Formulas for x̃ and τ̃

Lemma 2.3.1. Let pθ, φq P G1 Ă Aoprys ‘ HomApAE,Eqrys. Then pyθ, x ˝ φq P G1.

Proof. Compute:

x ˝ φ ´ yθ “ xp .θ ` y1φ1q ´ yθ

“ y1p .θ ` xφ1q.
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Lemma 2.3.2. Let pe1, e2, ξq P G2 Ă Erys‘2‘HomApAE,E
2qrys. Then pye1, xe2, xE˝ξq P G2

and pe1, e1, τ ˝ ξq P G2.

Proof. For the first claim, compute:

xE ˝ ξ ´ b ye1 “ xE ˝ p b e1 ` y2ξ1q ´ b ye1

“ y2p b e1 ` xE ˝ ξ1q,

and

xE ˝ ξ ´ δp b xe2q “ xE ˝
`

δp b e2q ` y1ξ2
˘

´ δp b xe2q

“ δ ˝ Exp b e2q ´ y1p b e2q

` y1xE ˝ ξ2 ´ δp b xe2q

“ y1p´ b e2 ` xE ˝ ξ2q.

For the second claim, use the alternative characterization of G2 as given in Prop. 2.2.26, and

compute:

τ ˝ ξ “ τp b e1q ` τy2ξ1

“ τp b e1q ` y1τξ1 ´ ξ1

“ τp b e1q ` y1τy1ξ
1
´ ξ1

“ τ
`

b pe1 ´ e2q
˘

` y1y2τξ
1

“ τy1p b e1
q ` y1y2τξ

1

“ b e1
` y2

`

τp b e1
q ` y1τξ

1
˘

.

The last line has the form of an element of G2.

Lemma 2.3.3. Let pee1, ee2, ee3, χq P G3 Ă E2rys‘3‘HomApAE,E
3qrys. Then pee1, ee1, τpee3q, τE˝

χq P G3.
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Proof. We use the alternative characterization of G3 as given in Prop. 2.2.27, and compute:

τE ˝ χ “ τEp b ee1q ` τEy3χ1

“ τEp b ee1q ´ χ1 ` y2τE ˝ χ1

“ τEp b ee1q ´ χ1 ` y2τEy2
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ τEp b ee1q ´ χ1

`
`

y2y3τE ` y2
˘

¨
`

Eτ ˝ τEp b ee3q ` y1χ
2
˘

“ τEp b pee1 ´ ee2qq

` y2y3
`

τE ˝ Eτ ˝ τEp b ee3q ` y1τE ˝ χ2
˘

“ τEy2p b ee1
q

` y2y3

´

Eτ ˝ τEp b ee1
q ` Eδ ˝ τEp b eeq ` y1τE ˝ χ2

¯

“ b ee1
` y3¨

´

Eδ ˝ τEp b ee1
q ` y2

`

Eδ ˝ τEp b eeq ` y1y2τE ˝ χ2
˘

¯

“ b ee1
` y3¨

´

´τEy1p b eeq ` Eδ ˝ τEp b τpee3qq ` y1y2τE ˝ χ2
¯

.

The last line has the form of an element of G3, namely pee1, ee1, τpee3q, τE ˝ χq.

The element pee1, ee2, ee3, χq P G3 is associated (by Prop. 2.2.27) with further data that

has been notated eeℓ, ee, χℓ, χ
1
1, and χ

2. We record the corresponding data associated with
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pee1, ee1, τpee3q, τE ˝ χq using the notation ē and χ̄ for the new versions:

ēē1
“ 0

ēē2
“ ee

ēē3
“ ee

ēē “ 0,

and

χ̄ “ pee1, ee1, τpee3q, τE ˝ χq

χ̄1 “ ´τEy1p b eeq ` Eδ ˝ τE ˝ Eτp b ee3q ` y1y2τE ˝ χ2

χ̄2 “ Eτ ˝ δE ˝ Eτp b ee3q ` y1y3τE ˝ χ2

χ̄3 “ ´δEp b eeq ` y2y3τE ˝ χ2

χ̄1
1 “ Eτ ˝ τE ˝ Eτp b ee3q ` y1τE ˝ χ2

χ̄2
“ τE ˝ χ2.

Now we give componentwise formulas for x̃ and τ̃ . These formulas are well-defined on

Ẽ21, Ẽ22, Ẽ
2
21, and Ẽ

2
22 by the lemmas above.

Definition 2.3.4. We define the action of x̃ on Ẽ as follows:

� on Ẽ11: x̃ acts by x

� on Ẽ12: x̃ acts by xE

� on Ẽ21: x̃ acts by pθ, φq ÞÑ pyθ, x ˝ φq

� on Ẽ22: x̃ acts by pe1, e2, ξq ÞÑ pye1, xe2, xE ˝ ξq.

We define the action of τ̃ on Ẽ2 as follows:

� on Ẽ2
11: τ̃ acts by τ
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� on Ẽ2
12: τ̃ acts by τE

� on Ẽ2
21: τ̃ acts by pe1, e2, ξq ÞÑ pe1, e1, τ ˝ ξq

� on Ẽ2
22: τ̃ acts by pee1, ee2, ee3, χq ÞÑ pee1, ee1, τpee3q, τE ˝ χq.

Lemma 2.3.5. The formulas for x̃ give a pC,Cq-bimodule endomorphism of Ẽ.

Proof. Recall the definition of the complex E 1 of pB,Bq-bimodules in §2.2.1.2. There is an

p

´

Arys 0
0 Arys

¯

,
´

Arys 0
0 Arys

¯

q-bimodule endomorphism x1 of E 1 given componentwise in degrees

0 and 1 by pArys, Arysq-bimodule endomorphisms:

x1
0 “

¨

˚

˝

x xEy

0 x

˛

‹

‚

, x1
1 “

¨

˚

˝

x xEy

y x

˛

‹

‚

.

The relation s˝Eyx “ xEy ˝s may be used to check that x1
0 and x

1
1 together give a morphism

of complexes of pB,Bq-bimodules. This map induces a pC,Cq-bimodule endomorphism of

HomKbpBqpX,E
1Xq that agrees with the definition of x̃.

It follows that x̃ induces endomorphisms x̃Ẽ and Ẽx̃. For future reference we write the

formulas for those:

Proposition 2.3.6. The formulas for x̃ determine the following formulas for x̃Ẽ and Ẽx̃

on Ẽ2:

� on Ẽ2
11: x̃Ẽ acts by xE and Ẽx̃ acts by Ex

� on Ẽ2
12: x̃Ẽ acts by xE2 and Ẽx̃ by ExE

� on Ẽ2
21: x̃Ẽ acts by

pe1, e2, ξq ÞÑ pye1, xe2, xE ˝ ξq

and Ẽx̃ by

pe1, e2, ξq ÞÑ pxe1, ye2, Ex ˝ ξq
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� on Ẽ2
22: x̃Ẽ acts by

pee1, ee2, ee3, χq ÞÑ pyee1, xEpee2q, xEpee3q, xE
2

˝ χq

and Ẽx̃ by

pee1, ee2, ee3, χq ÞÑ pxEpee1q, yee2, Expee3q, ExE ˝ χq.

Proof. Use Lemma 2.2.45, in particular the diagram in the case n “ m “ 1.

2.3.1.2 Bimodule structure of Ẽ2 and equivariance of τ̃

Lemma 2.3.7. The formulas for τ̃ give a pC,Cq-bimodule endomorphism of Ẽ2.

For the maps we defined on components of Ẽ2 to determine jointly a pC,Cq-bimodule

endomorphism τ̃ , they must be equivariant with respect to the left and right C-actions. In

order to check equivariance, we write formulas for the actions of the generators in C in the

following four lemmas. The reader may verify these formulas from the various definitions.

Lemma 2.3.8. Generators in Arys Ă C act on the right on Ẽ2, in terms of the separate

bimodule structures of Ẽ2
ij, as follows:

� Ẽ2
11 b Arys Ñ Ẽ2

11 by

y1y2E
2
rys bArys Arys ÝÑ y1y2E

2
rys

y1y2ee b θ ÞÑ y1y2ee.θ.

� Ẽ2
21 b Arys Ñ Ẽ2

21 by

G2 bArys Arys ÝÑ G2

pe1, e2, ξq b θ ÞÑ pe1.θ, e2.θ, ξp´q.θq .

They act on the left as follows:
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� Arys b Ẽ2
11 Ñ Ẽ2

11 by

Arys bArys y1y2E
2
rys ÝÑ y1y2E

2
rys

θ b y1y2ee ÞÑ y1y2θ.ee.

� Arys b Ẽ2
12 Ñ Ẽ2

12 by

Arys bArys y1y2y3E
3
rys ÝÑ y1y2y3E

3
rys

θ b y1y2y3eee ÞÑ y1y2y3θ.eee.

Remark. We may confirm that the image of the action map Ẽ2
21 Ñ Ẽ2

21 preserves the condi-

tions for G2:

ξ.θ ´ b e1.θ “ y2ξ1.θ,

ξ1.θ “ δp b e2q.θ ` py1ξ2q.θ

“ δp b e2.θq ` y1pξ2.θq,

and the eℓ relation:

e1.θ ´ e2.θ “ y1e
1.θ.

Lemma 2.3.9. Generators in Gop
1 Ă C act on the right on Ẽ2 as follows:

� Ẽ2
12 b Gop

1 Ñ Ẽ2
12 by

y1y2y3E
3
rys bGop

1
Gop

1 ÝÑ y1y2y3E
3
rys

y1y2y3eee b pθ, φq ÞÑ E2φpy1y2y3eeeq
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� Ẽ2
22 b Gop

1 Ñ Ẽ2
22 by

G3 bGop
1
Gop

1 ÝÑ G3

pee1, ee2, ee3, χq b pθ, φq ÞÑ
`

Eφpee1q, Eφpee2q, ee3.θ, E
2φ ˝ χ

˘

.

They act on the left as follows:

� Gop
1 b Ẽ2

21 Ñ Ẽ2
21 by

Gop
1 bGop

1
G2 ÝÑ G2

pθ, φq b pe1, e2, ξq ÞÑ pθ.e1, θ.e2, ξ ˝ φq

� Gop
1 b Ẽ2

22 Ñ Ẽ2
22 by

Gop
1 bGop

1
G3 ÝÑ G3

pθ, φq b pee1, ee2, ee3, χq ÞÑ pθ.ee1, θ.ee2, θ.ee3, χ ˝ φq .

Remark 2.3.10. We may confirm that the image of the right action map Ẽ2
22 b Gop

1 Ñ Ẽ2
22

preserves the conditions for G3:

E2φ ˝ χ “ b Eφpee1q ` E2φpχ ´ b ee1q

“ b Eφpee1q ` y3
`

E2φ ˝ χ1

˘

,

E2φ ˝ χ1 “ τEp b Eφpee2qq ` y2E
2φ ˝ χ1

1

“ τE ˝ E2
p .θ ` y1φ1q ˝ p b ee2q ` y2E

2φ ˝ χ1
1,

E2φ ˝ χ1
1 “ E2

p .θq ˝ Eτ ˝ τEp b ee3q ` y1E
2φ1 ˝ χ1

1 ` y1χ
2.θ

“ Eτ ˝ τEp b ee3.θq ` y1
`

χ2.θ ` E2φ1 ˝ χ1
1

˘

.
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And the eeℓ relations:

Eφpee1q ´ Eφpee2q “ y2Eφpee1
q,

ee3.θ ´ Eφpee2q “ pee3 ´ ee2q.θ ´ y1Eφ1pee2q

“ y1 pee2.θ ´ Eφ1pee2qq ,

δpee3.θq ´ Eφpee1q “ y2τpee3q.θ ` pee3 ´ ee1q.θ ´ y1Eφ1pee1q

“ y2τpee3q.θ ` y1ee
2.θ ´ y2ee

1.θ ´ y1Eφ1pee1q

“ y1 py2ee.θ ` ee2.θ ´ Eφ1pee1qq .

Similarly we may confirm that the image of the left action map Gop
1 b Ẽ2

21 Ñ Ẽ2
21 lies in G2:

ξ ˝ φ “ φp´q b e1 ` y2ξ1 ˝ φ

“ b θ.e1 ` y2
`

φ1p´q b e1 ` ξ1 ˝ φ
˘

,

ξ1 ˝ φ ` φ1p´q b e1 “ τp b e2q ˝ φ ` y1ξ
1
˝ φ ` φ1p´q b e1

“ τp b θ.e2q ` τy2pφ1p´q b e2q ` y1ξ
1
˝ φ ` φ1p´q b e1

“ τp b θ.e2q ` y1 pτpφ1p´q b e2q ` φ1p´q b e1
` ξ1

˝ φq .

And the eℓ relation:

θ.e1 ´ θ.e2 “ y1θ.e
1.

And the image of the left action map Gop
1 b Ẽ2

22 Ñ Ẽ2
22 lies in G3:

χ ˝ φ “ φp´q b ee1 ` y3χ1 ˝ φ

“ b θ.ee1 ` y3
`

φ1 b ee1 ` χ1 ˝ φ
˘

,

χ1 ˝ φ “ τEp b θ.ee2q ` τEy3pφ1 b ee2q ` y2χ
1
1 ˝ φ,

φ1 b ee1 ` χ1 ˝ φ “ τEp b θ.ee2q ` y2

´

τEpφ1 b ee2q ` φ1 b ee1
` χ1

1 ˝ φ
¯

,
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χ1
1 ˝ φ “ Eτ ˝ τEp b θ.ee3q ` Eτ ˝ τE ˝ y3pφ1 b ee3q ` y1χ

2
˝ φ

“ Eτ ˝ τEp b θ.ee3q ` y1pEτ ˝ τEqpφ1 b ee3q

´ τEpφ1 b ee3q ´ Eτpφ1 b ee3q ` y1χ
2

˝ φ,

and

τEpφ1 b ee2q ` φ1 b ee1
` χ1

1 ˝ φ “

Eτ ˝ τEp b θ.ee3q ` y1

´

pEτ ˝ τEqpφ1 b ee3q ´ τEpφ1 b ee2
q ´ φ1 b ee ` χ2

˝ φ
¯

.

And the eeℓ relations:

θ.ee1 ´ θ.ee2 “ y2θ.ee
1

θ.ee3 ´ θ.ee2 “ y1θ.ee
2

δpθ.ee3q ´ θ.ee1 “ y1θ.ee
3.

Lemma 2.3.11. Generators in y1Erys Ă C act on the right on Ẽ2 as follows:

� Ẽ2
11 b y1Erys Ñ Ẽ2

12 by

y1y2E
2
rys bArys y1Erys ÝÑ y1y2y3E

3
rys

y1y2ee b y1e ÞÑ y1y2y3pee b eq

� Ẽ2
21 b y1Erys Ñ Ẽ2

22 by

G2 bArys y1Erys ÝÑ G3

pe1, e2, ξq b y1e ÞÑ pe1 b y1e, e2 b y1e, 0, ξp´q b y1eq .

They act on the left as follows:
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� y1Erys b Ẽ2
21 Ñ Ẽ2

11 by

y1Erys bGop
1
G2 ÝÑ y1y2E

2
rys

y1e b pe1, e2, ξq ÞÑ ξpy1eq

� y1Erys b Ẽ2
22 Ñ Ẽ2

12 by

y1Erys bGop
1
G3 ÝÑ y1y2y3E

3
rys

y1e b pee1, ee2, ee3, χq ÞÑ χpy1eq.

Remark. We may confirm that the image of the right action map Ẽ2
21 b y1Erys Ñ Ẽ2

22

preserves the conditions for G3:

χ “ ξ b y1e,

χ ´ b e1 b y1e “ y1y3pξ1 b eq,

χ ´ δEp b e2 b y1eq “
`

ξ ´ δp b e2q
˘

b y1e

“ y1y2pξ2 b eq.

Similarly we may confirm that the image of the left action map y1Erys b Ẽ2
21 Ñ Ẽ2

11 lies in

y1y2E
2rys:

ξ ˝ y1 “ y2
`

b e1 ` ξ1 ˝ y1
˘

,

ξ1 ˝ y1 “ τy2p b e2q ` y1ξ
1
˝ y1

“ y1
`

τp b e2q ` ξ1
˝ y1

˘

´ b e2,

ξ ˝ y1 “ y2

´

y1
`

τp b e2q ` ξ1
˝ y1

˘

` b pe1 ´ e2q
¯

“ y1y2

´

τp b e2q ` b e1
` ξ1

˝ y1

¯

.
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And the image of the left action map y1Erys b Ẽ2
22 Ñ Ẽ2

12 lies in y1y2y3E
3rys:

χ ˝ y1 “ y3
`

b ee1 ` χ1 ˝ y1
˘

χ1 ˝ y1 “ ´τEy3y1p b ee2
q

` Eδ ˝ τEy3p b ee3q ` y1y2χ
2

˝ y1

“ ´τEy3y1p b ee2
q ` Eδ ˝ y2τEp b ee3q

´ Eδp b ee3q ` y1y2χ
2

˝ y1

“ ´y2τEy1p b ee2
q ` y1p b ee2

q ` y1y2Eτ ˝ τEp b ee3q

´ y1p b ee3
q ´ b ee1 ` y1y2χ

2
˝ y1

χ ˝ y1 “ y3y2y1

´

´τEp b ee2
q ` Eτ ˝ τEp b ee3q ` χ2

˝ y1

¯

` y3y1
`

b ee2
´ b ee3

˘

“ y3y2y1

´

´τEp b ee2
q ` Eτ ˝ τEp b ee3q ´ b ee ` χ2

˝ y1

¯

.

Lemma 2.3.12. Generators in F rys Ă C act on the right on Ẽ2 as follows:

� Ẽ2
12 b F rys Ñ Ẽ2

11 by

y1y2y3E
3
rys bGop

1
F rys ÝÑ y1y2E

2
rys

y1y2y3eee b f ÞÑ y1y2E
2fpy1eeeq

� Ẽ2
22 b F rys Ñ Ẽ2

21 by

G3 bGop
1
F rys ÝÑ G2

pee1, ee2, ee3, χq b f ÞÑ
`

Efpee1q, Efpee2q, E
2f ˝ χ

˘

.

They act on the left as follows:
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� F rys b Ẽ2
11 Ñ Ẽ2

21 by

F rys bArys y1y2E
2
rys ÝÑ G2

f b y1y2ee ÞÑ p0, 0, fp´q.y1y2eeq

� F rys b Ẽ2
12 Ñ Ẽ2

22 by

F rys bArys y1y2y3E
3
rys ÝÑ G3

f b y1y2y3eee ÞÑ p0, 0, 0, fp´q.y1y2y3eeeq .

Remark. We may observe that the image of the right action map Ẽ2
22 bF rys Ñ Ẽ2

21 preserves

the conditions for G3:

E2f ˝ χ ´ b Efpee1q “ E2f ˝ pχ ´ b ee1q

“ y2E
2f ˝ χ1,

E2f ˝ χ ´ δp b Efpee2qq “ E2f ˝ pχ ´ δEp b ee2qq

“ E2f ˝ y2χ2

“ y1E
2f ˝ χ2,

and the eeℓ relation:

Efpee1 ´ ee2q “ Efpy2ee
2
q

“ y1Efpee2
q.

It is trivial to check the conditions for the images of the left action maps F rys b Ẽ2
11 Ñ Ẽ2

21

and F rys b Ẽ2
12 Ñ Ẽ2

22.

Proof of Lemma 2.3.7. The reader may now check that τ̃ defined in §2.3.1.1 is equivariant

over the left and right C actions. These checks are completely mechanical using the formulas
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just given.

2.3.2 Hecke relations

2.3.2.1 x̃ and τ̃ satisfy Hecke relations

These checks are also mechanical, but we write them out because they are important.

Proposition 2.3.13. On each component Ẽ2
ij, the maps x̃ and τ̃ defined in §2.3.1.1 satisfy

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ “ Id

τ̃ ˝ Ẽx̃ ´ x̃Ẽ ˝ τ̃ “ Id.

Proof. On the first row, Ẽ2
11 and Ẽ2

12, the relations follow from the corresponding relations

between x and τ .

On Ẽ2
21 presented as G2, we have:

Ẽx̃ ˝ τ̃ : pe1, e2, ξq ÞÑ pxe1, ye1, Ex ˝ τ ˝ ξq

τ̃ ˝ x̃Ẽ : pe1, e2, ξq ÞÑ pye1
´ e2, ye

1
´ e2, τ ˝ xE ˝ ξq

τ̃ ˝ Ẽx̃ : pe1, e2, ξq ÞÑ pe2 ` xe1, e2 ` xe1, τ ˝ Ex ˝ ξq

x̃Ẽ ˝ τ̃ : pe1, e2, ξq ÞÑ pye1, xe1, xE ˝ τ ˝ ξq,

from which

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ : pe1, e2, ξq ÞÑ
`

y1e
1
` e2, e2, pEx ˝ τ ´ τ ˝ xEq ˝ ξ

˘

“ pe1, e2, ξq,

and similarly for the other relation.
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On Ẽ2
22 presented as G3, we have:

Ẽx̃ ˝ τ̃ : pee1, ee2, ee3, χq ÞÑ pxEpee1
q, yee1, Ex ˝ τpee3q, ExE ˝ τE ˝ χq

τ̃ ˝ x̃Ẽ : pee1, ee2, ee3, χq ÞÑ pyee1
´ ee2, yee

1
´ ee2, τ ˝ xEpee3q, τE ˝ xE2

˝ χq

τ̃ ˝ Ẽx̃ : pee1, ee2, ee3, χq ÞÑ pee1 ` yee1, ee1 ` yee1, τ ˝ Expee3q, τE ˝ ExE ˝ χq

x̃Ẽ ˝ τ̃ : pee1, ee2, ee3, χq ÞÑ pyee1, xEpee1
q, xE ˝ τpee3q, xE2

˝ τE ˝ χq,

and so

Ẽx̃ ˝ τ̃ ´ τ̃ ˝ x̃Ẽ : pee1, ee2, ee3, χq ÞÑ

`

y2ee
1
` ee2, ee2, pEx ˝ τ ´ τ ˝ xEqpee3q, pExE ˝ τE ´ τE ˝ xE2

q ˝ χ
˘

“ pee1, ee2, ee3, χq,

and similarly for the other relation.

2.3.2.2 τ̃ 2 “ 0

This is clear.

2.3.2.3 τ̃ satisfies the braid relation

In this section we give formulas defining k-module endomorphisms τ̃1 and τ̃2 of the compo-

nents of the matrix parametrization of Ẽ3. We show that these endomorphisms satisfy the

braid relations. Then we argue that they correspond to the maps Ẽτ̃ and τ̃ Ẽ induced on

the same bimodule components. This will complete our proof that x̃ and τ̃ satisfy the nil

affine Hecke relations in U`.

Lemma 2.3.14. Let us be given pee1, ee2, ee3, χq P G3 with ee2 defined as in §2.2.21. Then

pτpee1q,´ee2,´ee2, Eτ ˝ χq P E2
rys

‘3
‘ HomApAE,E

3
qrys
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also lies in G3.

Proof. The reader may check this directly. In Prop. 2.3.18 we will interpret this element as

the image of pee1, ee2, ee3, χq under Ẽτ̃ , and it must therefore lie in G3.

Lemma 2.3.15. Let us be given peee1, eee2, eee3, eee4, ψq P G4 with eeepℓq defined as in

§2.2.23. Then the following elements of E3rys‘4 ‘ HomApAE,E
4qrys also lie in G4:

pτEpeee1q, eee
p2q, eeep2q, Eτpeee4q, EτE ˝ ψq,

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE
2

˝ ψq.

Proof. The reader may check this directly. In Prop. 2.3.18 we will interpret these elements

as the images of peee1, eee2, eee3, eee4, ψq under Ẽτ̃ and τ̃ Ẽ respectively, and they must

therefore lie in G4.

Definition 2.3.16. Let τ̃1, τ̃2 be k-module maps defined on Ẽ3
ij, presented as in §2.2.4.2, as

follows:

� on Ẽ3
11:

– τ̃1 acts by Eτ

– τ̃2 by τE

� on Ẽ3
12:

– τ̃1 by EτE

– τ̃2 by τE2

� on Ẽ3
21:

– τ̃1 by pee1, ee2, ee3, χq ÞÑ pτpee1q,´ee2,´ee2, Eτ ˝ χq

79



– τ̃2 by pee1, ee2, ee3, χq ÞÑ pee1, ee1, τpee3q, τE ˝ χq,

i.e. τ̃ as defined above on G3 considered as Ẽ2
22

� on Ẽ3
22:

– τ̃1 by peee1, eee2, eee3, eee4, ψq ÞÑ

pτEpeee1q, eeep2q, eeep2q, Eτpeee4q, EτE ˝ ψq

– τ̃2 by peee1, eee2, eee3, eee4, ψq ÞÑ

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE
2

˝ ψq.

Proposition 2.3.17. The τ̃i satisfy τ̃1 ˝ τ̃2 ˝ τ̃1 “ τ̃2 ˝ τ̃1 ˝ τ̃2.

Proof. On Ẽ2
1j the claim follows from the τi braid relation. On Ẽ2

21 “ G3 we have:

pee1, ee2, ee3, χq
τ̃1

ÞÝÑ

pτpee1q,´ee2,´ee2, Eτ ˝ χq
τ̃2

ÞÝÑ

p´ee ´ τpee3
q,´ee ´ τpee3

q,´τpee2
q, τE ˝ Eτ ˝ χq

τ̃1
ÞÝÑ

p´τpeeq,´τpeeq,´τpeeq, Eτ ˝ τE ˝ Eτ ˝ χq

and

pee1, ee2, ee3, χq
τ̃2

ÞÝÑ

pee1, ee1, τpee3q, τE ˝ χq
τ̃1

ÞÝÑ

pτpee1
q,´ee,´ee, Eτ ˝ τE ˝ χq

τ̃2
ÞÝÑ

p´τpeeq,´τpeeq,´τpeeq, τE ˝ Eτ ˝ τE ˝ χq.
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On Ẽ3
22 “ G4 we have:

peee1, eee2, eee3, eee4, ψq
τ̃1

ÞÝÑ

pτEpeee1q, eee
p2q, eeep2q, Eτpeee4q, EτE ˝ ψq

τ̃2
ÞÝÑ

pτEpeeep5q
q ` eee, τEpeeep5q

q ` eee, τEpeeep2q
q, τE ˝ Eτpeee4q, τE

2
˝ EτE ˝ ψq

τ̃1
ÞÝÑ

pτEpeeeq, τEpeeeq, τEpeeeq, Eτ ˝ τE ˝ Eτpeee4q, EτE ˝ τE2
˝ EτE ˝ ψq

and

peee1, eee2, eee3, eee4, ψq
τ̃2

ÞÝÑ

peeep4q, eeep4q, τEpeee3q, τEpeee4q, τE
2

˝ ψq
τ̃1

ÞÝÑ

pτEpeeep4q
q, eee, eee, Eτ ˝ τEpeee4q, EτE ˝ τE2

˝ ψq
τ̃2

ÞÝÑ

pτEpeeeq, τEpeeeq, τEpeeeq, τE ˝ Eτ ˝ τEpeee4q, τE
2

˝ EτE ˝ τE2
˝ ψq.

The remaining goal of this section is to relate the τ̃i just defined to the τ̃ acting on Ẽ as

described in §2.3.1.1. The latter is known to be a pC,Cq-bimodule morphism.

Proposition 2.3.18. Under the isomorphism of Lemma 2.2.45, namely

Ẽ3 „
ÝÑ HomKbpBqpX,E

13Xq,

the maps Ẽτ̃ and τ̃ Ẽ on Ẽ3 correspond to τ̃1 and τ̃2 of Definition 2.3.16.

Corollary 2.3.19. Lemmas 2.3.14 and 2.3.15 follow.

Corollary 2.3.20. Proposition 2.3.17 implies Ẽτ̃ ˝ τ̃ Ẽ ˝ Ẽτ̃ “ τ̃ Ẽ ˝ Ẽτ̃ ˝ τ̃ Ẽ.

Proof of the proposition. We consider the tensor product Ẽ bC Ẽ
2 formed according to the

procedure of §2.1.4, and study the endofunctor Ẽτ̃ as in Lemma 2.1.8, and similarly for
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Ẽ2 bC Ẽ and τ̃ Ẽ. From Lemma 2.2.45, we have isomorphisms

HomKbpBqpX,E
1Xq bC HomKbpBqpX,E

12Xq
„
ÝÑ HomKbpBqpX,E

13Xq

HomKbpBqpX,E
12Xq bC HomKbpBqpX,E

1Xq
„
ÝÑ HomKbpBqpX,E

13Xq

associated with the products

Ẽ bC Ẽ
2

“ Ẽ3

Ẽ2
bC Ẽ “ Ẽ3.

The maps are given by

f b g ÞÑ E 1g ˝ f

f b g ÞÑ E 12g ˝ f.

These isomorphisms determine actions of Ẽτ̃ and τ̃ Ẽ on HomKbpBqpX,E
13Xq that we may

compare to the τ̃1 and τ̃2 defined there by components.

The components Ẽij and Ẽ
2
ij are pEndpXiq

op,EndpXjq
opq-bimodules, and τ̃ gives bimodule

endomorphisms τ̃|ij of the latter. These induce endomorphisms pẼτ̃q
1|2
|ijk of

Ẽ
1|2
ijk “ Ẽij bEndpXjqop Ẽ

2
jk,

as in §2.1.4. We know that Ẽ3
ik is canonically isomorphic to a quotient of Ẽ

1|2
i1k‘Ẽ

1|2
i2k, and that

ˆ

pẼτ̃q
1|2
|i1k

0

0 pẼτ̃q
1|2
|i2k

˙

acting on Ẽ
1|2
i1k ‘Ẽ

1|2
i2k descends to Ẽ

3
ik, where it gives the components of Ẽτ̃ .

Here it may be compared directly with τ̃1 that we defined on Ẽ3
ik. It therefore suffices for

our objective to check commutativity of the following diagrams labeled D1|2pi, j, kq, indexed

by triples pi, j, kq P t1, 2u3:
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Ẽij bEndpXjqop Ẽ
2
jk Ẽ3

ik

D1|2pi, j, kq :

Ẽij bEndpXjqop Ẽ
2
jk Ẽ3

ik.

pẼτ̃q
1|2
|ijk

fbg ÞÑE1g˝f

τ̃1|ik

fbg ÞÑE1g˝f

Exactly parallel considerations apply to the study of τ̃ Ẽ, where the diagrams for pi, j, kq,

now labeled D2|1pi, j, kq, instead involve maps pẼτ̃q
2|1
|ijk and τ̃2|ik.

Checking the diagrams will occupy the next three pages.

Lemma 2.3.21. The diagrams D1|2pi, j, kq commute.

Proof. We consider the diagrams in turn:

� Diagram D1|2p1, 1, 1q:

Consider pẼτ̃q
1|2
|111 P EndpẼ11bẼ2

11q. Let y1e P Ẽ11 and y1y2ee P Ẽ2
11. The image of y1eby1y2ee

in the top right corner of the diagram is

E 1
py1y2eeq ˝ y1e “ y1y2y3pe b eeq P Ẽ3

11.

Here we can write out E 1py1y2eeq “ py1y2ee, 0, 0, b y1y2eeq P G3. On the other hand,

τ̃py1y2eeq “ y1y2τpeeq, so the image of pẼτ̃q
1|2
|111

`

y1e b y1y2ee
˘

is y1y2y3pe b τpeeqq P Ẽ3
11,

which agrees with τ̃1py1y2y3pe b eeqq.

� Diagram D1|2p1, 2, 1q:

Consider pẼτ̃q
1|2
|121 P EndpẼ12 b Ẽ2

21q. Let y1y2ee P Ẽ12 and pe1, e2, ξq P Ẽ2
21. We have no

established notation for E 1
`

pe1, e2, ξq
˘

P HomKbpBqpE
1X2, E

12X1q. It is nevertheless easy to

check, by tracking ‘leading terms’ of the upper rows, that

E 1
`

pe1, e2, ξq
˘

˝ y1y2ee “ Eξpy1y2eeq P Ẽ3
11.
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This lies in y1y2y3E
3rys. Then τ̃

`

pe1, e2, ξq
˘

“ pe1, e1, τ ˝ ξq, so pẼτ̃q
1|2
|121 applied to y1y2ee b

pe1, e2, ξq and viewed in Ẽ3
11 is Eτ ˝ Eξpy1y2eeq.

� Diagram D1|2p2, 1, 1q:

Consider pẼτ̃q
1|2
|211 P EndpẼ21 b Ẽ2

11q. Let pθ, φq P Ẽ21 and y1y2ee P Ẽ2
11. This time we can

write E 1py1y2eeq “ py1y2ee, 0, 0, b y1y2eeq. Then

E 1
py1y2eeq ˝ pθ, φq “ pθy1y2ee, 0, 0, φ b y1y2eeq P Ẽ3

21.

Going around the diagram in either direction yields pθy1y2τpeeq, 0, 0, φ b y1y2τpeeqq.

� Diagram D1|2p2, 2, 1q:

Consider pẼτ̃q
1|2
|221 P EndpẼ22 b Ẽ2

21q. Let pe1, e2, ξq P Ẽ22 and pē1, ē2, ξ̄q P Ẽ2
21. We have no

notation for E 1
`

pē1, ē2, ξ̄q
˘

. One computes that

E 1
`

pē1, ē2, ξ̄q
˘

˝ pe1, e2, ξq “ pξ̄pe1q, e2 b ē1, e2 b ē2, Eξ̄ ˝ ξq P Ẽ3
21.

Traversing the diagram in either direction gives pτ ˝ ξ̄pe1q, e2 b ē1, e2 b ē1, Eτ ˝ Eξ̄ ˝ ξq.

� Diagram D1|2p1, 1, 2q:

Consider pẼτ̃q
1|2
|112 P EndpẼ11 b Ẽ2

12q. Let y1e P Ẽ11 and y1y2y3eee P Ẽ2
12. Again by tracking

‘leading terms’, one checks that

E 1
py1y2y3eeeq ˝ y1e “ y1 . . . y4pe b eeeq P Ẽ3

12.

Traversing the diagram in either direction gives EτEpy1 . . . y4e b eeeq which is y1 . . . y4pe b

τEpeeeqq.

� Diagram D1|2p1, 2, 2q:

Consider pẼτ̃q
1|2
|122 P EndpẼ12 b Ẽ2

22q. Let y1y2ee P Ẽ12 and pee1, ee2, ee3, χq P Ẽ2
22. Then

check that

E 1
ppee1, ee2, ee3, χqq ˝ y1y2ee “ Eχpy1y2eeq P Ẽ3

12.
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Traversing the diagram in either direction gives pEτE ˝ Eχqpy1y2eeq.

� Diagram D1|2p2, 1, 2q:

Consider pẼτ̃q
1|2
|212 P EndpẼ21 b Ẽ2

12q. Let pθ, φq P Ẽ21 and y1y2y3eee P Ẽ2
12. Then check that

E 1
py1y2y3eeeq ˝ pθ, φq “ pθy1y2y3eee, 0, 0, 0, φ b y1y2y3eeeq P Ẽ3

22.

Traversing the diagram in either direction gives

pτEpθy1y2y3eeeq, 0, 0, 0, EτE ˝ pφ b y1y2y3eeeqq .

� Diagram D1|2p2, 2, 2q:

Consider pẼτ̃q
1|2
|222 P EndpẼ22 b Ẽ2

22q. Let pe1, e2, ξq P Ẽ22 and pee1, ee2, ee3, χq P Ẽ2
22. Then

check that

E 1
`

pee1, ee2, ee3, χq
˘

˝ pe1, e2, ξq “ pχpe1q, e2 b ee1, e2 b ee2, e2 b ee3, Eχ ˝ ξq P Ẽ3
22.

Traversing the diagram in either direction gives

`

τEpχpe1qq, e2 b ee1, e2 b ee1, Eτpe2 b ee3q, EτE ˝ Eχ ˝ ξ
˘

.

Lemma 2.3.22. The diagrams D2|1pi, j, kq commute.

Proof. We consider the diagrams in turn:

� Diagram D2|1p1, 1, 1q:

Consider pτ̃ Ẽq
2|1
|111 P EndpẼ2

11 b Ẽ11q. Let y1y2ee P Ẽ2
11 and y1e P Ẽ11. Then check that

E 12
py1eq ˝ y1y2ee “ y1y2y3ee b e P Ẽ3

11.

Traversing the diagram in either direction gives

y1y2y3pτpeeq b eq.
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� Diagram D2|1p1, 2, 1q:

Consider pτ̃ Ẽq
2|1
|121 P EndpẼ2

12 b Ẽ21q. Let y1y2y3eee P Ẽ2
12 and pθ, φq P Ẽ21. Then check that

E 12
`

pθ, φq
˘

˝ y1y2y3eee “ E2φpy1y2y3eeeq P Ẽ3
11.

Traversing the diagram in either direction gives

pτE ˝ E2φqpy1y2y3eeeq.

� Diagram D2|1p2, 1, 1q:

Consider pτ̃ Ẽq
2|1
|211 P EndpẼ2

21 b Ẽ11q. Let pe1, e2, ξq P Ẽ2
21 and y1e P Ẽ11. Then check that

E 12
py1eq ˝ pe1, e2, ξq “ pe1 b y1e, e2 b y1e, 0, ξ b y1eq P Ẽ3

21.

Traversing the diagram in either direction gives

pe1
b y1e, e

1
b y1e, 0, pτ ˝ ξq b y1eq.

� Diagram D2|1p2, 2, 1q:

Consider pτ̃ Ẽq
2|1
|221 P EndpẼ2

22 b Ẽ21q. Let pee1, ee2, ee3, χq P Ẽ2
22 and pθ, φq P Ẽ21. Then check

that

E 12
`

pθ, φq
˘

˝ pee1, ee2, ee3, χq “ pEφpee1q, Eφpee2q, θee3, E
2φ ˝ χq P Ẽ3

21.

Traversing the diagram in either direction gives

`

Eφpee1
q, Eφpee1

q, θτpee3q, E2φ ˝ τE ˝ χ
˘

.

� Diagram D2|1p1, 1, 2q:

Consider pτ̃ Ẽq
2|1
|112 P EndpẼ2

11 b Ẽ12q. Let y1y2ee P Ẽ2
11 and y1y2ēē P Ẽ12. Then check that

E 12
py1y2ēēq ˝ y1y2ee “ py1y2eeq b py1y2ēēq “ y1 . . . y4pee b ēēq P Ẽ3

12.
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Traversing the diagram in either direction gives

y1 . . . y4pτpeeq b ēēq.

� Diagram D2|1p1, 2, 2q:

Consider pτ̃ Ẽq
2|1
|122 P EndpẼ2

12 b Ẽ22q. Let y1y2y3eee P Ẽ2
12 and pe1, e2, ξq P Ẽ22. Then check

that

E 12
`

pe1, e2, ξq
˘

˝ y1y2y3eee “ E2ξpy1y2y3eeeq P Ẽ3
12.

Traversing the diagram in either direction gives

pτE2
˝ E2ξqpy1y2y3eeeq.

� Diagram D2|1p2, 1, 2q:

Consider pτ̃ Ẽq
2|1
|212 P EndpẼ2

21 b Ẽ12q. Let pe1, e2, ξq P Ẽ2
21 and y1y2ee P Ẽ12. Then check that

E 12
py1y2eeq ˝ pe1, e2, ξq “ pe1 b y1y2ee, e2 b y1y2ee, 0, 0, ξ b y1y2eeq P Ẽ3

22.

Traversing the diagram in either direction gives

pe1
b y1y2ee, e

1
b y1y2ee, 0, 0, pτ ˝ ξq b y1y2eeq .

� Diagram D2|1p2, 2, 2q:

Consider pτ̃ Ẽq
2|1
|222 P EndpẼ2

22 b Ẽ22q. Let pee1, ee2, ee3, χq P Ẽ2
22 and pe1, e2, ξq P Ẽ22. Then

check that

E 12
`

pe1, e2, ξq
˘

˝ pee1, ee2, ee3, χq “

`

Eξpee1q, Eξpee2q, ee3 b e1, ee3 b e2, E
2ξ ˝ χ

˘

P Ẽ3
22.

Traversing the diagram in either direction gives

`

Eξpee1
q, Eξpee1

q, τpee3q b e1, τpee3q b e2, τE
2

˝ E2ξ ˝ χ
˘

.
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The proposition that Ẽτ̃ and τ̃ Ẽ correspond to τ̃1 and τ̃2 is now proved.

2.3.3 Definition of the 2-product

Definition 2.3.23. Let V be a 2-representation of U` given by the data pE, x, τq for a

k-algebra A such that AE is finitely generated and projective and En is free as a Pn-module.

We define Lp1q b V to be the 2-representation of U` given for the k-algebra C by the data

pẼ, x̃, τ̃q.

Proposition 2.3.24. If E is locally nilpotent, then Ẽ is locally nilpotent.

Proof. Note that in our setting of bimodules, local nilpotence of E bA ´ is equivalent to

nilpotence of E, meaning that En – 0 for some n. This is because local nilpotence implies

En bA A – 0 for some n, but that is just En as a bimodule.

Recall the expression for Ẽn as a matrix of pArys, Arysq-bimodules:
¨

˚

˝

y1 . . . ynE
nrys y1 . . . yn`1E

n`1rys

Gn Gn`1

˛

‹

‚

„
ÝÑ

¨

˚

˝

Ẽn
11 Ẽn

12

Ẽn
21 Ẽn

22

˛

‹

‚

.

The method we used to compute a model for Gn for n “ 1, 2, 3 also shows that Gn for any n

can be described as a sub-bimodule of En´1rys‘n ‘HomApAE,E
nqrys, given by the elements

satisfying a certain set of conditions. It follows that Gn vanishes for large n if En does. Also

y1 . . . ynE
nrys vanishes for large n because En does. It follows that Ẽ is nilpotent.

2.3.3.1 Weights and gradings for the 2-product

It frequently happens that a 2-representation has additional structure, and we may ask

whether our 2-product inherits that structure. A 2-representation of U` may have a weight

decomposition, or its algebra may have a grading.
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Definition 2.3.25. A 2-representation V of U` given for k-algebra A by the data pE, x, τq

is said to have a weight decomposition when A has the form A “
ś

iPZAi with units ei P Ai,

and ejEei “ δi`2,j ¨ ei`2Eei.

Proposition 2.3.26 (weight decomposition). Let A and pE, x, τq satisfy the conditions of

Def. 2.3.23, and let V be the 2-representation they determine. Suppose that V has a weight

decomposition with units ei P Ai. Let C and pẼ, x̃, τ̃q give the data of Lp1q b V. Then C

has a weight decomposition C “
ś

iPZCi with Ci “ fiCfi where the units fi P Ci Ă C are

given in matrix form as follows:

fi “

¨

˚

˝

ei`1 0

0 pei´1, .ei´1q

˛

‹

‚

.

Proof. The elements fi are clearly idempotent and orthogonal, and they sum to the identity.

We have for the matrix components of fjẼfi:

rfjẼfis11 “ ej`1.y1Erys.ei`1

rfjẼfis12 “ ej`1.y1y2E
2
rys.ei´1

rfjẼfis21 “ G1

č

´

ej´1Arysei`1 ‘ ej´1.HomApAE,Eq.ei`1rys

¯

rfjẼfis22 “ G2

č

´

ej´1.Erys.ei´1 ‘ ej´1.Erys.ei´1 ‘ ej´1.HomApAE,E
2
q.ei´1rys

¯

.

These are all zero unless j “ i ` 2.

Definition 2.3.27 (graded case). A 2-representation V of U` given for k-algebra A by the

data pE, x, τq is said to be a Z-graded 2-representation when A is a Z-graded k-algebra, E is

a graded bimodule, and x and τ are graded endomorphisms with deg x “ `2 and deg τ “ ´2.

Proposition 2.3.28. Let A and pE, x, τq satisfy the conditions of Def. 2.3.23, and let V be

the 2-representation they determine. Suppose that V is a Z-graded 2-representation. Let C

and pẼ, x̃, τ̃q give the data of Lp1q b V. Then Lp1q b V is a Z-graded 2-representation. The
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gradings on generators in C and Ẽ are inherited from the gradings on A and E with the

assumption that deg y “ `2.

Proof. It is trivial to check that C is graded and Ẽ is a graded bimodule. The formulas for

x̃ and τ̃ in Def. 2.3.4 show that they have the right degrees.

2.4 Comparison: V “ Lp1q

In §2.4.1 we describe a well-known 2-representation of U` categorifying Lp1q b Lp1q using

Soergel bimodules. In §2.4.2 we describe our product explicitly for V “ Lp1q, and in §2.4.3

we show that the result is equivalent to the known one. The reader is warned that notations

in this section will diverge from the previous sections.

Let P2 “ kry1, y2s. Let S2 denote the symmetric group on 2 letters, generated by t1, and

acting on P2 by permutation of the yi. Let P S2
2 be the subalgebra generated by invariant

homogeneous polynomials.

2.4.1 A categorification of Lp1q b Lp1q

Definition 2.4.1. We define:

� a pP2, P2q-bimodule Bs1 “ P2 b
P

S2
2
P2

– and observe that Bs1 is also a P2-algebra with structure map P2 Ñ Bs1 given by

f ÞÑ 1 b f

– and that P2 is a left Bs1-module by pf b gq.θ “ fgθ

� a P2-algebra T “ T`2 ‘ T0 ‘ T´2 by

T`2 “ P2, T0 “ EndBs1
pP2 ‘ Bs1q

op, T´2 “ P2
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� a pT, T q-bimodule E “`2 E0 ‘ 0E´2 by

0E´2 “

¨

˚

˝

P2

Bs1

˛

‹

‚

– T0e2

`2E0 “

ˆ

P2 Bs1

˙

– e2T0

for e2 the projection onto Bs1

– and observe the canonical isomorphism

`2E
2

´2 “ e2T0 bT0 T0e2
„
ÝÑ Bs1

� a bimodule endomorphism x P EndpE q by

`2x0 “

ˆ

y2 y2 b 1

˙

, 0x´2 “

¨

˚

˝

y1

y1 b 1

˛

‹

‚

(acting by multiplication)

� a bimodule endomorphism τ P EndpE 2q by

`2τ´2 : f b g ÞÑ Bt1pfq b g

where Bt1 P EndkpP2q is a Demazure operator:

Bs1 : f ÞÑ
f ´ f t1

y1 ´ y2
.

The next theorem is well-known. Cf., for example, Lauda [Lau09], Webster [Web16, §2.3],

Stroppel [Str03, §5.1.1], Sartori-Stroppel [SS15]:

Theorem 2.4.2. The k-algebra T and triple pE , x, τq defined above gives a 2-representation

of U`, called T below, that categorifies the tensor product Lp1q b Lp1q of fundamental rep-

resentations of sl2.
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2.4.2 Lp1q b⃝Lp1q

We notate both factors as in §2.1.2.3 except that on the right factor we use y1 in place

of y, and on the left factor we use y2 in place of y. We write Ei, xi, τi, i “ 1, 2 for the

2-representation data on the right (i “ 1) and on the left pi “ 2).

In the formulas we have given for the product, the algebra A, now A1, becomes kry1s`1 ˆ

kry1s´1 (in its weight decomposition), E becomes kry1s, x becomes y1, and y becomes y2.

Let ω “ y1 ´y2 P P2. So ω will take over the role of ‘y1 “ x´y’ that was written in previous

sections. Write π : P2 Ñ P2{pωq for the projection.

We let B, X, E 1, C, Ẽ, x̃, and τ̃ be defined as above. The algebra B and complex X

have nonzero elements only in weights ´2, 0, `2. These are given as follows:

B´2 “

¨

˚

˝

P2 0

0 0

˛

‹

‚

, X1´2 “

¨

˚

˝

P2

0

˛

‹

‚

, X2´2 “

¨

˚

˝

0

0

˛

‹

‚

,

B0 “

¨

˚

˝

P2 krys

0 P2

˛

‹

‚

, X10 “

¨

˚

˝

P2

0

˛

‹

‚

, X20 “

¨

˚

˝

P2
π
ÝÑ P2{pωq

0 Ñ P2

˛

‹

‚

,

B`2 “

¨

˚

˝

0 0

0 P2

˛

‹

‚

, X1`2 “

¨

˚

˝

0

0

˛

‹

‚

, X2`2 “

¨

˚

˝

0

0 Ñ P2

˛

‹

‚

.

Here the action of P2{pωq from the upper right of B0 on X20 is P2{pωqbP2 P2 Ñ P2{pωq given

by f b 1 ÞÑ f . The complexes for X start in degree 0 on the left. The matrix coefficients

are in each case from the ´1 weight space of A2 in the upper left corner.
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To compute Ẽ we will also need E 1X2, which is:

0E
1
´2pX2´2q “

¨

˚

˝

0

0

˛

‹

‚

,

`2E
1
0pX20q “

¨

˚

˝

0

0 Ñ P2 ‘ P2
p´π,πq
ÝÝÝÝÑ P2{pωq

˛

‹

‚

.

Next we compute C:

rC`2s “

¨

˚

˝

0 0

0 P2

˛

‹

‚

, rC0s “

¨

˚

˝

P2 ωP2

P2 Qop
1

˛

‹

‚

, rC´2s “

¨

˚

˝

P2 0

0 0

˛

‹

‚

.

Here Qop
1 Ă P2 ‘ P2 is the (commutative) algebra of all pθ, φq such that φ ´ θ P ωP2, with

componentwise multiplication. It is a P2-algebra by P2 Q f ÞÑ pf, fq P Q1. The algebra

structure of C0 (cf. §2.1.4) may be described as follows. The upper right term, ωP2, is a left

P2-module by multiplication. It is a right Qop
1 -module with pθ, φq acting by multiplication

by φ. The lower left P2 is a left Qop
1 -module with the same action. It has a right P2 action

by multiplication. The remaining structure maps are:

ωP2 bP2 P2 Ñ P2 (2.4.1)

by ωθ1
b θ ÞÑ ωθθ1

and

P2 bP2 ωP2 Ñ Qop
1 (2.4.2)

by θ b ωθ1
ÞÑ p0, ωθθ1

q.
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Now compute Ẽ and the endomorphisms x̃ by components:

0rẼs´2 “

¨

˚

˝

ωP2 0

Q1 0

˛

‹

‚

, 0rx̃s´2 “

¨

˚

˝

y1 0

py2, y1q 0

˛

‹

‚

,

`2rẼs0 “

¨

˚

˝

0 0

P2 Q2

˛

‹

‚

, `2rx̃s0 “

¨

˚

˝

0 0

y2 py2, y1q

˛

‹

‚

,

where Q2 Ă P2 ‘P2 is the pP2, Q
op
1 q-bimodule containing all pe1, e2q such that e1 ´ e2 P ωP2;

Qop
1 acts on Q2 on the right by pe1, e2q.pθ, φq “ pe1φ, e2θq (note the swap), and P2 on the left

by diagonal multiplication.

In the next section it will be useful to view 0Ẽ´2 as C0q2 using the idempotent q2 “ p 0 0
0 1 q P

rC0s, and to view `2Ẽ0 as q2C0 using the isomorphism of pP2, Q
op
1 q-bimodules σ : Q1

„
ÝÑ Q2

by pθ, φq ÞÑ pφ, θq. Viewing them in this way, we may write 0x̃´2 as multiplication on

C0q2 on the left by
´

y1 0
0 py2,y1q

¯

P C0, and `2x̃0 as multiplication on q2C0 on the right by
´

y2 0
0 py1,y2q

¯

P C0 (note the swap).

Finally, compute Ẽ2 and τ̃ by components:

`2rẼ
2
s´2 “

¨

˚

˝

0 0

Q2 0

˛

‹

‚

, `2rτ̃ s´2 “

¨

˚

˝

0 0

t21 0

˛

‹

‚

,

where

t21 : pe1, e2q ÞÑ pω´1
pe1 ´ e2q, ω´1

pe1 ´ e2qq.

2.4.3 Comparison

Theorem 2.4.3. There is an equivalence Lp1q b Lp1q
„
ÝÑ T of 2-representations.

We will use a few intermediate steps.

Define a new algebra R:

R “ P2res
L`

e2 ´ ωe
˘

.
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There is a map of P2-algebras R
γ
ÝÑ Bs1 given by e ÞÑ 1 b y1 ´ y1 b 1. There is another map

of P2-algebras R
γ1

ÝÑ Qop
1 given by P2 Q f ÞÑ pf, fq P Qop

1 and e ÞÑ pω, 0q.

Lemma 2.4.4. The maps γ and γ1 are isomorphisms of P2-algebras.

Proof. Straightforward.

We will also use the composition σ ˝ γ1 to obtain an isomorphism of pP2, P2q-bimodules

R
„
ÝÑ Q2 given by f ÞÑ pf, fq and e ÞÑ p0, ωq.

Now we translate T using γ. The action of Bs1 on P2 induces an action of R on P2

through γ, according to which P2 ãÑ R acts on P2 by multiplication, and e acts by zero. We

have an isomorphism of R-modules P2
„
ÝÑ R{peq using this action on P2. In the remainder

of this section we assume this isomorphism and write R in place of Bs1 everywhere in the

2-representation T . Under this translation, and using the decomposition R
„
ÝÑ P2 ‘ P2e as

P2-modules, we have:

`2x0 “

ˆ

y2 y2 ` e

˙

, 0x´2 “

¨

˚

˝

y1

y1 ´ e

˛

‹

‚

,

and

`2τ´2 “
`

p1 ` p2e ÞÑ ´p2
˘

.

Lemma 2.4.5. The matrix presentation of T0 is given by:
¨

˚

˝

P2 P2

P2 R

˛

‹

‚

„
ÝÑ T0,

where:

� for rT0s11 the map sends θ P P2 to p1 ÞÑ θq P EndRpP2q
op

� for rT0s21 the map sends θ P P2 to p1 ÞÑ θq P HomRpR,P2q

� for rT0s12 the map sends θ P P2 to p1 ÞÑ θω ´ θeq P HomRpP2, Rq
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� for rT0s22 the map sends r P R to p1 ÞÑ rq P EndRpR,Rqop.

The algebra structure maps (cf. §2.1.4) are given as follows:

� rT0s11 œ rT0s12 by θ.θ1 “ θθ1

� rT0s21 ö rT0s11 by θ1.θ “ θ1θ

� rT0s12 ö rT0s22 by θ.pp1 ` p2eq “ θp1

� rT0s22 œ rT0s21 by pp1 ` p2eq.θ “ p1θ

� rT0s12 b rT0s21 Ñ rT0s11 by θ b θ1 ÞÑ ωθθ1

� rT0s21 b rT0s12 Ñ rT0s22 by θ1 b θ ÞÑ ωθ1θ ´ θ1θe.

Proof. Let us explain the map to rT0s12. Recall that P2 – R{peq. An element of HomRpR{peq, Rq

is given by the image r “ p1 ` p2e of 1, which may be anything satisfying e.r “ 0, and that

condition is equivalent to p1 “ ´p2ω. The other morphisms and the structure maps are

easily computed.

Lemma 2.4.6. Let Φ0 : T0 Ñ C0 be given on components by:
¨

˚

˝

IdP2 ω

IdP2 γ1

˛

‹

‚

.

Then Φ0 is an isomorphism of P2-algebras.

Proof. The specified maps give algebra isomorphisms on the diagonal components, and k-

module isomorphisms on the off-diagonal components. Now we check equivariance under

the bimodule structure maps. The only nonobvious cases concern maps involving the lower

right component.

An element of Qop
1 may be written uniquely as a sum pωθ, 0q ` pφ, φq. This is sent by

γ1´1 to φ ` θe P R. So the action of pθ, φq by multiplication by φ agrees with the action of
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p1 ` p2e by multiplication by p1. The structure map rT0s12 b rT0s21 Ñ rT0s11 clearly agrees

with Eq. 2.4.1 through Φ0. The map rT0s21 b rT0s12 Ñ rT0s22 agrees with Eq. 2.4.2 through

Φ0 because γ1 : ωθ1θ ´ θ1θe ÞÑ p0, ωθθ1q.

Proof of Theorem 2.4.3. Extend Φ0 to an algebra isomorphism Φ : T
„
ÝÑ C by Φ`2 “ IdP2

and Φ´2 “ IdP2 . It remains to check compatibility with the actions of E, x, and τ in U`,

and this poses no difficulty. We summarize that now.

We have in T that 0E´2
„
ÝÑ T0r2 for r2 “ p 0 0

0 1 q P rT0s, and similarly 0Ẽ´2 “ C0q2 in

Lp1q bLp1q; and we have q2 “ Φ0pr2q. The action of 0x´2 on 0E´2 in T can be written in T0r2

as multiplication on the left by
`

y1 0
0 y1´e

˘

P rT0s. In Lp1q b Lp1q it is written as multiplication

on the left by
´

y1 0
0 py2,y1q

¯

. These correspond using γ1 : R
„
ÝÑ Qop

1 . Similarly for `2x0 since

γ1 : R Q y2 ` e ÞÑ py1, y2q P Qop
1 . Finally, the action of τ in R by `2τ´2 “

`

p1 ` p2e ÞÑ ´p2
˘

corresponds to `2τ̃´2, now using σ ˝ γ1 : R
„
ÝÑ Q2.
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CHAPTER 3

Construction of the product: adding the negative half

This chapter provides a proof of the Main Theorem, Part II.

3.1 Additional background

3.1.1 Adding a dual

We begin with a description of 2-representations of the full 2-category U associated to the

Lie algebra sl2. The 2-category U that we mean is defined in [Rou08a, §4.1.3], but with τ

replaced by ´τ in the Hecke relations. We do not repeat that definition here since we work

with the concrete data of 2-representations and not with the 2-category U itself.

A 2-representation of the full U is defined in terms of weights (see Def. 2.3.25). The

monoidal category BimkpAq may be interpreted as a 2-category with a single object A.

When A is provided with a weight decomposition A “
ś

λPZAλ, then BimkpAq may be

interpreted as a 2-category with objects given by the weight algebras Aλ, morphisms given

by pAµ, Aλq-bimodules, and 2-morphisms given by bimodule maps. With this interpretation,

we may describe a 2-representation of U as a strict 2-functor U Ñ BimkpAq given on objects

by 1λ ÞÑ Aλ.

In Chapter 2, we considered 2-representations of U` in BimkpAq. These were determined
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by a choice of bimodule AEA P BimkpAq and bimodule endomorphisms x and τ . Every

bimodule AEA has left- and right-dual bimodules, respectively:

_E “ HomApAE,Aq,

E_
“ HomApEA, Aq.

Now, when AE is f.g. projective, the canonical morphism _EbAE Ñ HomApAE,Eq is an

isomorphism of bimodules. More generally, the canonical morphism of functors _E bA ´ Ñ

HomApAE,´q is an isomorphism. In this situation, the endofunctor _EbA ´ of the category

mod-A is right adjoint to the endofunctor EbA ´ of the same category. The triple p_E, ε, ηq

gives the right-dual object for E in the monoidal category BimkpAq, where ε : E bA
_E Ñ A

and η : A Ñ _E bA E are given by evaluation and right A-action pa ÞÑ .aq, respectively.

(Note that _E is the left-dual bimodule but it gives the right-dual object.)

Now assume only that pEbA ´, _EbA ´q is an adjoint pair for some bimodule AEA. The

adjunction gives equivalences of functors:

HomApAE,´q – HomApAA,
_E bA ´q –

_E bA ´,

so all three are both right- and left-exact functors. So AE is projective. Furthermore, these

functors commute with infinite direct sums, so AE is finitely generated as well.

In this chapter we consider 2-representations for which the image of F in BimkpAq, i.e. the

bimodule AFA, is identically the left-dual bimodule _E. There is no loss of generality

because any 2-representation of U in BimkpAq is equivalent to one of these. (For any 2-

representation in BimkpAq, the endofunctor AF bA ´ of mod-A is right adjoint to AE bA ´,

and is therefore unique up to unique isomorphism.) A 2-representation of U given by the

data pA,E, F, x, τ, ε, ηq in BimkpAq is said to extend a 2-representation pA,E, x, τq of U`

when F “ _E and ε, η arise from the duality.

It was a hypothesis of the Main Theorem, Part I that AE is f.g. projective. This assump-
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tion was needed in order to show that E 1X is a perfect complex (for example). In light of

the above, we see that this condition is also necessitated by the existence of an extension of

the 2-representation of U` to a 2-representation of U in BimkpAq.

The following lemma is a consequence of the foregoing discussion.

Lemma 3.1.1. Suppose the data pA,E, x, τq determines a 2-representation of U` in BimkpAq

having a weight decomposition. This data extends to determine a 2-representation of U if

and only if AE is f.g. projective and the commutator morphisms ρλ determined by x and τ

are isomorphisms.

In Chapter 2 we already established that CẼ is f.g. projective. Here in Chapter 3 we

show that pC, Ẽ, x̃, τ̃q extends to determine a 2-representation of U (assuming pA,E, x, τq

does and that En is free over Pn) by showing that ρ̃λ are isomorphisms and then applying

this lemma.

3.1.2 Commutator morphisms

We define the commutator morphisms more precisely.

Assume we are given the data pA,E, x, τq of a 2-representation of U` in BimkpAq such

that AE is f.g. projective so pE, _Eq is an adjunction. Write F “ _E and write η : A Ñ FE

and ε : EF Ñ A for the unit and counit of the adjunction given by the duality. Assume

further that this 2-representation has a weight decomposition A “
ś

λPZAλ. We use the

notation Eλ “ E ¨ Aλ and µEλ “ Aµ ¨ E ¨ Aλ. So E “
À

λ,µ µEλ.

In this chapter we use a convention that ‘‘’ and ‘
ř

’ denote the components of a map to

and from a direct sum, respectively.

We define σ : EF Ñ FE by:

σ “ pFEεq ˝ pFτF q ˝ pηEF q : EF Ñ FE.
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For λ P Zě0 we define:

ρλ “ σ ‘

λ´1
à

i“0

ε ˝ xiF : EFλ Ñ FEλ ‘ A‘λ
λ , (3.1.1)

and for λ P Zď0:

ρλ “

˜

σ,
´λ´1
ÿ

i“0

Fxi ˝ η

¸

: EFλ ‘ A‘´λ
λ Ñ FEλ. (3.1.2)

The summation terms are neglected when λ “ 0.

The data determines a 2-representation of the full U using F “ _E when ρλ is an isomor-

phism of pA,Aq-bimodules for each λ.

3.1.3 Integrability

In the literature, a 2-representation is typically defined in terms of weight categories Cλ

and functors E and F between them, whereas we have framed our results entirely in terms

of bimodules E and F . One reason for this is that the operation of tensoring with cho-

sen bimodules may determine various functors that act on various reasonable categories of

modules. The most important ones are mod-A and proj-A.

The distinction between mod-A and proj-A interacts with our results and the hypothesis

of integrability in an interesting way. This interaction is mediated by the property of ‘second

adjunction’ that a 2-representation of U may possess. We explain this next. Note that some

authors include the second adjunction in their definition of a 2-representation, and for them,

this discussion will be of minor significance. It may be interesting for them to observe,

though, that in our construction of tensor product, the hypothesis of integrability passes

from the factors to the product quite easily, while it is not clear that the second adjunction

on its own passes from the factors to the product at all.

Every 2-representation of U given with functors E and F comes with one adjunction
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pE,F q, and with the data of a ‘candidate’ unit and counit pair for a second adjunction

pF,Eq. When the 2-representation acts on a category mod-A and E and F are given by

tensoring with bimodules, the first adjunction implies that AE is f.g. projective. In this

case, the upper half U` also acts on the smaller category proj-A. If the 2-representation is

assumed to be integrable, and the full U acts, i.e. the ρλ are isomorphisms, then by [Rou08a,

Thm. 5.16], the given candidates do provide a second adjunction pF,Eq. This adjunction

implies that AF is also f.g. projective, and now the full U action may be restricted to proj-A.

Given only the first adjunction with an action of U`, so AE is f.g. projective, together

with the hypothesis that En is free over Pn, we can form the 2-representation of U` called

Lp1q b V in Chapter 2. In the course of forming Lp1q b V we found that CẼ is f.g. projective,

so it may be interpreted either in an action on mod-C or else in an action restricted to proj-C.

Given also a second adjunction p_E,Eq with an action of the full U , we know that U acts

on proj-A through E and _E in the 2-representation V , but we are not (currently) able to

show from this alone that U acts on proj-C through Ẽ and _Ẽ since we do not know that

_Ẽ is f.g. projective.

Given the first adjunction pE, _Eq and also the hypothesis of integrability of an action

of the full U , we know that there is a second adjunction p_E,Eq. Now the hypothesis of

integrability itself passes to the product bimodule Ẽ. (See Prop. 2.3.24.) Given that we can

also show (below in this chapter) that the product maps ρ̃λ are isomorphisms, so we have an

action of the full U on mod-C, it follows from integrability that there is a second adjunction

p_Ẽ, Ẽq for the product. This implies, in turn, that C
_Ẽ is f.g. projective and that the U

action may be restricted to the category proj-C.

To summarize, second adjunctions enable restriction of the full U action to the subcate-

gories proj-A and proj-C. The existence of a second adjunction p_E,Eq in V is not enough

(to our knowledge, according to our argument) to guarantee a second adjunction p_Ẽ, Ẽq in

Lp1q b V . But integrability of V is enough to guarantee integrability of Lp1q b V , as well as
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to give both second adjunctions p_E,Eq and p_Ẽ, Ẽq.

3.2 More bimodules

Definition 3.2.1. Let Ln denote HomDbpBqpE
1nX1, X2q.

Note that L1 “ G1. We will only need L1 and L2 in what follows. Observe that Ln has

a right Gop
1 -module structure given by post-composition. We now study L2 and provide it

with the structure of pGop
1 , G

op
1 q-bimodule.

Recall from Def. 2.2.10 the two complexes of B-modules:

R “

¨

˚

˝

E2rys
pπ2,π2˝τq
ÝÝÝÝÝÑ EyE ‘ EyE

0 Ñ Erys ‘ Erys

˛

‹

‚

,

X 1
2 “

¨

˚

˝

τy1E
2rys

π2
ÝÑ EyE

0 ÝÑ Erys

˛

‹

‚

,

where Ey acts by the obvious canonical maps. Recall that X 1
2 is a finite direct sum of

summands of X, and hence strictly perfect.

The matrix algebra structure of the nil-affine Hecke algebra implies that the map p τy1
τ q

gives a decomposition of left Arys-modules:

E2
rys

„
ÝÝÝÝÑ
p τy1

τ q
τy1E

2
rys ‘ τy1E

2
rys.

Recall that we have an isomorphism R
„
ÝÑ X 1

2 ‘X 1
2 in B-cplx given by the above isomor-

phism on the degree 0 term of the upper row, and the identity on all other terms. (Lemma

2.2.12.) So R P per B and is strictly perfect. Recall that there is a quasi-isomorphism

R
q.i.
ÝÝÑ E 1X2 determined by IdE2rys on the degree 0 term of the upper row and

`

1 0
1 ´y1

˘

on

the degree 1 term of the lower row. (Lemma 2.2.13.) In this chapter we need an additional

feature of R.
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Lemma 3.2.2. The complex R carries a right action of the algebra Gop
1 , where pθ, φq P Gop

1

acts by post-composition with Eφ P EndpE2rysq on the degree 0 term E2rys in the top row,

and by the matrix

Φ “

¨

˚

˝

φ 0

φ1 θ

˛

‹

‚

on the degree 1 term Erys‘2 in the bottom row, and by EyΦ on the degree 1 term EyE
‘2 in

the top row. Through the quasi-isomorphism of the previous lemma, this action induces the

canonical action of Gop
1 “ EndKbpBqpX2q

op on E 1X2 given by functoriality of E 1.

Proof. First we check that the right action of pθ, φq described in the lemma gives a morphism

of complexes of left B-modules. The action is clearly Arys-linear in the top and bottom rows,

and it is clearly linear over the off-diagonal generators in Ey Ă B. The action commutes

with the differential on the bottom row. We check the top row:
¨

˚

˝

Eyφ 0

Eyφ1 Eyθ

˛

‹

‚

¨

¨

˚

˝

πE

πE ˝ τ

˛

‹

‚

“

¨

˚

˝

Eyφ ˝ πE

Eyφ1 ˝ πE ` Eyθ ˝ πE ˝ τ

˛

‹

‚

“

¨

˚

˝

πE ˝ Eφ

πE ˝ Eφ1 ` πE ˝ τ ˝ Eθ

˛

‹

‚

“

¨

˚

˝

πE

πE ˝ τ

˛

‹

‚

˝ Eφ.

Next we check that the action commutes with multiplication in the algebra. In the algebra

we have pθ, φq ¨ pθ1, φ1q “ pθθ1, φ1 ˝ φq, while the action of the product in the degree 1 term

of the bottom row is given by:
¨

˚

˝

φ1 0

φ1
1 θ1

˛

‹

‚

¨

¨

˚

˝

φ 0

φ1 θ

˛

‹

‚

“

¨

˚

˝

φ1 ˝ φ 0

φ1
1 ˝ φ ` p θ1q ˝ φ1 θθ1

˛

‹

‚

.
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Note that

φ1
1 ˝ φ ` p θ1

q ˝ φ1 “ θ.φ1
1 ` φ1

1 ˝ y1φ1 ` φ1.θ
1,

φ1
˝ φ ´ .θθ1

“ y1
`

p θ1
q ˝ φ1 ` φ1

1 ˝ φ
˘

,

so the composition of the actions agrees with the action of the product on that term. The

other terms are trivial to check.

Lastly we check that through the quasi-isomorphism of Lemma 2.2.13, this action is

compatible with the canonical action on E 1X2. Start with the degree 1 term in the bottom

row:
¨

˚

˝

1 0

1 ´y1

˛

‹

‚

¨

¨

˚

˝

φ 0

φ1 θ

˛

‹

‚

“

¨

˚

˝

φ 0

φ ´ y1φ1 ´y1θ

˛

‹

‚

,

¨

˚

˝

φ 0

0 θ

˛

‹

‚

¨

¨

˚

˝

1 0

1 ´y1

˛

‹

‚

“

¨

˚

˝

φ 0

θ ´θy1

˛

‹

‚

.

These agree because φ ´ y1φ1 “ θ. The other terms are trivial to check.

Now we compute a model for L2 using the strictly perfect R as a replacement for E 1X2.

Definition 3.2.3. Define the following pArys, Arysq-sub-bimodule of F rys‘2‘HomApAE
2, Eqrys:

L̄2 “

B

pf 1, f, ρq P F rys
‘2

‘ HomApAE
2, Eqrys

ˇ

ˇ

ˇ

ˇ

ρ “ Ef ` Ef 1
˝ τ ` y1 ˝ ρ1

for some ρ1
P HomApAE

2, Eqrys

F

.

Proposition 3.2.4. There is an isomorphism of pArys, Arysq-bimodules L̄2
„
ÝÑ HomKbpBqpR,X2q

determined by:

pf 1, f, ρq ÞÑ

¨

˚

˝

¨

˚

˝

pee, p 0
0 qq

p0, p e
e1 qq

˛

‹

‚

ÞÑ

¨

˚

˝

pρpeeq, 0q

p0, fpeq ` f 1pe1qq

˛

‹

‚

˛

‹

‚

.
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Proof. The proof is seen by directly computing Z0H omBpR,X2q. It is easy to check that

the morphism given as the image of pf 1, f, ρq is a morphism of complexes of left B-modules.

The condition ρ “ Ef `Ef 1 ˝ τ ` y1 ˝ ρ1 is equivalent to the statement that this morphism

has zero differential.

Corollary 3.2.5. The isomorphism above, followed by the canonical isomorphism of func-

tors HomKbpBqpR,´q
„
ÝÑ HomDbpBqpR,´q applied to X2, gives an isomorphism L̄2

„
ÝÑ L2 of

pArys, Arysq-bimodules.

Proposition 3.2.6. There is an isomorphism of pArys, Arysq-bimodules

F 2rys
„
ÝÑ HomKbpBqpR,X1q given by

F 2
rys Q ff ÞÑ

¨

˚

˝

¨

˚

˝

pee, p ee
ee1 qq

p0, p e
e1 qq

˛

‹

‚

ÞÑ

¨

˚

˝

ffpeeq

0

˛

‹

‚

˛

‹

‚

.

Proof. The proof is seen by directly computing Z0H omBpR,X1q.

(Recall the meaning of the notation: ee is an arbitrary element of E2rys (and ff of F 2rys),

not a simple tensor. It is unrelated to e, which is an arbitrary element of Erys.)

It is useful to give a model of G2 that is compatible with this model of L2 by using the

replacement R for E 1X2.

Definition 3.2.7. Define the following pArys, Arysq-sub-bimodule ofErys‘2‘HomApAE,E
2qrys:

Ḡ1
2 “

B

pe1, e, ξq P Erys
‘2

‘ HomApAE,E
2
qrys

ˇ

ˇ

ˇ

ˇ

ξ “ b e ` y2τ p b pe ´ y1e
1
qq ` y1y2ξ

1

for some ξ1
P HomApAE,E

2
qrys

F

.

Proposition 3.2.8. There is an isomorphism of pArys, Arysq-bimodules Ḡ1
2

„
ÝÑ HomKbpBqpX2, Rq
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determined by:

pe1, e, ξq ÞÑ

¨

˚

˝

¨

˚

˝

pe, 0q

p0, 1q

˛

‹

‚

ÞÑ

¨

˚

˝

pξpeq, 0q

p0, p e
e´y1e1 qq

˛

‹

‚

˛

‹

‚

.

Proof. The proof is seen by directly computing Z0H omBpX2, Rq.

The quasi-isomorphism R
q.i.
ÝÝÑ E 1X2 determines an isomorphism Ḡ1

2
„
ÝÑ Ḡ2, since X2

is strictly perfect, given by pe1, e, ξq ÞÑ pe, e ´ y1e
1, ξq, with inverse given by pe1, e2, ξq ÞÑ

py´1
1 pe1 ´ e2q, e1, ξq. In the remainder of this chapter we will use Ḡ1

2 instead of Ḡ2 as a model

for G2.

Definition 3.2.9. Let U denote HomKbpBqpR,Rq. It is canonically isomorphic to

HomDbpBqpE
1X2, E

1X2q.

As in other cases, we describe a model for U and work with the model in what follows.

Definition 3.2.10. Define the following pArys, Arysq-sub-bimodule of

FErys‘4 ‘ HomApAE
2, E2qrys:

Ū “

B

pΦ11,Φ21,Φ12,Φ22,Λq P FErys
‘4

‘ HomApAE
2, E2

qrys

ˇ

ˇ

ˇ

ˇ

Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝

for some Λ˝
P HomApAE

2, E2
qrys

F

.

Here Φij give the components of the matrix rΦs of a map Φ P EndApAErys ‘ Erysq. Note

that because y1y2 is injective, Λ˝ is uniquely determined by pΦ,Λq.

Proposition 3.2.11. There is an isomorphism of pArys, Arysq-bimodules Ū
„
ÝÑ U determined

by

pΦ,Λq ÞÑ

¨

˚

˝

¨

˚

˝

`

ee, p 0
0 q

˘

`

0, p e
e1 q

˘

˛

‹

‚

ÞÑ

¨

˚

˝

`

Λpeeq, p 0
0 q

˘

`

0, rΦs ¨ p
e
e1 q

˘

˛

‹

‚

˛

‹

‚

.
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Proof. The proof is seen by directly computing U “ Z0H omBpR,Rq. We must show that

the condition on Λ is equivalent to the statement that the image of pΦ,Λq has zero differential.

One computes directly that the morphism given as this image has zero differential if and

only if the following pair of equations holds:
$

’

&

’

%

πE ˝ Λ “ EyΦ11 ˝ πE ` EyΦ12 ˝ πE ˝ τ

πE ˝ τΛ “ EyΦ21 ˝ πE ` EyΦ22 ˝ πE ˝ τ.

That pair is manifestly equivalent to the condition:
$

’

&

’

%

Λ “ EΦ11 ` EΦ12 ˝ τ ` y2Λ
1

τΛ “ EΦ21 ` EΦ22 ˝ τ ` y2Λ
2

(3.2.1)

for some Λ1,Λ2
P HomApAE

2, E2
qrys.

Claim 3.2.12. Suppose pΦ,Λq is given such that (3.2.1) holds for some Λ1, Λ2. Then there is

Λ˝ P HomApAE
2, E2qrys such that

Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝. (3.2.2)

Proof. Multiply the second equation of the pair by τ and obtain:

´τy2Λ
2

“ τ ˝ EΦ21 ` τ ˝ EΦ22 ˝ τ.

Multiply the first by τ and the second by τy1 and identify the results to obtain:

τy2Λ
1

“ y1y2τΛ
2

` τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

´ τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

.

Then:

Λ1
“ py1τ ´ τy2q ˝ Λ1

“ y1τΛ
1
´ y1y2τΛ

2
´ τy1 ˝

`

EΦ21 ` EΦ22 ˝ τ
˘

` τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

“ y1
`

τΛ1
´ y2τΛ

2
˘

´ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

.
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Let Λ˝ “ τΛ1 ´ y2τΛ
2. Then:

Λ “ EΦ11 ` EΦ12 ˝ τ ` y1y2Λ
˝

´ y2τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y2τ ˝
`

EΦ11 ` EΦ12 ˝ τ
˘

“ τy1 ˝ pEΦ11 ` EΦ12 ˝ τq ´ y2τy1 ˝ pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝,

as desired.

Claim 3.2.13. Now suppose pΦ,Λq and Λ˝ are given such that (3.2.2) holds. Then there are

Λ1, Λ2 such that (3.2.1) holds.

Proof. Let

Λ1
“ τ ˝

`

EΦ11 ` EΦ12 ˝ τ
˘

´ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y1Λ
˝,

Λ2
“ τ ˝

`

EΦ21 ` EΦ22 ˝ τ
˘

` y1τΛ
˝.

Multiplying the first by y2, adding EΦ11 ` EΦ12 ˝ τ , and simplifying with (3.2.2), we find:

y2Λ
1
` EΦ11 ` EΦ12 ˝ τ “ Λ.

Multiplying the second by y2 and adding EΦ21 ` EΦ22 ˝ τ , we find:

y2Λ
2

` EΦ21 ` EΦ22 ˝ τ “ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τy1y2Λ
˝,

while

τΛ “ ´τy2τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` τy1y2Λ
˝

“ τy1 ˝
`

EΦ21 ` EΦ22 ˝ τ
˘

` y1y2τΛ
˝

using (3.2.2). So the pair of equations (3.2.1) is satisfied.

The proposition follows.

We will need one more description of U :
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Lemma 3.2.14. The composition map L2 bGop
1
G2 Ñ U is an isomorphism.

Proof. Consider the triangulated functor:

H omBpX2,´q : Kb
pBq Ñ Kb

pGop
1 q.

By the same reasoning as in §2.2.3.2, this functor descends to the derived categories

H omBpX2,´q : Db
pBq Ñ Db

pGop
1 q,

it is fully faithful when restricted to xX2y∆, and it is essentially surjective from xX2y∆

(because the image of X2 is quasi-isomorphic to Gop
1 ). The inverse is given by X2 bGop

1
´. It

follows from R P xX2y∆ (Lemma 2.2.12) and

HomKbpBqpX2, Rq
„
ÝÑ HomKbpBqpX2, E

1X2q

q.i.
ÝÝÑ H omBpX2, E

1X2q

q.i.
ÝÝÑ H omBpX2, Rq

that the evaluation map is an isomorphism:

X2 bGop
1
HomKbpBqpX2, Rq

„
ÝÑ R.

This shows that the map in the lemma statement is an isomorphism:

HomKbpBqpR,X2q bGop
1
HomKbpBqpX2, Rq

„
ÝÑ HomKbpBq

`

R,X2 bGop
1
HomKbpBqpX2, Rq

˘

„
ÝÑ HomKbpBqpR,Rq.

We will need to know the pArys, Arysq-bimodule structure of the components of Ẽ and

Ẽ2 and F̃ . This information is implicit in the calculations in Chapter 2 for the first three
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bimodules of the next proposition. The structure of the fourth bimodule is easy to compute

using the map provided.

Proposition 3.2.15. We have isomorphisms of pArys, Arysq-bimodules:

� y1 . . . ynE
nrys

„
ÝÑ Enrys given by composing with py1 . . . ynq´1.

� L1 “ G1
„
ÝÑ Arys ‘ FErys given by pθ, φq ÞÑ pθ, φ1q, where

φ1 “ y´1
1 pφ ´ θq

is interpreted in FErys. Note that the summand FErys is a left Gop
1 -submodule of G1.

� G2
„
ÝÑ Erys ‘ Erys ‘ FE2rys given by pe1, e, ξq ÞÑ pe1, e, ξ1q, where

ξ1
“ py1y2q

´1
`

ξ ´ b e ´ y2τp b pe ´ y1e
1
qq

˘

is interpreted in FE2rys. Note that the summand FE2rys is not only a left Arys-submodule

of G2, but moreover a left Gop
1 -submodule of G2.

� L2
„
ÝÑ F rys ‘ F rys ‘ F 2Erys given by pf 1, f, ρq ÞÑ pf 1, f, ρ1q, where

ρ1 “ y´1
1

`

ρ ´ Ef ´ Ef 1
˝ τ

˘

is interpreted in F 2Erys. Note that the summand F 2Erys is a left Gop
1 -submodule of L2.

� U
„
ÝÑ FErys‘4 ‘ F 2E2rys given by

pΦ11,Φ21,Φ12,Φ22,Λq ÞÑ pΦ11,Φ21,Φ12,Φ22,Λ
˝
q,

where

Λ “ τy1pEΦ11 ` EΦ12 ˝ τq ´ y2τy1pEΦ21 ` EΦ22 ˝ τq ` y1y2Λ
˝ (3.2.3)

determines Λ˝, which is interpreted in F 2E2rys. Note that the summand F 2E2rys is a left

Gop
1 -submodule of U .

111



In what follows we will frequently use the bimodule descriptions on the right side of

these isomorphisms for the components of Ẽ and F̃ . Sometimes, to avoid confusion, we will

use the shorthand expressions ‘submodule form’ and ‘bimodule form’ to distinguish the two

sides. The word ‘submodule’ suggests ‘pArys, Arysq-sub-bimodule’, and the word ‘bimodule’

suggests ‘structure as pArys, Arysq-bimodule’. The data of an element given in the two forms

will differ only in the last component: in the ‘submodule form’ the last component gives the

morphism restricted to the degree 0 part of the top row of the B-module complexes, and in

the ‘bimodule form’ the last component gives just the remainder term ‘φ1’, ‘ξ
1’, ‘ρ1’, ‘χ

2’, or

‘Λ˝’.

3.3 Adjunction

Definition 3.3.1. Let F̃ denote the pC,Cq-bimodule _Ẽ, that is, HomCpCẼ, Cq.

We have seen that, under the hypotheses of the Main Theorem, CẼ is f.g. projective.

It follows that the right adjoint functor HomCpCẼ,´q of Ẽ bC ´ is canonically isomorphic

to F̃ bC ´. We have already defined x̃ and τ̃ . We define ε̃ : ẼF̃ Ñ C and η̃ : C Ñ F̃ Ẽ

using the duality, and then σ̃ and ρ̃λ using the formulas in §3.1.2 with pA,E, F, x, τ, ε, ηq

replaced by pC, Ẽ, F̃ , x̃, τ̃ , ε̃, η̃q. Sometimes we view F̃ Ẽ through the canonical isomorphism

HompẼ, Cq bC Ẽ
„
ÝÑ HompẼ, Ẽq.

Now we construct an isomorphism of pC,Cq-bimodules:

F̃
„
ÝÑ HomKbpBqpX2 ‘ R,X1 ‘ X2q,
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as follows:

F̃ “ HomCpCẼ, Cq

„
ÝÑ HomDbpCqpẼ, Cq

„
ÝÑ HomDbpCqpE ,C q

“ HomDbpCq pH omBpX,E 1Xq,H omBpX,Xqq

„
ÝÑ HomDbpBqpE

1X,Xq

„
ÝÑ HomDbpBqpX2 ‘ R,X1 ‘ X2q

„
ÝÑ HomKbpBqpX2 ‘ R,X1 ‘ X2q.

(The third arrow comes from the Rickard equivalence.)

With this description of F̃ , and using the direct sum decompositions, we can express F̃

as a 2 ˆ 2 matrix of pArys, Arysq-bimodules:

F̃
„
ÝÑ

¨

˚

˝

F rys L1

F 2rys L2

˛

‹

‚

.

We have C “ EndKbpBqpX1‘X2q, and the right action of C on F̃ is given by post-composition.

The left action of C is by pre-composition, but one must first apply functoriality of E 1 and

use the quasi-isomorphism from Lemma 2.2.13, which we write γ : R
q.i.
ÝÝÑ E 1X2.

� A generator ϕ P Z0H omBpX1, X1q
op – Arys Ă C determines E 1ϕ P HomKbpBqpX2, X2q

that acts on F̃ (on the top row) by pre-composition. An element ϕ “ θ P Arys acts in the

obvious way on the left on F rys and L1.

� A generator ϕ P Z0H omBpX2, X1q – F rys Ă C determines

E 1ϕ P HomDbpBqpE
1X2, E

1X1q
´˝γ
ÝÝÑ

„
HomKbpBqpR,X2q.

So ϕ acts on F̃ (on the top row) by pre-composition with E 1ϕ ˝ γ : R Ñ X2. Recall
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that we have the model L̄2 for HomKbpBqpR,X2q. An element ϕ “ f P F rys acts by

pre-composition with the morphism determined by E 1ϕ ˝ γ “ p0, f, 0q P L̄2.

� A generator ϕ P Z0H omBpX1, X2q – y1Erys Ă C determines

E 1ϕ P HomKbpBqpE
1X1, E

1X2q
γ˝´

ÐÝÝ
„

HomKbpBqpX2, Rq.

Recall that we have the models Ḡ2 for HomKbpBqpX2, E
1X2q and Ḡ1

2 for HomKbpBqpX2, Rq,

and the isomorphism Ḡ2
„
ÝÑ Ḡ1

2 given by pe1, e2, ξ
1q ÞÑ py´1

1 pe1 ´ e2q, e1, ξ
1q (in bimodule

forms). An element ϕ “ y1e P y1Erys determines E 1ϕ “ py1e, 0, 0q P Ḡ2, so this acts on F̃

by pre-composition with the morphism determined by pe, y1e, 0q P Ḡ1
2.

� A generator ϕ P Z0H omBpX2, X2q
op – Gop

1 Ă C determines ϕR P HomKbpBqpR,Rq from

the right action of Gop
1 on R. In terms of the model Ū , we have ϕR “ pφ, φ1, 0, θ, Eφq (in

submodule form), determined by ϕ “ pθ, φq P Gop
1 . This acts on F̃ (on the bottom row)

by pre-composition.

3.4 Isomorphisms ρ̃λ

3.4.1 Some tensor products of pC,Cq-bimodules

In this section we compute three tensor products of bimodules over C, namely ẼẼ, F̃ Ẽ, and

ẼF̃ , and describe the products in each case as matrices of pArys, Arysq-bimodules. These

calculations are used in the remaining sections to verify that ρ̃λ are isomorphisms. Note that

the product ẼẼ “ Ẽ2 is already given (Prop. 2.2.48) a description as a matrix of pArys, Arysq-

bimodules using the identification with HomKbpBqpX,E
12Xq, but for a computation of σ̃ it is

also necessary to realize the matrix description of Ẽ2 as it arises from the matrix description

of Ẽ as a pC,Cq-bimodule.

These tensor products are computed according to the general formulation described in
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§2.1.4. First we take the tensor product over the subalgebra ∆ :“
´

Arys 0

0 Gop
1

¯

Ă C. This

product is given on components by matrix multiplication and tensor product over Arys or

Gop
1 . After this we must take the quotient by the image of the map “IB ` IC” (cf. §2.1.4)

that is produced using the action of the off-diagonal generators in C. This quotient may be

taken separately on each coefficient of the product over ∆.

The simplest technique for computing a quotient by the image of (say) IB is to identify

one of its projections as an isomorphism. (In §2.1.4, there is a projection of IB to M1 bAN1

and another projection to M2 bD N2.) In this situation the quotient by ImpIBq reduces to

the summand of the other projection, because every element of the first summand (in the

quotient) has a unique representative in the second. The basic technique for computing the

quotient by ImpIBq ` ImpICq is to show that the projections of IC have a compatibility with

those of IB. Many of the components computed below are found in this way, but a few of

them require more complicated reasoning.

Let us write, in general, I 1
β for the projection of IB to the first summand, and ´I2

β for the

projection to the second. Similarly write I 1
δ and ´I2

δ for the projections of IC . Here ‘first’

and ‘second’ summand and ‘IB’ and ‘IC ’ are understood as in §2.1.4. In a tensor product of

pC,Cq-bimodules, each of the four coefficients will have its own set of maps I 1
β, I

2
β, I

1
δ, I

2
δ .

3.4.1.1 ẼẼ

For the product ẼẼ, we already know the structure of the coefficients of the matrix presen-

tation. We will need to compute the action of τ̃ on elements of ẼẼ in order to compute σ̃,

and for this it will be enough to compute the map from the tensor product over ∆ to the

product over C, i.e. to the quotient by ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q. Write Γ for this map. Let

the subscript ‘G’ between concatenated modules indicate the tensor product over Gop
1 . (An
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empty subscript indicates the product over Arys.) So we have:

Ẽ b∆ Ẽ –

¨

˚

˝

Erys E2rys

G1 G2

˛

‹

‚

b∆

¨

˚

˝

Erys E2rys

G1 G2

˛

‹

‚

–

¨

˚

˝

EErys ‘ E2rysGG1 EE2rys ‘ E2rysGG2

G1Erys ‘ pG2qGG1 G1E
2rys ‘ pG2qGG2

˛

‹

‚

Γ
ÝÑ

¨

˚

˝

E2rys E3rys

G2 G3

˛

‹

‚

– rẼ2
s,

(3.4.1)

and we wish to understand the map Γ on each component. In subsequent sections we

must determine the structure of the quotient and then write Γ, but here, since we know

the image to be HomKbpBq

`

X,E 12pXq
˘

, we simply compute Γ by composing elements of

HomKbpBqpX,E
1Xq, using functoriality of E 1 and applying Lemmas 2.2.44 and 2.2.45.

� For Γ11, we have:

– Γ11 |EErys is given by IdEErys,

– Γ11 |E2rysGG1
is given as the inverse of E2rys

„
ÝÑ E2rysGG1, ee ÞÑ ee b 1G1 .

� For Γ21, we have:

– Γ21 |G1Erys is given (in bimodule forms) by

pθ, φ1q b e ÞÑ pθe, θy1e, φ1p´q b eq P G2,

– Γ21 |pG2qGG1 is given as the inverse of G2
„
ÝÑ pG2qGG1, g2 ÞÑ g2 b 1G1 .

� For Γ12, we have:

– Γ12 |EE2rys is given by IdE3rys,
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– Γ12 |E2rysGG2
is given (in bimodule forms) by

ee b pe1, e, ξ1
q ÞÑ py1y2y3q

´1
pEξqpy1y2eeq P E3

rys.

� For Γ22, we have:

– Γ22 |G1E2rys is given by

pθ, φ1q b ee ÞÑ pθy1y2ee, 0, 0, φ1p´q b eeq

(c.f. Diagram D1|2p2, 1, 1q in §2.3.2.3),

– Γ22 |pG2qGG2 is given (in submodule forms) by

pe1, e2, ξq b pē1, ē2, ξ̄q ÞÑ pξ̄pe1q, e2 b ē1, e2 b ē2, Eξ̄ ˝ ξq

(c.f. Diagram D1|2p2, 2, 1q). We need to compute this map on the bimodule forms. First

compute Eξ̄ ˝ ξ:

Eξ̄ ˝ ξ “
`

b ē ` y2τp b pē ´ y1ē
1
qq ` y1y2Eξ̄

1
˘

˝
`

b e ` y2τp b pe ´ y1e
1
qq ` y1y2ξ

1
˘

“ b
`

eē ` y2τpeē ´ y1eē
1
q ` y1y2ξ̄

1
peq

˘

` y3 ˝ τE
`

b peē ´ y2e
1ēq

˘

` y2y3 ˝ Eτ ˝ τE
`

b pe ´ y1e
1
qpē ´ y1ē

1
q
˘

` y1y2y3
`

Eξ̄1
˝ τp b pe ´ y1e

1
qq ` Eτpξ1

b pē ´ y1ē
1
qq ` ξ1

b ē1
˘

.

Using Prop. 2.2.26, we can read off the data of the bimodules formulation we want:

pe1, e, ξ1
q b pē1, ē, ξ̄1

q ÞÑ

`

eē ` y2τpeē ´ y1eē
1
q ` y1y2ξ̄

1
peq, eē ´ y2e

1ē, pe ´ y1e
1
qpē ´ y1ē

1
q,

Eξ̄1
˝ τp b pe ´ y1e

1
qq ` Eτpξ1

b pē ´ y1ē
1
qq ` ξ1

b ē1
˘

.
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3.4.1.2 F̃ Ẽ

For the product F̃ Ẽ, we can find the pArys, Arysq-bimodule structure of the components of

its matrix presentation using the same technique as for F̃ and Ẽ2. We have:

F̃ Ẽ “ HomCpCẼ, Cq bC Ẽ

„
ÝÑ HomCpCẼ, Ẽq

„
ÝÑ HomDbpCqpẼ, Ẽq

„
ÝÑ HomDbpCqpE ,E q

„
ÝÑ HomDbpCq pH omBpX,E 1Xq,H omBpX,E 1Xqq

“ HomDbpBqpE
1X,E 1Xq

„
ÝÑ HomKbpBqpE

1X1 ‘ R,E 1X1 ‘ Rq.

So the matrix presentation is:

rF̃ Ẽs “

¨

˚

˝

G1 G2

L2 U

˛

‹

‚

.

As we did for Ẽ2, we study the map Γ from the components of the product over ∆ to

those of the product over C:

F̃ b∆ Ẽ –

¨

˚

˝

F rys L1

F 2rys L2

˛

‹

‚

b∆

¨

˚

˝

Erys E2rys

G1 G2

˛

‹

‚

–

¨

˚

˝

FErys ‘ pL1qGG1 FE2rys ‘ pL1qGG2

F 2Erys ‘ pL2qGG1 F 2E2rys ‘ pL2qGG2

˛

‹

‚

–

¨

˚

˝

FErys ‘ G1 FE2rys ‘ G2

F 2Erys ‘ L2 F 2E2rys ‘ pL2qGG2

˛

‹

‚

Γ
ÝÑ

¨

˚

˝

G1 G2

L2 U

˛

‹

‚

.

(3.4.2)

The bulleted claims below are justified in the paragraphs following them.

� We have Γ11 : FErys ‘ G1 Ñ G1 given by pι, IdG1q.

Here the map ι : FErys ãÑ L1 “ G1 is the inclusion of the second summand as written in
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Prop. 3.2.15.

– I 1
β : FErysGG1

„
ÝÑ FErys given as the inverse of the isomorphism

`

fe ÞÑ fe b 1G1

˘

,

– I2
β : FErysGG1

ιbG1
ÝÝÝÑ pL1qGG1 – G1,

– I 1
δ : pG1qGFErys

„
ÝÑ FErys given as the inverse of the isomorphism

`

fe ÞÑ 1G1 b fe
˘

,

– I2
δ : pG1qGFErys

G1bι
ÝÝÝÑ pG1qGL1 – G1.

Using either I2
β ˝ I 1´1

β , or I2
δ ˝ I 1´1

δ , one associates a unique representative in pL1qGG1 – G1

to each element of FErys. We see that I2
β ˝ I 1´1

β “ I2
δ ˝ I 1´1

δ , so the two associate the

same representatives. It follows that the quotient projection Γ11 is given by the proposed

formula.

� We have Γ21 : F
2Erys ‘ L2 Ñ L2 given by pι1, IdL2q.

Here the map ι1 : F 2Erys ãÑ L2 is the inclusion of the third summand as written in

Prop. 3.2.15.

– I 1
β : F 2ErysGG1

„
ÝÑ F 2Erys given as the inverse of

`

ffe ÞÑ ffe b 1G1

˘

,

– I2
β : F 2ErysGG1

ι1bG1
ÝÝÝÑ pL2qGG1 – L2,

– I 1
δ : pL2qGFErys Ñ F 2Erys given by

pf 1, f, ρ1
q b f̄ ē ÞÑ pf̄ ˝ ρq b ē “

`

f̄ ˝ pEf ` Ef 1
˝ τ ` y1ρ

1
q
˘

b ē,

– I2
δ : pL2qGFErys

L2bι
ÝÝÝÑ pL2qGG1 – L2.

Consider the first two maps. We have that I2
β ˝ I 1´1

β “ ι1 as maps F 2Erys Ñ L2. Consider

the last two maps. One may check that ι1˝I 1
δ “ I2

δ . It follows that ImpI 1
δ´I

2
δ q Ă ImpI 1

β´I2
βq,

so in the quotient every element of F 2Erys is associated to a unique element of L2, given

by applying the map ι1.
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� We have Γ12 : FE
2rys ‘ G2 Ñ G2 given by pι2, IdG2q.

Here the map ι2 : FE2rys ãÑ G2 is the inclusion of the third summand as written in

Prop. 3.2.15.

– I 1
β : FErysGG2 Ñ FE2rys given by

f̄ ē b pe1, e, ξ1
q ÞÑ f̄ b py1y2q

´1ξpy1ēq “ f̄ b
`

τpē b eq ´ y2τpē b e1
q ` ξ1

py1ēq
˘

,

– I2
β : FErysGG2

ιbG2
ÝÝÝÑ pL1qGG2 – G2,

– I 1
δ : pG1qGFE

2rys
„
ÝÑ FE2rys given as the inverse of

`

fee ÞÑ 1G1 b fee
˘

,

– I2
δ : pG1qGFE

2rys
G1bι2

ÝÝÝÝÑ pL1qGG2 – G2.

Consider the last two maps. We have that I2
δ ˝ I 1´1

δ “ ι2 as maps FE2rys Ñ G2. Now

consider the first two maps. Observe that I2
β “ ι2 ˝ I 1

β. It follows that ImpI 1
β ´ I2

βq Ă

ImpI 1
δ ´ I2

δ q, so every element of FE2rys is associated in the quotient to a unique element

of G2 by applying the map ι2.

� We have Γ22 : F
2E2rys ‘ pL2qGG2 Ñ U given by pι3, IdUq.

Here the map ι3 : F 2E2rys Ñ U is the inclusion of the fifth summand as written in

Prop. 3.2.15.

– I 1
β : F 2ErysGG2 Ñ F 2E2rys given by ff ē b pe1, e, ξ1q ÞÑ ff b py1y2q´1ξpy1ēq,

– I2
β : F 2ErysGG2

ι1bG2
ÝÝÝÑ pL2qGG2 – U ,

– I 1
δ : pL2qGFE

2rys Ñ F 2E2rys given by pf 1, f, ρ1q b f̄ ee ÞÑ pf̄ ˝ ρq b ee,

– I2
δ : pL2qGFE

2rys
L2bι2

ÝÝÝÑ pL2qGG2 – U .

Consider the first two maps. Observe that

I 1
β

`

ff ē b pe, y1e, ξ
1

“ 0q
˘

“ ff b pē b eq P F 2E2
rys.
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It follows that I 1
β is surjective. Now we show that ι3 ˝ I 1

β “ I2
β and that ι3 ˝ I 1

δ “ I2
δ using

the bimodule forms:

ι3
`

ff b py1y2q
´1ξpy1ēq

˘

“
`

0, 0, 0, 0,Λ˝
“ ff b py1y2q

´1ξpy1ēq
˘

,

I2
β

`

ff ē b pe1, e, ξ1
q
˘

“ p0, 0, ff ēq bGop
1

pe1, e, ξ1
q

ÞÑ
`

0, 0, 0, 0, ff b py1y2q
´1ξpy1ēq

˘

P U,

and

ι3
`

pf̄ ˝ ρq b ee
˘

“
`

0, 0, 0, 0, pf̄ ˝ ρq b ee
˘

,

I2
δ

`

pf 1, f, ρ1
q b f̄ ee

˘

“ pf 1, f, ρ1
q bGop

1
p0, 0, f̄ eeq

ÞÑ
`

0, 0, 0, 0, pf̄ ˝ ρq b ee
˘

.

It follows that every element of F 2E2rys is associated in the quotient to a unique repre-

sentative in U by applying ι3.

Remark 3.4.1. The map ι3 describes the inclusion of the morphisms of HomKbpBqpR,Rq

that factor through X1. The maps I 1
β and I 1

δ are in fact isomorphisms, as can be seen

using isomorphisms:

HomKbpBqpX1, X2q bGop
1
HomKbpBqpX2, Rq

„
ÝÑ HomKbpBqpX1, Rq,

HomKbpBqpR,X2q bGop
1
HomKbpBqpX2, X1q

„
ÝÑ HomKbpBqpR,X1q,

which are produced by reasoning as in Lemma 3.2.14 using that R is a finite direct sum

of summands of X2.

3.4.1.3 ẼF̃

We do not have a matrix presentation of the components of the product ẼF̃ from the

Rickard equivalence. Instead, in this section, we proceed by studying the quotient directly,
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by components, determining the quotient projection Γ from the tensor product over ∆ to

the tensor product over C, as well as the structure of the quotient itself.

As before, in each bulleted section we propose a component of Γ. Here the arguments

following a bulleted line also must justify the structure of the codomain of the Γ component

written in that bulleted line. The domains are known, and in each case the annihilated

submodule ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q is defined already. Our method is to write down a map

called Γij from the appropriate domain, show that it is surjective, and show that its kernel

is ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q. The codomain of Γ can be summarized in a matrix:

Ẽ b∆ F̃ –

¨

˚

˝

Erys E2rys

G1 G2

˛

‹

‚

b∆

¨

˚

˝

F rys L1

F 2rys L2

˛

‹

‚

–

¨

˚

˝

EF rys ‘ E2rysGF
2rys ErysG1 ‘ E2rysGL2

G1F rys ‘ pG2qGF
2rys G1G1 ‘ pG2qGL2

˛

‹

‚

Γ
ÝÑ

¨

˚

˝

EF rys ErysG1

G1F rys G1G1 ‘ EF rys

˛

‹

‚

.

(3.4.3)

� We have Γ11 : EF rys ‘ E2rysGF
2rys Ñ EF rys given by pIdEF rys, ωq.

Define a map ω : E2rys bArys F
2rys Ñ EF rys by:

e1e2 b f2f1 ÞÑ e1.f2py1e2q b f1 “ e1 b f2py1e2q.f1.

Let φ1 P FErys be given in the second summand of (the bimodule form) Gop
1 – Arys ‘

FErys. Observe that
`

e1bφ1py1e2q
˘

bf2f1 and e1e2b
`

pf2˝y1φ1qbf1
˘

are both sent by ω to

e1.pf2 ˝y1φ1qpy1e2qbf1. This means ω is middle-linear over generators in both summands

of Gop
1 , so it descends to a map, also called ω, from the tensor product E2rysGF

2rys taken

over Gop
1 .
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– I 1
β : EErysGF

2rys Ñ EF rys given (using bimodule forms) by

e1 b e2 b f2f1 ÞÑ e1 b
`

f1 ˝ Ef2 ˝ pe2, y1e2, 0q
˘

“ e1 b
`

f1 ˝ Ef2 ˝ p b y1e2q
˘

“ e1 b f1p .f2py1e2qq

“ e1 b f2py1e2q.f1

(observe the notation f1 ˝ Ef2 : E
1X2 Ñ X1 in the first line),

– I2
β : EErysGF

2rys
Id
ÝÑ E2rysGF

2rys,

– I 1
δ : E

2rysGFF rys Ñ EF rys given (using bimodule forms) by

e1e2 b f2 b f1 ÞÑ
`

p0, f2, 0q ˝ e1e2
˘

b f1

“ y´1
1 pEf2qpy1y2pe1e2qq b f1

“ e1.f2py1e2q b f1

(observe the notation e1e2 : X1 Ñ E 1X2 in the first line),

– I2
δ : E2rysGFF rys

Id
ÝÑ E2rysGF

2rys.

We see that I 1
β “ ω and I 1

δ “ ω after identifying EErys – E2rys and FF rys – F 2rys. It

follows that the kernel of Γ11 is the image of I 1
β ´ I2

β, which is also the image of I 1
δ ´ I2

δ ,

and thus kerpΓ11q “ ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q as desired.

Remark 3.4.2. The map ω corresponds on the models to the map given by composition:

HomKbpBqpX2, Rq bGop
1
HomKbpBqpR,X2q Ñ HomKbpBqpX2, X2q.

� We have Γ21 : G1F rys ‘ pG2qGF
2rys Ñ G1F rys given by pIdG1F rys, ω

1q.
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Let ω1 : pG2qGF
2rys Ñ G1F rys be defined (using bimodule forms) by

pe1, e, ξ1
q b f2f1 ÞÑ

`

p0, f2, 0q ˝ pe1, e, ξ1
q
˘

b f1

“

´

f2peq, y´1
1 Ef2 ˝

`

y2τp b pe ´ y1e
1
qq ` y1y2ξ

1
˘

¯

b f1

“
`

f2peq, Ef2 ˝ τp b pe ´ y1e
1
qq ` Epf2 ˝ y1q ˝ ξ1

˘

b f1.

– I 1
β : G1ErysGF

2rys Ñ G1F rys given (using bimodule form) by

ge b f2f1 ÞÑ g b
`

pf1 ˝ Ef2q ˝ pe, y1e, 0q
˘

“ g b f2py1eq.f1,

– I2
β : G1ErysGF

2rys Ñ pG2qGF
2rys given (using bimodule forms) by

pθ, φ1q b e b f2f1 ÞÑ
`

pe, y1e, 0q ˝ pθ, φ1q
˘

b f2f1

“ pθe, θy1e, φ1p q b eq b f2f1,

– I 1
δ : pG2qGFF rys Ñ G1F rys given by the map ω1 (after identifying FF rys with F 2rys),

– I2
δ : pG2qGFF rys

Id
ÝÑ pG2qGF

2rys.

We show that ω1 ˝ I2
β “ I 1

β:

ω1
`

pθe, θy1e, φ1 b eq b f2f1
˘

“
`

f2pθy1eq, Epf2 ˝ y1q ˝ pφ1 b eq
˘

b f1

“
`

θf2py1eq, φ1.f2py1eq
˘

b f1

“ pθ, φ1q.f2py1eq b f1

“ I 1
β

`

pθ, φ1q b e b f2f1
˘

.

Thus I 1
β ´ I2

β “ pω1 ´ IdqI2
β, and therefore ImpI 1

β ´ I2
βq Ă ImpI 1

δ ´ I2
δ q. It follows that

kerpΓ21q “ ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q, as desired.

� We have Γ12 : ErysG1 ‘ E2rysGL2 Ñ ErysG1 given by pIdErysG1 , ω
2q.
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Let ω2 : E2rysGL2 Ñ ErysG1 be defined (using bimodule forms) by

e1e2 b pf 1, f, ρ1
q ÞÑ e1 b

`

pf 1, f, ρ1
q ˝ pe2, y1e2, 0q

˘

“ e1 b
`

fpy1e2q ` f 1
pe2q, Ef

1
˝ τp b e2q ` ρ1

p b y1e2q
˘

.

– I 1
β : EErysGL2 Ñ ErysG1 given by the map ω2 (after identifying EErys with E2rys),

– I2
β : EErysGL2

Id
ÝÑ E2rysGL2,

– I 1
δ : E

2rysGF rysG1 Ñ ErysG1 given (borrowing from I 1
δ of Γ11) by

e1e2 b f2 b g ÞÑ e1 b f2py1e2q.g,

– I2
δ : E2rysGF rysG1 Ñ E2rysGL2 given (using bimodule forms) by

e1e2 b f b pθ, φ1q ÞÑ e1e2 b
`

pθ, φ1q ˝ p0, f, 0q
˘

“ e1e2 b p0, f.θ, f b φ1q.

We show that ω2 ˝ I2
δ “ I 1

δ:

ω2
`

e1e2 b p0, f.θ, φ1 ˝ Efq
˘

“ e1 b
`

fpy1e2q.θ, pφ1 ˝ Efqp b y1e2q
˘

“ e1 b
`

fpy1e2q.θ, φ1p .fpy1e2qq
˘

“ e1 b
`

fpy1e2q.θ, fpy1e2q.φ1

˘

“ e1 b fpy1e2q.pθ, φ1q

“ I 1
δ

`

e1e2 b f b pθ, φ1q
˘

.

Thus I 1
δ ´ I2

δ “ pω2 ´ IdqI2
δ , and therefore ImpI 1

δ ´ I2
δ q Ă ImpI 1

β ´ I2
βq. It follows that

kerpΓ12q “ ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q, as desired.

� We have Γ22 : G1G1 ‘ pG2qGL2 Ñ G1G1 ‘ EF rys given by

¨

˚

˝

IdG1G1 ω3

0 κ

˛

‹

‚

.
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Below we describe the maps I 1
β, I

2
β, I

1
δ, I

2
δ , and define a map ω3 : pG2qGL2 Ñ G1G1, and

we show that ω3 ˝I2
β “ I 1

β and ω3 ˝I2
δ “ I 1

δ. Then we describe a decomposition of pG2qGL2

into pArys, Arysq-sub-bimodules pG2qGL2 – H ‘EF rys where H “ ImpI2
βq ` ImpI2

δ q. The

projection onto EF rys is called κ. (This copy of EF rys lies in the kernel of ω3.) From all

this it follows that kerpΓ22q “ ImpI 1
β ´ I2

βq ` ImpI 1
δ ´ I2

δ q and Γ22 describes the projection

to the quotient.

– I 1
β : G1ErysGL2 Ñ G1G1 given (borrowing from I 1

β of Γ12) by

g b e b pf 1, f, ρ1
q ÞÑ

g b
`

f 1
peq ` fpy1eq, Ef

1
˝ τp b eq ` ρ1

p b y1eq
˘

,

– I2
β : G1ErysGL2 Ñ pG2qGL2 given (borrowing from I2

β of Γ21) by

pθ, φ1q b e b ℓ ÞÑ pθe, θy1e, φ1p q b eq b ℓ,

– I 1
δ : pG2qGF rysG1 Ñ G1G1 given (borrowing from I 1

δ of Γ21) by

pe1, e, ξ1
q b f b g ÞÑ

`

fpeq, Ef ˝ τp b pe ´ y1e
1
qq ` Epf ˝ y1q ˝ ξ1

˘

b g,

– I2
δ : pG2qGF rysG1 Ñ pG2qGL2 given (borrowing from I2

δ of Γ12) by

g b f b pθ, φ1q ÞÑ g b p0, f.θ, f b φ1q.

Now we define a morphism of pArys, Arysq-bimodules ω3 : G2 bArys L2 Ñ G1G1, and then

we show that ω3 descends to a morphism ω3 : G2 bGop
1
L2 Ñ G1G1 by showing that it is

middle-linear over generators of Gop
1 in FErys. Let pe1, e, ξ1q b pf 1, f, ρ1q P G2 bArys L2 be
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an arbitrary simple tensor. We define:

ω3 : pe1, e, ξ1
q b pf 1, f, ρ1

q ÞÑ

´

εpe1
b f 1

q ` εpe b fq, FEpε ˝ y1F qpξ1
b fq

` FEεpξ1
b f 1

q ` σpe b fq ´ σpy1e
1
b fq

¯

b p1, 0q

` p1, 0q b

´

0, εFEpe b ρ1
q ` σpe1

b f 1
q

¯

` σFEpe b ρ1
q ´ σFEpy1e

1
b ρ1

q ` FEσpξ1
b f 1

q ` FEpε ˝ y1F qFEpξ1
b ρ1

q.

The last four terms, beginning with σFEpe b ρ1q, are elements of FEFErys. They are

interpreted in the last summand of G1G1 using the decomposition of bimodules:

G1 bArys G1
„
ÝÑ Arys ‘ FErys ‘ FErys ‘ FEFErys,

pθ, φ1q b pθ1, φ1
1q ÞÑ

`

θθ1, θ.φ1
1, φ1.θ

1, φ1 b φ1
1

˘

.

(3.4.4)

We can also give a decomposition of G2 bArys L2 into pArys, Arysq-bimodules:

G2 bArys L2
„
ÝÑ EF rys

‘4
‘ FE2F rys

‘2
‘ EF 2Erys

‘2
‘ FE2F 2Erys,

pe1, e, ξ1
q b pf 1, f, ρ1

q ÞÑ pe1
b f 1, e1

b f, e b f 1, e b fq

‘ pe1
b ρ1, e b ρ1

q ‘ pξ1
b f 1, ξ1

b fq ‘ pξ1
b ρ1

q.

Each of the terms in the formula for ω3 is a morphism of pArys, Arysq-bimodules.

Definition 3.4.3. Using the two ordered decompositions above, the map ω3 : G2 bArys

L2 Ñ G1G1 is given by the following matrix:

¨

˚

˚

˚

˚

˚

˚

˚

˝

ε 0 0 ε 0 0 0 0 0

σ 0 0 0 0 εFE 0 0 0

0 ´σ ˝ y1F 0 σ 0 0 FEε FEpε ˝ y1F q 0

0 0 0 0 ´pσ ˝ y1F qFE σFE FEσ 0 FEpε ˝ y1F qFE

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Lemma 3.4.4. The map ω3 is middle-linear over the action of generators of the summand

FErys Ă Gop
1 .
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Proof. We first compute the middle actions pe1, e, ξ1q.φ1 and φ1.pf
1, f, ρ1q for φ1 P FErys Ă

Gop
1 , pe1, e, ξ1q P G2, and pf 1, f, ρ1q P L2, both in bimodule form. These are:

pe1, e, ξ1
q.φ1 “

`

φ1peq, y1φ1peq, Eφ1 ˝ τp b pe ´ y1e
1
qq ` Epφ1y1q ˝ ξ1

˘

φ1.pf
1, f, ρ1

q “
`

0, f ˝ y1φ1 ` f 1
˝ φ1, Ef

1
˝ τ ˝ Eφ1 ` ρ1

˝ Epy1φ1q
˘

.

Using the formulas above, one easily computes the images under ω3 of pe1, e, ξ1q.φ1 b

pf 1, f, ρ1q and pe1, e, ξ1q b φ1.pf
1, f, ρ1q and checks that they agree.

Corollary 3.4.5. It follows from Lemma 3.4.4 that ω3 determines a morphism of pArys, Arysq-

bimodules ω3 : pG2qGL2 Ñ G1G1.

We show next that ω3 ˝ I2
β “ I 1

β and ω3 ˝ I2
δ “ I 1

δ. The formula for ω3 is determined

by these conditions and may be derived from them. Evaluating the right side of the first

equation:

ω3
˝ I2

β

`

pθ, φ1q b e b pf 1, f, ρ1
q
˘

“ ω3
`

pθe, θy1e, φ1 b eq b pf 1, f, ρ1
q
˘

“
`

f 1
pθeq ` fpθy1eq, φ1.fpy1eq ` φ1.f

1
peq

˘

b p1, 0q

` p1, 0q b
`

0, ρ1
p b θy1eq ` Ef 1

˝ τp b θeq
˘

` p0, φ1q b
`

0, Ef 1
˝ τp b eq ` ρ1

p b y1eq
˘

“
`

θ.pf 1
peq ` fpy1eqq, φ1.pf

1
peq ` fpy1eqq

˘

b p1, 0q

` pθ, φ1q b
`

0, Ef 1
˝ τp b eq ` ρ1

p b y1eq
˘

“ pθ, φ1q b
`

f 1
peq ` fpy1eq, Ef

1
˝ τp b eq ` ρ1

p b y1eq
˘

“ I 1
β

`

pθ, φ1q b e b pf 1, f, ρ1
q
˘

.
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Now evaluating the right side of the second equation:

ω3
˝ I2

δ

`

pe1, e, ξ1
q b f b pθ, φ1q

˘

“ ω3
`

pe1, e, ξ1
q b p0, f.θ, f b φ1q

˘

“
`

fpeq.θ, Epf.θ ˝ y1q ˝ ξ1
` Epf.θq ˝ τp b pe ´ y1e

1
qq

˘

b p1, 0q

` p1, 0q b
`

0, fpeq.φ1

˘

`
`

0, Ef ˝ τp b pe ´ y1e
1
q
˘

b p0, φ1q

`
`

0, Epf ˝ y1q ˝ ξ1
˘

b p0, φ1q

“
`

fpeq, Epf ˝ y1q ˝ ξ1
` Ef ˝ τp b pe ´ y1e

1
qq

˘

b pθ, 0q

`
`

fpeq, Ef ˝ τp b pe ´ y1e
1
qq ` Epf ˝ y1q ˝ ξ1

˘

b p0, φ1q

“
`

fpeq, Ef ˝ τp b pe ´ y1e
1
qq ` Epf ˝ y1q ˝ ξ1

˘

b pθ, φ1q

“ I 1
δ

`

pe1, e, ξ1
q b f b pθ, φ1q

˘

.

Now the product pG2qGL2 is the quotient of the product pG2qArysL2 by the image of γ1´γ2,

where:

– γ1 :
`

G2 bArys FErys
˘

bArys L2 Ñ pG2qArysL2 given by

pe1, e, ξ1
q b φ1 b ℓ ÞÑ

`

φ1peq, y1φ1peq, Eφ1 ˝ τp b pe ´ y1e
1
qq ` Epφ1 ˝ y1q ˝ ξ1

˘

b ℓ,

– γ2 : G2 bArys

`

FErys bArys L2

˘

Ñ pG2qArysL2 given by

g b φ1 b pf 1, f, ρ1
q ÞÑ

g b
`

0, f 1
˝ φ1 ` f ˝ y1φ1, Ef

1
˝ τ ˝ Eφ1 ` ρ1

˝ Epy1φ1q
˘

.

There is a copy of EF rys in pG2qArysL2 generated by terms of the form p0, e, 0q b pf 1, 0, 0q.
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Let H̄ be its direct complement. The images of γ1 and γ2 lie in H̄, so pG2qGL2 –

H ‘ EF rys, where H is the quotient of H̄ by the image of γ1 ´ γ2.

The image of I2
β includes every term of the form pe, y1e, φ1 b eq b ℓ, and the image

of I2
δ includes every term of the form g b p0, f, f b φ1q. By adding appropriate linear

combinations of terms of the first form, one obtains any element pe, y1e, ξ
1q b ℓ, and

similarly from terms of the second form one obtains any g b p0, f, ρ1q. It follows that

ImpI2
β ` I2

δ q “ H.

3.4.2 Maps ρ̃λ: computation

In this section we derive formulas for the maps ρ̃λ in terms of the pArys, Arysq-bimodule

decompositions of the four components of the matrix expressions of ẼF̃ and F̃ Ẽ and C.

3.4.2.1 Map σ̃

We begin by computing the map σ̃ : ẼF̃ Ñ F̃ Ẽ. Recall that σ̃ is defined by σ̃ “ F̃ Ẽε̃˝F̃ τ̃ F̃ ˝

η̃ẼF̃ , and η̃, ε̃, and τ̃ are determined already. We will need formulas for each component of

σ̃ in its matrix presentation.

We use the following technique to derive the formulas. We start with an appropriate

matrix coefficient of the element rη̃p1qs P rF̃ Ẽs, together with an arbitrary generator of a

component of the matrix rẼF̃ s. Then we write the latter as a sum of simple tensor products

of elements of rẼs with elements of rF̃ s. As a point of notation, this will be said to lie

in rẼs ¨ rF̃ s (and similarly for other matrix products). Then we write rη̃p1qs in rF̃ s ¨ rẼs,

and taking another tensor product we have an element we can write in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s.

Upon this we apply rF̃ s ¨ rτ̃ s ¨ rF̃ s using the formulas from Def. 2.3.4. We view the result

in rF̃ s ¨ rẼs ¨ rẼF̃ s, apply rF̃ s ¨ rẼs ¨ rε̃s to obtain an element of rF̃ s ¨ rẼs ¨ rCs, view this in

rF̃ Ẽs ¨ rCs, and allow the coefficient in rCs to act on the right on the coefficient in rF̃ Ẽs.
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The result is the image under rσ̃s of the arbitrary generator in rẼF̃ s with which we began.

The following bulleted lines state the results of this procedure, and the procedure itself is

carried out in detail in the paragraphs below those lines.

� We have rσ̃s11 : rẼF̃ s11 Ñ rF̃ Ẽs11 given by p ε
σ q using the decompositions:

– rẼF̃ s11 – EF rys,

– rF̃ Ẽs11 – pG1qGG1 – G1 – Arys ‘ FErys.

We take rη̃p1qs11 “ p1, 0q b p1, 0q P pG1qGG1 – rF̃ Ẽs11 (using bimodule form), and an

arbitrary generator eb f P EF rys – rẼF̃ s11. The product of these in rF̃ Ẽs ¨ rẼF̃ s can be

represented in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s by:

`

0 p1,0q

0 0

˘

¨
`

0 0
p1,0q 0

˘

¨ p e 0
0 0 q ¨

`

f 0
0 0

˘

P

´

F rys L1

F 2rys L2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

F rys L1

F 2rys L2

¯

.

The middle factors give p1, 0q b e P G1 bArys Erys. Passing through Γ21 of Eq. 3.4.1, this

represents pe, y1e, 0q P G2 – rẼ2s21. Applying rτ̃ s21 yields p0, e, 0q P G2, which may be

represented by:
`

0 0
0 p0,e,0q

˘

¨
`

0 0
p1,0q 0

˘

P rẼs ¨ rẼs.

Then:
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘ ε̃
ÞÝÑ

`

0 0
f 0

˘

P rCs

and
`

0 p1,0q

0 0

˘

¨
`

0 0
0 p0,e,0q

˘ Γ12
ÞÝÑ

`

0 p0,e,0q

0 0

˘

P
`

G1 G2
L2 U

˘

“ rF̃ Ẽs.

Finally letting f P C act on the right, we have:

`

0 p0,e,0q

0 0

˘

¨
`

0 0
f 0

˘

“

´ `

fpeq,Ef˝τp beq

˘

0

0 0

¯

P rF̃ Ẽs.

The nonzero coefficient may be interpreted as
`

εpe b fq, σpe b fq
˘

.
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� We have rσ̃s21 : rẼF̃ s21 Ñ rF̃ Ẽs21 given by
´

1 0
0 Fε
0 Fσ

¯

using the decompositions:

– rẼF̃ s21 – G1F rys – F rys ‘ FEF rys,

– rF̃ Ẽs21 – L2 – F rys ‘ F rys ‘ F 2Erys.

Let us choose an expression for ηp1q “ IdE P HomApAE,Eq as a sum of simple tensors in

FE:

ηp1q “
ÿ

aPQ

fa b ea P FE Ă FErys,

where Q is some finite index set. Using fa, ea for a P Q, we find an expression for rη̃p1qs22

in pL2qGG2:

Lemma 3.4.6. The element

ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q `
ÿ

bPQ

p0, fb, 0q b p0, eb, 0q P pL2qGG2

(written using bimodule forms) is sent to IdR P U under the composition morphism

pL2qGG2
„
ÝÑ Uof Lemma 3.2.14. We write rη̃p1qs22 for this element.

Proof. We first take composition of the first sum, and then of the second.

Claim 3.4.7. Under the map pL2qGG2
„
ÝÑ U , we have:

ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q ÞÑ p0, 0, 0, IdErys, 0q.

Proof of Claim. The matrix rΦs giving the degree 1 lower row part of the image, which

is a morphism in HomKbpBqpR,Rq written in U , is
ř

aPQ

`

0 0
0 fap qbea

˘

“ p 0 0
0 1 q. To compute

the fifth coefficient Λ˝ of the image, we find the degree 0 part Λ of the map on the upper
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row, given by taking the composition E2rys Ñ Arys Ñ E2rys:

ÿ

aPQ

´y2τp b y1eaq ˝ pEfa ˝ τq

“
ÿ

aPQ,dPP

´y2τy1
`

τp qp1dq b fapτp qp2dqq.ea
˘

“ ´y2τy1τ “ ´y2τ

(in the second line we introduce notation for a decomposition τpeeq “
ř

dPP τpeeqp1dq b

τpeeqp2dq for some choices of τpeeqpidq, i “ 1, 2 and finite index set P , and in the third

line we use that
ř

aPQ fape˚q.ea “ e˚ for any e˚ P Erys). Then Λ˝ “ 0 is determined by

Eq. (3.2.3) with this Λ and Φ.

Claim 3.4.8. Under the map pL2qGG2
„
ÝÑ U , we have:

ÿ

bPQ

p0, fb, 0q b p0, eb, 0q ÞÑ pIdErys, 0, 0, 0, 0q.

Proof of Claim. Computing as above, the matrix rΦs is given by p 1 0
0 0 q, and we have:

ÿ

bPQ

`

b eb ` y2τp b ebq
˘

˝ Efb

“
ÿ

bPQ

τy1p b ebq ˝ Efb

“ τy1p
ÿ

bPQ

fbp q.ebq

“ τy1.

Again, Λ˝ “ 0 is determined by Eq. (3.2.3) with this Λ and Φ.

So rη̃p1qs22 is sent to p1, 0, 0, 1, 0q P U , which indeed corresponds to IdR.

Then we take an arbitrary generator pθ, φ1q b f P G1F rys – rẼF̃ s21. Expressing the
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product pθ, φ1q b f b η̃p1q in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s, we have:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

¨
`

f 0
0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

¨
`

f 0
0 0

˘

P

´

F rys L1

F 2rys L2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

F rys L1

F 2rys L2

¯

.

Now we interpret
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

and
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

in rẼ2s and apply rτ̃ s:

Γ21 : pea, 0, 0q b pθ, φ1q ÞÑ pea, 0, 0q.pθ, φ1q

“
`

ea.θ, 0,´Eφ1 ˝ τp b y1eaq
˘

P G2 “ rẼ2
s21

τ̃
ÞÑ

`

0, ea.θ,´τ ˝ Eφ1 ˝ τp b y1eaq
˘

P rẼ2
s21,

Γ21 : p0, eb, 0q b pθ, φ1q ÞÑ p0, eb, 0q.pθ, φ1q

“
`

φ1pebq, φpebq, Eφ1 ˝ τp b ebq
˘

P rẼ2
s21

τ̃
ÞÑ

`

0, φ1pebq, τ ˝ Eφ1 ˝ τp b ebq
˘

P rẼ2
s21.

We can represent these in rẼs ¨ rẼs using the isomorphism G2
„
ÝÑ pG2qGG1, g ÞÑ gb p1, 0q.

So, after applying rF̃ s ¨ rτ̃ s ¨ rF̃ s to the middle terms, we have:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨

´

0 0

0
`

0,ea.θ,´τ˝Eφ1˝τp by1eaq

˘

¯

¨
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨

´

0 0

0
`

0,φ1pebq,τ˝Eφ1˝τp bebq

˘

¯

¨
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

.

Then ε̃ :
`

0 0
p1,0q 0

˘

¨
`

f 0
0 0

˘

ÞÑ f P F rys – rCs21, so by applying rF̃ s ¨ rẼs ¨ rε̃s and viewing

the first two factors in pL2qGG2 Ă rF̃ Ẽs22 we obtain:

¨

˚

˝

0 0

0
ř

aPQpfa,0,0qb

`

0,ea.θ,´τ˝Eφ1˝τp by1eaq

˘

`
ř

bPQp0,fb,0qb

`

0,φ1pebq,τ˝Eφ1˝τp bebq

˘

˛

‹

‚

¨

¨

˚

˝

0 0

f 0

˛

‹

‚

P rF̃ Ẽs ¨ rCs.

Now we express this element in L2 “ rF̃ Ẽs21 by applying the composition map pL2qGG2
„
ÝÑ
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U and then evaluating the action of f P rCs21 on the right. The latter may be computed

by embedding f in L2 as p0, f, 0q and post-composing with this element.

Passing first through the composition map pL2qGG2
„
ÝÑ U , we have:

ÿ

aPQ

`

0, ea.θ,´τ ˝ Eφ1 ˝ τp b y1eaq
˘

˝ pfa, 0, 0q ÞÑ p0, 0, θ, 0,´τ ˝ Eφ1 ˝ τq,

where for the last component we have used:

ÿ

aPQ

`

b ea.θ ` y2τp b ea.θq ´ y1y2τ ˝ Eφ1 ˝ τp b y1eaq
˘

˝ pEfa ˝ τq

“ τ.θ ´ y1y2τ ˝ Eφ1 ˝ τ

“ τy1pEθ ˝ τq ` y1y2p´τ ˝ Eφ1 ˝ τq,

and the fact that Λ˝ “ ´τ ˝Eφ1 ˝ τ can be deduced by comparing with Eq. (3.2.3) where

rΦs “ p 0 Eθ
0 0 q. Similarly, we have:

ÿ

bPQ

`

0, φ1pebq, τ ˝ Eφ1 ˝ τp b ebq
˘

˝ p0, fb, 0q ÞÑ pφ1, 0, 0, 0, τ ˝ Eφ1 ˝ τq,

where again we have used:

ÿ

bPQ

`

b φ1pebq ` y2τp b φ1pebqq ` y1y2τ ˝ Eφ1 ˝ τp b ebq
˘

˝ Efb

“ τy1 ˝ Eφ1 ` y1y2τ ˝ Eφ1 ˝ τ

“ τy1pEφ1q ` y1y2pτ ˝ Eφ1 ˝ τq,

so Λ˝ “ τ ˝ Eφ1 ˝ τ . For the sum of the images, we have pφ1, 0, θ, 0, 0q P U . Next we

compute the right action of f P rCs21 on this element:

p0, f, 0q ˝ pφ1, 0, θ, 0, 0q “ pθ.f, f ˝ φ1, Ef ˝ τ ˝ Eφ1q,
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where we have used:

Ef ˝
`

τy1pEφ1 ` Eθ ˝ τq
˘

“ Ef ˝
`

τy1 ˝ Eφ1 ` Eθ ˝ τ
˘

“ Epθ.f ˝ τq ` Epf ˝ φ1q ` y1 ˝ pEf ˝ τ ˝ Eφ1q.

Our final expression for the image of
`

0 0
0 pθ,φ1qbf

˘

under rσ̃s21 is therefore:

¨

˚

˝

0 0
`

θ.f, f ˝ φ1, Ef ˝ τ ˝ Eφ1

˘

0

˛

‹

‚

P

¨

˚

˝

G1 G2

L2 U

˛

‹

‚

“ rF̃ Ẽs.

The bulleted statement follows from the fact that f ˝φ1 “ Fεpφ1 bfq and Ef ˝ τ ˝Eφ1 “

Fσpφ1 b fq.

� We have rσ̃s12 : rẼF̃ s12 Ñ rF̃ Ẽs12 given by
´

0 εE
1 y1˝εE
0 σE

¯

using the decompositions:

– rẼF̃ s12 – ErysG1 – Erys ‘ EFErys,

– rF̃ Ẽs12 – G2 – Erys ‘ Erys ‘ FE2rys.

We take rη̃p1qs11 “ p1, 0qbp1, 0q P G1G1 – rF̃ Ẽs11, and an arbitrary generator ebpθ, φ1q P

ErysG1 – rẼF̃ s12. The product of these in rF̃ Ẽs¨rẼF̃ s can be expressed in rF̃ s¨rẼs¨rẼs¨rF̃ s

by:
`

0 p1,0q

0 0

˘

¨
`

0 0
p1,0q 0

˘

¨ p e 0
0 0 q ¨

`

0 pθ,φ1q

0 0

˘

,

and application of rF̃ s ¨ rτ̃ s ¨ rF̃ s gives:

`

0 p1,0q

0 0

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
p1,0q 0

˘

¨
`

0 pθ,φ1q

0 0

˘

.

This is sent by rF̃ Ẽs ¨ rε̃s to

`

0 p0,e,0q

0 0

˘

¨
`

0 0
0 pθ,φ1q

˘

P rF̃ Ẽs ¨ rCs
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which, after computing the action, gives

`

φ1peq, φpeq, Eφ1 ˝ τp b eq
˘

P G2 – rF̃ Ẽs12.

The result follows from the observation that Eφ1 ˝ τp b eq “ σEpe b φ1q.

� We have rσ̃s22 : rẼF̃ s22 Ñ rF̃ Ẽs22 given by:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0

0 0 0 FεE 0

η y1 0 0 σ

0 1 0 0 0

0 0 0 FσE 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

using the ordered decompositions from Eq. 3.4.4 and Prop. 3.2.15:

– rẼF̃ s22 – G1G1 ‘ EF rys – Arys ‘ FErys ‘ FErys ‘ FEFErys ‘ EF rys,

– rF̃ Ẽs22 – U – FErys‘4 ‘ F 2E2rys.

We compute rσ̃s22 first on G1G1, and afterwards on EF rys. We can use the same pre-

sentation for rη̃p1qs22 as in the calculations for rσ̃s21. Let pθ, φ1q b pθ1, φ1
1q P G1G1 be an

arbitrary generator. Then the presentation for the product in rF̃ s ¨ rẼs ¨ rẼs ¨ rF̃ s is:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

¨
`

0 pθ1,φ1
1q

0 0

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
pθ,φ1q 0

˘

¨
`

0 pθ1,φ1
1q

0 0

˘

P

´

F rys L1

F 2rys L2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

F rys L1

F 2rys L2

¯

.

Using again the calculations for rσ̃s21, we see that application of rF̃ Ẽε̃s ˝ rF̃ τ̃ F̃ s yields:
¨

˚

˝

0 0

0 pφ1, 0, θ, 0, 0q

˛

‹

‚

¨

¨

˚

˝

0 0

0 pθ1, φ1
1q

˛

‹

‚

P rF̃ Ẽs ¨ rCs.
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This time we compute the action of pθ1, φ1
1q on the right on U using the action of Gop

1 on

the right on R (Lemma 3.2.2). For the matrix part rΦs, we have:
¨

˚

˝

φ1 0

φ1
1 θ1

˛

‹

‚

¨

¨

˚

˝

φ1 θ

0 0

˛

‹

‚

“

¨

˚

˝

φ1 ˝ φ1 θ.φ1

φ1
1 ˝ φ1 θ.φ1

1

˛

‹

‚

.

The submodule form of pφ1, 0, θ, 0, 0q is pφ1, 0, θ, 0, τ ˝ Eφq using:

Λ “ τy1pEφ1 ` Eθ ˝ τq

“ τ ˝ Epy1φ1q ` τ ˝ Eθ

“ τ ˝ Eφ.

Then after taking the action, the last coefficient of the submodule form is given by post-

composing with Eφ1:

Λ “ Eφ1
˝ τ ˝ Eφ

“ Eθ1
˝ τ ˝ Eθ ` Eθ1

˝ τ ˝ Epy1φ1q ` Epy1φ
1
1q ˝ τ ˝ Eθ ` Epy1φ

1
1q ˝ τ ˝ Epy1φ1q.

To compute the bimodule form, we evaluate Eq. (3.2.3) using the values of rΦs:

Λ “ τy1
`

Epφ1
˝ φ1q ` Epθ.φ1

q ˝ τ
˘

´ y2τy1
`

Epφ1
1 ˝ φ1q ` Epθ.φ1

1q ˝ τ
˘

` y1y2Λ
˝

“ τy1 ˝ Eφ1
˝

`

Eφ1 ` Eθ ˝ τ
˘

´ y2τ ˝ Epy1φ
1
1q ˝

`

Eφ1 ` Eθ ˝ τ
˘

` y1y2Λ
˝

“ τy1 ˝ Eθ1
˝

`

Eφ1 ` Eθ ˝ τ
˘

` Epy1φ
1
1q ˝

`

Eφ1 ` Eθ ˝ τ
˘

` y1y2Λ
˝.

By identifying the two expressions we can solve to find Λ˝ “ Eφ1
1 ˝ τ ˝Eφ1. So the image

is given using the bimodule form of U by:
¨

˚

˝

0 0

0
`

φ1 ˝ φ1, φ
1
1 ˝ φ1, θ.φ

1, θ.φ1
1, Eφ

1
1 ˝ τ ˝ Eφ1

˘

˛

‹

‚

P

¨

˚

˝

G1 G2

L2 U

˛

‹

‚

“ rF̃ Ẽs.

Using the fact that Eφ1
1 ˝ τ ˝ Eφ1 “ FσEpφ1 b φ1

1q and φ1
1 ˝ φ1 “ FεEpφ1 b φ1

1q, one

recovers the first four columns of the matrix of rσ̃s22.

138



For the fifth column of rσ̃s22, we start with an arbitrary generator ebf 1 P EF rys Ă rẼF̃ s22.

The element p0, e, 0q b pf 1, 0, 0q P pG2qGL2 is sent by Γ22 of rẼF̃ s to ebf 1. So we consider

the element:

ÿ

aPQ

`

0 0
0 pfa,0,0q

˘

¨
`

0 0
0 pea,0,0q

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

bPQ

`

0 0
0 p0,fb,0q

˘

¨
`

0 0
0 p0,eb,0q

˘

¨
`

0 0
0 p0,e,0q

˘

¨
`

0 0
0 pf 1,0,0q

˘

P

´

F rys L1

F 2rys L2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

Erys E2rys

G1 G2

¯

¨

´

F rys L1

F 2rys L2

¯

,

and we compute its image under F̃ Ẽε̃˝F̃ τ̃ F̃ . First apply Γ22 of rẼẼs to pea, 0, 0qbp0, e, 0q

and p0, eb, 0q b p0, e, 0q, using the rule for bimodule forms on p. 117:

pea, 0, 0q b p0, e, 0q
Γ22
ÞÝÑ p0,´y2pea b eq,´y2pea b eq, 0q P G3,

p0, eb, 0q b p0, e, 0q
Γ22
ÞÝÑ pτy1peb b eq, eb b e, eb b e, 0q P G3.

Next we apply rτ̃ s22 to these elements:

p0,´y2pea b eq,´y2pea b eq, 0q
rτ̃ s22
ÞÝÑ

`

ea b e, ea b e,´τy2pea b eq, 0
˘

,

pτy1peb b eq, eb b e, eb b e, 0q
rτ̃ s22
ÞÝÑ

`

τpeb b eq, τpeb b eq, τpeb b eq, 0
˘

.

Note that the formula in Def. 2.3.4 is given for the submodule form of G3. Using

Prop. 2.2.27, one defines a bimodule form in the usual way, where the last coefficient

is χ2 instead of χ. By studying the proof of Lemma 2.3.3, one observes that the action

of τ̃ on the last coefficient in this bimodule form is (also) given by post-composition with

τE, whence the final zeros above.

The next step is to express
`

eae, eae,´τy2peaeq, 0
˘

and
`

τpebeq, τpebeq, τpebeq, 0
˘

back in

pG2qGG2 (i.e. find a preimage under Γ22|pG2qGG2) in order to view them in rẼs¨rẼs. We will

need the notation τpeeq “
ř

dPP τpeeqp1dq b τpeeqp2dq introduced to compute rσ̃21s above.
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Claim. We have:

ÿ

dPP

`

0,τpeaeqp1dq,0
˘

b

`

τpeaeqp2dq,y1τpeaeqp2dq,0
˘

´

`

0,τy1peaeqp1dq,0
˘

b

`

0,τy1peaeqp2dq,0
˘

Γ22
ÞÝÑ

`

eae, eae,´τy2peaeq, 0
˘

,

ÿ

dPP

`

0, τpebeqp1dq, 0
˘

b
`

0, τpebeqp2dq, 0
˘ Γ22

ÞÝÑ
`

τpebeq, τpebeq, τpebeq, 0
˘

.

Proof. The proof is a direct calculation using the bimodules formulation of Γ22|pG2qGG2 on

p. 117.

Thus, after applying F̃ τ̃ F̃ , we have the element:

ÿ

aPQ,dPP

`

0 0
0 pfa,0,0q

˘

¨

´

0 0
0 p0,τpeaeqp1dq,0q

¯

¨

´

0 0
0 pτpeaeqp2dq,y1τpeaeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

aPQ,dPP

`

0 0
0 pfa,0,0q

˘

¨

´

0 0
0 ´p0,τy1peaeqp1dq,0q

¯

¨

´

0 0
0 p0,τy1peaeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

`
ÿ

bPQ,dPP

`

0 0
0 p0,fb,0q

˘

¨

´

0 0
0 p0,τpebeqp1dq,0q

¯

¨

´

0 0
0 p0,τpebeqp2dq,0q

¯

¨
`

0 0
0 pf 1,0,0q

˘

,

and we need to apply rF̃ Ẽs ¨ ε̃ and then realize the result in rF̃ Ẽs. Observe that:

`

0, τy1peaeqp2dq, 0
˘

b pf 1, 0, 0q
ε̃

ÞÑ 0,

`

0, τpebeqp2dq, 0
˘

b pf 1, 0, 0q
ε̃

ÞÑ 0.

Therefore only the top row will remain. We have in submodule form:

`

τpeaeqp2dq, y1τpeaeqp2dq, 0
˘

b pf 1, 0, 0q
rε̃s22
ÞÝÑ

`

f 1
pτpeaeqp2dqq, Ef

1
˝ τ ˝

`

b y1τpeaeqp2dq

˘˘

P G1.

We convert to bimodule form and give this a name:

pθ, φ1qa,d :“
`

f 1
pτpeaeqp2dqq, Ef

1
˝ τp b τpeaeqp2dqq

˘

P G1.

Observe that under the composition isomorphism pL2qGG2
„
ÝÑ U we have:

pfa, 0, 0q b
`

0, τpeaeqp1dq, 0
˘

ÞÑ
`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

P U.
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We are therefore left with:

ÿ

aPQ,dPP

¨

˚

˝

0 0

0
`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

˛

‹

‚

¨

¨

˚

˝

0 0

0 pθ, φ1qa,d

˛

‹

‚

P rF̃ Ẽs ¨ rCs.

It remains to use the right action of Gop
1 on R (Lemma 3.2.2) to compute the action of

pθ, φ1qa,d. The new matrix is given for each term of the sum by:
¨

˚

˝

Ef 1 ˝ τy1
`

b τpeaeqp2dq

˘

0

Ef 1 ˝ τp b τpeaeqp2dqq f 1pτpeaeqp2dqq

˛

‹

‚

¨

¨

˚

˝

0 fap q.τpeaeqp1dq

0 0

˛

‹

‚

“

¨

˚

˝

0 Ef 1 ˝ τy1

´

fap q.τpeaeqp1dq b τpeaeqp2dq

¯

0 Ef 1 ˝ τ
´

fap q.τpeaeqp1dq b τpeaeqp2dq

¯

˛

‹

‚

.

After summing over a and d this becomes:

ř

a,d
//

¨

˚

˝

0 Ef 1 ˝ τ ˝ y1τp b eq

0 Ef 1 ˝ τ
`

τp b eq
˘

˛

‹

‚

“

¨

˚

˝

0 Ef 1 ˝ τp b eq

0 0

˛

‹

‚

.

This matrix gives the first four components of the final element of U . To find the fifth,

first in the submodule form, we compute the submodule form of
`

0, 0, fap q.τpeaeqp1dq, 0, 0
˘

and post-compose with Eφ:

Eφ ˝

´

τy1 ˝ E
`

fap q.τpeaeqp1dq

˘

˝ τ
¯

“ Eφ ˝

´

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

¯

“

´

E2f 1
˝ Eτ ˝ y1

`

b τpeaeqp2dq

˘

¯

˝

´

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

¯

“ E2f 1
˝ Eτ ˝ y1

`

τy1
`

Efa ˝ τp q b τpeaeqp1dq

˘

b τpeaeqp2dq

˘

“ E2f 1
˝ Eτ ˝ τE ˝ y2y1

`

Efa ˝ τp q b τpeaeqp1dq b τpeaeqp2dq

˘

.
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Summing over d and a we obtain:

ř

a,d
// E2f 1

˝ Eτ ˝ τE ˝ y2y1
`

Eτ ˝ τEp b eq
˘

“ E2f 1
˝ Eτ ˝ τE ˝ Eτp b y1eq

“ E2f 1
˝ Eτ ˝ τE ˝ y2Eτp b eq

` E2f 1
˝ Eτ ˝ τEp b eq

“ E2f 1
˝ Eτ ˝ y3τE ˝ Eτp b eq

` E2f 1
˝ Eτ ˝ Eτp b eq

` E2f 1
˝ Eτ ˝ τEp b eq

“ y2E
2f 1

˝ Eτ ˝ τE ˝ Eτp b eq

` E2f 1
˝ Eτ ˝ τEp b eq.

Now to find the bimodule form of the fifth component we consider:

τy1 ˝
`

E2f 1
˝ Eτp b eq ˝ τ

˘

“ τy1 ˝ E2f 1
˝ Eτ ˝ τEp b eq

“ y2E
2f 1

˝ τE ˝ Eτ ˝ τEp b eq

` E2f 1
˝ Eτ ˝ τEp b eq,

and since this agrees with the expression before it, Eq. (3.2.3) implies that the fifth

component in bimodule form is zero. Note that we have used the fact that τE ˝Eτ ˝τE “

Eτ ˝ τE ˝ Eτ . The final expression is
`

0, 0, Ef 1 ˝ τ
`

b e
˘

, 0, 0
˘

P U – rF̃ Ẽs22. Observe

that Ef 1 ˝ τp b eq “ σpeb f 1q. This gives the fifth column of the matrix of rσ̃s22, and we

have now justified all components of that matrix.

142



3.4.2.2 Maps ε̃ ˝ x̃iF̃ and F̃ x̃i ˝ η̃

We continue by computing the maps ε̃ ˝ x̃iF̃ and F̃ x̃i ˝ η̃ on the various components of the

matrices rẼF̃ s, rF̃ Ẽs, and rCs. As before, we propose these maps in the bulleted lines and

justify them in the paragraphs following.

� We have rε̃ ˝ x̃iF̃ s11 : rẼF̃ s11 Ñ rCs11 given by ε ˝ xiy1F using the decompositions:

– rẼF̃ s11 – EF rys,

– rCs11 – Arys.

The endomorphism x̃ P EndpẼq given in Def. 2.3.4 determines an endomorphism of rẼF̃ s11

given by xF on EF rys. The morphism ε̃ composes elements of Ẽ with those of F̃ when

they are interpreted in HomDbpBqpX,E
1Xq and HomDbpBqpE

1X,Xq. In particular, e P

Erys – rẼs11 represents the morphism X1 Ñ E 1X1 given by 1 ÞÑ y1e in degree 0 of the

top row, and f P F rys – rF̃ s11 represents the morphism given by e ÞÑ fpeq in degree 0 of

the top row.

� We have rF̃ x̃i ˝ η̃s11 : rCs11 Ñ rF̃ Ẽs11 given by
´

yi

Fhi´1px,yq˝η

¯

using the decompositions:

– rCs11 – Arys,

– rF̃ Ẽs11 – G1 – Arys ‘ FErys.

Here hipz1, . . . , znq is the complete homogeneous symmetric polynomial of degree i in the

variables z1, . . . , zn. Note the small case interpretations:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

hi´1px, yq “ 0 i “ 0

hi´1px, yq “ 1 i “ 1

hi´1px, yq “ x ` y i “ 2

. . . . . .
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Observe that rη̃s11 is given by 1 ÞÑ IdX2 P Gop
1 – EndKbpBqpX2q, and IdX2 “ p1, 0q (in

bimodule form). More generally θ ÞÑ .θ P HomApAE,Eqrys – FErys Ă Gop
1 . From

Def. 2.3.4 we have the action of rx̃s11 on Gop
1 in submodule form: x̃i.pθ, φq “ pyiθ, xi ˝ φq.

We convert this expression to bimodule form:

xi ˝ φ “ xi ˝ .θ ` xiy1φ1

“ yiθ ` pxi ´ yiq ˝ .θ ` y1x
iφ1

“ yiθ ` y1
`

hi´1px, yq ˝ .θ ` xi ˝ φ1

˘

,

so x̃i.pθ, φ1q “ pyiθ, hi´1px, yq˝ .θ`xi˝φ1q. In particular, x̃i.p1, 0q “ pyi, hi´1px, yqq, which

gives the proposed formula by viewing x, y as endofunctors of E instead of as elements of

FErys.

� We have rε̃˝x̃iF̃ s21 : rẼF̃ s21 Ñ rCs21 given by
`

xi, F pε˝xiy1F q
˘

using the decompositions:

– rẼF̃ s21 – G1F rys – F rys ‘ FEF rys,

– rCs21 – F rys.

(Here x P EndpF qrys is given by xpfq “ f ˝ x.) The map rε̃s21 : G1F rys Ñ F rys is given

(using submodule form) by pθ, φq b f ÞÑ f ˝ φ. The endomorphism rx̃s21 acts on G1 as

described under the previous bullet: x̃i.pθ, φ1q “ pyiθ, hi´1px, yq ˝ .θ ` xi ˝ φ1q. Then

rε̃s21 : G1F rys Ñ F rys is given using bimodule form by:

x̃i.pθ, φ1q b f ÞÑ f ˝ xi ˝ .θ ` f ˝ xiy1φ1,

and the component data follows from this formula.

� We have rF̃ x̃i˝ η̃s21 : rCs21 Ñ rF̃ Ẽs21 given by

ˆ

0
yi

F pFhi´1px,yq˝ηq

˙

using the decompositions:

– rCs21 – F rys,

– rF̃ Ẽs21 – L2 – F rys ‘ F rys ‘ F 2Erys.
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Let
`

0 0
f 0

˘

P

´

Arys Erys

F rys Gop
1

¯

“ rCs, and observe that:

η̃
``

0 0
f 0

˘˘

“ η̃
``

0 0
f 0

˘

. p 1 0
0 0 q

˘

“
`

0 0
f 0

˘

.η̃ pp 1 0
0 0 qq

“
`

0 0
f 0

˘

.
`

p1,0q 0
0 0

˘

“
`

0 0
p0,f,0q 0

˘

P
`

G1 G2
L2 U

˘

“ rF̃ Ẽs.

Here p0, f, 0q is written in the bimodule form of L2. (The action of f P F rys Ă rCs21 on

generators in G1 Ă rF̃ Ẽs is given by F rysG1 Ñ L2, f bpθ, φq ÞÑ p0, f ˝ .θ, φ˝Efq written

in submodule form, and this image is p0, f ˝ .θ, φ1 ˝ Efq in bimodule form.)

Now we apply rF̃ x̃is21. Consider that:

rF̃ s ¨ rẼs Ą pL2qGG1 Q p0, f, 0q b p1, 0q
Γ21
ÞÝÑ p0, f, 0q P L2 Ă rF̃ Ẽs.

We have already seen that x̃i.p1, 0q “ pyi, hi´1px, yqq P G1, so we have:

p0, f, 0q b p1, 0q
rF̃ x̃is21
ÞÝÑ p0, f, 0q b pyi, hi´1px, yqq.

Then Γ21 : p0, f, 0q b pyi, hi´1px, yqq ÞÑ
`

0, yif, xi ˝ Ef
˘

written in submodule form. In

bimodule form the image is:

`

0, yif, hi´1px, yq ˝ Ef
˘

,

which we compute using:

xi ˝ Ef “
`

yi ` y1hi´1px, yq
˘

˝ Ef

“ Epyifq ` y1
`

hi´1px, yq ˝ Ef
˘

.

Note that F 2Erys Q hi´1px, yq ˝ Ef “ F
`

hi´1px, yq ˝ η
˘

pfq.

� We have rε̃˝x̃iF̃ s12 : rẼF̃ s12 Ñ rCs12 given by
`

xi, pε˝xiy1F qE
˘

using the decompositions:

– rẼF̃ s12 – ErysG1 – Erys ‘ EFErys,

– rCs12 – Erys.
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The endomorphism rx̃s12 acts as x on Erys “ rẼs11, and thus as xG1 on ErysG1 “ rẼF̃ s12.

The map rε̃s12 : ErysG1 Ñ Erys is given (using submodule form) by ebpθ, φq ÞÑ y´1
1 φpy1eq.

(Recall that e P Erys indicates the map X1 Ñ X2 given on the top row by Arys Ñ Erys,

1 ÞÑ y1e.) So we have:

xipeq b pθ, φ1q
rε̃s12
ÞÝÑ y´1

1 φpxiy1eq “ xipeq.θ ` φ1pxiy1eq,

and the component data follows from this formula.

� We have rF̃ x̃i˝ η̃s12 : rCs12 Ñ rF̃ Ẽs12 given by

ˆ

yi

yiy1
pFhi´1px,yq˝ηqE

˙

using the decompositions:

– rCs12 – Erys,

– rF̃ Ẽs12 – L2 – Erys ‘ Erys ‘ FE2rys.

By reasoning as in the rF̃ x̃i ˝ η̃s21 case, we find:

rCs Q p 0 e
0 0 q

rη̃s
ÞÝÑ

`

0 pe,y1e,0q

0 0

˘

P
`

G1 G2
L2 U

˘

“ rF̃ Ẽs,

using the bimodule form of G2. Now we apply rF̃ x̃is12. Consider that:

rF̃ s ¨ rẼs Ą pL1qGG2 Q p1, 0q b pe, y1e, 0q
Γ12
ÞÝÑ pe, y1e, 0q P G2 Ă rF̃ Ẽs.

In Def. 2.3.4 we have a formula for the action of rx̃is22 on G2 Ă rẼs written in terms of the

data e1, e2, ξ. The data pe, y1e, 0q corresponds to e1 “ y1e, e2 “ 0, ξ “ b y1e. Applying

rx̃is22 gives e1 “ yiy1e, e2 “ 0, ξ “ b yiy1e ` y1y2hi´1px2, yqp b eq, where to compute ξ

we have used:

xi2 ˝ p b y1eq “
`

yi ` y2hi´1px2, yq
˘

˝ p b y1eq

“ b yiy1e ` y1y2hi´1px2, yqp b eq.

This corresponds to the data
`

yie, yiy1e, hi´1px2, yqp b eq
˘

P G2 in the bimodule form. So
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we have:

p1, 0q b pe, y1e, 0q
rF̃ x̃is12
ÞÝÑ p1, 0q b

`

yie, yiy1e, hi´1px2, yqp b eq
˘

Γ12
ÞÝÑ

`

yie, yiy1e, hi´1px2, yqp b eq
˘

P G2 Ă rF̃ Ẽs.

Note that FE2rys Q hi´1px2, yqp b eq “
`

pFhi´1px, yq ˝ ηqE
˘

peq.

� We have rε̃ ˝ x̃iF̃ s22 : rẼF̃ s22 Ñ rCs22 given by:
¨

˚

˝

yi 0 0 0 ´ε ˝ hi´1px, yqF

hi´1px, yq ˝ η xiE Fxi F pε ˝ xiy1F qE ´FEε˝F pτ˝hi´1px1,x2qqF˝ηEF
´FEε˝F phi´2px1,x2,yqqF˝ηEF

˛

‹

‚

using the ordered decompositions (recall Eq. 3.4.4):

– rẼF̃ s22 – G1G1 ‘ EF rys – Arys ‘ FErys ‘ FErys ‘ FEFErys ‘ EF rys,

– rCs22 – G1 – Arys ‘ FErys.

Consider the first four columns first, i.e. the restriction of the map to G1G1. Take an

arbitrary generator pθ, φ1q b pθ1, φ1
1q. Borrowing a calculation from the case rε̃ ˝ x̃iF̃ s21 we

find:

pθ, φ1q b pθ1, φ1
1q

rx̃iF̃ s22
ÞÝÑ pyiθ, hi´1px, yq ˝ .θ ` xi ˝ φ1q b pθ1, φ1

1q.

Now rε̃s22 : G1G1 Ñ G1 is given by composition, so we have:

pyiθ, hi´1px, yq ˝ .θ ` xi ˝ φ1q b pθ1, φ1
1q

rε̃s22
ÞÝÑ

`

yiθθ1, .θ1
˝ hi´1px, yq ˝ .θ ` p .θ1

q ˝ xi ˝ φ1

` φ1
1 ˝ p .yiθq ` φ1

1 ˝ pxi ´ yiq ˝ .θ ` φ1
1 ˝ y1x

i
˝ φ1

˘

“
`

yiθθ1, hi´1px, yq ˝ .θθ1
` φ1

1 ˝ xi ˝ .θ ` xi ˝ .θ1
˝ φ1 ` φ1

1 ˝ y1x
i

˝ φ1

˘

.

The first four columns of the matrix of rε̃ ˝ x̃iF̃ s22 can be read off this formula.

The last column gives the restriction of rε̃ ˝ x̃iF̃ s22 to a map EF rys Ñ Arys ‘ FErys. Its
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computation is more involved. We start with a generator e b f , and note that:

rẼF̃ s22 Ą pG2qGL2 Q p0, e, 0q b pf, 0, 0q
Γ22
ÞÝÑ e b f P EF rys Ă rF̃ Ẽs22.

Now we must apply rx̃s22 to the first factor, and then compose the factors, thereby applying

rε̃s22 and giving an element of G2 – EndKbpBqpX2q.

The data p0, e, 0q corresponds to e1 “ e2 “ e, ξ “ τy1p b eq. The action of rx̃is22 on

G2 Ă rẼs then gives e1 “ yie, e2 “ xie, ξ “ xi2˝τy1p beq. We can compute the composite

with pf, 0, 0q directly using this information. It is given in submodule form by:

`

f ˝ y´1
1 pyie ´ xieq, Ef ˝ τ ˝ xi2 ˝ τy1p b eq

˘

“
`

fp´hi´1px, yqeq, Ef ˝ τ ˝ xi2 ˝ τy1p b eq
˘

P G1.

It remains to convert this to bimodule form. In the calculation we will use three facts,

easily checked by the reader:

1. xi2 ˝ τ “ τ ˝ xi1 ´ hi´1px1, x2q,

2. xj2 “ yj ` y2hi´1px2, yq,

3.
ř

j`k“i´1 x
j
1hk´1px2, yq “ hi´2px1, x2, yq.

Then we have for the main calculation:

Ef ˝ τ ˝ xi2 ˝ τy1p b eq

“ ´Ef ˝ τy1 ˝ hi´1px1, x2qp b eq

“ ´Ef ˝ hi´1px1, x2qp b eq ´ y1Ef ˝ τ ˝ hi´1px1, x2qp b eq

“ ´Ef ˝
ÿ

j`k“i´1

xj1
`

yk ` y2hk´1px2, yq
˘

p b eq ´ y1 ˝ Ef ˝ τ ˝ hi´1px1, x2qp b eq

“ ´Ef ˝ hi´1px1, yqp b eq ´ y1Ef ˝
`

hi´2px1, x2, yqp b eq ` τ ˝ hi´1px1, x2qp b eq
˘

.
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Then observe that:

´Ef ˝ hi´1px1, yqp b eq “ b fp´hi´1px, yqeq

“ p´ε ˝ hi´1px, yqF qpe b fq,

and that:

´ Ef ˝
`

hi´2px1, x2, yqp b eq ` τ ˝ hi´1px1, x2qp b eq
˘

“
`

´FEε ˝ F
`

τ ˝ hi´1px1, x2q ` hi´2px1, x2, yq
˘

F ˝ ηEF
˘

pe b fq.

The formulas in the last column of rε̃ ˝ x̃iF̃ s22 follow.

� We have rF̃ x̃i ˝ η̃s22 : rCs22 Ñ rF̃ Ẽs22 given by:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Fyi ˝ η yiy1

´Fhi´1px, yq ˝ η yi

0 0

Fxi ˝ η 0

F 2
`

hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

˝ η2 F 2hi´1px2, yq ˝ FηE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

using the ordered decompositions:

– rCs22 – G1 – Arys ‘ FErys,

– rF̃ Ẽs22 – U – FErys‘4 ‘ F 2E2rys.

Observe first that rη̃s22 : G1 Ñ U is determined by p1, 0q ÞÑ IdR “ p1, 0, 0, 1, 0q P U (using

bimodule forms). Recall (Lemma 3.4.6 used for rσ̃s21) that:

pL2qGG2 Q rη̃p1qs “
ÿ

aPQ

pfa, 0, 0q b pea, 0, 0q `
ÿ

bPQ

p0, fb, 0q b p0, eb, 0q
Γ21
ÞÝÑ p1, 0, 0, 1, 0q P U.

The map Γ21|pL2qGG2 is given by composition and hence right Gop
1 -equivariant, so we can

compute any rη̃s22
`

pθ, φ1q
˘

as rη̃p1qs.pθ, φ1q P pL2qGG2. The action of rF̃ x̃is is applied to
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elements of pL2qGG2, and after that we pass through Γ21 again to obtain the final image

in U .

We treat the first column of rF̃ x̃i ˝ η̃s22 first, and consider the second column afterwards.

For the first column it is enough to consider the case pθ, φ1q “ p1, 0q. Starting with the

first term, the data pea, 0, 0q corresponds to e1 “ 0, e2 “ ´y1ea, and ξ “ y2τp b p´y1eaqq.

Application of the formula for rx̃is22 gives e1 “ 0, e2 “ ´xiy1ea, and ξ “ xi2 ˝ y2τp b

p´y1eaqq. Then we convert this to bimodule form, using:

xi2 ˝ y2τp b p´y1eaqq

“ y2 ˝ xi2τp b p´y1eaqq

“ y2 ˝ τxi1p b p´y1eaqq ` y1y2hi´1px1, x2qp b eaq

“ y2τp b p´y1x
ieaqq ` y1y2hi´1px1, x2qp b eaq,

where in the third line we have used Fact 1 given under the previous bullet. So in bimodule

form we have:

rx̃is22 : pea, 0, 0q ÞÑ
`

xiea, 0, hi´1px1, x2qp b eaq
˘

.

Now applying Γ21 we obtain:

ÿ

aPQ

`

xiea, 0, hi´1px1, x2qp b eaq
˘

˝ pfa, 0, 0q “
`

0, 0, 0, xi, hi´1px1, x2q ˝ τ
˘

P U,

where the last component is computed using:

´

y2τp b p´y1x
ieaqq ` y1y2hi´1px1, x2qp b eaq

¯

˝ Efa ˝ τ

“ ´y2τy1x
i
1τ ` y1y2hi´1px1, x2qτ,

together with the facts that Φ11 “ Φ12 “ Φ21 “ 0 and Φ22 “ xi so:

Λ “ τy1p0 ` 0 ˝ τq ´ y2τy1 ˝ p0 ` EΦ22 ˝ τq ` y1y2Λ
˝

“ ´y2τy1 ˝ xi1 ˝ τ ` y1y2Λ
˝.

150



Continuing with the second term, the data p0, eb, 0q corresponds to e1 “ eb, e2 “ eb, and

ξ “ τy1p b ebq. Application of the formula for rx̃is22 gives e1 “ yieb, e2 “ xieb, and

ξ “ xi2 ˝ τy1p b ebq. Then we convert this to bimodule form, using:

xi2 ˝ τy1p b ebq

“ τy1p b xiebq ´ y1hi´1px1, x2qp b ebq

“ τy1p b xiebq ´ y1hi´1px1, yqp b ebq

´ y1y2hi´2px1, x2, yqp b ebq

“ b xieb ` y2τp b xiebq ´ b pxi ´ yiqeb

´ y1y2hi´2px1, x2, yqp b ebq

“ b yieb ` y2τp b xiebq ´ y1y2hi´2px1, x2, yqp b ebq,

where we have made use of the fact, easily checked by the reader, that:

4. y2hi´2px1, x2, yq “ hi´1px1, x2q ´ hi´1px1, yq.

So in bimodule form we have:

rx̃is22 : p0, eb, 0q ÞÑ

´

´hi´1px1, yqeb, y
ieb,´hi´2px1, x2, yqp b ebq

¯

.

Now applying Γ21 we obtain:

ÿ

bPQ

´

´hi´1px1, yqeb, y
ieb,´hi´2px1, x2, yqp b ebq

¯

˝ p0, fb, 0q

“
`

yi,´hi´1px1, yq, 0, 0,´hi´2px1, x2, yq
˘

P U,

where the last component is computed using:

xi2 ˝ τy1p b ebq ˝ Efb “ xi2τy1 “ τxi1y1 ´ y1hi´1px1, x2q
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together with the facts that Φ11 “ yi, Φ21 “ ´hi´1px1, yq, Φ12 “ Φ22 “ 0, so:

Λ “ τy1 ˝
`

yi ` 0 ˝ τ
˘

´ y2τy1 ˝
`

´hi´1px1, yq ` 0 ˝ τ
˘

` y1y2Λ
˝

“ τy1y
i

` y2τy1hi´1px1, yq ` y1y2Λ
˝

“ τy1y
i

` y2τpxi1 ´ yiq ` y1y2Λ
˝

“ yi ` y2τx
i
1 ` y1y2Λ

˝

“ τxi1y1 ´ y1hi´1px1, yq ` y1y2Λ
˝,

so using Fact 4 again:

y2Λ
˝

“ ´hi´1px1, x2q ` hi´1px1, yq,

Λ˝
“ ´hi´2px1, x2, yq.

Finally taking the sum of the two terms, we conclude that rF̃ x̃i ˝ η̃s22 : Arys Ñ U is

determined by:

1 ÞÑ
`

yi,´hi´1px1, yq, 0, xi, hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

.

By describing these coefficients in FErys and F 2E2rys instead of in EndpErysq and

EndpE2rysq, we obtain the formulas in the first column of the matrix of rF̃ x̃i ˝ η̃s22.

Now we consider the second column of rF̃ x̃i ˝ η̃s22, a map FErys Ñ U . It is found using

the same method but with pθ, φ1q “ p0, φ1q for a generator φ1 P FErys. We have in

bimodule form:

pea, 0, 0q.p0, φ1q “
`

0, 0, Eφ1 ˝ τp b ´y1eaq
˘

p0, eb, 0q.p0, φ1q “
`

φ1pebq, y1φ1pebq, Eφ1 ˝ τp b ebq
˘

,

where we have used the calculations:

Epy1φ1q ˝ y2τp b ´y1eaq “ y1y2Eφ1 ˝ τp b ´y1eaq
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and

Epy1φ1q ˝ p b eb ` y2τp b ebqq “ b y1φ1pebq ` y1y2Eφ1 ˝ τp b ebq.

Starting with the first term, the data
`

0, 0, Eφ1 ˝τp b´y1eaq
˘

corresponds to e1 “ e2 “ 0

and ξ “ y1y2Eφ1 ˝ τp b ´y1eaq. Application of the formula for rx̃is22 gives e1 “ e2 “ 0

and ξ “ xi2 ˝ y1y2Eφ1 ˝ τp b ´y1eaq. Converting this data to bimodule form is trivial. So

we have:

rx̃is22 :
`

0, 0, Eφ1 ˝ τp b ´y1eaq
˘

ÞÑ
`

0, 0, xi2 ˝ Eφ1 ˝ τp b ´y1eaq
˘

.

Now applying Γ21 we obtain:

ÿ

aPQ

`

0, 0, xi2 ˝ Eφ1 ˝ τp b ´y1eaq
˘

˝ pfa, 0, 0q “
`

0, 0, 0, 0,´Eφ1 ˝ xi2τ
˘

P U,

where the last component is computed using:

y1y2x
i
2 ˝ Eφ1 ˝ τp b ´y1eaq ˝ Efa ˝ τ

“ ´xi2 ˝ y1y2Eφ1 ˝ τy1 ˝ τ

“ ´y1y2Eφ1 ˝ xi2τ.

Continuing with the second term, the data
`

φ1pebq, y1φ1pebq, Eφ1˝τp bebq
˘

corresponds to

e1 “ y1φ1pebq, e2 “ 0, and ξ “ by1φ1pebq`y1y2Eφ1˝τp bebq. Application of the formula

for rx̃is22 gives e1 “ y1y
iφ1pebq, e2 “ 0, and ξ “ xi2 ˝

`

b y1φ1pebq ` y1y2Eφ1 ˝ τp b ebq
˘

.
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Then we convert this to bimodule form, using:

xi2 ˝
`

b y1φ1pebq ` y1y2Eφ1 ˝ τp b ebq
˘

“ b yiy1φ1pebq ` y2hi´1px2, yqp b y1φ1pebqq ` y1y2Eφ1 ˝ xi2τp b ebq

“ b yiy1φ1pebq ` y1y2

´

hi´1px2, yq ˝ Eφ1p b ebq ` Eφ1 ˝ xi2τp b ebq
¯

“ b yiy1φ1pebq ` y1y2Eφ1 ˝
`

xi2τ ` hi´1px2, yq
˘

p b ebq

“ b y1y
iφ1pebq ` y1y2

´

´Eφ1 ˝ y1hi´2px1, x2, yqp b ebq ` Eφ1 ˝ τ ˝ xi1p b ebq
¯

.

So in bimodule form we have:

rx̃is22 :
`

φ1pebq, y1φ1pebq, Eφ1 ˝ τp b ebq
˘

ÞÑ

´

yiφ1pebq, y1y
iφ1pebq, Eφ1 ˝

`

xi2τ ` hi´1px2, yq
˘

p b ebq
¯

.

Now applying Γ21 we obtain:

ÿ

bPQ

´

yiφ1pebq, y1y
iφ1pebq, Eφ1 ˝

`

xi2τ ` hi´1px2, yq
˘

p b ebq
¯

˝ p0, fb, 0q

“

´

yiy1φ1, y
iφ1, 0, 0, Eφ1 ˝

`

xi2τ ` hi´1px2, yq
˘

¯

P U,

where the last component is computed using:

´

b yiy1φ1pebq ` y1y2Eφ1 ˝
`

xi2τ ` hi´1px2, yq
˘

p b ebq
¯

˝ Efb

“ yiy1Eφ1 ` y1y2Eφ1 ˝
`

xi2τ ` hi´1px2, yq
˘

p b ebq,

together with the facts that Φ11 “ yiy1φ1, Φ21 “ yiφ1, Φ12 “ Φ22 “ 0, so:

Λ “ τy1py
iy1Eφ1 ` 0 ˝ τq ´ y2τy1pyiEφ1 ` 0 ˝ τq ` y1y2Λ

˝
“ yiy1Eφ1 ` y1y2Λ

˝.

Taking the sum of the two terms, we conclude that rF̃ x̃i ˝ η̃s22 : FErys Ñ U is given by:

φ1 ÞÑ
`

yiy1φ1, y
iφ1, 0, 0, Eφ1 ˝ hi´1px2, yq

˘

.
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The last component, an element of EndApAE
2qrys, is the same as

`

F 2hi´1px2, yq˝FηE
˘

pφ1q.

This gives the formulas in the second column of the matrix of rF̃ x̃i ˝ η̃s22.

3.4.3 Maps ρ̃λ: isomorphisms

Now we have formulas by components for the maps σ̃, ε̃ ˝ x̃iF̃ , and F̃ x̃i ˝ η̃ that are used

to define the maps ρ̃λ. It remains to make use of the isomorphisms ρλ determined by σ,

ε ˝ xiF , and Fxi ˝ η, together with these formulas, to show that ρ̃λ are isomorphisms. Note

that ρ̃λ are already known to give morphisms of pC,Cq-bimodules, so it suffices to show that

ρ̃λ are isomorphisms of sets. We will work again by components and show that rρ̃λsij is an

isomorphism of pArys, Arysq-bimodules for i, j P t1, 2u.

We remind the reader of our notational convention that Eλ “ Eeλ for the idempotents eλ P

Aλ of a weight decomposition. Recall that the bimodule E satisfies ejEei “ δi`2,j ¨ ei`2Eei,

and similarly for F but with i´ 2 instead of i` 2. Finally, recall Prop. 2.3.26 that gives the

weight idempotents for the algebra C.

� We have for rρ̃λs11, λ ě 0:

rρ̃λs11 : EFλ`1rys Ñ Aλ`1rys ‘ FEλ`1rys ‘ Aλ`1rys
‘λ

given by:

rρ̃λs11 “ ε ‘ σ ‘

λ´1
à

i“0

ε ˝ xiy1F.

� We have for rρ̃λs11, λ ď 0:

rρ̃λs11 : EFλ`1rys ‘ Aλ`1rys
‘´λ

Ñ Aλ`1rys ‘ FEλ`1rys

given by:

rρ̃λs11 “

˜

p ε
σ q ,

´λ´1
ÿ

i“0

´

yi

Fhi´1px,yq˝η

¯

¸

.
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Proposition 3.4.9. The morphism of pArys, Arysq-bimodules rρ̃λs11 is an isomorphism

for all λ.

Proof. When λ ě 0 and therefore λ ` 1 ě 0, the map:

σ ‘

λ
à

i“0

ε ˝ xiF : EFλ`1rys
„
ÝÑ FEλ`1rys ‘ Aλ`1rys

‘λ`1

is just ρλ`1 bk krys. It is an isomorphism because ρλ`1 is an isomorphism.

Claim 3.4.10. When λ ě 0, the map

σ ‘ ε ‘

λ´1
à

i“0

ε ˝ xiy1F : EFλ`1rys Ñ FEλ`1rys ‘ Aλ`1rys
‘λ`1

is also an isomorphism.

Proof. LetM´y P EndAλ`1rys

`

Aλ`1rys‘λ`1
˘

be the endomorphism with matrix coefficients

rM´ys P Matpλ`1qˆpλ`1q pAλ`1rysopq given by 1 on the diagonal and ´y on the subdiagonal,

and 0 elsewhere. This matrix is invertible, and M´y is an isomorphism. Observe that:

ε ˝ p´xi´1yF q “ ´y ¨ ε ˝ xi´1F.

Using this we write the map in question as a composition of isomorphisms:

σ ‘ ε ‘

λ´1
à

i“0

ε ˝ xiy1F “

¨

˚

˝

1 0

0 M´y

˛

‹

‚

˝

˜

σ ‘

λ
à

i“0

ε ˝ xiF

¸

.

By reordering the first two summands in the codomain, we obtain the map rρ̃λs11.

When λ “ 0, the two formulas for rρ̃λs11 agree. Now assume λ ă 0, so λ ` 1 ď 0 and the

map:
˜

σ,

´pλ`1q´1
ÿ

i“0

Fxi ˝ η

¸

: EFλ`1 ‘ Aλ`1rys
‘´pλ`1q „

ÝÑ FEλ`1rys (3.4.5)

is ρλ`1 bk krys, an isomorphism.
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Claim 3.4.11. When λ ă 0, the map:
˜

σ,
´λ´1
ÿ

i“1

Fhi´1px, yq ˝ η

¸

: EFλ`1rys ‘ Aλ`1rys
‘´pλ`1q

Ñ FEλ`1rys

is also an isomorphism.

Proof. This time we define an isomorphism Mh P EndAλ`1rys

`

Aλ`1rys‘´pλ`1q
˘

with com-

ponents rMhsii “ 1, rMhsij “ yj´i for j ą i, and rMhsij “ 0 for j ă i. This is an

upper-triangular invertible matrix:

rMhs “

¨

˝

1 y y2 ... y´pλ`1q´1

0 1 y ... y´pλ`1q´2

0 0 1 ... y´pλ`1q´3

... ... ... ... ...
0 0 0 ... 1

˛

‚.

Now observe that Fxiyj ˝ η “ pFxi ˝ ηq ¨ yj. We use this and write:

´λ´1
ÿ

i“1

Fhi´1px, yq ˝ η “

´λ´2
ÿ

i“0

ÿ

j`k“i

Fxj ˝ η ¨ yk

“

˜

´pλ`1q´1
ÿ

i“0

Fxi ˝ η

¸

˝ Mh,

and it follows from this and the isomorphism above the claim that the map of the claim

is an isomorphism.

By writing out terms, we have:

˜

p ε
σ q ,

´λ´1
ÿ

i“0

´

yi

Fhi´1px,yq˝η

¯

¸

“

¨

˚

˝

ε 1 y . . . y´λ´1

σ 0 η . . . Fh´λ´2px, yq ˝ η

˛

‹

‚

.

Interchanging the first two summands of the domain, we obtain the form:

¨

˚

˝

1
`

ε, y, y2, . . . , y´λ´1
˘

0

ˆ

σ,
´λ´1
ř

i“1

Fhi´1px, yq ˝ η

˙

˛

‹

‚

,

which (by the claim) is manifestly an isomorphism.
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� We have for rρ̃λs21, λ ě 0:

rρ̃λs21 : Fλ`1rys ‘ FEFλ`1rys Ñ Fλ`1rys ‘ Fλ`1rys ‘ F 2Eλ`1rys ‘ Fλ`1rys
‘λ

given by:

rρ̃λs21 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

0 Fε

0 Fσ
λ´1
À

i“0

xi
λ´1
À

i“0

F pε ˝ xiy1F q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

� We have for rρ̃λs21, λ ď 0:

rρ̃λs21 : Fλ`1rys ‘ FEFλ`1rys ‘ Fλ`1rys
‘´λ

Ñ Fλ`1rys ‘ Fλ`1rys ‘ F 2Eλ`1rys

given by:

rρ̃λs21 “

¨

˚

˚

˚

˚

˚

˝

1 0 0

0 Fε
´λ´1
ř

i“0

yi

0 Fσ
´λ´1
ř

i“0

F pFhi´1px, yq ˝ ηq

˛

‹

‹

‹

‹

‹

‚

.

Proposition 3.4.12. The morphism of pArys, Arysq-bimodules rρ̃λs21 is an isomorphism

for all λ.

Proof. When λ ě 0, we have that

Fε ‘ Fσ ‘

λ´1
à

i“0

F pε ˝ xiy1F q : FEFλ`1rys Ñ Fλ`1rys ‘ F 2Eλ`1rys ‘ Fλ`1rys
‘λ

is an isomorphism, using Claim 3.4.10 and the fact that (horizontal) composition of the

identity functor on F with an isomorphism gives an isomorphism. Then rρ̃λs21 may be

compressed to a lower-triangular 2 ˆ 2 matrix with an isomorphism in position p2, 2q, so

it is an isomorphism.
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When λ “ 0, the two formulas for rρ̃λs21 agree. Assume now that λ ă 0, so the map
˜

Fσ,
´λ´1
ÿ

i“1

F
`

Fhi´1px, yq ˝ η
˘

¸

: FEFλ`1rys ‘ Fλ`1rys
‘´pλ`1q

Ñ F 2Eλ`1rys

is an isomorphism using Claim 3.4.11. Now expand the notation of the map rρ̃λs21 in the

third row:
¨

˚

˚

˚

˚

˚

˝

1 0 0 0

0 Fε 1
´λ´1
ř

i“1

yi

0 Fσ 0
´λ´1
ř

i“1

F
`

Fhi´1px, yq ˝ η
˘

˛

‹

‹

‹

‹

‹

‚

.

After switching the second and third summands of the domain, we obtain an upper-

triangular matrix with isomorphisms on the diagonal, so rρ̃λs21 is an isomorphism.

� We have for rρ̃λs12, λ ě 0:

rρ̃λs12 : Eλ´1rys ‘ EFEλ´1rys Ñ Eλ´1rys ‘ Eλ´1rys ‘ FE2
λ´1rys ‘ Eλ´1rys

‘λ

given by:

rρ̃λs12 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 εE

1 y1 ˝ εE

0 σE
λ´1
À

i“0

xi
λ´1
À

i“0

pε ˝ xiy1F qE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

� We have for rρ̃λs12, λ ď 0:

rρ̃λs12 : Eλ´1rys ‘ EFEλ´1rys ‘ Eλ´1rys
‘´λ

Ñ Eλ´1rys ‘ Eλ´1rys ‘ FE2
λ´1rys

given by:

rρ̃λs12 “

¨

˚

˚

˚

˚

˚

˚

˝

0 εE
´λ´1
ř

i“0

yi

1 y1 ˝ εE
´λ´1
ř

i“0

yiy1

0 σE
´λ´1
ř

i“0

pFhi´1px, yq ˝ ηqE

˛

‹

‹

‹

‹

‹

‹

‚

.
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Proposition 3.4.13. The morphism of pArys, Arysq-bimodules rρ̃λs12 is an isomorphism

for all λ.

Proof. When λ ě 0, we have that

εE ‘ σE ‘

λ´1
à

i“0

pε ˝ xiy1F qE : EFEλ´1rys Ñ Eλ´1rys ‘ FE2
λ´1rys ‘ Eλ´1rys

‘λ

is an isomorphism, using Claim 3.4.10 with E applied on the right. Note that E applied

on the right here is equivalent to λ`1Eλ´1 applied on the right, and this raises the weight

by 2, so we still invoke the isomorphism ρλ`1 for weight λ ` 1.

We perform some row operations on the matrix of rρ̃λs12. Subtract y1 times the first row

from the second to eliminate the coefficient y1 ˝ εE. Then exchange the first and second

rows, then exchange the second and third rows, then collapse the second and third into

the notation of the fourth. Obtain:
¨

˚

˝

1 0

0 ‘ 0 ‘
λ´1
À

i“0

xi σE ‘ εE ‘
λ´1
À

i“0

pε ˝ xiy1F qE

˛

‹

‚

,

which is upper-triangular with isomorphisms on the diagonal, so the original matrix for

rρ̃λs12 is an isomorphism.

When λ “ 0, the two formulas for rρ̃λs12 agree. Assume now that λ ă 0, so the map
˜

σE,
´λ´1
ÿ

i“1

`

Fhi´1px, yq ˝ η
˘

E

¸

: EFEλ´1rys ‘ Eλ´1rys
‘´pλ`1q

Ñ FE2
λ´1rys

is an isomorphism using Claim 3.4.11. Now expand the notation of the map rρ̃λs12 in the

third row:

rρ̃λs12 “

¨

˚

˚

˚

˚

˚

˚

˝

0 εE 1
´λ´1
ř

i“1

yi

1 y1 ˝ εE y1
´λ´1
ř

i“1

yiy1

0 σE 0
´λ´1
ř

i“1

`

Fhi´1px, yq ˝ η
˘

E

˛

‹

‹

‹

‹

‹

‹

‚

.
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Exchange the first and second rows, then the first and third columns, then collapse the

third and fourth columns into the notation of the third, and obtain:

¨

˚

˚

˚

˚

˚

˚

˝

1 y1

ˆ

y1 ˝ εE,
´λ´1
ř

i“1

yiy1

˙

0 1

ˆ

εE,
´λ´1
ř

i“1

yi
˙

0 0

ˆ

σE,
´λ´1
ř

i“1

`

Fhi´1px, yq ˝ η
˘

E

˙

˛

‹

‹

‹

‹

‹

‹

‚

.

Since this is upper-triangular with isomorphisms on the diagonal, the original matrix

rρ̃λs12 is an isomorphism.

� We have for rρ̃λs22, λ ě 0:

rρ̃λs22 : Aλ´1rys ‘ FEλ´1rys
‘2

‘ FEFEλ´1rys ‘ EFλ´1rys

Ñ FEλ´1rys
‘4

‘ F 2E2
λ´1rys ‘ Aλ´1rys

‘λ
‘ FEλ´1rys

‘λ (3.4.6)

given by: rρ̃λs22 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0

0 0 0 FεE 0

η y1 0 0 σ

0 1 0 0 0

0 0 0 FσE 0
λ´1
À

i“0

yi 0 0 0
λ´1
À

i“0

´ε ˝ hi´1px, yqF

λ´1
À

i“0

hi´1px, yq ˝ η
λ´1
À

i“0

xiE
λ´1
À

i“0

Fxi
λ´1
À

i“0

F pε ˝ xiy1F qE Θ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

Θ “

λ´1
à

i“0

´FEε ˝ F
`

τ ˝ hi´1px1, x2q ´ hi´2px1, x2, yq
˘

F ˝ ηEF.

161



� We have for rρ̃λs22, λ ď 0:

rρ̃λs22 : Aλ´1rys ‘ FEλ´1rys
‘2

‘ FEFEλ´1rys ‘ EFλ´1rys

‘ Aλ´1rys
‘´λ

‘ FEλ´1rys
‘´λ

Ñ FEλ´1rys
‘4

‘ F 2E2
λ´1rys (3.4.7)

given by: rρ̃λs22 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0
´λ´1

ř

i“0
Fyi ˝ η

´λ´1
ř

i“0
yiy1

0 0 0 FεE 0
´λ´1

ř

i“0
´Fhi´1px, yq ˝ η

´λ´1
ř

i“0
yi

η y1 0 0 σ 0 0

0 1 0 0 0
´λ´1

ř

i“0
Fxi ˝ η 0

0 0 0 FσE 0 Θ1
´λ´1

ř

i“0
F 2

`

hi´1px2, yq
˘

˝ FηE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

Θ1
“

´λ´1
ÿ

i“0

F 2
`

hi´1px1, x2q ˝ τ ´ hi´2px1, x2, yq
˘

˝ η2.

Proposition 3.4.14. The morphism of pArys, Arysq-bimodules rρ̃λs22 is an isomorphism

for all λ.

Proof. When λ ą 0 and therefore λ ´ 1 ě 0, the map

σ ‘

λ´2
à

i“0

´ε ˝ xiF : EFλ´1rys Ñ FEλ´1rys ‘ Aλ´1rys
‘λ´1

is an isomorphism. (The minus sign does not interfere.)

Claim 3.4.15. When λ ą 0, the map

σ ‘

λ´1
à

i“1

´ε ˝ hi´1px, yqF : EFλ´1rys Ñ FEλ´1rys ‘ Aλ´1rys
‘λ´1

is an isomorphism.

Proof. Define an isomorphism M 1
h P EndAλ´1rys

`

Aλ´1rys‘λ´1
˘

with components rM 1
hsii “
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1, rM 1
hsij “ yi´j for i ą j, and rM 1

hsij “ 0 for i ă j. This is a lower-triangular invertible

matrix:

rM 1
hs “

˜ 1 0 0 ... 0
y 1 0 ... 0
y2 y 1 ... 0
... ... ... ... ...

yλ´2 y´λ´3 yλ´4 ... 1

¸

.

Now observe that ε ˝ xiyjF “ yj ¨ ε ˝ xiF . Using this, we can write:

λ´1
à

i“1

´ε ˝ hi´1px, yqF “

λ´2
à

i“0

ÿ

j`k“i

yk ¨ p´ε ˝ xjF q

“ M 1
h ˝

˜

λ´2
à

i“0

´ε ˝ xjF

¸

,

and it follows from this and the isomorphism above the claim that the map of the claim

is an isomorphism.

Now assume λ ą 0 and reorder the summands of the domain and codomain to permute

the rows and columns of the matrix of rρ̃λs22. Let the domain be given in the order:

FEλ´1rys
‘2

‘ Aλ´1rys ‘ EFλ´1rys ‘ FEFEλ´1rys,

where the first two identical summands appear in the same order as before. Let the

codomain be given in the order:

FEλ´1rys
‘2

‘ Aλ´1rys ‘ FEλ´1rys ‘ Aλ´1rys
‘λ´1

‘ F 2E2
λ´1rys ‘ FEλ´1rys ‘ FEλ´1rys

‘λ´1,

where the new summand number (numbered left to right) and corresponding old summand

number are given precisely in the following chart:

new: 1 2 3 4 5 6 7 . . . λ ` 3 λ ` 4 λ ` 5 λ ` 6 . . . 2λ ` 5

old: 4 1 6 3 7 8 9 . . . λ ` 5 2 5 λ ` 6 . . . 2λ ` 5.

Writing the matrix of rρ̃λs22 for λ ą 0, with columns and rows changed by the above
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permutations, we obtain:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

y1 0 η σ 0

0 0
λ´1
À

i“1

yi
λ´1
À

i“1

´ε ˝ hi´1px, yqF 0

0 0 0 0 FεE

0 0 0 0 FσE
λ´1
À

i“0

xiE
λ´1
À

i“0

Fxi
λ´1
À

i“0

hi´1px, yq ˝ η Θ
λ´1
À

i“0

F pε ˝ xiy1F qE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

After compressing the notation of rows 3 and 4 of this matrix, and also of rows 6-8, we

obtain a lower-triangular matrix. The last two diagonal entries are:

¨

˚

˝

σ
λ´1
À

i“1

´ε ˝ hi´1px, yqF

˛

‹

‚

,

which is an isomorphism by the claim, and:
¨

˚

˚

˚

˚

˚

˝

FεE

FσE
λ´1
À

i“0

F pε ˝ xiy1F qE

˛

‹

‹

‹

‹

‹

‚

: FEFEλ´1rys Ñ FEλ´1rys ‘ F 2E2
λ´1rys ‘ FEλ´1rys

‘λ,

which is an isomorphism for λ ą 0, and therefore for λ ` 1 ě 0, using Claim 3.4.10 with

F applied on the left and E on the right.

When λ “ 0 the matrix of rρ̃λs22 is given by removing rows 3, 5–pλ ` 3q, and pλ ` 6q–
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p2λ ` 5q:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

y1 0 η σ 0

0 0 0 0 FεE

0 0 0 0 FσE

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

When λ “ 0 we also have isomorphisms:

pη, σq : EFλ´1rys ‘ Arysλ´1
„
ÝÑ FEλ´1rys

and

p FεE
FσE q : F

`

FEλ`1

˘

Erys
„
ÝÑ Fλ`1Erys ‘ F

`

EFλ`1

˘

Erys,

so we see that again the matrix can be written as a lower-triangular matrix with invertible

diagonal entries.

Finally, assume λ ă 0. We have an isomorphism:
˜

σ,
´λ
ÿ

i“0

Fxi ˝ η

¸

: EFλ´1rys ‘ Aλ´1rys
‘´pλ´1q „

ÝÑ FEλ´1rys,

which is the isomorphism ρλ´1 bk krys. There is a final claim to check:

Claim 3.4.16. When λ ă 0, the map
˜

σ, η,
´λ´1
ÿ

i“0

´Fxiy1 ˝ η

¸

: EFλ´1rys ‘ Aλ´1rys
‘´pλ´1q

Ñ FEλ´1rys

is an isomorphism.

Proof. Define an isomorphism M 1
´y P EndAλ´1rys

`

Aλ´1rys‘λ´1
˘

with components rMhsij

given by 1 along the diagonal and ´y along the subdiagonal. This is a lower-triangular
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invertible matrix. We write the map in question as a composition of isomorphisms:
˜

σ, η,
´λ´1
ÿ

i“0

´Fxiy1 ˝ η

¸

“

˜

σ, η,
´λ
ÿ

i“1

Fxi ˝ η

¸

˝

¨

˚

˚

˚

˚

˝

IdEFλ´1rys 0 0

0 IdAλ´1rys 0

0 0 ´IdAλ´1rys‘´λ

˛

‹

‹

‹

‹

‚

˝

¨

˚

˝

IdEFλ´1rys 0

0 M 1
´y

˛

‹

‚

.

Now letW be the endomorphism of the codomain of rρ̃λs22 given by the invertible matrix:

rW s “

˜

1 0 0 0 0
0 1 0 0 0
0 0 1 ´y1 0
0 0 0 1 0
0 0 0 0 1

¸

.

We show that rW s ¨ rρ̃λs22 is equivalent to a lower-triangular matrix after giving a suitable

permutation of the domain and codomain summands. Let the domain be given in the

order:

EFλ´1rys ‘ Aλ´1rys
´pλ´1q

‘ FEλ´1rys ‘ FEFEλ´1rys ‘ FEλ´1rys
´pλ`1q

‘ FEλ´1rys
‘2,

where the change of summand numbers is given by the following chart:

new: 1 2 3 4 . . . ´λ ` 2 ´λ ` 3 ´λ ` 4

old: 5 1 6 7 . . . ´λ ` 5 2 4

new: ´λ ` 5 ´λ ` 6 . . . ´2λ ` 4 ´2λ ` 5 ´2λ ` 6

old: ´λ ` 7 ´λ ` 8 . . . ´2λ ` 5 ´λ ` 6 3.

Let the codomain be given in the order:

FEλ´1rys
‘4

‘ F 2E2
λ´1rys,
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where the change of summand numbers is given by the following chart:

new: 1 2 3 4 5

old: 3 4 5 2 1.

The matrix of rW s ¨ rρ̃λs22 for λ ă 0 agrees with that for rρ̃λs22 except in the third row,

where it is:
ˆ

η 0 0 0 σ
´λ´1
ř

i“0

´Fxiy1 ˝ η 0 0

˙

.

Writing now the matrix of rW s ¨ rρ̃λs22 with columns and rows changed by the above

permutations, and compressing the notation for some columns, we obtain:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

σ, η,
´λ´1

ř

i“0

´Fxiy1 ˝ η

˙

0 p0, 0q 0 0
ˆ

0, 0,
´λ´1

ř

i“0

Fxi ˝ η

˙

1 p0, 0q 0 0

p0, 0,Θ1q 0

ˆ

FσE,
´λ´1

ř

i“1

F 2hi´1px2, yq ˝ FηE

˙

0 0
ˆ

0, 0,
´λ´1

ř

i“0

´Fhi´1px, yq ˝ η

˙

0

ˆ

FεE,
´λ´1

ř

i“1

yi
˙

1 0
ˆ

0, 0,
´λ´1

ř

i“0

Fyi ˝ η

˙

0

ˆ

0,
´λ´1

ř

i“1

yiy1

˙

y1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The upper left map is an isomorphism by the Claim proved above. The middle diagonal

map is an isomorphism because it is the isomorphism of Claim 3.4.11 with F applied on

the left and E on the right. So the matrix is lower-triangular with isomorphisms along

the diagonal.
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