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ABSTRACT OF THE DISSERTATION

A Tensor Product Operation for Higher Representations

by

Matthew Ian McMillan

Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2023

Professor Raphaél Alexis Rouquier, Chair

We construct an explicit abelian model for the tensor 2-product of 2-representations of sls,
specifically the product of a simple 2-representation £(1) with a given abelian 2-representation
V. Both are taken from the 2-category of algebras, and V is assumed to satisfy two further
hypotheses.

The existence of an abelian model like this one, or a generalization of it, was conjectured
by Rouquier in 2008.

We study the output of our construction in detail in the case V = £(1), and we show that
the 2-representation it determines recovers the expected structure of a categorification that
is already known for that case.

We form the product construction first for 2-representations of the positive half U* (a
monoidal category) of the 2-category associated to the Lie algebra sly. In a subsequent
chapter we show that the same construction gives a 2-representation of the full 2-category

U when the inputs are also 2-representations of the full 2-category U.
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CHAPTER 1

Introduction

This dissertation consists in the proof of a single theorem. The theorem establishes the
existence of an abelian 2-representation inside the derived 2-representation that is naturally
associated to a pair of abelian 2-representations of sly. This 2-representation is a kind of
tensor product of the pair of 2-representations, so we call it a ‘tensor 2-product’.

We only consider the case where one member of the pair is a certain simple 2-representation
called £(1), and the other member V is an abelian 2-representation satisfying two additional
hypotheses. We do not know how to define the general case. Both 2-representations are
given as categories of modules over algebras. The theorem is proved by giving concrete
formulas for the structure it postulates, and the formulas are of considerable importance for
the potential applications we envision.

The theorem is a major first step toward a fully general construction of an abelian tensor
2-product of 2-representations of Kac-Moody algebras. The existence of an abelian con-
struction (in full generality) was conjectured by Rouquier in 2008, shortly after the modern

concept of 2-representation was first defined.



1.1 Categorical representations of Lie algebras

1.1.1 Concepts

Representations of the Lie algebra sl,

The enveloping algebra U of the Lie algebra sly(C) is generated by elements e and f, with
the notation h = [e, f]. A finite dimensional representation of sly, i.e. a U-module V', may
be decomposed into eigenspaces V) of h (the ‘weight spaces’) for A € Z, so V = @, V), and

the relations [h, e] = 2e, [h, f] = —2f imply that e and f restrict to linear maps:
e: Vi Vit f,
and from [e, f] = h we have a relation between linear maps on V):

e-f—f-e\vkz)\-IdVA. (111)

Promotion to categorical structures

In a categorical representation, the role of the collection of weight spaces V) is played by a
collection of additive ‘weight categories’ V,, and the role of an element v € V), is played by
an object M € V. The linear maps e, f are replaced by a pair of linear functors given for

each A:

Ex: V2 Vi Fo.

It is useful to package these functors as the restrictions of a single pair of endofunctors £ and
Fof V =@, V». Now, we need a categorical version of the formula (1.1.1) that is induced

by the equation [e, f] = h.



At least when A > 0, it is natural to replace A - Idy, by the functor:

Id§ : Yy — W,

M — M,

Then the formula (1.1.1) can be expressed in the categorical theory by an isomorphism of
functors py : Ex_o0 F)\ — Fy00 B\ @ Ida’\. When A < 0 we can use the same Id%)‘ on the
other side and require an isomorphism py : E\_s 0 F\ @ Id%_’\ = F\ 90 E).

In the general philosophy of categorification, elements are promoted to objects, and one
supplies to every pair of objects the additional data of a Hom space such that the Hom
spaces jointly have the structure implied by compositionality. The notion of equivalence of
objects in a category is more complex than the notion of identity of elements in a vector
space, involving as it does the structure of these Hom spaces: a single object may have a
variety of isomorphisms to itself, which express its symmetries, and therefore also a variety
of isomorphisms to another object. A consequence is that when a categorical structure
is defined by generators and relations, it is possible to give a ‘weak’ or ‘naive’ definition
where the relations simply postulate the existence of isomorphisms between the functors,
and a ‘strong’ or ‘genuine’ version where the relations stipulate that a certain morphism of
functors, which they name, is an isomorphism of functors. Usually the strong definition is
preferable. So, to complete the idea of categorical representation of sls, we need names and

packaging for many morphisms:
) A
priEx 20 Fy > FypoE,@IdR  A>0

pri Exao Fx®I1d§ " — Frino By A <0,

The data of a 2-representation will include these morphisms, and the definition of 2-representation
will require that they are isomorphisms.

At this juncture the idea of ‘categorifying’ the U-module V' ceases to be procedural.



The theory of higher representations began in earnest with the discovery of a symmetry
describable among these morphisms of functors that may be justified from several points of
view. The symmetry is that of a certain Hecke-type algebra. We prepare the way for this

algebra next.

Adjunction

Observe first that the data of the morphisms of functors consists of various morphisms
FF — 1d,Id - FFE, and FF — FE. With this in view, it is very natural to require that
(E, F) be an adjoint pair. (And, notice that with respect to the Shapovalov form on V| e
and f act by adjoint linear maps.) Adding this hypothesis allows one to package the data

of the various morphisms in a simple way. From the adjunction we have isomorphisms:

Hom(Id, FE) =~ End(E) =~ Hom(EF, Id),

Hom(EF, FE) =~ End(EE).

This means that all the morphisms of functors in question can be determined by the data of
various elements of End(FE) and End(EFE). The unit 1 : Id - FFE and counit ¢ : EF — Id
are determined, of course, by the natural element Idg. But there is a further aspect, since
End(E) and End(EFE) have natural ring structures using composition for multiplication.
This feature implies that a single element x € End(FE) generates a potentially infinite list
of morphisms FF — Id and Id — FFE, namely by interpreting the powers z" € End(F)
through the above isomorphisms of Hom spaces.

Let us say that the modern definition of categorical representation makes two major
moves, both of which concern the assembly of functors we are discussing. The first is to
insist that the pair (E, F) form an adjunction, and then to define the constituent maps
EFF — 1d, Id - FFE, and FF — FFE in the above manner in terms of a single generator

x € End(F) and another generator 7 € End(EFE). In precise detail, we let o : EF — FE by
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0=FFEeo FTFonEF, and for A > 0 we let eoz'F : EF — Id, 1 € {0,..., A — 1} give the
maps FF — Id, and for A <0 we let Fz'on:1d — FE, i€ {0,...,—\ — 1} give the maps
Id - FE.

The second major move is to introduce relations on the generators. These will be re-
lations between Fx and xFE and 7 inside End(EFE), as well as relations between E7 and
7E inside End(FEE). It is much harder to motivate the details of these relations purely
from considerations of the original Lie algebra structure, even granting a desire to recast
it in categorical terms. The move was not made for a decade after the concept of naive
categorical representation was introduced, probably for that reason, and there remains some
variety when it comes to the details used in the literature for the relations. The relations do
have the common feature of a ‘Hecke-type’, and that may be, as we have mentioned, justified

from several points of view, to which we now turn.

Hecke relations

The categorical version of Lie theory did not originate as a sophistication of classical Lie
theory. Some of the momentum it has, to be sure, derives from an ambitious vision of Crane-
Frenkel to make Lie theory a suitable receptacle of 4d topological information. Were it not
for these laudable motivations, namely their extrinsic goals, adherents of the Crane-Frenkel
TQFT program would lie somewhat exposed to a charge — not infrequently levied by repre-
sentation theorists — of dressing classical theory in complicated clothing without increasing
its real content. But, we hasten to insert, the origin of the categorical theory, to include, if
only implicitly, the ‘Hecke-type’ actions that are now seen to have central importance, can
be found in the geometrical manifestation of the ‘canonical bases’ in quantum groups. These
were discovered by Lusztig, and used by him to prove positivity statements by interpreting
integer coefficients as dimensions of spaces of perverse sheaves. An analogous strategy also

worked for the positivity conjecture of Kazhdan-Lusztig.



The point, the first point of view, is that one must acknowledge a close connection between
the very idea of categorical Lie theory and the passage to geometrical settings, and that the
modules playing the role formerly occupied by elements have a natural meaning in the
geometrical settings. With this admitted, the Hecke-type relations on x and 7 may be
justified by their occurrence in the geometrical settings. We will say more about those
settings below.

A second point of view is that a definition should be judged by the theorems one can prove
using it. The Hecke-type relations on the generators  and 7, when added to the definition
of 2-representation, enable one to define ‘minimal’ 2-representations £(A) that have the
irreducible 1-representations L(A) of g as their Grothendieck groups, and that also have a
universal property analogous to that of Verma modules. Those 2-representations enable the
proof of a categorical analogue of the Jordan-Holder series decomposition, and this in turn
allows one to reduce some statements about general 2-representations to statements about
the minimal ones. This technique was used by Chuang-Rouquier in the course of their proof
of the symmetric group case of Broué’s Abelian Defect Conjecture about finite groups.

Let us say a brief word about how the Hecke-type relations lead to structure theorems
in the case of sly. Firstly, the (nil affine) Hecke algebras have the structure of n! x n!
matrix algebras, the idempotents of which yield decompositions of the powers of £, namely
Er=~EM@...®E™ where E™ is called a ‘divided power’. (Similarly F" ~ (F™)®n!)
The divided powers are shown to be indecomposable modules, in appropriate circumstances,
whose classes give Lusztig’s canonical basis elements in the Grothendieck group. If the
structure of the Grothendieck group is known in advance, which it typically is, then the
divided powers and their endomorphism algebras determine the structure of the whole 2-
representation.

We may add a third point of view. In representation theory, one looks for structures with

interesting sets of representations. In categorical representation theory, it has proven difficult



to say as much as in the classical theory about the (internal) structure of the set of categorical
representations of a Lie algebra. (This dissertation adds something to remedy the deficit.) It
is difficult partly because a categorical representation is a more complicated structure, owing
to the Hecke-type symmetry in the 2-morphisms. On the other hand, one can find interest
in the diversity of domains in which categorical representations (with the Hecke symmetry)
can be found. We alluded in the previous paragraph to an appearance in connection with the
Broué conjecture. This has to do more specifically with the modular representation theory
of symmetric groups, where the categorical ‘E’ is given by a restriction functor and the
generator x arises from Jucys-Murphy elements. Perhaps unsurprisingly, considering Schur-
Weyl duality, one can also provide the structure of categorical representation to several

categories of representations of gl , such as parabolic category O. And, of course, there is

n’

thirdly the class of geometrical categorical representations that we will address shortly.

Categorical enveloping algebra U(g)

Categorical representations can be described with a little more abstraction as ‘2-representations’
of certain 2-categories. Let us illustrate the idea first with the categorical version of the pos-
itive half U(sly)™ of the enveloping algebra associated to sly. One forms a monoidal category
UT generated by a single object E. The morphisms are generated by = € End(F) and
7 € End(FFE) modulo the Hecke-type relations, see (1.3.1). Then a ‘2-representation’ of U™
on a monoidal category V is a strict monoidal functor Ut — V. For example, when V is
the category Bimg(A) of (A, A)-bimodules for a k-algebra A, then a 2-representation on V
amounts to the data of such a bimodule 4F4, together with bimodule maps € End(FE) and
7 € End(FFE) satisfying the Hecke-type relations. This setup can be generalized to other Lie
types by including generators E; for simple roots ¢ of a root system, and augmenting the set
of morphisms and relations accordingly. We generalize ‘Hecke-type relations’ from ‘nil affine

Hecke relations’ to ‘quiver Hecke relations’.



When considering the full algebra U(sly), and the categorical setting where we are in-
terested in representations having weight decompositions, it is sensible to expand U(sly)
somewhat and form a 1-category U(sly) in which the generators of U(sly) become arrows,
and we include an object 1, for each weight \. Now, instead of forming a monoidal cate-
gory as for U™, one forms a 2-category U, where the single object is expanded to the set of
weight objects {1,}, the monoidal structure is promoted to the arrows of a 1-category, and
the old morphisms become the new 2-morphisms. A ‘2-representation’ of U on a 2-category
V), such as the category Cat of categories, is then a strict 2-functor 4 — V. The data of
such a map U — Cat consists in the choice of ‘weight categories’ Vy, i.e. the images of {1,}
in Cat, together with 1-morphisms E) : V), — Vy,2 and F) : V), — V,_o, and 2-morphisms
x) € End(F)) and 7, € End(FE),2F)), such that the Hecke-type relations are satisfied, and
the maps p, they determine are isomorphisms. The same upgrade procedure can be per-
formed in other Lie types, and the resulting U(g) is said to be the 2-category that categorifies
U (g). A technical complication comes in defining the general version of Hecke-type relations.
Let us also remark that a graded version ‘U,(g)’ or ‘U(g)-gr’ gives the categorical counterpart
of the quantum group U,(g).

It turns out that the positive half U+ has an increased significance in the categorical
setting, relative to the full 2-category U, when compared to the significance of U(g)* relative
to U(g). In the next section, U™ will be given a geometric meaning that does not generalize

to U. This meaning was essential for the discoveries and constructions in the history of U.

Geometry

One can realize U+ as the monoidal category of perverse sheaves on a moduli stack of
representations of a quiver. While there is not a similar realization known for the whole
of U, one can provide a geometric realization of the minimal 2-representations of U/, those

mentioned above in connection with Jordan-Hélder series, by using Nakajima quiver varieties.



(These varieties were designed to provide a geometric realization of the whole of U(g), as
well as its irreducible integrable representations, i.e. at the level of the Grothendieck ring.)
This construction generalizes to a geometric realization of the categorical representations
having Grothendieck group a tensor product of irreducibles. (More on that later.)

Let @ be a quiver with [ its set of vertices, where ) is the Dynkin diagram of g with
added orientation. Let Rep(Q) be the moduli stack of representations of () over C. We have
Rep(Q) = u,Rep(Q), where Rep(Q), collects the representations with dimension vector
v € NI. The derived category D(Rep(Q)) = ®,D(Rep(Q),) has a monoidal structure
given in the manner of convolution, as follows. There is a stack of exact sequences of Q-
representations, S = {0 — V; — V3 — V5 — 0}, with three projections 7; : S — Rep(Q).

Given A € D(Rep(Q),), B € D(Rep(Q),), we form a product:
Ax B =m3,(rfA® 73 B) € D(Rep(Q)y+p)-

Let P(Rep(Q®),) collect the direct sums of shifts of simple perverse sheaves in D(Rep(Q),).
Then P(Rep(Q)) = ®P(Rep(Q),) is a monoidal category by the decomposition theorem,
and it has a homological grading. Lusztig showed that the Grothendieck ring of P(Rep(Q))
is isomorphic to U,(g)™".

There is an isomorphism of monoidal categories (U, )" = P(Rep(Q)). (Here (U}")" refers
to an idempotent-completion of ¢;".) We do not spell out any details, but this isomorphism
entails the presence of the Hecke-type symmetry in P(Rep(Q)). This should be viewed as
a fundamental source for the Hecke relations appearing in higher representation theory, and
the isomorphism in question may be viewed as contributing to the definition of U.

In the case of sly, @ is a single vertex «, and an object V' € Rep(Q) is a vector space. Then

Rep(Q)nq is the stack pt/GL,. One can find the (nil affine) Hecke algebra °H,, in P(Rep(Q))

as follows. Let Z = Rep(Q)na XRep(Q)na REP(Q)na, Where Rep(Q)nq is the stack of complete

flags of representations of ) with top dimension vector na. So Rep(Q)n. is FI(C")/GL,,



and Z = (FI(C") x FI(C"))/GL,. Then the convolution algebra H,(Z) is an Ext-algebra
in P(Rep(Q)) isomorphic to °H,,. It can also be computed as HS* (FI(C") x FI(C")). The
latter may be viewed as the most basic appearance of Hecke-type relations in geometry.
We briefly turn to the Nakajima quiver varieties. Let Y = u,Y (A, ) be a Nakajima
quiver variety. It is an open subset of T*M (A, i), where M (A, ) is a stack naturally defined
in Nakajima’s context. There is a category D(A, i) of constructible sheaves on M (A, p). In
the case of sly, with A\ = n and pu = n — 2k, this is D(\, u) = D%(Gr(k,C")). It is a theorem
that, for general g, the categories D(\, i) give the p-weight categories of a 2-representation

of U(g) with Grothendieck group the irreducible representation L(\) of g.

1.1.2 History

So far as the author is able to see into the past, the main idea of categorical representation
theory originated with C. Ringel in 1990 [Rin90]. Ringel discovered that the isomorphism
classes of representations of a Dynkin quiver, over a finite field IF,, has the structure of the
positive half of the quantized enveloping algebra U,(g)", where ¢ is a function of the prime p,
and g is determined by the quiver. The ‘structure of isomorphism classes’ refers to the ring
structure of extensions that was defined much earlier by P. Hall. This discovery of Ringel
inspired! G. Lusztig’s work using perverse sheaves on the space of representations of a quiver
[Lus90, Lus91].2 The description in terms of perverse sheaves is what gives the canonical
bases for U,(g)* and the irreducible U,(g)-modules.

In 1994, L. Crane and I. Frenkel made explicit a proposal to recast many algebraic struc-
tures in representation theory into categorical terms [CF94]. The reason for their interest
in this project was that the higher dimension of categorical terms could allow some exist-

ing ideas through which 3d topological information is rendered into representation-theoretic

LCf. [Lus10, note 5, p. 127].
2 Another part of Lusztig’s innovation was inspired by his own earlier work on character sheaves [Lus85].

10



structures to be ‘upgraded’ to ideas through which 4d topological information is rendered
into categorical analogues of the same representation-theoretic structures. These ideas in-
cluded, especially, the invariant of 3-manifolds discovered by Witten and Reshetikhin-Turaev
(WRT) [Wit89, RT91]. The WRT invariant relies on the Hopf structure of a quantum group
U,(g), which provides tensor product and dualization structures for the category of repre-
sentations of U,(g). Crane and Frenkel recognized in Lusztig’s canonical bases the traces of
a world of higher algebras, higher representations, and higher Hopf structure.

M. Broué’s Abelian Defect Conjecture [Bro86] motivated J. Chuang and R. Rouquier’s
study [CROS8| (released 2004) of the representation category for symmetric groups, where
they incorporated the structure of higher representation we have discussed, describing for
the first time endomorphisms x € End(E) and 7 € End(EFE) that carry the data of the
maps involved in the categorical commutator relations, as well as the Hecke-type relations
that = and 7 should satisfy. Rouquier extended this work to a systematic theory of cate-
gorical Kac-Moody algebras U in [Rou08a| (see also [Roul2)), introducing the ‘quiver Hecke
algebras’ that generalize the Hecke-type symmetry of x and 7. Around the same time, in-
dependently, M. Khovanov and A. Lauda [KL09, Laul0, KL10] found a special case of the
Hecke-type relations in the cohomology of partial flag varieties, and used those to produce
categorical representations, as well as to inspire their own definition of essentially the same
U, given by diagrammatic generators with the Hecke-type relations that they saw in the co-
homology. The connection between these cohomology rings and quantum groups was known
from Beilinson-Lusztig-MacPherson’s geometric model of U,(sl,,) [BLM90], which had in
turn been interpreted categorically already by Grojnowski-Lusztig [GL92]. Khovanov and
Lauda recognized that the Hecke-type action on 2-morphisms in i/ leads to the existence
of commutator isomorphisms p,, although they did not emphasize the way the p, are de-
termined by x and 7 together with the one adjunction (F, F), as Rouquier had done. In

Rouquier’s approach only one adjunction is postulated, and the morphisms p, are inverted
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formally to define /. In Khovanov-Lauda’s approach, a bi-adjunction is postulated, and the
existence of commutator isomorphisms is established using the bi-adjunction and the Hecke
action. Brundan has shown [Brul6] that the two definitions of U essentially agree.

The geometric description of categorical representations using the quiver varieties of
H. Nakajima [Nak94] was given first for tensor products of U,(sly)-representations in 2007
by H. Zheng [Zhe07], and extended in 2008 to 2-representations with Grothendieck group
either irreducible or a tensor product of irreducibles [Zhel4]. Zheng did not show that the
px as determined by z and 7 were isomorphisms, but he showed that some commutator
isomorphisms existed, and Rouquier was able to deduce the former from this fact and his

own theory [Roul2, Thm. 5.10].

1.2 Tensor product

1.2.1 Concepts

The operation of tensor product is ubiquitous in representation theory and its applications.
The tensor product is a primary means of generating new representations from old ones. In
this thesis we develop a tensor product for 2-representations. The nature of the problems
arising at the categorical level should be set against the structure of the classical theory, so
we summarize the classical theory first.

Let us be given two representations of sly(C), called Vi and V5. Form the vector space
Vi ®c V,. This space has two commuting actions of sly: in the first, e € sl; acts by e® 1, in
the second it acts by 1 ® e. The tensor product representation consists in a new, ‘diagonal’,
action in which e acts by e® 1+ 1®e. It is not hard to see that this rule gives an action. It’s a
little harder to see, but this action has the property that the canonical (trivial) isomorphism

(Vi ®c V2) ®c Vs — Vi ®c (Vo ®c V3) commutes with the actions determined on each side by

12



applying the above procedure twice. Now there is an anti-automorphism S of Ul(sly) given
by X — —X. Using this, V; can be viewed as a U(sly)°P-module, which is to say, as a right
U (slz)-module, and we can form the tensor product over the sly action, written Vi ®y Va.
This product is smaller, lacking the diagonal symmetry. Now, observe a simple relationship
between the diagonal action on V; ®¢ V5 and the smaller product V; ®y Va: the latter is the
largest quotient of the former on which sly acts diagonally by zero.

In the case of U(g) or U,(g), the discussion above can be expressed in the language of
Hopf algebras. Suppose gy M and g /N are two representations of a Hopf k-algebra H with
coproduct A : H - H ® H and antipode S : H — H. There is a large outer product
M ®; N with two commuting actions of H on the two factors, and a third, diagonal, action
given by first applying A. The coassociativity property of A implies that the trivial map
(M®N)®L — M®(N®L) is an isomorphism of H-modules. By using S to view M as a
right H-module, we can form the smaller product M ®y N. The smaller product is related
to the larger as follows: M ®g N is the largest quotient of M ®, N on which H acts through
A by 0. For U(g) or U,(g), the formulas A(h) = h®1+1®h and S(h) = —h can be used
to write the condition A(h).(m ®n) = 0 as the equality of elements m.h ® n = m ® h.n.

We do not have a Hopf structure on the categorical analogue 4. We are interested in
building such a structure, or at least the expression of such structure on the collection of
2-representations. Let V; be an abelian category of A;-modules for ¢ = 1,2, where V; is
a 2-representation of U given by the data (F;, 2%, 7°). We can easily define a large ‘outer
product’ category Vi ®g Vs, with objects generated by pairs of modules M ®; N, and it has
two commuting actions of U. We seek a kind of diagonal action of U on V; ®; Vs, but we do
not at the outset insist on the coassociativity feature or the use of an antipode.

The fundamental conceptual choice of our method, advocated by Rouquier since at least
2008 [Rou08b], is to define the diagonal 2-representation, call it V; &) Vs, by first imagining

the smaller product taken over U, written perhaps V; ®y Vs, and then defining V; ®) Vs so

13



that it bears an analogous relation to V; &y Vs as V) ®c¢ Vs does to V) ®p Vo or M ®,. N does
to M ®y N. That is to say, one should be able to realize V; &y V> as the largest quotient
of V1 ® V2 on which U acts diagonally by zero. Then, if we can define first V; ®y Vs, the
relationship will point us toward the definition of V; &) V5.

Now there is a natural way to define V; ®y, Vs, at least in principle. In this category, there
should be isomorphisms of modules o, : Ey(M)®y N — M ®;, E>(N). (And they should be
equivariant over the actions of z* on E; and 7* on E?.) These isomorphisms would induce the
conditions A(e).(m®mn) = 0 on the Grothendieck group, where e = [E], m = [M], n = [N].
As in our first discussion about the commutator isomorphisms, the category V; ®y Vs should
include the data of the morphisms «f;. Of course, the collection should be functorial, so
really we want a single Hecke-equivariant morphism of functors a : F; ® Id — Id ® E5. This
a should be formally inverted in the definition of the product V; & Vs.

At this point one can see a way to define the larger category Vi &) Vs, namely as the outer
product V;®; Vs with the additional data of a Hecke-equivariant morphism « of functors. The
smaller category is determined from this by adding the condition that « is an isomorphism.
What is the diagonal action of E on V; &) V>? This should be a functor that acts by zero
on a simple tensor of modules M ®; N for which «}; is an isomorphism. Recall that o)} is
a quasi-isomorphism if and only if its cone is acyclic. The second basic idea of our method,
also due to Rouquier, is to use the cone of a for this functor, and to move to a homotopy or
derived setting. Needless to say, this move opens the door to myriad technical complications,
and it is the procedural reason that the definition of V; ®) V, we study in this thesis belongs
in its ‘full’ nature to the homotopy or derived setting.

To complete the concept of V; @) Vs, it is necessary to supply natural z- and 7-equivariant

morphisms aglg%%gg (where C' = Cone(ad;)) in order to make Cone(ad;) an object in

Vi® Vs, and to supply endomorphisms z and 7 of Cone(a};) and Cone(Cone(a?})) satisfying

Hecke-type relations in order to make a 2-representation of U using Cone(a?;) for the image
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of E. Here one encounters further technical difficulties. We continue in §1.4 a discussion
about how the construction in this thesis overcomes those difficulties.

We may include here an important observation about the idea sketched thus far. In
the concept of Vi ®y Vs, the isomorphisms are, naturally, bidirectional. In the definition
of Vi ® Vs, on the other hand, we have broken the symmetry by preferring a choice of
domain and codomain for the morphism «. It may seem at first that this asymmetry is
unnatural and undesirable, but deeper consideration suggests that thought to be premature.
Recall that the tensor product M; ® M of representations of the quantum group U,(g) is
isomorphic to the tensor product Ms® M;, but not by the trivial exchange of factors. Indeed
the usual isomorphism is by the highly nontrivial action of the quantum R-matrix. In this
way the quantum group tensor product is not symmetric. Given that a graded version of
categorical tensor product should categorify the quantum tensor product, we might in fact

expect asymmetry in the categorical setting for the undeformed Lie algebra.

1.2.2 History

The original Crane-Frenkel program included the idea of building a ‘Hopf category’ upgrad-
ing the Hopf structure of quantum groups that was central to the WRT invariant. Early
work on ‘categorification’ that explicitly participated in this program, such as Bernstein-
Frenkel-Khovanov’s [BFK99], sought and studied categorical representations including cate-
gorifications of tensor products of simple representations of U(sly). In [FKS07] the authors
extended this theory to the quantized case U, (sly) using graded versions of similar structures.
The main structures used were singular blocks of Harish-Chandra bimodules considered in
category O of gl,, and parabolic subcategories of the regular block of the same category
O. (They are related by a Koszul duality.) These methods were carried further by Sussan

[Sus07] and Mazorchuk-Stroppel [MS09], and then by Sartori-Stroppel [SS15] who formu-
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lated categorifications of arbitrary tensor products of finite dimensional simples in type A.
All these categorifications were eventually understood to possess the Hecke symmetries of
their 2-morphisms that Rouquier had incorporated in his 2004 definition.

The theory of tensor product categorifications with broadest coverage was developed
by B. Webster [Web17]. He defined an algebra T depending on a list A = (A1,...,\,) of
dominant weights of any symmetrizable Kac-Moody algebra g, and showed that the category
Repra.(T?) of its finite dimensional representations categorifies the tensor product Vi, ®
---®V), of simple representations with highest weights ;. The Reprq (T?2) categorifications
(and their derived categories D(T?)) were sufficient for Webster to define link invariants
for all symmetrizable g, although these invariants have not been amenable to computation.
The algebras T2 are defined using diagrammatic generators and relations, similarly to the
algebras defined by Khovanov and Lauda that categorify quantum groups ([KL09], [KL11]).
According to a unicity theorem of Losev-Webster [LW14], Webster’s Rep.q (T2) in type A
is equivalent to the categorifications by Sartori-Stroppel and others.

The categorifications of Stroppel et al. and Webster do not give the categorical analogue of
the operation of tensor product: such an operation must by definition start with the abstract
data of given 2-representations, and determine a third 2-representation from this data. It
is a fact that 2-representations are not in general semisimple, and the tensor 2-product of
given simple 2-representations having certain simple 1-representations for their Grothendieck
groups is not expected to agree with a direct sum of simple 2-representations having for their
Grothendieck groups the direct summands of the tensor 1-product of those certain simple
1-representations. (Symbolically, if Ko(V1) = Vi and Ko(Vs) = V, and Ko(W;) = W; with
Vi ® Vy = @;W;, then V) ®) Vs is not going to agree with @®;W;.) Furthermore, a natural
product operation should be functorial in its arguments, and this desideratum cannot even be
stated for the ad hoc categorifications of the kind constructed before this thesis. We hasten

to add, though, that Losev-Webster’s axiomatic description of Webster’s 2-representations,
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and the agreement of the latter with Sartori-Stroppel et al.’s constructions in type A, is very
strong evidence that these constructions have the right structure for the tensor 2-product of
simple 2-representations with irreducible Grothendieck groups. So, we expect a 2-product
definition to determine structures equivalent to these when the factors are simple.

We are informed that Rouquier has a broad definition of tensor 2-product given in an
A, setting that encodes the technical complications as higher homotopies. (We anticipate
a future publication [Rou].) This setting brings its own technical complications, and the
construction does not provide any explicit formulas for the product action even in that
setting. Rouquier has conjectured (we believe in [Rou08b]) that there should exist an abelian
subcategory of the derived category of the 2-product he defines, a subcategory which affords
an abelian 2-representation. Abelian 2-representations are the sort we handle in this thesis
and the sort usually intended in the literature.

The main construction of this thesis partially verifies Rouquier’s conjecture by defining
an abelian 2-product when one factor is £(1) and the other factor V is taken from the 2-
category of algebras (and satisfies two further hypotheses). In addition, our construction
takes a step toward defining a practically useful 2-product by providing explicit formulas for
the component structures.

In certain cases the homotopical complications in Rouquier’s A,, approach naturally dis-
appear. This happens in the case of the super Lie algebra gl(1|1)*, and A. Manion and
Rouquier [MR20] have developed the theory in that case. They show that the 2-product can
be used to describe the Bordered Heegaard-Floer theory for surfaces [LOT18].

The Manion-Rouquier work is in the direction of perhaps the most compelling motivation
to find a 2-product that is properly native to the theory of 2-representations, and that is
the ambition of Crane-Frenkel to build a 4d TQFT. In particular, in the case of the 2-
algebra U,(sly), such a 2-product may be expected to play a central role in a prospective

4d TQFT that extends the Jones polynomial. It may be possible to build this TQFT as a
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4d layer on the 3d TQFT of Witten-Reshetikhin-Turaev. Glimmers of this 4d theory have
been seen by physicists [GPV17], and some aspects are defined rigorously in some cases
[GM21]. We emphasize that the rank one case of U(sly) theory, and the tensor product
of simple 2-representations such as the minimal one £(1), are expected to be sufficient for
many topological applications, for the same reason that tensor products of the fundamental

representation L(1) of U,(sly) were enough for the Jones polynomial and WRT invariants.

1.3 The theorem

Let us be given a field k& and the data of a triple (A, E, z, 7) as follows. Let A be a k-algebra
and E an (A, A)-bimodule, let x € End(F) and 7 € End(E?) be bimodule endomorphisms,
and suppose that x and 7 generate an action of the nil affine Hecke algebra, that is, that

they satisfy the following relations:

TEoEToTE = EToTE 0 ET, (1.3.1)
TobBr=xFort+1, Exor=70xE + 1.

(Here we write 2 F for the endomorphism = ® Idg in End(E?), and similarly for the others.)

Let U* denote the monoidal category associated to the positive half of the enveloping
algebra of sl,. The data above determines a 2-representation V of U™.

We can give such data for a simple 2-representation £(1) of Y™ whose Grothendieck group
is the fundamental representation L(1) of sl,. The data is (k[y]+1 x k[y]-1, k[y], y,0), where
the algebra is given in its weight decomposition. Here y € k[y]_; acts on k[y] on the right
by multiplication, and y € k[y],1 acts by zero. These roles are reversed for the left action.
The endomorphism x acts by multiplication by y.

Let P, = k[xi,...,x,] be the polynomial algebra. Then P, acts on E™ with z; € P,
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acting by the endomorphism E" iz E1L,

The second chapter is organized around a proof of Part I of our main theorem.

Theorem (Main Theorem Part I: Positive Half). Suppose = and T satisfy the nil affine
Hecke relations, so (A, E,x,T) gives the data of a 2-representation of U, denoted V, and

suppose the bimodule E has the following additional properties:

o 4 F is finitely generated and projective,

e " is free as a P,-module.
Then we define explicitly:

e a k-algebra C' (Def. 2.2.52),
e o (C,C)-bimodule E (Def. 2.2.38),

e bimodule endomorphisms & and 7 of E (Def. 2.3.4),

such that © and T satisfy the nil affine Hecke relations, so (C,E,f,%) gives the data of a

2-representation of U™ that we denote L(1) @ V.

The constructions defined by Stroppel, Webster, Zheng, Lauda and others include 2-
representations having Grothendieck group L(1) ® L(n), where L(n) is the irreducible rep-
resentation of sly(C) of dimension n + 1. In the last section of Chapter 2, we study the
output of our construction for V = £(1), and show that it is equivalent to a known 2-
representation having Grothendieck group L(1)® L(1). We can describe the algebra for that
known 2-representation.

Let Py = k[z1, 5] and let P52 be the subalgebra of symmetric polynomials. Let B,, =
b, ®st2 P, be the (P, P») bimodule; it is also a Pr-algebra with structure map P, — By,

given by f — 1® f. Now let T'=T,5 ® Ty @ T_5 be the Ps-algebra:

T+2 = PQ’ TO - ]EII(iB51 (P2@351)0P7 T—2 = P2
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One can define a (7', T)-bimodule and bimodule endomorphisms that, together with T', give
the data of a 2-representation of U/, denoted 7. This 2-representation is known to have

Grothendieck group L(1) ® L(1). See §2.4.1 for more details.

Theorem (Comparison Theorem). There is an equivalence L(1) ® L(1) = 7 of

2-representations.

Now let U be the 2-category associated with the enveloping algebra of sly, as given in
Rouquier [Rou08a] or Vera [Ver20, §3.2]. Since we only work with 2-representations of U
and not U itself, completeness does not demand a definition of U. See [Rou08a, §5.1.1] for
the definition of 2-representation of U.

Assume we are given (A, E,z,7) as above, determining a 2-representation of U*. Now
assume also that (A, E,z,7) has a weight decomposition A = [ [, Ax (Def. 2.3.25 below).
The data (A, E,z,7) extends to determine a 2-representation of the full 2-category & when
the functor £ ®4 — admits a right adjoint functor F' such that certain maps p, are isomor-
phisms in each weight A € Z. The maps p) are determined by x and 7. See §3.1.2 below for
the definition of p,.

The simple 2-representation L£(1) of U* extends to a 2-representation of the full U in
this way, where the right adjoint is given by tensor product with the bimodule F' = k[y]| ~

Homyy (k[y], k[y])-

The third chapter is a proof of Part II of our main theorem.

Theorem (Main Theorem Part II: And Negative Half). Suppose (A, E,x,T) gives the data
of a 2-representation V of UT such that V has a weight decomposition. Define the left-dual

(A, A)-bimodule F' = Homy (4 E, A). Suppose E has the following properties:
e 4 F is finitely generated and projective (as in Part 1), so (EQa—, F®a—) is an adjunction,

o E" is free as a P,-module (as in Part I),
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e E and F are locally nilpotent (i.e. the 2-representation is integrable),

e The maps py defined using x and T are isomorphisms for each A € Z, so (A, E,x,T) gives

a 2-representation of U and 4 F is finitely generated and projective. (See §5.1.2.)

Let C' be the k-algebra, E the (C, C)-bimodule, and T and T the endomorphisms from the

Main Thorem Part I. Note that E is locally nilpotent. Let F = Homg(cE,C). Then:

e The unit n and counit € of the duality pairing give an adjunction (E Qc — F Qc =),
e The new maps py defined as in §3.1.2 using &, 7,€,n are isomorphisms, so:

o AF is finitely generated and projective, and F' is locally nilpotent,

e (C, E, z,7T) gives the data of an integrable 2-representation of U for C.

We emphasize that for a 2-representation of U* (with weight decomposition) given by the
data (A, E,z,7), the fact that the data extends to determine a 2-representation of the full
2-category U is equivalent to a property of that data: namely that the canonical commutator
maps p, determined by x and 7 are isomorphisms. When this holds, then (according to the
theorem) the maps py of the product are also isomorphisms. So the new data (C, E, #, 7)
inherits the property of extending to an action of the full /.

In this thesis, a symbol V is used sometimes to denote a 2-representation of U™, and
sometimes to denote the ‘extension’ to a 2-representation of /. This is an abuse of notation
because in the first instance ) is a monoidal category, and in the second instance it is a
2-category. The meaning of our abuse is that the data determining the monoidal category
may also determine a (related) 2-category. Thinking in terms of the underlying 4-tuple of

data may prevent misunderstandings.
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1.4 Remarks on the method

Assume the setting of the previous section, so £(1) is given by the data (A;, By, x!,71) =
(A° k[y],y,0) with A° = k[y],1 x k[y]_1, and V is given by the data (As, Fy, 22, 7%) =

(A, E,z, 7). One can define a tensor algebra B’:
B' = Taogea("kly] ®x E).

There is a canonical isomorphism Y k[y] ®x £ — E[y], and another A°®; A = Aly] x Aly].
The data of a B’-module is equivalent to the data of a triple (M, N,a?;) where M, N €
Aly]-mod and o} : E[y] ®ap,y M — N. Since 78 = 0 in this case, « is automatically
T-equivariant. We can enforce x-equivariance of a by taking a quotient by I = Im(z — y),
where x —y is understood in End ap,(E[y]). Define B = B'/I. Write E, for the (Aly], Aly])-

bimodule E[y]/(z — y)E[y]. Then we can present B using matrices by:

The ring structure is given by matrix multiplication, using the (A[y], A[y])-bimodule struc-
ture of E, as well as the algebra multiplication in A[y] to define the multiplication of matrix
coefficients. The category B-mod is our initial candidate for the underlying category of
LIHH®V.

To develop a 2-representation, we seek a (B, B)-bimodule for the image of E from U, and
bimodule endomorphisms z and 7. There is a natural candidate for the image of F, we will
call it E2, but it is a complex of (B, B)-bimodules, not a bimodule. It is given as a complex

(in degrees 0 and 1) by:

pa_ [Pl EWIES) 4 [ By EE,

0 Efy] Ayl E,
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(The differential and action data are described in Definition 2.2.2. There E* is written E’
for convenience, as elsewhere in Chapters 2 and 3 below.) There is also a natural candidate
for € Endp. i (E2) arising from the data of £(1) and V, but that z is not equivariant over
the action of generators in £, in B. (It is equivariant in a derived category.) There is no
natural candidate for 7 € End B_CPIX(EAEA), though that appears to be for technical reasons.

Let e; = "%e B. Our technique in this thesis is to define a new algebra C', derived-

00
equivalent to B, that is the End-algebra of a complex X:

X = Be; @ E”ey,

C = Ende(B)(X>

In particular, we show that J#omp(X, —) defines an equivalence of triangulated categories:

~

Homp(X,—)

per B per C,

where per B is the full subcategory of the derived category of complexes quasi-isomorphic to
strictly perfect complexes of B-modules, and similarly for per C'. The bimodule complex E*
may be transported through the equivalence, and the result is quasi-isomorphic to a complex
E of (C, C)-bimodules that is concentrated in degree 0 and such that oF is projective as a
module. We construct explicit bimodule endomorphisms # € End(E) (compatible with z'
and 22) and 7 € End(E?) that satisfy the nil affine Hecke relations. The data (C, E, Z,7)
gives a 2-representation.

In order to define # and 7 and verify the relations, we study the tensor powers E™. These
powers can be parametrized by explicit models containing Hom g (EAel, (EA)”el). We
give presentations of these modules by generators and relations for n = 1, 2, 3,4 in the second
chapter. To add the structure of the lower half and obtain a 2-representation of the full U,

we also need models for Home(B)((EA)Qel, (EA)"el) for n = 1,2, and those are developed

in the third chapter.
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1.5 Directions for future work

Considering our 2-product as part of a 2-representation theory of the 2-category U, several

questions are very natural.

e Given the asymmetry entailed by the choice of direction for a, can we define a product

L(1)®V by making the opposite choice?

e A small modification of our method should also lead to the reverse product V@) £(1). Is

there a natural equivalence between V &) £(1) and L(1)@V?
e [s our product functorial in the second argument V7

e Our methods appear amenable to generalization to a product £(n) ®) V, albeit with a
complexity of description that seems unmanageable. Is there a way to simplify or package

the technical aspects in order to give explicit formulas for £(n) &) V?
The following deeper questions would contribute to a general theory of the 2-product:

e Rouquier’s construction gives a derived category D°(L£(1) ® V). Can we explain our 2-
product as the abelian core of D?(£(1) @ V) determined by a t-structure or something
similar? ‘Perverse tilts’ might give the higher analogues of the crystal bases of U,(g)-
modules. (The crystal basis is compatible with the operation of tensor product, while the

canonical basis is not.)
e Could a t-structure enable us to define a 2-product for higher rank Kac-Moody algebras?

e Could a t-structure determine a new class 2-Zep(U) of 2-representations, for any two

members V, W of which, the 2-product V & W is defined?

The search for a 4d TQFT motivates additional questions that should be reasonably straight-

forward to answer:
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e Does the 2-product output (C, E, #, 7) have the property that E" is free as a k[Z1, . . ., &n]-
module? (Here #; acts by E"*#E"~1.) The input is assumed to have this property. The

other assumption of left-projectivity is already known to be satisfied by the output.

e Answering the above question affirmatively will enable a definition of the n-fold iterate:

T.=£0)® (L@ (LM ®-..)).

This product is of great importance for topological applications. It will be valuable to
compare 7T, with the (equivalent) 2-representations already defined by Lauda, Stroppel,

Webster, Zheng and others; we expect to find that 7, is equivalent to theirs.

e When the reverse product V @) £(1) is also defined, we will have in hand the definition
of the iterate £(1)®" with any given choice of parenthesization. Obvious questions about

associativity of the 2-product will make sense at that point.

e We anticipate a braid group action on 7,, or on a dg or derived precursor. It will be

determined by an auto-equivalence R of (E(l) E(l)) V that is functorial in V.

Some significant questions in low-dimensional topology would be very interesting to address

with the 2-product construction:

e By defining ‘cup’ and ‘cap’ morphisms and using a braid action on 7,, can we give a new

definition of Khovanov homology?

e How fast is the new definition to compute? (Is it comparable to the fast procedure of Bar-
Natan?) Fast procedures to compute link homologies in higher rank are not yet known,
and this approach using a 2-product might provide them, giving access to a large new

volume of computable information about links.

e There is a spectral sequence from Khovanov homology to knot Floer homology. Can it

be explained using the 2-product we have developed, in conjunction with the 2-product ap-
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plied by Manion-Rouquier [MR20] to cast Heegaard-Floer theory in terms of 2-representations

of gl(1]1)*?

e With a new definition given for Khovanov homology, can we extend it from links to

3-manifolds?

1.6 Outline summary

e In §2.1 we describe some conventions and background theory. The data of a 2-representation
of U™ consists of an algebra A, a bimodule 4F,4, and endomorphisms = € End(FE) and
7 € End(E?) satisfying nil affine Hecke relations. This data determines a monoidal cate-
gory: the object is the bimodule E, tensor product over A gives the monoidal structure,

and morphisms are bimodule maps.

e In §2.2 we begin with a naive product algebra B and complex of bimodules pEj;. We
construct a derived-equivalent algebra C'. We define a (C,C')-bimodule E and study a
new class of bimodules we call G,, that arise inside the tensor powers of E. This study

has a technical and computational flavor.

e In §2.3 we construct the new nil affine Hecke action, with generators  and 7, on powers
of the new bimodule E. More computations are required to establish the properties we

need. They rely on results about G,, proved in §2.2.

e In §2.4 we write out explicit details for the most basic example of our construction:
L(1) @ L£(1). This product agrees with a well-known categorification of L(1) ® L(1),

where L(1) is the fundamental representation of sls.

e In §3.1 we discuss the adjunction and the maps p, that are needed to define the extension

of a 2-representation of U™ to a 2-representation of the full 2-category U.
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e In §3.2 we define and study more bimodules, giving concrete algebraic models for them

in the manner of §2.2.

e In §3.3 we consider the right adjoint to E®¢ —, namely F®¢ — where F = Homc(cE, ),
and we show how to describe it concretely by making use of the B side of the equivalence

constructed in §2.2.

e In §3.4.1 we compute explicitly the tensor products needed to write explicit formulas for
P, namely the products E®cF and EQc F and F®¢ E. In §3.4.2 we compute explicit

formulas for py. In §3.4.3 we show directly that p, is an isomorphism for each A € Z.
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CHAPTER 2

Construction of the product: the positive half

2.1 Background structures

Let k be a field.

2.1.1 Nil affine Hecke algebras

The nil affine Hecke algebra °H,, is the k-algebra with generators x1,...,2,, 71, ..., Th_1 and
relations:
_ 2 _ 0
Iiﬂ,’j = [L’j[L’i,Ti = U,
TiTi+1Ti = Ti+1TiTi+1,
TiT; = TjT; if ’Z —j’ > 1,
TiXj = T4T; lfj —1 ¢ {0, 1},

TiL; = Xj11T; + 1, XTiTy = TiLitr1 + 1.

Define s; = 7;(z; — 2;11) — 1. Observe that s? = 1 and s; o 7; = 7;.
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2.1.2 U7 (sly) and its 2-representations

2.1.2.1 Monoidal category U™

Definition 2.1.1. Let U*(sly) (hereafter ‘U*’) be the strict monoidal k-linear category

generated by an object F and maps z : E — E and 7 : E? — E? subject to the relations:

% =0, (2.1.1)
TEoEToTE = EToTE 0 ET, (2.1.2)
ToFr=xFEor+1, Exor=1oxzE + 1. (2.1.3)

We write s = 7o (Ex — xE) — 1. Observe that s> =1 and so7 =T,

One easily checks that non-trivial Hom spaces of /™ are Hecke algebras:

Proposition 2.1.2. The objects of U* are the E™ for n € Z7°, and

YH, n=m
Hom(E", E™) ~

0 n#m
with the isomorphism from “H, given by x; — E" ‘aE"t 7, — E"" 171 Using the

obvious morphism °H, ® °H,, — °H,, ., the diagram commutes:

0Hn®0Hm > 0Hn+m

lle
e

End(E") @ End(E™) ——2— End(E"™).

2.1.2.2 2-representations of U™

Definition 2.1.3. A 2-representation of U* on a category V is a strict monoidal functor

Ut — End(V). The data of such a functor consists of an endofunctor £ of V and nat-
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ural transformations z € End(E), 7 € End(E?) satisfying (2.1.1)—(2.1.3). A morphism of
2-representations (V, E,z,7) — (V',E',2’,7") consists of a functor & : V — V' and an

isomorphism of functors ¢ : ®E = E'® such that:

podr=10dop:dE — E'D,

FoopEodr =17doE'popE: ®E? —» E7®.

Note that End(V) is the full sub-2-category of the 2-category of categories Cat generated
by the object V. One can define U™ as a 2-category with a single object, so that the data of
2-representation is the data of 2-functor from U™ to Cat. This justifies our ‘2’ prefixes.

In this chapter we study monoidal functors from U™ to monoidal categories of the form
Bimy(A) which are defined for k-algebras A as follows: the objects of Bimy(A) are (A, A)-
bimodules, and the morphisms of Bimj(A) are bimodule maps. The monoidal structure on
Bimx(A) is given by tensor product of bimodules over A.

Note that there is a 2-category Alg, with k-algebras, bimodules, and bimodule maps as
the objects, 1-morphisms, and 2-morphisms. Then Bimy(A) is the full sub-2-category of Alg,

generated by the object A.

Proposition 2.1.4. The data of a 2-representation Ut — Bimy(A) for a k-algebra A consists
of a bimodule A\E4 and bimodule maps x € End(E), 7 € End(E?) that satisfy (strictly) the

relations of U™ .

We will use ‘z;” and ‘r;” to denote the generators in any °H,, (where i < n for z; and
i < n for 7; are assumed). Given a 2-representation for a k-algebra A with bimodule F,

these symbols are also used to denote the corresponding elements in each End(E™).
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2.1.2.3 The 2-representation £(1)

A simple 2-representation of U™ is given for the algebra A = A, x A_y, A; = k[y], by the
bimodule E = k[y], where y € A_; acts on the left by 0 and on the right by multiplication by
y, and y € A, acts on the right by 0 and the left by y. The Hecke actions are generated by

r € End(F) acting by multiplication by y, and 7 € End(E?) satisfies 7 = 0 because E? = 0.

2.1.3 Further conventions

Assume we are given a k-algebra A and a 2-representation for A with data (4F4,z,7), and
fix these through §4. Assume that 4 F is finitely generated projective and that E™ is free as
a P,-module.

Consider the endomorphism z—y of the (A[y], A[y])-bimodule E[y]. Its image (x—y)E[y]
is a sub-bimodule of E[y]. Write E, for the quotient Ely]/(z —y)E[y]. (Alternatively: E, is
E extended to an (A[y], A[y])-bimodule by specifying that y acts on both sides by x.) The

projection

m: Ely] - E,

ey" — z"(e)

is a surjection of bimodules.

We simplify notation for tensor products by adopting a convention that concatenation
indicates the tensor product over an algebra that is clear from the context. Sometimes it will
be unclear whether a tensor product is meant over A or over Aly|, so we further stipulate
that if the expression for a module contains ‘y’, it will be understood as an A[y]-module,
and if the expression lacks ‘y’, it will be understood as an A-module. Concatenation will
indicate tensor product over A|y] if both are A[y]-modules, otherwise it will indicate tensor

product over A.
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We will tacitly use canonical isomorphisms such as

~

M[y] ®ap N[yl = M[y] @4 N — (MN)[y]

for M aright A-module and N a left A-module. For example, EE, denotes E®4 £, according
to our convention, but this is canonically isomorphic to E[y] ®ap,) Fy, and the latter may be
written E[y]E,. So we may write either FE, or E|y|E, with equivalent meanings.

Extend z to End(E[y]) by = : ey” — z(e)y" and 7 to End(E?[y]) by 7 : eey™ — 7(ee)y™.
The map s defined above in terms of z and 7 extends in the same manner to a map in
End(E?[y]). Note that we denote an arbitrary element of E[y] by the single letter ‘c’.
Similarly an arbitrary element of E?[y] is denoted by the doubled symbol ‘ee’, which may
well not be a simple tensor of the form e ® e. Later we will use ‘eee’ or ‘eee;” as suggestive
notation for elements of F3[y], and so on.

Define § = 7o (Ex — y) € End(E?[y]). We also consider the extensions of z; and 7; to
E™y], and then s; and 6; defined by their same formulas but replacing x with x; and 7 with

7;. Some important identities are quickly verified:
Lemma 2.1.5. We have

e 52 =1, so s is an isomorphism

e 52 =10, s0 4§ is an idempotent,

and we also have s7 = 1 and 62 = 6.

We adopt a flexible notation y; = z; — y until §5. Here y; indicates (E7zE"™" — y) for
some j, and context will determine the value of j. Note that d; = 7y;.
One may check that soxy = x10s and sox; = x90s. It follows that s exchanges y, and

y1 and descends to a map:

s By Qapy) Ely] — Ely] ®apy) Ey-
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So we have s : E* — E? a map of (A4, A)-bimodules, and this induces s : E*[y] — E?[y] as
well as s : B, E — EE,, maps of (A[y], A[y])-bimodules. Context will determine the domain

and codomain for the symbol s.
Lemma 2.1.6. We also have:
e mod=som: E*ly| > FE,.

We define projections m; : E"[y] — E"E,E™" = E"[y]/(y;) by m; = E"'rEL
The same names may be used for maps between products with £, factors, for example
m: BB, — E L,

Given a module oM, its algebra of endomorphisms End4(4M) will use the traditional
order of composition for multiplication: (f o g)(m) = f(g(m)). Typically, but not always,
‘o’ is written to emphasize this convention. A consequence is that for a ring A, the algebra
Enda(4A) is identified with A°P.

Given two complexes M, N of A-modules, we will write J#om (M, N) for the complex
generated by homogeneous A-module homomorphisms from M to N. In degree n it is given
by homogeneous maps of degree n, and the differential is d(f) = do f — (=1)/|fod for f a
homogeneous map of degree |f|. The notation Z*M refers to the degree i part of the kernel
of d.

Given an algebra R, we write D°(R) for the derived category of bounded complexes of left
R-modules. A strictly perfect complex of left R-modules is a bounded complex of finitely
generated projective R-modules. The category per R = DP(R) is the full subcategory of
complexes quasi-isomorphic to strictly perfect complexes. Given M € DY(R), we write
(M) for the smallest triangulated strictly full subcategory of D’(R) closed under direct

summands and containing M.

Lemma 2.1.7. We have (R)n = per R.
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2.1.4 Generalized matrix algebras and tensor product

Suppose we are given k-algebras A and D, bimodules 4 Bp and pC}y, and bimodule maps

AB®p Cy 15

pC ®4 Bp =

With this data we can define a new k-algebra R:
R = )
D

where multiplication of matrices is defined with the customary formulas using the above
bimodule structures and maps.

A right R-module consists of the data of M; a right A-module, M; a right D-module, a
map M; @4 B 5 M, of right D-modules, and a map M, @p C LA M of right A-modules,
such that the latter two maps are compatible with +; and ~,. Here compatibility with ~q,

for example, means that the following compositions agree:

Idar ®m1

M, ®4 (B®p C) M, ®a A > M,

(M1®AB)®DCQ—®M—C—>M2®DC£>M1-

The data of a left R-module may be given in a similar form.

= (o)

N

Let

be a right R-module, and

N =
Ny

a left R-module. Their tensor product M ®z N may be formed as follows. Consider the pair
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of maps given by the R action data:

My ®4 B®p Ny 2> My @4 N1 ® My ®p No

Mz ®p C ®a Ny 2% My ®4 Ny ® My ®p Ny
by Ig(m®b®n) =m®b.n —m.b®n and likewise for /. Then we have an isomorphism:
(M1 ®a N1 @® M, ®p No) /(I + Ic) = M Qg N.

Now let F' € Endg(V) be an endomorphism of left R-modules. It determines an endomor-
phism Idy ®g F' € End,(M ®g N) which will be denoted M F. We can study this on com-
ponents as follows. There are induced endomorphisms F; € End4(NV;) and F, € Endp(Ns)
given by restriction of F. These determine endomorphisms M;F; € Endy(M; ®4 N;) and
MyFy € Endy,(Ms®p N»), and these in turn provide together an endomorphism M MOF)
of M1 ®4 N1 @ My ®p Ns. The property of full R-linearity of F' implies that this IT?Ol"pl/I;S;n

preserves the submodules Iz and I, and descends to the quotient M ®r N where it agrees

with M F.

Lemma 2.1.8. In the notations used above, an element of Endy(M ®g N) of the form MF

for F € Endg(N) is uniquely determined by the induced maps M1 Fy and MsF;.

2.2 Product category

Given a 2-representation V for A with U*-action data (E,x,7), we seek a 2-representation
for C' with data (E,Z,7) to serve as the tensor 2-product £(1) @ V. In this section we
describe our proposal for the algebra C' and data (E ,&,7), and in the next section we study

this data and verify that the nil affine Hecke relations hold for z and 7.
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2.2.1 Naive product category

2.2.1.1 Naive product algebra B

Definition 2.2.1. Let B be the k-algebra:

Here the algebra structure of B is given by matrix multiplication, with the (A[y], A[y])-

bimodule structure of E, contributing for products with generators in Bys.

A left B-module consists of a pair (%;) of left A[y]-modules, together with a morphism

a: Ey®ap My — M, of left Aly]-modules. A right B-module is the data of a pair (N Nz ) of
right A[y]-modules, together with a morphism 3 : N1 ®ap,) £, — N of right A[y]-modules.
It follows that a (B, B)-bimodule can be written as a matrix of (A[y], A[y])-bimodules with
accompanying maps « and [ giving left and right actions of E,. Such a matrix with «, 8
determines a (B, B)-bimodule only if the actions commute. Usually this commutativity is
obvious and we do not bother to check it.

A complex of left B-modules is the same data as a pair of complexes of A[y]-modules
together with a morphism « of complexes; note that the differential of £, ® M, for a complex

(Ms,d) is just By, ® d. Similarly for right B-module complexes.

2.2.1.2 Endofunctor £’ of B-cplx

Definition 2.2.2. Let E’ be the following bounded complex of (B, B)-bimodules concen-

trated in degrees 0 and 1:

Ely] ElylE,\ , [ B, E,E,
0 Ely Alyl By
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Here the left action data ‘o’ for B generators in F, is given on the degree 0 part as a matrix
using the decompositions 0@ E, E[y] and E[y]® E[y]E, by (J2), and on the degree 1 part

by <Id§ v IdE(:Ey ) The right action on the degree 0 part is by (IdE vl By 0) and on degree 1 it

(7r 7r®IdEy )

is by <IdEg P Id(;y ) The differential d is given componentwise by -

Tensoring by E’ on the left gives an endofunctor g E' ®p — of the category of complexes
of B-modules. It is convenient to have a formula for the action of this endofunctor on an

arbitrary complex of modules:

Lemma 2.2.3. Let M = ((]\]‘g) ,a) be a complex of B-modules. The functor E' ® g — acts

on M by:
71'%1
M1 E E[y]Ml &) EyMl[—l] E[y]OéOSMQ 0
,Oé - aomw Moy )
M ElylMy & Mi[-1] 0 e

Here the top and bottom rows express cocones of the maps wMy and o o wMs.

Remark 2.2.4. It may help motivation to consider the effect of E’ at the level of the
Grothendieck group when M; and M, are just modules, not complexes. The following
discussion is not intended to be precise or complete.

Suppose M, and M) are projective left A-modules, and R; and Ry are projective left k[y]-
modules. Consider the projective left A[y]-modules M; = Ry ®; M, and My = Ry ®y M.
These are elements of the outer product of categories (k|y]-proj) Xl (A-proj). Suppose

a: EyMy; — M, is given. Apply E' to ((%;) ,a). The upper row is quasi-isomorphic to:
ker(E[y|M, ™5 E, M) S (1 E[y])) My = E[y]M; S R, @ (E®a M),

where the first isomorphism follows by flatness of M;. Letting e denote the action of
E on the Grothendieck group, we have (1 ® e)([Ri] ®; [M]]) for the upper row in the

Grothendieck group. The lower row is the cocone of «, which contributes [E[y]Mz] + [Mi]
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in the Grothendieck group. Now recall that the raising functor for £(1) is just k[y]. So:
My = (k[y] @ 1) (Ri @ M), [Mi] = (e®1)([Ri] @ [M1]),

and we should interpret the copy of M; coming from the lower row in this way, since the factor
of k[y] in the Aly] = k[y]®x A of the lower left corner of B is the higher weight copy. We also
have [E[y|M,] = (e ® 1)([R2] @ [M3]). Finally, it is a fact that (e ® 1) ([Ra] ® [M3]) = 0
because £(1) has only two weight categories. It follows from these calculations that the

action of ¢ = [E’] on the Grothendieck group of the derived category has the form:

¢I((A2) )] =B ((32) )]
= (e®1+1®e)([M{] @ [R1] + [M;] @ [R2]).

This agrees with the Hopf coproduct formula A(e) =e® 1+ 1 ®e.

Proof of the lemma. We first check that the matrix specifying the new F, action gives a
morphism of complexes. The diagonal coefficients of the matrix give morphisms of the
separate summands, and these commute with the differentials on the separate summands.
It remains to see that wM; o E[y|a o sMy = Idg, M, o E,(acomMsy), and these agree because
mhyos = FEym.
Now we compute the tensor product following the recipe of §2.1.4. We have:
iy
(Bl @ Ely)EM) /I ((EyM1 ® B, E, M) /I;) 1]

aom Moy
—

(0@ ElyMe) /B @

E' Q@ M =
(At @ B,30) /1) 1-1)

Here the submodule [; is generated by all terms of the form e ® a(e’,my) — e ® ¢’ ® my for
e € Elyl,e¢ € E,,my € M. So every element of the quotient has a canonical representative
in E[y]Mi, and the quotient is isomorphic to E[y|M;. With analogous reasoning we see that

the quotient by I] is isomorphic to E,M;, that by I5 is isomorphic to E[y]M,, and that by
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I} is isomorphic to M;. The differential may be written before taking quotients as dM; on
the top and dM; on the bottom. The images of dM; in E, M, represent elements in M; by
way of «, and this determines the differential component a o wMs between summands of the
bottom row.

Now we calculate the new E, action in order to view this as a complex of B-modules.
Using the description of the left B-action on E’, one sees that the action on the left summand
is by sMs, which is represented in E[y]|M; through «, so the action written on the quotients

as described above is given by E[y|aosM,. The action is obvious on the right summand. [

2.2.1.3 Category per B and generator X

Definition 2.2.5. Let X be the following complex of B-modules:

X=X1® X,
A
X, [y]
0
Ely] = E
X, = B'(X)) = [y] y
0 — Aly]

where X lies in degree 0 and X, in degrees 0 and 1. The E, action on X3 is by £, Q[

~

Aly| > E,, e®1—e.

One can see that X; = Be; and Xy = E’eq, with ¢; € B the standard matrix idempotent.

Observe that there is a canonical right A[y] action on Be; and on X; given componentwise.

Proposition 2.2.6. The complex X is strictly perfect and generates per B.
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Proof. We can write X in terms of B:

X1 = B€1

Xy = Bey @4 E — Bey,

where the differential is by 7 on the upper row. This is a complex of finitely generated
projective B-modules because 4F is finitely generated and projective. So X is strictly
perfect. To see that X generates per B, first note that Be; = X; € (X)a. Now consider
Be; ®4 E as a complex in degree 0. There is a map of complexes Xy — Be; ®4 E given
by the identity in degree 0 and by 0 in degree 1. Then Bey[—1] (a complex in degree 1) is

quasi-isomorphic to the cocone of this map. So Bes € (X )a. ]
Recall our notation m; = E"'wE*"!: E"[y] - E"'E,E" L.
Lemma 2.2.7. The kernel of ¢ : E™[y] Amids, @ E"EE T s (yh ... yn) EMy].

Proof. We have assumed that E" is free as a P,-module. It follows that E™[y] is free as a
P,[y]-module. Let e € ker¢. So m;(e) = 0 and therefore e € y; E™[y] for each i € {1,...,n}.
Let B be a basis of E"[y] over P,[y]. Write

for b; € B distinct and f; € P,[y]. It follows that y;f! = yf) in P,[y] for each (i,k) €
{1,...,n}** and j € {1,...,4}. Then e = v ...y,e° for some e° € E"[y] because P,[y] is a

unique factorization domain and each y; is irreducible. ]

Lemma 2.2.8. The complex E'X, is concentrated in degrees 0, 1, and 2:

By &, g EoEE, T,

Y

E

E'X, = Y
(—7!',71')

0 — Ely]® Ely] —— E,
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where

Proof. Computation. The minus signs arise from shifting differentials. O]

Proposition 2.2.9. The complex E'X is quasi-isomorphic to a finite direct sum of sum-

mands of X .
We define two complexes of B-modules before proving the proposition.

Definition 2.2.10. Let R, X}, € B-cplx be given by

2
E@y@il@E@@E

R = 5
0 — Ely]® Ely]
2 2
X = wﬂb]—*%E’

0 — Ely]

both lying in degrees 0 and 1, and the £, action on R is by the canonical map
E,® (Ely]® Ely]) > E,E® E,E,

and on X} by the canonical map E, ® E[y] — E,E.

Lemma 2.2.11. We have that X} is a finite direct sum of summands of X.

Proof. Observe first that Xy ® 4 F is a finite direct sum of summands of X because s F is

finitely generated projective. (Here we use the componentwise right A-action on X5.) Using
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the formulas

7T205:7T27

7r20(1—(5)=(),

and ¢ - (1 —0) = 0, one has the decomposition of Xs ®4 E:

Ey] " E,E
Xo @4 E = !
0 — Ely]
§-E’ly] = E/E (1—10)- E[y]
= D
0 — Ely] 0

]

The matrix algebra structure of the nil-affine Hecke algebra gives the following isomor-

phism of left A[y]-modules:

E?[y] ?;;7 T B[yl @ min E[y).

Lemma 2.2.12. There is an isomorphism R = X} @ X} in B-cplz given by the above
1somorphism on the degree 0 term of the upper row, and the identity on all other terms. So
R is a finite direct sum of summands of X5, and hence of X. In particular, R is strictly

perfect.

Lemma 2.2.13. There is a quasi-isomorphism R a, E'X, determined by Idgap, on the

degree 0 term of the upper row and (% ,%1) on the degree 1 term of the lower row.

Proof. We first check that the map is a morphism in B-cplx. The matrix of the morphism

on the degree 1 part of the upper row, as determined by equivariance over generators of B
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in E,, is given by (Id 0 ) Observe that:

s so(xa—x1)

[domy + 00omg 0T = mo;

somy 4+ s0 (g —x1)0mOT
=mos+ (r) —x3)0s0mMOT
=mos+mo(x;—x3)080T
=7rlo<(:z:2—x1)o7'+1d

+(3:1—x2)0((x2—$1)07+1d)OT> = 7.

This shows compatibility with the differential from degree 0 in the upper row. The other
compatibility checks are easier.

Now we show that the map is a quasi-isomorphism. The lower row of E'X, has H' given
by:

{(e1,e2) € E[y]®* | e, — €5 = y1e for some e € E[y]}.

This is also the image of the (injective) map from R in degree 1 of the lower row. The upper
row of E'X, has H? = ker(d°) = y1yoE?[y] by Lemma 2.2.7. The cohomology of the upper

row of R is computed as follows. We have an isomorphism:
E*ly] = iy E*[y) © —y2mE*[y].

Notice that my o 7 vanishes on the first summand, and m, vanishes on the second. Then one

may compute:

ker(Ty1E2[?/] = EyE) = 7'?/192E2[y] = yl?/QEQ[?/]

and

ker(—yQTEQ[y] % Ty1E2[y] = EyE) = —y27y1y2E2[y] - y1y2E2[?J]‘
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So

ker(( 527 )) < y1y2E*[y].

The reverse inclusion is obvious, so H° of the upper row is y;y2 E*[y]. This shows that Id 2 [v]
induces an isomorphism on homology in degree 0 of the upper row. Using the decomposition
and inspecting the maps above, we also see that d° on the upper row of R is surjective.
Finally we consider H! of the upper row of E'X, and show it is zero. (Clearly the H? is
zero.) Let (eei,eeq) € E,E @ EE, be in ker(d'), i.e. such that m(ee;) = ma(ees). Then
eey = eey + (Ex — xE)ee® for some ee® € E?. (Note that E,F, =~ E?/(Ex — zF) where y
acts by Ex or zE.) Then consider ees + (Ex — y)ee® € E?[y]. The differential d° sends this

to ee; in By F and to eey in EE,. O
Proof of Proposition 2.2.9. The proposition follows from the preceding three lemmas. n
Corollary 2.2.14. Tensoring with gEy gives an endofunctor E' ® — of per B.

Proof. We know that X € per B, and it follows from Prop. 2.2.9 that E'®p X € per B. The

corollary follows because X generates per B. O]

Remark 2.2.15. We do not know that £ ®5 — on K®(B) is exact, so we do not know that

it descends to an endofunctor defined on all of D°(B).

2.2.2 Bimodules G,

The constructions of this chapter make use of certain bimodules that we describe next.
Definition 2.2.16. Let G, denote Hom g (p)(Xa, E™X1).

Every G,, has the structure of (G{?, A[y])-bimodule by pre- and post-composition. Here

we understand Aly] = End g5y (X1)° and use functoriality of £ for the action. Note that
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G1 = Homgo ) (Xa, X3) has an algebra structure, and the right regular action of G{* on Gy
extends the right Afy] action.

In this section we gather some facts regarding these bimodules and give concrete presen-
tations in small cases that are easier to handle. Given n € {1,2,3,4}, we define G, as an
(Aly], Aly])-sub-bimodule of E"y]®"@®Hom4(4E, E™)[y]. (By E°[y] we mean A[y].) We
give isomorphisms G,, = G, for such n. These isomorphisms induce left G1P-actions on G,
that extend the left A[y]-actions. In future sections we do not distinguish G,, from G,, and

write only the former.

Definition 2.2.17. Define the following (A[y], A[y])-sub-bimodule of A°P[y]|@End(4F)[y]:

Gy - <<e, 0) € A%[y] ® Enda(4E) [y]\

p=_0+1yp
for some @1 € Enda(4F) [y]>

This bimodule also has a k-algebra structure with componentwise multiplication (using the

opposite multiplication on generators in A[y]).
Note that (; contains a copy of A°P[y], namely the subspace with ¢ = _.6.

Proposition 2.2.18. There is an isomorphism of (Aly], Aly])-bimodules Gy = G, deter-

mined by:

e, 0 e),0
o [[©0] (@0
(0,1) (0,0)

Here (e,0) € E|y| @ E, is an element of the upper row of Xo, with e in degree 0 and 0 in

degree 1. Analogously with the lower row. This isomorphism respects the k-algebra structure.

Proof. The condition ¢ = _.f-+y;¢; in the definition of G is equivalent to the statement that

the morphism given as the image of (0, ¢) defined in the proposition has zero differential. [J

45



Definition 2.2.19. Define the following (A[y], A[y])-sub-bimodule of E[y]®*®Hom (4 E, E?)[y]:

o = ((ev.en.€) € B © Homa (4. E)]
e — ey = yp€
§=_®e + &
=0(-®ea) + 1o

for some ¢’ € E[y] and & € Homs (4 F, EQ)[y]>

Proposition 2.2.20. There is an isomorphism of (Aly], Aly])-bimodules Gy = Gy deter-

mined by:

(,0) (£(e), 0,0)
(617 €2, g) e —
(0,1) (0,(%:),0)
Proof. Use the description of F’X5 in Lemma 2.2.8. As in Prop. 2.2.18, the condition of

the definition of Gy is equivalent to the statement that the image of (ej,es, &) has zero

differential. m
In order to parametrize G5, we compute the components of £?X, = EX; in degrees 0,
1, and 2:
F}y - E,FE®FE,EF®FEFE, — E,E,F®FE,EFE,®FEE/E, — ...
0 — FEy|®Ey|®Ely] — E,F®FEE,®FEE, — ...

The upper left differential map is (73, m2, 7). We don’t make use of the upper right. The

bottom right differential map is given by the matrix:

—1T9 Up) 0
—7 0 71 © )

0 —T 1
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Definition 2.2.21. Define the following (A[y], A[y])-sub-bimodule of E?[y]|®*®Hom (4 F, E*)[y]:

Gy = <(€€1, ees, ee3, X) € B*[y|®° ® Homa(aE, E°)[y]

ee| — eey = yzee'
eez — eeq = yree’
d(ees) —eey = yree”,
X = -®eer +ysxi
=0E(_®eey) + yaxa
=FEfodE(_®ee3) +yi1x3

for some ee® € E?[y] and y, € Hom4(4F, E3)[y]>

Proposition 2.2.22. There is an isomorphism of (Aly], A[y])-bimodules G5 = G5 deter-

maned by:

(e, 0) (x(e),0,...)
(ee1, eeq, ee3, X) —> — ee
(0,1) 0.(5). )

Proof. The condition of the definition of G5 is equivalent to the statement that the image

of (eeq, eeq, ees, x) has zero differential. ]
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Definition 2.2.23. Define the following (A[y], A[y])-sub-bimodule of E3[y|®*@®@Hom (4 E, E*)[y]:

G, = <(eeel, eeeq, eeey, eceq, ) € E3[y]®4 @ Homu (4 E, E4)[y]

eees — eeey = yleee(l)
_ (2
eeey — eeez = 1Yseee

Ed(eeey) — eeey = yreee®

eee; — eeey = yzeee
eee; — 0E (eees) = yaeeel®
eee; — OE o Ed(eeey) = yleee(G)
Y = _Q®eeer + ysr
= 0E*(_® eeey) + Y3ty
= E6E o 0E*(_® ece3) + Yo X3
= E?0 0 BOE o SE*(_® eeey) + Y1 X4
for some eee® € E*[y] and 1, € Homy (4 F, E4)[y]>
Lemma 2.2.24. Under the conditions on eee; in the definition, there is a unique eee € E3[y]

such that:

5) 2)

666( — 666( = Yseee,

eee — T E(eees) = y,eee.
Proof. Subtracting two equations from those conditions:

Yo (666(5) — 666(2)) = eeey — eeey — ysTE(eees)

= Y3 (666(4) — TE(eees))

By Lemma 2.2.7 we know there is some eee satisfying the claim. It is unique because the y;
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are injective. O

Proposition 2.2.25. There is an isomorphism of (Aly], Aly])-bimodules G4 — G, deter-

mined by:

(¢,0) (¥(e),0,...)
(eeeq, eceq, cees, eeey, ) — = ol
(0,1) (&(:zzg),...)

eeey
Proof. The reader may compute the first terms of E*X; and show that the condition of the
definition of Gy is equivalent to the statement that the image of (eey, eeq, ees, eey, 1) defined
in the proposition has zero differential. There is some ambiguity in the order of summands
in degree 1 of the lower row. The convention we have used is that the first summand arises
from the latest application of E’ which moves a term from degree 0 of the upper row to

degree 1 of the lower (and increments the exponents on existing terms in the lower row). [

It will be useful to describe alternative, equivalent, conditions defining G5 and Gs. It is

sometimes easier to work with them.

Proposition 2.2.26. Given (eq, e, &) € E[y]®> @ Homu (4 E, E?)[y] with e, — ex = y1€’, the
following conditions are equivalent:
§=_Qer + 126
=0(-®e2) + &
for some & € Homy (4 F, E?)[y]
and
§=_-®er+ 18
& =T1(-®e) +
for some & € Homa(4E, E*)[y].

When these conditions hold, the & and &' are uniquely determined by the data (eq, ez, &), and
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£ =_Q¢e +y€.

Proof. Suppose the first condition holds. Using § = yo7 + Id and e; — es = (z — y)€’, we can

rearrange the first equality:

®er+ b = & + T (c®er) + - ® ey,

from which

92(51 —T(f®€2)) = y1<£2 —,®e’).

By Lemma 2.2.7, the image of &, — 7(_®es) is in 412 E*[y]. We can then make the following

definition:

&=y (& —7(-®e2)).

The second condition and the final claim follow from this.

Starting now with the second condition, plugging the second equation into the first, we
find:
{=_Qe +12(T(®e) + yif)
=0(-®ez) +-® (€1 — e2) + yari&’
= (5<,® 62) + Y1 (,® 6, + y2§,>.

This is the second line of the first condition, and it establishes the final claim.

The uniqueness claims are clear. O

Proposition 2.2.27. Given (eey, eey, ees, x) € E?[y|® @ Homu (4 E, E3)[y]| with

ee; — eey = ypee’ (2.2.1)
eez — eeq = yree’ (2.2.2)
d(ee3) — ee; = yree”, (2.2.3)
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the following conditions are equivalent:

X = -®ee; + yYsxi
= 0E(_®ee3) + yaxa
= FE§o 5E(,® 663) + Y1X3

for some x, € Homa (4 E, E®)[y]
and

X = -®eer + ysxi
X1 =TE(_®ees) + Y]
X; = EToTE(_®ees) + y1}”

for some X" € Hom (4 E, E®)[y].

When the conditions hold, the x, and X" are uniquely determined by the data (eey, ees, ees, ),

and there is a unique ee € E*[y] such that

7(ee3) — ee’ =y ee

ee” — ee” = yyee.
Define a map x), = —-® €€ + y3x”. Then we also have
X2 = ETodE(_®ee3) + y1Xs

and

X3 = —0E(_®ee") + y2xb.

Assuming x = - ® eey + ysxi1, the other two conditions together are equivalent to a single
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condition on x1:
x1=-TEy(-®ee") + Ed o TE(_® ees) + yay1 X"

Proof. Suppose the first condition holds. Equating the first two formulas for y in the first

condition and using 0F = y37F + Id gives:

_®ee; +ysx1 = y3TE(L®eer) + _® ees + Yoo

thus

y3(X1 —TE(7®6€2)> = yQ(XQ — ,®ee’).

By Lemma 2.2.7 again, the image of this function lies in yoy3E>[y], and since each y; is

injective, we can define a new function x) such that:

1 =TE(C®ees) + 12X}

X2 = -®@ee’ + ysx].
Equating now the second and third formulas, we have:
Yo ET o 0E(_®ee3) + IE(_®ees) + y1x3 = 0E(-® eez) + yaxo

SO

y2(x2 = ET 0 0E(-®ees)) = 11 (xs +0E(-@ec")),
so for some x4, we can write:

X2 = ET 0 dE(_®ee3) + y1 X5

X3 = —0E(_®ee") + yaxbh.

We will need a fact derived from the relations (2.2.1)—(2.2.3) of the ee®. Adding the first
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and third relations and subtracting the second yields
y1(e€” — ee”) = ya(7(ees) — ee’),
from which we see there must be a (unique) ee with

T(ees3) — ee’ =y ee

ee” — ee” = yyee.

This gives the third claim of the proposition.

Equating now the two formulas we derived for ys:
ysEToTE(_®ees) + ET(L®ees) + yixh = -® ee’ + ysx}

SO

ys(Xy — EToTE(L®ee3)) = y1 (X + -®e).
Therefore

X; = EToTE(_®ee3) + y1}”

Xy = —_®ee + ysx”

for some x”, as desired.
In the reverse direction, starting with the second condition, plugging the y; and X}

formulas into the first y formula gives:

X =_®ee; +y3 (TE(,@@@) + yg(ET oTE(_® ee3) + ylx”)>,
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SO

X —0E(_®eer) = _® (ee; — ees)
+ 9o (ET oTE(_®ees) + ylx”)

=1 (,® e’ + EToTE(_® ee3) + ylx”>,
as desired. Similarly:

X—FEdodE(_®ee3) = x —ysy2 ET o TE(L® ee3)
—ysTE(_®ees) — EO(-® ees)
= _®cer + y3(TE(C® eea) + y192x")
—ysTE(L®ee3) — E6(-® ees)
= _® (eer — d(ees)) + (-ygTEL@ ee”) + yz’thX”)
= <_7® ee” —ysTE(-®@ee”) + yzy3X”>-

The final statement of the proposition is a rearrangement of the second and third equalities

of the second condition. O

Remark 2.2.28. We will not need to use alternative conditions for GG,, for n > 4.

2.2.3 Product category C'-mod

Let C' = Endpe; g(X)°P. We ‘change basis’ from Be; @ Bey to X3 @ Xy, i.e. from complexes

of modules over B to complexes of modules over C. This is performed by s#omp(X, —):

~

per B per C,

Homp(X,—)
which is a restricted Rickard (derived Morita) equivalence. It has an inverse given by X ®c—.
Under this equivalence, the action of 3E’ ® — on per B translates to ¢ E @ — on per C,

where E is a (C, C)-bimodule that is finitely generated and projective on the left. Our main
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theorem says that Bimy(C') has the structure of 2-representation of U™ using E. In this

section we describe C' and the derived equivalence in more detail.

2.2.3.1 New algebra C

Let € = &ndp(X; @ X»)° be the dg-algebra of endomorphisms of X (with left-to-right

composition).
Definition 2.2.29. Define two (A[y], A[y])-bimodules:

G = Aly] © Hompy (apy Ely], E[y])

and

GY = Homapy (a Ely], By).
The complex &ndg(Xs) is given in degrees 0 and 1 by
dO
¢ L a

where

d"((0(y), ) = 7o —7(=).0(x).

The direct sum decomposition X; @ X, provides a matrix presentation for ¢ with 4;; =

Homp(X;, X;).
Definition 2.2.30. Let F' denote the (A, A)-bimodule
F =Homyu(4E, A).
Note the canonical isomorphism
Homa(aE, A)[y] — Hom apy (ap E[y], Aly])

that exists because 4 £ is finitely generated. Since 4F and 4p, E[y] are both finitely generated
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projective, we also have canonical isomorphisms of functors:
HOHIA<AE, —) = HOIIIA(AE, A) ®A -
Hom apy) (g Ely], =) — Homap (ap) Elyl, Aly]) ®apy —

Proposition 2.2.31. The algebra € is isomorphic to a generalized matriz algebra of com-

plexes concentrated in degrees 0 and 1:

A[Z/] E[Z/]l’Ey - 11 612

Fly] GY* o G G G
The map s given on components by:
[ fO’f’ %11.’
1 a
Alyl s a —
0 0
o for Gia:
1 e, e
(Ely] = Ey) 3 (e,¢') = S|
0 0
[ fOT %21.'
e, 0 e
rlo o [ [€0) . (7€
1 0
® for %22.’
(67— &) = (0.0 | [ @0 ] o [ o)
1 1 ) )
1 0
Proof. Computation. O

Definition 2.2.32. Let C' denote the k-algebra End gz (X)°P.
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Sometimes we consider C' to be a dg-algebra concentrated in degree 0.

Lemma 2.2.33. The projection Z°(¢) — H°(€) = C is an isomorphism. Its inverse gives

an injection C' — € which is a quasi-isomorphism of dg-algebras.

Proof. The first claim follows because % lies in degrees 0 and 1. For the second claim we
just need that H'(%¢) = 0. It is clear that the map 7 : E[y] — E, is surjective. We can see

that d” is surjective as well: since ap,E[y] is projective, Homapy)(apy E[y], —) is exact, so

Hom ap) (ap Ely], m) : Homapy) (ap Elyl, Ely]) — Homap,(ap Ely], E£y)
is surjective. O

The injection of the lemma gives a right action of C' on X.

Lemma 2.2.34. The algebra C' is isomorphic to a generalized matriz algebra:

A[Z/] ylE[Z/] ~ Ci1 Cho

—

Fly] GY? Co1 Oy

Y

with component maps given by (restrictions of ) those in Proposition 2.2.31.

Proof. We have d°((6,¢)) = 0 exactly when ¢ = _.0+y;¢’ for some ¢’ € Homapy (a1 E[y], Ely]),

and it follows that the map to Css is an isomorphism. O

2.2.3.2 Derived equivalence

Since X is strictly perfect, the triangulated functor
Homp(X,—): K'(B) - K°(O)
descends to the derived categories and resolutions are not needed:

Homp(X,—): D’(B) — D°(C).
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Since X generates per B, it is perfect as a right ¢-dg-module, and then also as a complex of
C-modules because the inclusion C' < % is a quasi-isomorphism. It follows that the functor
restricts to a functor

Homp(X,—) : per B — per C,

and this is essentially surjective because C' is in the essential image. To show that the
functor is fully faithful, it is enough to check endomorphisms of X and its translates, since

X generates per B. The induced map:
Hom pu gy (X, X[i]) — Homps oy (Endp(X), Endp(X)[i])

is an isomorphism for all i: with ¢ = 0 both sides are canonically isomorphic to C', and the
map induces the identity on C'; with i # 0 both sides are 0.

The endofunctor E'®p— on per B induces an endofunctor on per C using this equivalence:
first apply X ®¢ —, then F' ®p —, then s#omp(X, —). Since X is finitely generated and

strictly perfect, this induced endofunctor is isomorphic to Zomp(X, E'X) ®c —.

Remark 2.2.35. In the above context a theorem of Rickard shows that s€ompg(X,—) :
D*(B) — DP(C) is also an equivalence of categories. We do not know E’ ®p — to be exact,
however, so we use the restricted equivalence of perfect complexes, and the full version of

Rickard’s theorem is not needed.
Definition 2.2.36. In §2.2, let & denote the (C, C')-bimodule complex #omp(X, E'X).
Then we have the following:

Proposition 2.2.37. For each n, the morphism of (C,C) bimodule complezes

n-times

—

EQRc - ®c E — Homp(X, E"X)

given by
A® @ fur> E™ M (f) 0o E™?(fa1) 0+ 0 fi
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1s a quasi-isomorphism. These maps give the vertical maps in diagrams of the following

form, which commute:

Homp(X, E'X)®" @c #Homp(X, E'X)®" ———— Homp(X,E'X)®" ™

| |

Fomp (XV7 E/nX) ®c Homp (X, E/mX) fQg—E"(g)of Homp (X, Eln+mX).

Proof. All diagrams contained in the following diagram commute, up to canonical isomor-

phisms in per B and per C":

This gives the first statement of the proposition. The diagrams commute by functoriality
of F'. ]
2.2.4 New bimodule £

2.2.4.1 Definition of E

Now we define the lead actor of this chapter.
Definition 2.2.38. Define a (C, C')-bimodule:

FE = Home(B) (X, E/X),

with left C' action given by precomposition with ¢ € C, and right C' action given by post-

composition with E’(p) for p € C.
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Lemma 2.2.39. For each n, the complex 5€omp(X, E™X) of (C,C)-bimodules is concen-

trated in nonnegative degree.

Proof. The lower row of E™X has components in degrees at least 1, and the upper row
has components in degrees at least 0. This is shown by a simple inductive argument using
the formulas for X and F’ in §2.2.1.2. It follows that there are no nonzero morphisms in

Homp(X, E™X) of negative degree. O

Proposition 2.2.40. The complex & = 7 omp(X, E'X) of (C,C)-bimodules has cohomol-

ogy concentrated in degree 0.
Proof. We consider separately the matrix components J#ompg(X;, E'X;) :

o Homp(X,, E'X,): since X; = Be, this is isomorphic to e; E'X; which is E[y] &> E,,

and 7 is surjective.
o #omp(Xi, E'X,): this is isomorphic to e; 2 X, which is
2 (77) (—m1 m2)
By -4 E,E® EE, ") BB,

The second map is clearly surjective. Its kernel consists of pairs (eey, ees) € E? such that
ee; —eey = (Ex —xE)ee® for some ee® € E?. Such a pair is the image of eey + (Ex —y)ee®

in E*[y].
o #omp(Xy, E'X}): this is isomorphic to %5, and we saw that d° is surjective.
0 1
o Jomp(Xs, E'X5): this is isomorphic to G, N G4 N G4, where

Gy = Ely]® @ Homuapy (ap Ely], E°[y])
G/QI = Ey @® HomA[y](A[y]E[y]> EyE ® EEy)

Gy = Homap (ay Elyl, By Ey),
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with
d°: (e1,e9,€) (7T(62 —e1),(mpo&;m o f))
dl . (6, (fl; 5//)) > —71 O 5/ + 719 © 5”-

It is easy to see that H' = 0 and H? = 0 by applying the exact functor Homap,j(ap1 Ely], —)

to the sequence considered in the second bullet.

Corollary 2.2.41. The surjection
Z°H#omp(X,E'X) — H'#omp(X,E'X) = E

1S5 an isomorphism. Its inverse gives an injection

E—&

which is a quasi-isomorphism of complezes of (C,C)-bimodules.

Remark 2.2.42. Whereas E’ is a complex of bimodules, E is just a bimodule. This observation
is the starting point for our construction. The basis X;@® X5 is designed to be more compatible

with the U™ action in this sense.
Lemma 2.2.43. As a left C-module, E is finitely generated and projective.

Proof. In Prop. 2.2.9 we saw that E’'X is quasi-isomorphic to a finite direct sum of summands
of X, so ¢F is a finite direct sum of summands of C. n
Lemma 2.2.44. The map E" — Homp(X, E"X) of complezes of (C,C)-bimodules given
by

fi® @ fur E" o) o B (fua) o0 fi
1S a quasi-isomorphism.
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Proof. Use a copy of the morphism
EL &

from Corollary 2.2.41 onto each factor of the product on the left in Proposition 2.2.37, and

the fact that E is finitely generated and projective on the left. O]

Lemma 2.2.45. The maps of Lemma 2.2.44 induce isomorphisms of (C,C)-bimodules

En = Home(B) (X, E/nX)

making the following diagrams commute:

En ®C Em ~ N En+m

| |

HOI?(IK(B)(AXV7 Eln(X)) ®C HOHlK(B) (X, Elm(X)) — HOHIK(B) (X, Eln+m(X))

Proof. By Lemma 2.2.44, the cohomology of s#omp(X, E™X) is concentrated in degree 0.
By Lemma 2.2.39,

Z°Homp(X,E"X) = H' #omp(X, E"X).

So the degree 0 part of the map of Lemma 2.2.44 is an isomorphism from E” to Z8#omp(X, E"X),
which is Hom g g (X, £ X). The diagrams commute because the morphisms are restric-

tions of the morphisms of Proposition 2.2.37. O]
Definition 2.2.46. We let EZ denote Hom () (X;, £ Xj).

Defined in this way, EZ lies in Hom g5y (X, E™X), not in E™, but we consider it also in

the latter through the isomorphism of Lemma 2.2.45.
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2.2.4.2 Some low powers of F

The bimodule E can be presented as a matrix with ij-component Eij given by Hom g (g (Xi, E'X;).
This component is an (End(X;)°?, End(X;)°)-bimodule. Recall that End(X;)°®® =~ A[y| and

End(X,)°P >~ G{°.
Lemma 2.2.47. We have
(1 -+ yn) E"[y] — Homgo(p) (X1, E™ X)),
where yy ... yye is sent to the map in K°(B) determined by:
1 (Y1 ... Yne,0,...,0)

0 0

Proof. Computation. Note that E™X; has just one term in degree 0, which is E™[y] in the
upper row. The differential of £ X out of this term is the map whose kernel is computed

in Lemma 2.2.7. O

Proposition 2.2.48. We have:

U Byl v yen EM W)Y L EnOET

Y

G G B3 B3,
where the maps on the upper row are from Lemma 2.2.47, and on the lower they are from

the definition of G,,.

Together with Lemma 2.2.45, this gives a parametrization of E”. We may record the

matrix presentations for the first few powers:

nEly] nyE*ly]

Gy Gs

;E’
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vy B2yl yiyeys EP[y]
Go Gs

=~ EQ,

ylyzySEg[y] y1y2y3y4E4[y]
Gs Gy

= BB

2.3 Hecke action

In this section we introduce (C, C')-bimodule endomorphisms & of E and 7 of E2, and show

that they satisfy the relations of U™.

2.3.1 Definition of the action

In §2.3.1.1 we give formulas for endomorphisms of the separate components of E and F2. A
few lemmas are needed first in order to show that the formulas are well-defined on components
of the form G,,, n = 1,2,3. Then in §2.3.1.2 we argue that these componentwise definitions

jointly determine a morphism of (C, C')-bimodules.

2.3.1.1 Formulas for 7 and 7

Lemma 2.3.1. Let (0,p) € G; < A°®[y] @ Homa (4 E, E)[y]. Then (y0,x 0 ) € Gy.
Proof. Compute:

rop—yl=2x(_0+1y101)— yb

= y1<,.6 + .flngl)
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Lemma 2.3.2. Let (€1, e3,&) € Gy < E[y|®*@Homa(4FE, E?)[y]. Then (yey, req, tEE) € Gy

and (€/,€',70¢&) € Gs.
Proof. For the first claim, compute:

rEof— _®yep =rEo(_®e +1&) — - Quye;

=1(-®e +xEo0§y),

and

tE ol —6(_Quey) =zEo (§(_®e2) + 11&2) — 0(-@ wey)
=00 E‘T(,®€2) — y1(7®62)
+ B o0& — (- ® wey)

=y (— ®es + rE 0 &).

For the second claim, use the alternative characterization of G5 as given in Prop. 2.2.26, and

compute:

Tof=71(®e1) + T
=7(-®e1) + & — &
=7(-®e1) +yiTyé — &
=7(-® (e1 — €2)) + y1ya7E’
=Ty (-®¢€) + yyere

= @+ () +urf).
The last line has the form of an element of Gs. O

Lemma 2.3.3. Let (eey, eeq, ee3, ) € Gz © E?[y|®@Homa (4 F, E3)[y]. Then (ec,ee’, m(ee3), TEo

X) € G3.
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Proof. We use the alternative characterization of GG3 as given in Prop. 2.2.27, and compute:

TEox =TE(-®e€e1) + TEysxa
=TE(_®ee;) —x1+y2TE oy
=TE(_Qee1) — X1+ YT By (ET 0o TE(L® ee3) + y1X”)
=TE(_®eer) — x1
+ (12usTE + y2) - (ET o TE(_®ee3) + y1X")
=T7E(_® (ee; — eey))
+42y3(TE 0o ET o TE(_Qee3) + y17E 0 X")
= 7By (. ®ee)
+ Y2ys3 <ET oTE(_®ee)+ ESoTE(_®¢ee) +y7E o X”)
= _®ee + ys3-

<E§ oTE(_®ee) + y2(Ed o TE(_®€€) + y1y2TE o X”))

= _®ee + ys3-

(—TEyl(,®@) + EdoTE(-®T1(ees)) + y1ya7E o X”)-
The last line has the form of an element of G3, namely (e¢’, ee’, T(ee3), TE o ). O

The element (eey, eeq, ees, x) € G5 is associated (by Prop. 2.2.27) with further data that

has been notated ee’, €€, xy, x;, and x”. We record the corresponding data associated with
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(e€/,ee’, T(ee3), TE o x) using the notation € and x for the new versions:

eeg =0

ee’ =ee

ee” = ee
ée =0,

and

X = (e€',e€’, T(ee3), TE o X)

X1=-—-TEy(_®ee)+ EdoTE o ET(_®ee3) + y1y27FE o X"
X2 = ET00E o ET(_®ee3) + y1y37FE o X"

X3 = —0E(-®@@ee) + yoys7E o X"
X;=EroTEoET(_®ee3) + y17E o )"

X' =71Eox".

Now we give componentwise formulas for & and 7. These formulas are well-defined on

Es, Es, E2,, and E2, by the lemmas above.
Definition 2.3.4. We define the action of # on E as follows:

on EH: T acts by x

on Elg: Z acts by v F

on Eyy: 7 acts by (0, ) — (y0,x o )

on Fy: & acts by (e1,e2,&) — (yer, zeq, vE 0 §).
We define the action of 7 on E? as follows:
e on E2: 7 acts by 7
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e on F2: 7 acts by 7E

e on E3: 7 acts by (e1,e3,8) — (¢/,¢/,70¢E)

o on E2,: 7 acts by (eeq, ees, ees, x) — (e€’, e€’, T(ees), TF o x).

Lemma 2.3.5. The formulas for & give a (C,C)-bimodule endomorphism of E.

Proof. Recall the definition of the complex E’ of (B, B)-bimodules in §2.2.1.2. There is an

(<A([)y] A([)y]> , (A([)y] A?y]))—bimodule endomorphism ' of £’ given componentwise in degrees

0 and 1 by (A[y], A[y])-bimodule endomorphisms:

The relation so E,x = xE, 0s may be used to check that x{, and = together give a morphism
of complexes of (B, B)-bimodules. This map induces a (C, C')-bimodule endomorphism of

Hom 5y (X, E'X) that agrees with the definition of 7. H

It follows that # induces endomorphisms ZE and E#. For future reference we write the

formulas for those:

Proposition 2.3.6. The formulas for & determine the following formulas for #E and E%

on E2:
e on E2: iF acts by oF and EF acts by Ex
e on E2,: #F acts by E? and E# by ExE
e on E3: #F acts by
(e1,€2,8) — (ye1, wez, xE 0 §)
and EF by
(617 €2, 5) e (xelv yeo, Ero g)
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e on E2,: ZE acts by
(eer, eeq, ees, ) = (yeer, xE(ees), vE(ees), E* o )
and EF by
(eer, eez, ee3,X) — (vE(eer), yees, Ex(ees), ExE o ).

Proof. Use Lemma 2.2.45, in particular the diagram in the case n = m = 1. O]

2.3.1.2 Bimodule structure of £? and equivariance of 7

Lemma 2.3.7. The formulas for 7 give a (C,C)-bimodule endomorphism of E2.

For the maps we defined on components of E? to determine jointly a (C,C)-bimodule
endomorphism 7, they must be equivariant with respect to the left and right C-actions. In
order to check equivariance, we write formulas for the actions of the generators in C' in the

following four lemmas. The reader may verify these formulas from the various definitions.

Lemma 2.3.8. Generators in Aly] < C act on the right on E2, in terms of the separate

bimodule structures of EZZJ, as follows:
¢ E121 ® Aly] — E121 by

Y192 E?[y] @y Aly] — y1y2E7[y]

Y1y2ee Q 0 — yyysee.6.
o £}, ®Aly] — E3, by

G ®apy) Aly] — G2

(e1,62,8) ® O — (e1.0,€2.0,6(—).0) .

They act on the left as follows:
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i A[?J] ® E121 - E121 by

Aly] ®apy yiv2E*[y] — 1192 E°[y]

0 @ y1y2ee — y1y20.ee.
o Aly|® L% — L% by

Aly] ®apy) y1y2ys E°[y] — niy2ys E°[y]

0 ® y1y2yseee — y1y2ysb.cee.

Remark. We may confirm that the image of the action map E2, — E3, preserves the condi-

tions for Ga:

50 — ,® 61.0 = y2§1.0,
51.9 = 5(,® 62).Q + (y1£2)6

= (- ®e2.0) + y1 (&),

and the e, relation:

1.0 — e2.0 = y1€'.0.
Lemma 2.3.9. Generators in G;* < C' act on the right on E? as follows:
¢ E~122 QG — Efz by

Y123 [y] g G — 1132ys E°[y]

y1yayseee ® (0, 9) — E*p(y1y2yseee)
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d E222 RGP — E222 by
G3 ®G<1>P G?p - G3
(6617 €ea, €€3, X) ® (67 90) e (Egp(eel), E90<662>7 663'67 EZ(P © X) .
They act on the left as follows:
e GI"® E%l - E221 by
G ®gor Gg — Gy
(6’ 90) ® (61, €2, 5) — (0'61a 0'€2a€ © 90)
e GY'® E§2 - E222 by
G ®ger Gz — Gy
(0, 0) ® (ee1, eeq, ees, x) — (B.eeq,0.ee5,0.ee3,x 0 ).

Remark 2.3.10. We may confirm that the image of the right action map E2, ® GS* — E3,

preserves the conditions for Gjs:

E’pox = _® Ep(eer) + E*p(x — -®ecer)
= _® Eopleer) + ys(E*p o x1),
E’pox1=TE(® Ep(ees)) + yaE*p o X}
=TE o E*(L.0 4+ y101) o ((®eea) + yaE*p o X},
E*pox) =FE*(_0)o EToTE(_®ees) + y1E*p1 0 Xy +y1X".0

= EToTE(_®ee3.0) +yi (X".0 + E*p10X}).
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And the ee, relations:

Ep(eer) — Ep(ees) = ya2Ep(ee),
ees. — Ep(eey) = (eez — eeq).0 — y1 Epy(ees)
=1y (ee”.0 — Epy(eer)),
d(ees.0) — Ep(eer) = yat(ees).0 + (ee3 — eeq).0 — y1 Epy(eeq)
= yo7(€e3).0 + yree”.0 — ysee’.0 — y1 Epq(eeq)

= 141 (yoe€.0 + ec”.0 — Epy(eey)) .

Similarly we may confirm that the image of the left action map G ® E3, — E2, lies in Go:

fop=p(-)®er+p&ioy
= ®b.e1+p(n(-)®e +&op),
Loptpi(-)®@er=7(-®e)op+yop+pi(—)®e
=7(-®0.62) + TY2(p1(—) R €2) T Y1 oo+ 1 (—) R en

=7(-®0.e2) + Y1 (T(p1(—) ®ea) + p1(—) @€ + & 0p).

And the e, relation:

0., — 0.e5 = y10.€.
And the image of the left action map G° ® E2, — E2, lies in Gs:

xXop=wp(—)®ee; +ysx10¢
=_®0.ee; + y3(901 ®eer + x10 80)7
X109 =TE(_®60.ces) + TEY3(p1 ® eea) + y2x] © p,

p1®ee; +x109 =TE(_®0.ce5) + o (TE((,Ol ®eez) + o1 ®ee’ + x] o go),
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X109 =FEToTE(_®6.ce3) + EToTE oy3(pp1 ®ees) + y1X" 0
= EToTE(_®#0.ee3) + y1(ET o TE) (1 ® ee3)

— TE(p1 ®ees) — ET(p1 ® ee3) + y1X” o o,
and

TE(p1®ees) + pr®ee’ + xj0op =

EtoTE(_®6.ee3) + 11 ((ET oTE)(p1 ®eez) — TE(p1 ®ee”) — o1 ®ee + x" o go).

And the ee, relations:

0.ce; — 0.eeq = y0.c€’
0.ces — 0.eeq = 1y,0.e€”

5(0.ce3) — O.ee; = y10.e€e”.
Lemma 2.3.11. Generators in y, E[y] = C act on the right on E? as follows:
o B} ®@uE[y] — E} by
192 B [y] @agy 1 Ely] — n1y2ysE°[y]
y1y2ee @ yie — Yiyays(ee @ e)
o 2, ®@uyE[y] — E3, by

Gy Qapy) 1 Ely] — G

(e1,€2,8) @yie — (e1 @ yre,e2 @ y1e,0,£(—) @ yre) .

They act on the left as follows:
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o yE[y]®E3 — E% by

yi1E[y] Rcep Gy — 12 E%[y]

y1e® (eq,e2,§) — &(yre)
o 1E[y|® E3, — E3, by

yi1E[y] R Gs — 1923 E°[y]

y1€ ® (6617 €€, €€3, X) — X(yle)

Remark. We may confirm that the image of the right action map E2 ® y1E[y] — E,

preserves the conditions for Gj:

X = £®y167
X—-®e1@uie =y1y3(&1 ®e),
X —0E((®es®@yie) = (£ — (- ®ea)) @ure

=y ®e).

Similarly we may confirm that the image of the left action map y, E[y] ® E3, — E? lies in

y1y2E2[y]3

Eoyr=ya(-Qer + & o),
Goyr =Tp(®e) +yig oy

= (T(-®e) + & oy) — _®e,
om=w(n(r(®e)+&on)+ @ (e —c))

= y1y2<7(,®62) + _®€ +£’oy1>.
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And the image of the left action map 41 E[y] ® E3, — EZ, lies in y192y3 E*[y]:

xoy =ys(-®eer + x10u1)
X101 = —TEysy (- ® 36”)
+ Ed o TEys(-®ee3) + y1yaX" oy
= —TEBy3y1(.®e€”) + Ed o yoTE(_® ee3)
— Eé(-®ees) + y1y2x" oy
= —yTEy(-®ee”) + y1(®ee”) + y1ya ET o TE(_® ee3)
— (- ®ee”) — _®eer + y1yax" oy
X © Y1 = Y3yl <—TE(7® ee")+ EToTE(_®ees) + X" o y1>
+ Y311 (, Qe —_® ee”’)

= Y3yl (—TE(,@ ee")+ EToTE(_®ee3) — _®ee+ X" o y1>.
Lemma 2.3.12. Generators in F[y] < C act on the right on E? as follows:
¢ E122®F[y] - E%l by

Y2y E°[y] ®cee Flyl — 1192 E%[y]

yiyayseee ® f — 1y B f (y1eee)
b E’§2®F[y] - E%l by

G3 Qg Fly] — G2

(eer, ez, ee3,X) ® f > (Ef(eer), Ef (eez), E*f o X) .

They act on the left as follows:
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i F[y]®E%1 —’E§1 by

F[y] XAy ylygEz[y] — Gy

f ®@yiyaee — (0,0, f(—).y112¢€)
b F[y] ®E%2 - E%Q by

F[?J] RA[y] y1y2y3E3[y] — G

[ ®yiyayseee — (0,0,0, f(—).y112yseee) .

Remark. We may observe that the image of the right action map E2,® F[y] — E2, preserves
the conditions for Gs:
E’fox—_®Ef(eer) = E°fo(x — ®eey)
=1 E’foxi,
E*fox—d0(-®Ef(ees)) = E*f o (x — 0E(-® ee»))
= E*f 023

= ylEzf © X2,

and the ee, relation:

Ef(ee; —eey) = Ef(yree”)

=y Ef(ee”).

It is trivial to check the conditions for the images of the left action maps F[y] ® E?, — E3,

and Fly]® Ef, — E3,.

Proof of Lemma 2.3.7. The reader may now check that 7 defined in §2.3.1.1 is equivariant

over the left and right C' actions. These checks are completely mechanical using the formulas
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just given. O

2.3.2 Hecke relations

2.3.2.1 7 and 7 satisfy Hecke relations

These checks are also mechanical, but we write them out because they are important.

Proposition 2.3.13. On each component EZQJ, the maps © and 7 defined in §2.3.1.1 satisfy

Rl
O
N
el
I
<

E

=
N

ISX
eyl
o
N
I
<

oE

N
ISX

Proof. On the first row, E?, and EZ, the relations follow from the corresponding relations
between x and 7.

On E2, presented as Gy, we have:

: (6176275) — (l’@l,ye/,Eaj’ oTOo 6)

eyl
ISX
O
N

: (6176276) = (yel - 627:(/6/ - 627TO$E05)

2N
@]
N
o

ToET: (e1,e9,8) — (ex +we' ea + e, 70 Exof)

FE o7 : (e1,e9,8) — (ye',ze ,xFE o1 0f),
from which

Eio7 —7oZE : (e1,e9,) — (yi€' + ea, €2, (ExoT —ToxE) o)

= (6176276)7

and similarly for the other relation.
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On E2, presented as G, we have:

E

X

o7 : (eeq,eeq, ees,x) — (vE(ee’),yee’, Ex o T(ee3), ExE o TE o )
7o ZE : (eer,eey, ees, x) — (yee' — eey, yee' — eeq, T 0 xE(ees), TE o xE* oY)
7o EZ : (eer,eeq, ees, x) — (ee; + yee', ee; + yee', 7o Ex(ees), TE o ExE o)

TE o7 : (eey,eey, ees, x) — (yee',xE(ee’),vE o T(ees), xE* o TE o ),
and so
Eio7 —7o0ZE : (eeq, eeq, ees, x) —
(yae€' + ees, €€5, (Ex o — 7o xE)(ees), (ExE o TE — TE 0 xE*) 0 X)
= (6617 €€, €3, X)7

and similarly for the other relation. O]

2.3.2.2 72=0

This is clear.

2.3.2.3 7T satisfies the braid relation

In this section we give formulas defining k-module endomorphisms 7, and 7, of the compo-
nents of the matrix parametrization of E3. We show that these endomorphisms satisfy the
braid relations. Then we argue that they correspond to the maps E7 and 7E induced on
the same bimodule components. This will complete our proof that & and 7 satisfy the nil

affine Hecke relations in U™.
Lemma 2.3.14. Let us be given (eey, eeq, ees,x) € Gs with ee” defined as in §2.2.21. Then

(7(ee1), —e€”, —ee”, ET o x) € E*[y]®* ® Homa (4 E, E*)[y]
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also lies in Gs.

Proof. The reader may check this directly. In Prop. 2.3.18 we will interpret this element as

the image of (eey, ees, ee3, x) under E7, and it must therefore lie in Gs. O

Lemma 2.3.15. Let us be given (ece,eeey, eees, ceeq, ) € Gy with eee”) defined as in

§2.2.23. Then the following elements of E3[y|®* @ Homu (4 E, E*)[y] also lie in Gy:

(TE(eeey), eee'? ece'? | Er(eee,), ETE o 1)),

(eeeW eee™ TE(eees), TE(eees), TE? 0 ).

Proof. The reader may check this directly. In Prop. 2.3.18 we will interpret these elements
as the images of (eeeq, eeey, eees, eeeq, ) under E7 and 7E respectively, and they must

therefore lie in G4. O

Definition 2.3.16. Let 71, 7 be k-module maps defined on E?

+;, presented as in §2.2.4.2; as

follows:

e on B3
— 71 acts by ET
— Ty by 7E

e on E3:
— 7 by ETE

— 7 by T7E?
e on L3

— 71 by (eeq, eeq, ees, x) — (T(eey), —ee”, —ee” | ET o )
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— To by (6617 €€, €€3, X) = (66/7 66/7 7—(663)7 TE o X))

i.e. 7 as defined above on Gy considered as E32,
e on L3
— 71 by (eeeq, eeeq, eees, eeey, 1)) —
(TE(eeey), eee'?  ece'? | Et(eeey), ETE o 1))
— T by (eeeq, eeey, eces, eeey, 1)) —
(ece™ ece™ TE(eees), TE(eees), TE? 0 ).
Proposition 2.3.17. The 7; satisfy 71 0To 0 T4 = To 0 T1 O Ta.
Proof. On Efj the claim follows from the 7; braid relation. On E2, = G5 we have:

(6617 €€z, €y, X) ’i)
(r(eer), —ee”, —ee”, BT 0 x) —2>
(—ee — 7(ee"), —ee — T(ee"), —7(e€"), TE 0 ET 0 y)

(_T(Q)v _T(@)a _T(@)a EtoTEoETO X)
and

(661, €€, €€3, X) 'l)
(ee', e’ T(ee3), TE o X) R
(r(ee'), —ee, —ee, EToTE o x) v2»

(—7(ee), —7(ee), —7(ee),TE o ET o TE 0 ).

80



On E3, = G, we have:

(eeeq, eceq, cees, eeey, 1) A
(TE(eee), eee? eee®. ETt(eeey), ETE 0 1) 2
(TE(666(5)) + eee, TE(eee(5)) + eee, TE(€66(2)), TE o ET(eeey), TE?0 ETE o V) 1,

(rE(eee), TE(eee), TE(eee), ET o TE o Et(ecey), ETE o TE* 0 ETE 01))
and

(eeeq, eeeq, ey, eceq, 1)) 2,
(eee™ eee. TE(eees), TE(eeey), TE? 0 1)) 1,
(TE(eee™), eee, eee, ET o TE(eeey), ETE o TE? 0 1)) 2,

(tE(eee), TE(eee), TE(eee), 7E o ET o TE(eeey), TE* o ETE o TE* 09)).
[

The remaining goal of this section is to relate the 7; just defined to the 7 acting on E as

described in §2.3.1.1. The latter is known to be a (C, C')-bimodule morphism.
Proposition 2.3.18. Under the isomorphism of Lemma 2.2.45, namely

E* 5 Hompo ) (X, B®X),
the maps E7 and 7E on E3 correspond to 7 and 7 of Definition 2.5.16.
Corollary 2.3.19. Lemmas 2.5.14 and 2.3.15 follow.
Corollary 2.3.20. Proposition 2.3.17 implies E7 o TE o Ef = 7E o Ef o 7E.

Proof of the proposition. We consider the tensor product E ®¢ E? formed according to the

procedure of §2.1.4, and study the endofunctor E7 as in Lemma 2.1.8, and similarly for
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E? Rc E and 7E. From Lemma 2.2.45, we have isomorphisms

HOl’Ile(B) (X, E/X) R HOme(B) (X, E,2X) = HOme(B) (X, Eng)

Home(B) (X, E/ZX) ®C HOHle(B) (X, E/X) ; Home(B) (X, EISX)

associated with the products

E®cE*=F?
E?’®¢ E = B3

The maps are given by
f®g—Egof

f®g— E”gof.

These isomorphisms determine actions of E7 and 7E on Hom sy (X, E”X) that we may
compare to the 71 and 7, defined there by components.
The components Ej;; and EEJ are (End(X;)°°, End(X,)°)-bimodules, and 7 gives bimodule

endomorphisms 7j;; of the latter. These induce endomorphisms (E%)ﬂfk of

Sz & 2
Bk = Eij ®gnd(x;)e Ejy,

as in §2.1.4. We know that E%, is canonically isomorphic to a quotient of Eﬂi@ﬁgz, and that

E7)2 0 ~ ~ = [
(( ())'”'“ (712 ) acting on i11‘12c®Ei12|i descends to E3., where it gives the components of ET.

T)li2k
Here it may be compared directly with 7; that we defined on E3.. Tt therefore suffices for
our objective to check commutativity of the following diagrams labeled Dy2(3, j, k), indexed

by triples (i, 7, k) € {1,2}3:
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~ 2 3
EZ‘]‘ ®End(Xj)Op Ejk f®g—E’'gof Eik
Dualis i ) Ei "
. - f®—E'9of | 1
Eij ®End(x;)op EJQk — B

Exactly parallel considerations apply to the study of 7E, where the diagrams for (1,7, k),

now labeled Dy (i, j, k), instead involve maps ( Ef—)ﬁ\l

ik and 7~'g|i/§.

Checking the diagrams will occupy the next three pages.

Lemma 2.3.21. The diagrams D12(i, j, k) commute.
Proof. We consider the diagrams in turn:
o Diagram Dy2(1,1,1):

Consider (E’%)Hfl € End(E11®F?2). Let yre € Eyy and yy3see € E2,. The image of y,e®uy y2e€
in the top right corner of the diagram is

E'(y1y2¢€) 0 y1e = y1yays(e @ ee) € E3,.

Here we can write out E'(yi1ysee) = (y1y2€€,0,0, - ® yiysee) € Gs. On the other hand,

1 (e ® yrysee) is yiyays(e ® T(ee)) € B3,

T(y1y2e€) = y1y27(ee), so the image of (E%)?‘

which agrees with 71 (y192y3(e ® ee)).
e Diagram Dy2(1,2,1):

Consider (E?)H;l € End(E, ® F3). Let yiysee € Eyy and (e, e5,&) € E2,. We have no
established notation for E’((el, e2,g)) € Hom (g (E' X, E”X,). Tt is nevertheless easy to

check, by tracking ‘leading terms’ of the upper rows, that

E'((e1,€2,8)) o yryzee = EE(yryzce) € EY).

83



This lies in y1y2ys E®[y]. Then 7((e1,€2,&)) = (¢/,€/,70&), so (E%)H; applied to yiyzee ®
(e1, €2,€) and viewed in E3, is ET o E&(y1ysee).

e Diagram Dy2(2,1,1):

Consider (Ef')gfl € End(Fy ® F2). Let (0,¢) € Ey and yyysee € E?. This time we can
write E'(y1yze€) = (y192¢€€,0,0, - ® yiyzee). Then

E'(y1y2e€) o (0, @) = (By1yqe€,0,0, p ® y1yq¢€€) € Eg’l.

Going around the diagram in either direction yields (Qy;y27(e€),0,0, o ® y1y27(ee)).
e Diagram Di2(2,2,1):

Consider (E%)g;l € End(Fy ® E2,). Let (e1,e9,€) € Eyy and (21,8, &) € E2,. We have no

notation for £’ ((él, €9, 5)) One computes that
E/ ((éla é?? 5)) © (617 €2, 6) = (g(el)v €2 ® él? €2 ® €2, Ego 5) € Eg’l

Traversing the diagram in either direction gives (7 0 &(e1),eo ® €, ea ® €, ET o E£ 0 £).
e Diagram Dy»(1,1,2):

Consider (E%)Hf2 € End(E;; ® E%). Let yie € Eyy and yyyayseee € E2,. Again by tracking

‘leading terms’, one checks that

E (y1yayseee) o yre = yy . .. ya(e ® eee) € B,

Traversing the diagram in either direction gives ETFE(y; . ..yse ® eee) which is y; ... ys(e ®

TE(eee)).
o Diagram Di2(1,2,2):

Consider (E%)H;Q e End(E1; ® F2). Let yyyaee € Fip and (eeq, eeq, ees, x) € E2,. Then

check that

E' ((eey, eeq, ees, X)) © y1yaee = Ex(yiyzee) € B3,
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Traversing the diagram in either direction gives (ETFE o Ex)(y1y2¢€).
e Diagram Di2(2,1,2):

Consider (Ef')gfz € End(Ey ® E2). Let (0, ¢) € By and y1ysyseee € E2,. Then check that

E'(y1y0y3€eee) o (0, ) = (Qyr1yayseee, 0,0, 0, p ® y1y2yseee) € E;’z.

Traversing the diagram in either direction gives

(TE(Oy1y2yseee),0,0,0, ETE o (¢ ® y1y2yseee)) .

e Diagram Dy2(2,2,2):

Consider (E%)g;z € End(Ey ® E3,). Let (e1,es,€) € Eyy and (eeq, eey, ees, x) € E2,. Then

check that

E'((eeq, eez,ee3,x)) © (€1, €2,€) = (x(€1),e2 @ eeq, e2 ® eez, €2 Q@ ees, Ex 0 §) € E3,.

Traversing the diagram in either direction gives

(TE(X<€1))> e ®ee en ® e, Et(es®ees), ETE o Ex o 5)

Lemma 2.3.22. The diagrams Do (i, j, k) commute.

Proof. We consider the diagrams in turn:
o Diagram Ds;(1,1,1):
Consider (%E)ﬁlh € End(E% ® E11). Let yiysee € B2, and yye € Eyq. Then check that
E?(y1€) 0 yrypee = ripyzee @ e € E3.
Traversing the diagram in either direction gives
Y192y3(7(ee) @ e).
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e Diagram Ds;(1,2,1):
Consider (%E)ﬁ';l € End(E%, ® Ey). Let y1yayseee € B2, and (0, ¢) € Ey. Then check that
E”((0,9)) o yiyayseee = E>*p(y1yayseee) € B
Traversing the diagram in either direction gives
(TE o E*p)(y1yaysece).
e Diagram Ds;(2,1,1):
Consider (%E’)gh € End(l:?%1 ® FE11). Let (eq,e9,€) € Egl and yie € Fy;. Then check that
E”(y1e) o (e1,€5,€) = (e1 @ yre, €2 @ yre, 0, @ yre) € B3y
Traversing the diagram in either direction gives
(€' ®@yie, ¢ ®@uie,0,(1T0&) ®ure).

e Diagram Ds;(2,2,1):

Consider (%E)g;l € End(E2,Q Eyy). Let (eer, eeq, ees, x) € E2, and (0, ) € Fyy. Then check
that
El2((9a @)) o (eey, eey, ee3, x) = (Ep(eer), Ep(ees), Oees, EQSO ox) € Egl‘
Traversing the diagram in either direction gives
(Ego(ee’), Ey(ee'),07(ees), E*poTE o X) )
e Diagram Ds;(1,1,2):
Consider (7E)’, € End(E? ® Eys). Let yrysee € B2 and yyysée € Eyy. Then check that

|1

E"(y1y28€) o yryaee = (y1y2ee) @ (y1426€) = y1 ... ya(ee @ €€) € EY,.

86



Traversing the diagram in either direction gives
Y1 ... y4<’7'(€€) &® éé)
e Diagram Ds;(1,2,2):

Consider (%E)a; € End(E2%, ® E»). Let y1ysyseee € E2, and (eq, e2,€) € Eyy. Then check

that

E’Q((el, 62,5)) o y1yayseee = E2E(y1yyseee) € Ei’Q

Traversing the diagram in either direction gives

(TE? o B*¢)(y1y0ysece).
e Diagram Ds;(2,1,2):
Consider (%E)aiz € End(E2 ® E15). Let (e1,es,€) € E2, and yyyee € Ey5. Then check that

E”(y1yzee) o (e1,e2,€) = (1 @ yryaee, e2 @ yiyaee, 0,0,€ @ yryzee) € Eiy.

Traversing the diagram in either direction gives

(€' ® y1yaee, € @ y1yqee,0,0, (7 0 &) ® yry2e€) .
o Diagram Ds;(2,2,2):
Consider (%E~)|22‘;2 € End(F2, ® Ey). Let (eeq, eeq, ees,x) € E3, and (eq, e5,€) € Eyy. Then
check that
E,Q((el,emf)) o (eey, eey, ee3,X) =
(E€(eer), EE(ee2), ee5 @ €1, ee3 ® e, E*E 0 X) € E3,.
Traversing the diagram in either direction gives

(E¢(ee'), E€(e€'), T(ee3) @ €1, T(ee3) ® e2, TE* 0 E*€ 0 X)) .
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The proposition that E7 and 7E correspond to 7, and 7 is now proved. O

2.3.3 Definition of the 2-product

Definition 2.3.23. Let V be a 2-representation of U™ given by the data (F,z,7) for a
k-algebra A such that 4F is finitely generated and projective and E" is free as a P,-module.
We define £(1) ® V to be the 2-representation of U™ given for the k-algebra C' by the data

(E,%,7).
Proposition 2.3.24. If E is locally nilpotent, then E is locally nilpotent.

Proof. Note that in our setting of bimodules, local nilpotence of E ®4 — is equivalent to
nilpotence of F, meaning that £ =~ 0 for some n. This is because local nilpotence implies
E"®4 A =~ 0 for some n, but that is just £™ as a bimodule.

Recall the expression for E” as a matrix of (A[y], A[y])-bimodules:

Y1 Y Byl yi g EM Y] -~ Eﬁ E{Lz

G, G B3, E3
The method we used to compute a model for G,, for n = 1,2, 3 also shows that G,, for any n
can be described as a sub-bimodule of E"![y]®" @ Hom4 (4 E, E")[y], given by the elements

satisfying a certain set of conditions. It follows that (G,, vanishes for large n if E™ does. Also

Y1 . .. ynE"[y] vanishes for large n because E™ does. It follows that E is nilpotent. O

2.3.3.1 Weights and gradings for the 2-product

It frequently happens that a 2-representation has additional structure, and we may ask
whether our 2-product inherits that structure. A 2-representation of /™ may have a weight

decomposition, or its algebra may have a grading.
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Definition 2.3.25. A 2-representation V of U™ given for k-algebra A by the data (E,z,7)
is said to have a weight decomposition when A has the form A = [],_, A; with units e; € A4;,

and ejEez- = 5i+2,j : ei+2E€i-

Proposition 2.3.26 (weight decomposition). Let A and (E,xz,T) satisfy the conditions of
Def. 2.3.23, and let V be the 2-representation they determine. Suppose that V has a weight
decomposition with units e; € A;. Let C and (E,%,7) give the data of £L(1) @ V. Then C
has a weight decomposition C = | .., C; with C; = f;Cf; where the units f; € C; < C are

giwen in matriz form as follows:

€i+1 0
fi=
0 (ei—1,--€i-1)

Proof. The elements f; are clearly idempotent and orthogonal, and they sum to the identity.

We have for the matrix components of ij fi:

[ijfi]ll = €j+1-y1E[y]'€i+1
[ijfi]w = €j+1-yly2E2[?J]-€z‘—1
[fiEfila = G ﬂ(ej—lA[y]ei+1 ®e;j_1.Homs (4 E, E)'€i+1[y]>

[f]Efz]QZ = G2 ﬂ(ej,l.E[y].ei,l (—B €j,1.E[y].€Z',1 (—B €j,1.HOH1A<AE, E2>.€i,1[y]> .
These are all zero unless j =i + 2. O

Definition 2.3.27 (graded case). A 2-representation V of U™ given for k-algebra A by the
data (E,z,7) is said to be a Z-graded 2-representation when A is a Z-graded k-algebra, E is

a graded bimodule, and = and 7 are graded endomorphisms with degx = +2 and deg7 = —2.

Proposition 2.3.28. Let A and (E,x,T) satisfy the conditions of Def. 2.3.23, and let V be
the 2-representation they determine. Suppose that V is a Z-graded 2-representation. Let C
and (E, #,7) give the data of L(1)@ V. Then L(1)Q@V is a Z-graded 2-representation. The
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gradings on generators in C' and E are inherited from the gradings on A and E with the

assumption that degy = +2.

Proof. Tt is trivial to check that C' is graded and E is a graded bimodule. The formulas for

Z and 7 in Def. 2.3.4 show that they have the right degrees. O

2.4 Comparison: V = £(1)

In §2.4.1 we describe a well-known 2-representation of U™ categorifying L(1) ® L(1) using
Soergel bimodules. In §2.4.2 we describe our product explicitly for V = £(1), and in §2.4.3
we show that the result is equivalent to the known one. The reader is warned that notations
in this section will diverge from the previous sections.

Let Py = k[y1,y2]. Let Sy denote the symmetric group on 2 letters, generated by ¢;, and
acting on P, by permutation of the y;. Let PQS2 be the subalgebra generated by invariant

homogeneous polynomials.

2.4.1 A categorification of L(1)® L(1)

Definition 2.4.1. We define:
e a (P, Py)-bimodule By, = P, ® s, P»
2

— and observe that By, is also a P»-algebra with structure map P, — B, given by
=1 f

— and that P, is a left By,-module by (f ® g).0 = fg0
e a Pralgebra T =T, o @ Ty @ T 5 by

Ty =P, Ty = Endp, (R® B,,)®, Ty =P,
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e a (T, T)-bimodule & =5 & @ ¢&_2 by

P,
0(50_2 = = T()GQ

By,

126 = (P2 le) = exT
for e; the projection onto By,
— and observe the canonical isomorphism
1282 = 3Ty @, Toes = By,
e a bimodule endomorphism x € End(&’) by

n

+2%0 = <y2 Yo @ 1) y 0T—2 =
y1®1

(acting by multiplication)
e a bimodule endomorphism 7 € End(&£?) by

2T 2 f®g— 0, (f)®g

where 0, € Endg(P,) is a Demazure operator:

f-
yl_y2'

Os; + f—

The next theorem is well-known. Cf., for example, Lauda [Lau09], Webster [Web16, §2.3],

Stroppel [Str03, §5.1.1], Sartori-Stroppel [SS15]:

Theorem 2.4.2. The k-algebra T' and triple (&, x,T) defined above gives a 2-representation
of U, called T below, that categorifies the tensor product L(1) ® L(1) of fundamental rep-

resentations of sls.
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2.4.2 L(1)QL(1)

We notate both factors as in §2.1.2.3 except that on the right factor we use y; in place

of y, and on the left factor we use ys in place of y. We write E;, x;, 7, ¢ = 1,2 for the

2-representation data on the right (i = 1) and on the left (i = 2).

In the formulas we have given for the product, the algebra A, now A;, becomes k[y;];1 x

kly1]-1 (in its weight decomposition), E becomes k[y;1],  becomes y;, and y becomes ys.

Let w = y; —y2 € P5. So w will take over the role of ‘y; = x — g’ that was written in previous

sections. Write 7 : P, — P»/(w) for the projection.

We let B, X, E', C, E, #, and 7 be defined as above. The algebra B and complex X

have nonzero elements only in weights —2, 0, +2. These are given as follows:

B 0 P,
872 = ) X1_2 =
0 0 0
Py kly] Py
BO - ) Xlo =
0 B 0
0 O 0
B+2 = 5 X1+2 =
0 P 0

9

Xy, =

PQL)PQ/(W)
O—>P2

0
0—>P2

Here the action of P,/(w) from the upper right of By on Xy, is Po/(w)®p, Py — Py/(w) given

by f®1 — f. The complexes for X start in degree 0 on the left. The matrix coefficients

are in each case from the —1 weight space of A, in the upper left corner.
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To compute E we will also need E'X,, which is:

) 0
0B, (Xo,) = ;
0
) 0
+2E0(X20) = (=)
O—’PQG-)PQ——L—)PQ/(CU)

Next we compute C":

0 0 P2 WPQ P2 0
[C+2] = ’ [CO] = ) [0—2] =
0 P P QF 0 0

Here Q° < P, ® P, is the (commutative) algebra of all (6, ) such that ¢ — 0 € wP,, with
componentwise multiplication. It is a Py-algebra by P, 3 f — (f, f) € 1. The algebra
structure of Cy (cf. §2.1.4) may be described as follows. The upper right term, wP, is a left
Py-module by multiplication. It is a right Q}"-module with (0, ¢) acting by multiplication
by . The lower left P, is a left Q7"-module with the same action. It has a right P, action

by multiplication. The remaining structure maps are:

wh ®p, P, = P (2.4.1)

by wd' ® 0 — wh’
and

Py @p, wP — Q° (24.2)

by 0 @ wh' — (0,whd").
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Now compute E and the endomorphisms 7 by components:

- (UPQ 0 B U1 0
o[E]—z = ) 0[93]—2 = )
Q1 0 (y2,y1) O
- 0 0 ~ 0 0
+2[E]0 = ) +2[$]0 = )
P, Qo Y2 (Y2,y1)

where Qy € Py @ P, is the (P, Q7")-bimodule containing all (e, e5) such that e; — ey € wPs;
Q3" acts on Q9 on the right by (e, e2).(0,p) = (e1, e26) (note the swap), and P, on the left
by diagonal multiplication.

In the next section it will be useful to view oE_s as Cogo using the idempotent g, = (09) e
[Co], and to view ,5Eq as ¢2Cy using the isomorphism of (Py, Q$P)-bimodules o : Q; = Q,
by (0,¢) — (p,0). Viewing them in this way, we may write (Z_p as multiplication on
Coq2 on the left by (yl 0 ) e Cy, and ;27 as multiplication on ¢Cy on the right by

0 (y2,1)

0
<%2 (yl,y2)> € Cy (note the swap).

Finally, compute E? and 7 by components:

. 0 0 ) 0 0
+2[E ]—2 = ) +2[T]—2 = )

QQ 0 tgl 0

where

tor : (e1,€2) = (Wt (er —ea),w (e — €2)).

2.4.3 Comparison

Theorem 2.4.3. There is an equivalence L(1) ®) L(1) = T of 2-representations.

We will use a few intermediate steps.
Define a new algebra R:

R = Pyle]/(e* — we).
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There is a map of Py-algebras R 5 B,, given by ¢ — 1®%y; — 1 ® 1. There is another map
of P,-algebras R X, QS given by Py 3 f — (f, f) € QS® and e — (w,0).

Lemma 2.4.4. The maps v and ~' are isomorphisms of Ps-algebras.

Proof. Straightforward. ]

We will also use the composition o o4’ to obtain an isomorphism of (P, P,)-bimodules
R = Q, given by f — (f, f) and e — (0,w).

Now we translate 7 using . The action of By, on P, induces an action of R on P,
through v, according to which P, < R acts on P, by multiplication, and e acts by zero. We
have an isomorphism of R-modules P, — R/(e) using this action on P;. In the remainder
of this section we assume this isomorphism and write R in place of By, everywhere in the
2-representation 7. Under this translation, and using the decomposition R — P, @ Pse as

Pr-modules, we have:

Y1
+220 = \Yyg Y2 +e€), ol-2= )
Y —e

and

+2T—2 = (Pl + P2t —p2).

Lemma 2.4.5. The matrix presentation of Ty is given by:

P P
- T07
P R

where:
e for [Ty]11 the map sends 0 € Py to (1 — ) € Endg(FP»)°P
o for [Ty]o1 the map sends 0 € Py to (1 — 6) € Homg(R, P;)

o for [Ty]ia the map sends 6 € Py to (1 — 6w — fe) € Hompg(Ps, R)
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o for [Ty]ae the map sends r € R to (1 — r) € Endg(R, R)°P.

The algebra structure maps (cf. §2.1.4) are given as follows:

[Tolin O [Toliz by 0.0" = 66

[T0]21 O [To]u by 9,6‘ = 9,(9

[To]12 O [To]22 by 0.(p1 + p2e) = Opy

[To]22 O [To]a1 by (p1 + p2e).0 = p16

[T6]12 ® [To]o1 — [To]11 by 0 @6 — whe’
o [To]ar ®[To)12 — [To]a2 by 0’ ® 6 — wb'0 — 0'0e.

Proof. Let us explain the map to [7]12. Recall that P, =~ R/(e). An element of Homg(R/(e), R)
is given by the image r = p; + poe of 1, which may be anything satisfying e.r = 0, and that
condition is equivalent to p; = —pow. The other morphisms and the structure maps are

easily computed. O

Lemma 2.4.6. Let Oy : Ty — Cy be given on components by:

]dp2 w

1 sz '7/

Then ®q is an isomorphism of Py-algebras.

Proof. The specified maps give algebra isomorphisms on the diagonal components, and k-
module isomorphisms on the off-diagonal components. Now we check equivariance under
the bimodule structure maps. The only nonobvious cases concern maps involving the lower
right component.

An element of Q7® may be written uniquely as a sum (wf,0) + (p, ). This is sent by

7"t to ¢ + e € R. So the action of (A, ¢) by multiplication by ¢ agrees with the action of
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p1 + pae by multiplication by p;. The structure map [To]i2 ® [To]21 — [To]11 clearly agrees
with Eq. 2.4.1 through ®,. The map [Tp]a1 ® [To]12 — [To]22 agrees with Eq. 2.4.2 through

®y because 7' : wh'0 — 0'0e — (0,whHH"). O

Proof of Theorem 2.4.3. Extend ®, to an algebra isomorphism ® : T — C by &, = Idp,
and ®_5 = Idp,. It remains to check compatibility with the actions of E, x, and 7 in U™,
and this poses no difficulty. We summarize that now.

We have in 7 that (& o — Tory for ro = (39) € [To], and similarly oE_s = Coge in
L(1)®L(1); and we have go = ®y(r3). The action of gx_s on &5 in J can be written in Tyry
as multiplication on the left by (% ylo_e) € [To]. In L(1)@L(1) it is written as multiplication

on the left by (%1 (yfyl)). These correspond using 7' : R — Q}°. Similarly for |,z since

v R3ys+ e (y1,y2) € Q. Finally, the action of 7 in R by o7 5 = (p1 + poe — —pg)

corresponds to 427 9, now using c oy’ : R — Qs. O
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CHAPTER 3

Construction of the product: adding the negative half

This chapter provides a proof of the Main Theorem, Part II.

3.1 Additional background

3.1.1 Adding a dual

We begin with a description of 2-representations of the full 2-category U associated to the
Lie algebra sly. The 2-category U that we mean is defined in [Rou08a, §4.1.3], but with 7
replaced by —7 in the Hecke relations. We do not repeat that definition here since we work
with the concrete data of 2-representations and not with the 2-category U itself.

A 2-representation of the full U/ is defined in terms of weights (see Def. 2.3.25). The
monoidal category Bimj(A) may be interpreted as a 2-category with a single object A.
When A is provided with a weight decomposition A = [],_; Ax, then Bimg(A) may be
interpreted as a 2-category with objects given by the weight algebras Ay, morphisms given
by (A,, Ax)-bimodules, and 2-morphisms given by bimodule maps. With this interpretation,
we may describe a 2-representation of U as a strict 2-functor U — Bim(A) given on objects
by 1, — A,.

In Chapter 2, we considered 2-representations of U+ in Bimy(A). These were determined
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by a choice of bimodule sE4 € Bimg(A) and bimodule endomorphisms x and 7. Every

bimodule 4FE4 has left- and right-dual bimodules, respectively:

VE = HOHlA(AE, A),

EY = Homy(Ey4, A).

Now, when 4 F is f.g. projective, the canonical morphism YE®4 F — Homa (4 F, F) is an
isomorphism of bimodules. More generally, the canonical morphism of functors YE ®4 — —
Hom4 (4 E, —) is an isomorphism. In this situation, the endofunctor YE'®4 — of the category
mod-A is right adjoint to the endofunctor £ ®4 — of the same category. The triple (VE,e,n)
gives the right-dual object for F in the monoidal category Bimy(A), where e : E®4 YE — A
and n : A - YE®,4 F are given by evaluation and right A-action (a — _.a), respectively.
(Note that ¥ E is the left-dual bimodule but it gives the right-dual object.)

Now assume only that (E®4 —, VE®a —) is an adjoint pair for some bimodule 4F4. The

adjunction gives equivalences of functors:
HOIIIA(AE, —) = HOIIIA(AA, VE ®A —) ~ VE ®A -,

so all three are both right- and left-exact functors. So 4FE is projective. Furthermore, these
functors commute with infinite direct sums, so 4F is finitely generated as well.

In this chapter we consider 2-representations for which the image of F' in Bimy(A), i.e. the
bimodule 4Fj4, is identically the left-dual bimodule YE. There is no loss of generality
because any 2-representation of U in Bimy(A) is equivalent to one of these. (For any 2-
representation in Bimy(A), the endofunctor 4 F ®4 — of mod-A is right adjoint to 4E ®4 —,
and is therefore unique up to unique isomorphism.) A 2-representation of U given by the
data (A, E,F,z,7,e,m) in Bimg(A) is said to extend a 2-representation (A, F,x,7) of U™
when F' = YE and ¢, n arise from the duality.

It was a hypothesis of the Main Theorem, Part I that 4 F is f.g. projective. This assump-
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tion was needed in order to show that E'X is a perfect complex (for example). In light of
the above, we see that this condition is also necessitated by the existence of an extension of
the 2-representation of U* to a 2-representation of U in Bimy(A).

The following lemma is a consequence of the foregoing discussion.

Lemma 3.1.1. Suppose the data (A, E, x,T) determines a 2-representation of U™ in Bim(A)
having a weight decomposition. This data extends to determine a 2-representation of U if
and only if AE s f.g. projective and the commutator morphisms py determined by x and T

are 1somorphisms.

In Chapter 2 we already established that «E is f.g. projective. Here in Chapter 3 we
show that (C, E, z, 7) extends to determine a 2-representation of U (assuming (A, E, z,7)
does and that E™ is free over P,) by showing that p, are isomorphisms and then applying

this lemma.

3.1.2 Commutator morphisms

We define the commutator morphisms more precisely.

Assume we are given the data (A, E,x,7) of a 2-representation of U in Bimg(A) such
that 4F is f.g. projective so (E, VE) is an adjunction. Write F' = VE and write n: A —» F'E
and € : EF — A for the unit and counit of the adjunction given by the duality. Assume
further that this 2-representation has a weight decomposition A = [],., Ax. We use the
notation Ey = F- Ay and ,Ey=A,-E-Ay. So & = (—DA’M uE.

In this chapter we use a convention that ‘@’ and ‘)Y}" denote the components of a map to

and from a direct sum, respectively.

We define 0 : EF — F'E by:

o = (FEs)o (FrF) o (nEF) : EF — FE.
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For )\ € Z=° we define:

A-1
pr=0@®Peoa'F: EF\ — FE, @AY, (3.1.1)
i=0
and for \ € Z<°:
-1
Py = (U, Z Fz'o n) : EF\® AY™ — FE,. (3.1.2)
i=0

The summation terms are neglected when \ = 0.
The data determines a 2-representation of the full i/ using F' = YE when p, is an isomor-

phism of (A, A)-bimodules for each A.

3.1.3 Integrability

In the literature, a 2-representation is typically defined in terms of weight categories C,
and functors £ and F' between them, whereas we have framed our results entirely in terms
of bimodules £ and F. One reason for this is that the operation of tensoring with cho-
sen bimodules may determine various functors that act on various reasonable categories of
modules. The most important ones are mod-A and proj-A.

The distinction between mod-A and proj-A interacts with our results and the hypothesis
of integrability in an interesting way. This interaction is mediated by the property of ‘second
adjunction’ that a 2-representation of &/ may possess. We explain this next. Note that some
authors include the second adjunction in their definition of a 2-representation, and for them,
this discussion will be of minor significance. It may be interesting for them to observe,
though, that in our construction of tensor product, the hypothesis of integrability passes
from the factors to the product quite easily, while it is not clear that the second adjunction
on its own passes from the factors to the product at all.

Every 2-representation of U given with functors F and F' comes with one adjunction
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(E, F), and with the data of a ‘candidate’ unit and counit pair for a second adjunction
(F,FE). When the 2-representation acts on a category mod-A and FE and F are given by
tensoring with bimodules, the first adjunction implies that 4FE is f.g. projective. In this
case, the upper half U™ also acts on the smaller category proj-A. If the 2-representation is
assumed to be integrable, and the full U acts, i.e. the p, are isomorphisms, then by [Rou08a,
Thm. 5.16], the given candidates do provide a second adjunction (F,E). This adjunction
implies that 4 F is also f.g. projective, and now the full ¢/ action may be restricted to proj-A.

Given only the first adjunction with an action of U1, so 4 F is f.g. projective, together
with the hypothesis that E™ is free over P,, we can form the 2-representation of U™ called
L(1)@YV in Chapter 2. In the course of forming £(1)®V we found that ¢ E is f.g. projective,
so it may be interpreted either in an action on mod-C' or else in an action restricted to proj-C'.
Given also a second adjunction (YE, E) with an action of the full U, we know that U acts
on proj-A through F and YE in the 2-representation V, but we are not (currently) able to
show from this alone that U acts on proj-C' through E and VE since we do not know that
VE is f.g. projective.

Given the first adjunction (E,YE) and also the hypothesis of integrability of an action
of the full U, we know that there is a second adjunction (VE, E). Now the hypothesis of
integrability itself passes to the product bimodule E. (See Prop. 2.3.24.) Given that we can
also show (below in this chapter) that the product maps p, are isomorphisms, so we have an
action of the full i/ on mod-C' it follows from integrability that there is a second adjunction
(VE, E) for the product. This implies, in turn, that ¢E is f.g. projective and that the U
action may be restricted to the category proj-C.

To summarize, second adjunctions enable restriction of the full &/ action to the subcate-
gories proj-A and proj-C. The existence of a second adjunction (YE, E) in V is not enough
(to our knowledge, according to our argument) to guarantee a second adjunction (VE, F) in

L(1)® V. But integrability of V is enough to guarantee integrability of L(1) ®)V, as well as
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to give both second adjunctions (VE, E) and (VE, E).

3.2 More bimodules

Definition 3.2.1. Let L,, denote Homps(p) (£ X1, X5).

Note that L; = G;. We will only need L; and L, in what follows. Observe that L, has
a right G1P-module structure given by post-composition. We now study Lo, and provide it
with the structure of (G3°, G{?)-bimodule.

Recall from Def. 2.2.10 the two complexes of B-modules:

. E2ly] T, E,E®E,E

0 — Ely] ® Ely]

) Byl = E,E
2 )

0 — Ely]

where E, acts by the obvious canonical maps. Recall that X} is a finite direct sum of
summands of X, and hence strictly perfect.
The matrix algebra structure of the nil-affine Hecke algebra implies that the map (7¢!)

gives a decomposition of left A[y]-modules:

E?[y] };T)’ T B y] @ Ty E[y).

Recall that we have an isomorphism R — X} @ X}, in B-cplx given by the above isomor-
phism on the degree 0 term of the upper row, and the identity on all other terms. (Lemma
2.2.12.) So R € per B and is strictly perfect. Recall that there is a quasi-isomorphism
R E'X; determined by Idgzp, on the degree 0 term of the upper row and (% _2/1) on

the degree 1 term of the lower row. (Lemma 2.2.13.) In this chapter we need an additional

feature of R.
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Lemma 3.2.2. The complex R carries a right action of the algebra GS°, where (0, ¢) € G3°
acts by post-composition with E¢ € End(E?*[y]) on the degree 0 term E*[y] in the top row,

and by the matrix

0
(I):SD

v 0

on the degree 1 term E[y]®? in the bottom row, and by E,® on the degree 1 term E,E®* in
the top row. Through the quasi-isomorphism of the previous lemma, this action induces the

canonical action of GI* = Endgsp)(X2)%® on E'X, given by functoriality of E'.

Proof. First we check that the right action of (6, ¢) described in the lemma gives a morphism
of complexes of left B-modules. The action is clearly A[y]-linear in the top and bottom rows,
and it is clearly linear over the off-diagonal generators in £, < B. The action commutes

with the differential on the bottom row. We check the top row:

E,po 0 mE EypormkE
Eyo1 E,0 TEorT EprorE+ EforEoT
TEoFEyp

TEoFEpy+nmEotoEl

Tk
= o Fo.

TEor

Next we check that the action commutes with multiplication in the algebra. In the algebra
we have (0, ) - (¢/,¢") = (00, ¢ o ), while the action of the product in the degree 1 term

of the bottom row is given by:

¢ 0 ¢ 0 @' oy 0

oy 0 ©1 0 prop+ (0)op 0
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Note that

QLo+ (0)opr = 0.9 + ¢ oy + 1.6,

o op—_00 =y ((L0)op+ ¢ o),

so the composition of the actions agrees with the action of the product on that term. The
other terms are trivial to check.
Lastly we check that through the quasi-isomorphism of Lemma 2.2.13, this action is

compatible with the canonical action on E’X5. Start with the degree 1 term in the bottom

Tow:
1 0 o 0 B %) 0
L =y ¢1 0 ) Y =1 —ht |
v 0 10 |y 0
0 6 1 -y - 0 —6y,
These agree because ¢ — y11 = 6. The other terms are trivial to check. O

Now we compute a model for Ly using the strictly perfect R as a replacement for E'X5.
Definition 3.2.3. Define the following (A[y], A[y])-sub-bimodule of F[y]®*@®Hom(4E?, E)[y]:
L= (£, 5.9) € FUI™ @ Homa 5 E)l]

p=Ef+Ef or+yop

for some p’ € Hom (4 E?, E)[y]>

Proposition 3.2.4. There is an isomorphism of (Aly], Aly])-bimodules Ly = Homye gy (R, X5)

determined by:
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Proof. The proof is seen by directly computing Z°Zomp(R, X,). It is easy to check that
the morphism given as the image of (f’, f, p) is a morphism of complexes of left B-modules.
The condition p = Ef + Ef' o1 + y; 0 p' is equivalent to the statement that this morphism

has zero differential. O

Corollary 3.2.5. The isomorphism above, followed by the canonical isomorphism of func-
tors Homyu gy (R, —) — Hompyp) (R, —) applied to X,, gives an isomorphism Ly = Ly of

(Aly], Aly])-bimodules.

Proposition 3.2.6. There is an isomorphism of (Aly], Aly])-bimodules

F?[y] = Homy(p) (R, X1) given by

FQ[y] 5 ff . (667 (ee’ )) . ff(ee)
(0,(&)) 0

Proof. The proof is seen by directly computing Z°5#omp(R, X1). O]

(Recall the meaning of the notation: ee is an arbitrary element of E?[y] (and f f of F?[y]),
not a simple tensor. It is unrelated to e, which is an arbitrary element of E[y].)
It is useful to give a model of G, that is compatible with this model of L, by using the

replacement R for E'X,.

Definition 3.2.7. Define the following (A[y], A[y])-sub-bimodule of E[y]®*@Hom (4 E, E?)[y]:

&y = << .)€ E[y]® @ Hom (4. EQ)[y]‘

= e+ (CQ(e—1y1€)) + 1yl

for some & € Homyu (4 F, EQ)[y]>

Proposition 3.2.8. There is an isomorphism of (Aly], A[y])-bimodules G, = Hom g5y (X2, R)
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determined by:

(¢,0) (€(e), 0)

(€68 — —

(0,1) (0, (e=pner))

Proof. The proof is seen by directly computing Z°#omp(Xs, R). m

The quasi-isomorphism R LI X, determines an isomorphism G = Gs, since X,
is strictly perfect, given by (¢',e,&) — (e,e — y1€/,€), with inverse given by (e, es,§) —
(y; ' (e1 —e3), €1, &). In the remainder of this chapter we will use G instead of G as a model

for Gs.

Definition 3.2.9. Let U denote Homgs(g)(R, R). It is canonically isomorphic to

HOHIDb(B) (E/Xg, E/Xg).
As in other cases, we describe a model for U and work with the model in what follows.

Definition 3.2.10. Define the following (A[y], A[y])-sub-bimodule of

FE[y]® @ Homu(4E?, E*)[y]:

U= <(c1)11, Doy, Pig, Poo, A) € FE[y]@4 &) HOHIA(AE27 E2)[?J]
A =71y (E®11 + EQip07) — yomyn (EDo1 + EPgy 0 7) + y1y2A°
for some A° € Hom (4 E?, E2)[y]>

Here ®;; give the components of the matrix [®] of a map ® € Enda(4E[y] ® E[y]). Note

that because y,ys is injective, A° is uniquely determined by (P, A).

Proposition 3.2.11. There is an isomorphism of (Aly], A[y])-bimodules U = U determined
by



Proof. The proof is seen by directly computing U = Z°#omp(R, R). We must show that
the condition on A is equivalent to the statement that the image of (¢, A) has zero differential.
One computes directly that the morphism given as this image has zero differential if and

only if the following pair of equations holds:

WEOA:Eyq)llo’TFE—FEyq)lQOTFEOT
TEoTA = E®yonE + E,PoyonmEor.

That pair is manifestly equivalent to the condition:

A= E® + E®pyoT + ygA/
(3.2.1)

TA = Eq)gl + ECI)QQ oT + ygA”

for some A, A" € Hom (4 E?, E*)[y].

Claim 3.2.12. Suppose (P, A) is given such that (3.2.1) holds for some A’, A”. Then there is

A° € Hom (4 E?, E?)[y] such that
A =71y (ED; + EPip07) — Yoty (EPoy + EPog 0 7) + 1172A°. (3.2.2)
Proof. Multiply the second equation of the pair by 7 and obtain:
—Tys\" =70 E®yy + T0o EDgp 07T,
Multiply the first by 7 and the second by 7y, and identify the results to obtain:
TYo\' = 1yt A" + 191 © (E@zl + Edyy 0 7‘) —7To (ECIJH + Edy0 7‘).
Then:

AN = (7 —Tya) o N
= TN — 197N — Ty 0 (E@yy + E®gp07) + 70 (EPyy + EP1507)

=y (TN — yorA") — 7y1 0 (E®oy + E@9p07) + 70 (EPyy + E®p07).
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Let A° = 7A" — yo7A”. Then:

A= E(I)H + E(I)lg oT + ylyng
— Y2TY1 © (E<I>21 + Edgy 0 T) + Y27 O (Eq)n + Edp0 7')

= TY1 0 (EPQ11 + EP1307) — yo7y1 © (EPgy + EPgg 0 7) + 1132A°,
as desired. O

Claim 3.2.13. Now suppose (®, A) and A° are given such that (3.2.2) holds. Then there are

A’; A" such that (3.2.1) holds.

Proof. Let

N =70 (E®y + Edyyo1) =Ty 0 (EDy + Edyy 0 7) + 1A,

N =710 (E<I>21 + E®qyy 0 7') + 1 TA°.
Multiplying the first by ys, adding E®y; + E®y5 o 7, and simplifying with (3.2.2), we find:
Yo\ + E®y + E® 1y 07 = A.
Multiplying the second by ys and adding E®y; + E®yy o 7, we find:

Yo" + E®y + EDgy o7 = Ty © (E@Ql + E®g 0 T) + Ty

while
TA = —TysTYy © (E<I>21 + Edyy 0 7') + Ty1y2 A°
= Ty 0 (EPy + E®g 0 7) + y1yomA°
using (3.2.2). So the pair of equations (3.2.1) is satisfied. O
The proposition follows. O

We will need one more description of U:
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Lemma 3.2.14. The composition map Ly g Go — U is an isomorphism.

Proof. Consider the triangulated functor:
Homp(Xy, —) : KP(B) — K'(GP).

By the same reasoning as in §2.2.3.2, this functor descends to the derived categories
Homp(Xs, —) : D'(B) — D*(G),

it is fully faithful when restricted to (Xs)a, and it is essentially surjective from (Xs)a
(because the image of X5 is quasi-isomorphic to G*). The inverse is given by Xy ®ger —. It

follows from R € (X5)A (Lemma 2.2.12) and

Hom () (X2, R) — Homy(g) (Xa, E'X>)
2 o omp(Xa, E'X,)

L #om B(X2, R)
that the evaluation map is an isomorphism:
X5 @Gf{p HOIIle(B)(XQ, R) — R.

This shows that the map in the lemma statement is an isomorphism:

HOHle(B) (R, XQ) ®G3P HOme(B) (XQ, R) = Home(B) (R, X2 ®G§P HOHle(B) (XQ, R))

= Home(B) (R, R)
]

We will need to know the (A[y], A[y])-bimodule structure of the components of E and

E? and F. This information is implicit in the calculations in Chapter 2 for the first three
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bimodules of the next proposition. The structure of the fourth bimodule is easy to compute

using the map provided.
Proposition 3.2.15. We have isomorphisms of (Aly], Aly])-bimodules:
o yi... .y E"y] = E"[y] given by composing with (y; ...yn) " .
o L1 =G = Aly]® FE|y] given by (6, p) — (0, ¢1), where
o1 =y; (¢ —0)

is interpreted in FE[y]. Note that the summand FE[y] is a left G*-submodule of G .

o Gy > Ely|® E[y] ® FE?[y| given by (¢,e,&) — (€, ¢e,&), where
€ = (ny2) ' (§— -@e— (@ (e — me')))

is interpreted in FE*[y]. Note that the summand F E*[y] is not only a left Aly]-submodule

of G, but moreover a left G*-submodule of Gs.
o Ly = Fly|@ Fly| @ F*Ely] given by (f', f.p) — (f', fp1), where
p=yi(p—Ef —Efor)
is interpreted in F*E[y]. Note that the summand F*E[y] is a left G5°-submodule of L.
o U= FE[y|® @ F?E?[y] given by
(P11, Doy, P12, Pog, A) — (D1, oy, D1, Pog, A7),

where

A = Tyl(E(I)H + E(I)lg o} 7') — ygTyl(Eq)gl + E(I)QQ O T) + ylyQAO (323)

determines A°, which is interpreted in F?>E?[y]. Note that the summand F?E?[y] is a left

GSP-submodule of U.
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In what follows we will frequently use the bimodule descriptions on the right side of
these isomorphisms for the components of E and F. Sometimes, to avoid confusion, we will
use the shorthand expressions ‘submodule form’ and ‘bimodule form’ to distinguish the two
sides. The word ‘submodule’ suggests ‘(A[y], A[y])-sub-bimodule’, and the word ‘bimodule’
suggests ‘structure as (A[y], A[y])-bimodule’. The data of an element given in the two forms
will differ only in the last component: in the ‘submodule form’ the last component gives the
morphism restricted to the degree 0 part of the top row of the B-module complexes, and in

the ‘bimodule form’ the last component gives just the remainder term ‘p1’, ‘¢”, ‘p1’, ‘X", or

£A07

3.3 Adjunction

Definition 3.3.1. Let ' denote the (C, C)-bimodule vE, that is, Home(cE, C).

We have seen that, under the hypotheses of the Main Theorem, ¢ F is f.g. projective.
It follows that the right adjoint functor Home (¢, —) of E ®¢ — is canonically isomorphic
to F@C —. We have already defined = and 7. We define € : EF — C and n:C — FE
using the duality, and then & and p, using the formulas in §3.1.2 with (A, E, F,x,7,e,n)
replaced by (C, E, F,#,7,&,17). Sometimes we view F'E through the canonical isomorphism
Hom(E, C) ®c E = Hom(E, E).

Now we construct an isomorphism of (C, C')-bimodules:

F ; Home(B)(XQ @R, Xl @XQ)a
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as follows:

F = Homg(cE,C)
> Home(C)(E, )
— Hompe (&, €)
= Hompy ey (Homp(X, E'X), #omp(X, X))
— Hompy(p)(E'X, X)
— Hompy(p) (X2 @ R, X1 @ X5)
— Homy(p) (X2 ® R, X1 @ X3).
(The third arrow comes from the Rickard equivalence.)

With this description of F , and using the direct sum decompositions, we can express F

as a 2 x 2 matrix of (Aly], A[y])-bimodules:
Fly] Ly

We have C' = End g+ (5)(X1@X3), and the right action of C' on Fis given by post-composition.
The left action of C' is by pre-composition, but one must first apply functoriality of £’ and

use the quasi-isomorphism from Lemma 2.2.13, which we write v : R RNy X,

o A generator ¢ € Z°H#omp(X1,X1)? = Aly] < C determines E'¢ € Homye(p) (X2, X3)
that acts on F (on the top row) by pre-composition. An element ¢ = 6 € A[y] acts in the

obvious way on the left on F[y]| and L;.
e A generator ¢ € Z°# omp(Xy, X1) = Fly] € C determines
E'¢ € Homp(p) (E' X, E'X1) _TW’ Hom s gy (R, X>).
So ¢ acts on F (on the top row) by pre-composition with F'¢ oy : R — X,. Recall

113



that we have the model Ly for Hompgu(py(R, X2). An element ¢ = f € F[y| acts by

pre-composition with the morphism determined by E'¢ o~y = (0, f,0) € Ly.
e A generator ¢ € Z°#omp(X1, Xs) = y; E[y] < C determines
E'¢ € Homgo(py(E' X1, E'Xs) <~ Hompe () (Xa, R).

Recall that we have the models G for Homye gy (X2, E'X5) and GY for Hom gy (X2, R),
and the isomorphism Gy ~> GY given by (e, ez, &) — (y;*(e1 — e2),e1,&) (in bimodule
forms). An element ¢ = ye € y; E[y] determines E'¢ = (y1¢€,0,0) € Gy, so this acts on F

by pre-composition with the morphism determined by (e, y1¢e,0) € Gb.

o A generator ¢ € Z°omp(Xs, X3)® = G* < C determines ¢ € Homye(p) (R, R) from
the right action of G5° on R. In terms of the model U, we have ¢r = (i, ¢1,0,6, Ep) (in
submodule form), determined by ¢ = (6, ¢) € GSP. This acts on F (on the bottom row)

by pre-composition.

3.4 Isomorphisms p)

3.4.1 Some tensor products of (C,C)-bimodules

In this section we compute three tensor products of bimodules over C', namely EE, FE, and
EF, and describe the products in each case as matrices of (Aly], Aly])-bimodules. These
calculations are used in the remaining sections to verify that p, are isomorphisms. Note that
the product EE = E? is already given (Prop. 2.2.48) a description as a matrix of (A[y], A[y])-
bimodules using the identification with Hom g (g (X, E”X), but for a computation of & it is
also necessary to realize the matrix description of E? as it arises from the matrix description
of E as a (C, C)-bimodule.

These tensor products are computed according to the general formulation described in
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§2.1.4. First we take the tensor product over the subalgebra A := (A([)y] G%p) c C. This
product is given on components by matrix multiplication and tensor product over A[y] or
G7°. After this we must take the quotient by the image of the map “Ip + Ic” (cf. §2.1.4)
that is produced using the action of the off-diagonal generators in C'. This quotient may be
taken separately on each coefficient of the product over A.

The simplest technique for computing a quotient by the image of (say) Ip is to identify
one of its projections as an isomorphism. (In §2.1.4, there is a projection of Iz to M; ®4 Ny
and another projection to My ®p No.) In this situation the quotient by Im(/g) reduces to
the summand of the other projection, because every element of the first summand (in the
quotient) has a unique representative in the second. The basic technique for computing the
quotient by Im(/5) + Im(/¢) is to show that the projections of I have a compatibility with
those of Igz. Many of the components computed below are found in this way, but a few of
them require more complicated reasoning.

Let us write, in general, I for the projection of I to the first summand, and —I for the
projection to the second. Similarly write I; and —I§ for the projections of Io. Here ‘first’

and ‘second’ summand and ‘Ig’ and ‘I’ are understood as in §2.1.4. In a tensor product of

(C, O)-bimodules, each of the four coefficients will have its own set of maps Ij, I3, I, Ij.

3.4.1.1 EE

For the product EE, we already know the structure of the coefficients of the matrix presen-
tation. We will need to compute the action of 7 on elements of EE in order to compute &,
and for this it will be enough to compute the map from the tensor product over A to the
product over C, i.e. to the quotient by Im(Ij — I%) + Im(I5 — I§). Write I' for this map. Let

the subscript ‘G’ between concatenated modules indicate the tensor product over G3°. (An
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empty subscript indicates the product over A[y].) So we have:

Ely] E*[y] Ely] E°[y]

Gl G2 Gl GQ

&
®
>
et
Il

EE[y]® E*|ylcG1 EE*[y]® E*[y]cG-
G1E[y] ® (G2)cG1 G1E?*[y] @ (G2)cGo

l1e

(3.4.1)

E?[y] E3 ~
T ly] E°[y] - [,
Gy Gy

and we wish to understand the map I' on each component. In subsequent sections we
must determine the structure of the quotient and then write I', but here, since we know
the image to be Hompgu g (X, E*(X )), we simply compute I' by composing elements of

Hom 5y (X, E'X), using functoriality of £’ and applying Lemmas 2.2.44 and 2.2.45.

e For I'1;, we have:

- I'y ]EE[y] is given by Idggp,,

— T11 | p2py)ec, 18 given as the inverse of E*[y| = E*[y|cGy, ee — ee® lg,.
e For I'5;, we have:
— T'21 |G, B[y 1s given (in bimodule forms) by
(0, 01) ®e — (Be,Byre, p1(—) ®e) € Go,
— T'a1 [(Gy)ecy 1s given as the inverse of Gy — (G2)cG1, 92 — 92 ® 1g;,.
e For I'y5, we have:

— T ’EEQ[y] is given by Idpsp,),
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— I'i2 |p2[yjec, 1s given (in bimodule forms) by
ee ® (¢, e,) = (yi1y2y3) " (BE) (yryeee) € E[y].

e For I'y,, we have:
— Iy2 |G, p2[y) 1s given by
(0,01) ® ee — (Oy1yzee, 0,0, 01 (—) @ ee)
(c.f. Diagram Dyp(2,1,1) in §2.3.2.3),
— Ty |(G2)ecs 1s given (in submodule forms) by
(e1,€2,8) @ (€1,82,8) — (E(e1), 2 ® €1, €2 ® €3, EE 0 £)

(c.f. Diagram Ds2(2,2,1)). We need to compute this map on the bimodule forms. First

compute F¢ o &:

Efot = (- @e+ (- ®(€— 1)) + i EE)
o ((®e+pr(-® (e —yie) + yiyst)
— ® (et + yor(ee — yred) + yryal'(€))
+ 43 0 TE(-® (€ — yoee))
+ 4oy 0 BT o TE(_® (e — 11¢') (€ — 1)

+y1yys (B o 7(-® (e — yie)) + ET(€ @ (€ — 11€)) + € ® ).
Using Prop. 2.2.26, we can read off the data of the bimodules formulation we want:

(€,e,8)®(€,e¢) —
(eé + yo1(e€ — y1e€') + y1y2€'(e), ee — yae’e, (e — y1e') (€ — y1 &),

E¢or(-® (e —ye) + ET(§' ® (€ — 1)) + £ ® ).
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3.4.1.2 FE

For the product F'E, we can find the (A[y], A[y])-bimodule structure of the components of

its matrix presentation using the same technique as for F' and E2. We have:

FE = Homc(cE, C) ®c E
= Home(cE, E) = Home(C)(E, E) > Hompy(cy (€, &)
— Hompy(c) (Homp(X, E'X), #omp(X, E'X))
= Hompyp) (E'X, E'X)

= Homyo ) (E'X, @ R, E'X, @ R).

So the matrix presentation is:

As we did for E?, we study the map I' from the components of the product over A to

those of the product over C"

Fly] Ly -~ Ely] E*[y]

F2 [y] LQ G1 G2

FRaE

lle

FEly|® (L1)¢G1  FE*y]® (L1)cGa
F?Ely] ® (L2)aG1 FPE*[y] ® (L2)aG2

lle

(3.4.2)

FE[y] @Gl FEQ[y] @GQ r G1 GQ

12
l

FZE[y] @ L2 F2E2[y] @ (LQ)GGQ L2 U

The bulleted claims below are justified in the paragraphs following them.

e We have I'y; : FE[y] ® G7 — G given by (¢,1dg,).

Here the map ¢ : FE[y] < Ly = G is the inclusion of the second summand as written in
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Prop. 3.2.15.

— I, : FE[y]cGy = FEly] given as the inverse of the isomorphism (fe — fe® lg,),

— I FE[yleGr %5 (L1)6Gh = Gy,

— I} : (G1)gFE[y] = FE[y] given as the inverse of the isomorphism (fe — lg, ® fe),
— II': (G1)GFE[y] 28 (G1)gLy =~ Gi.

Using either I7 o Ié_l, or I¥ oI} one associates a unique representative in (L;)¢Gy = G4
to each element of FE[y]. We see that Ijo Ij' = I o IS, so the two associate the
same representatives. It follows that the quotient projection I'y; is given by the proposed
formula.

We have I'y; : F?2E[y] ® Ly — Lo given by (¢/,1dz,).

Here the map ¢/ : F2E[y] < L is the inclusion of the third summand as written in
Prop. 3.2.15.

— I : F?E[y]eG: — F?Ely] given as the inverse of (ffe— ffe®1g,),

— I} F2E[y]6Gr B (L) oG = Lo,

— Ij: (Ly)gFEly] — F?Ely] given by
(f f.r)@fe (fop)@e= (fo(Ef+Ef ot +yp)) ®¢,
— II: (Ly)GFE[y] 22 (Ly)¢Gy = Lo,

Consider the first two maps. We have that I5o [ /'3_1 =/ as maps F2E[y] — L. Consider
the last two maps. One may check that //'oIj = I§. It follows that Im([5—I}) < Im(I3—1f),
so in the quotient every element of F?E[y] is associated to a unique element of Ly, given

by applying the map ¢/
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e We have I'yy : FE?[y] ® Gy — G4 given by (", 1dg,).

Here the map " : FE?[y] — G is the inclusion of the third summand as written in

Prop. 3.2.15.

— I : FE[y]aGa — FE?[y] given by

fe® (e, e,8) > @ (y2) é(yie) = fR (T(e@e) — por(e®¢) + ' (n1€)),
— It FE[ylaGa %% (L1)6Ga = Gs,
— I} : (G1)gFE*[y] = FE®[y] given as the inverse of (fee — 1g, ® fee),
— I (G FE[y] 225 (L1)6Ga = G
Consider the last two maps. We have that I} o I;"" = /" as maps FE?[y] — Ga. Now
consider the first two maps. Observe that I = /" o I}. It follows that Im([j — I§) <
Im (I} — I}), so every element of F'E*[y] is associated in the quotient to a unique element
of Gy by applying the map +”.
e We have I'yy : F?E?[y] ® (L2)gGa — U given by (., 1dy).

Here the map " : F?E*[y] — U is the inclusion of the fifth summand as written in

Prop. 3.2.15.

— Iy : F?Ely|¢Gy — F?E®[y] given by ffe® (¢/,e,&) — [f @ (y1y2) "E(mre),
— I} F2E[y]6Gy 2% (Ly)Gy = U,
— I} (Ly)oFE?[y] — F?E?[y] given by (f, f,0/) ® fee — (f o p) @ ee,
— I (Lo) o FE2[y] 225 (Ly)eGy = U.
Consider the first two maps. Observe that
I(ffe®(e,pe, & = 0)) = ff @ (e®e) € F2E?[y].
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It follows that I} is surjective. Now we show that /" o I}, = I3 and that " o Iy = I§ using

the bimodule forms:

L”/(ﬁ® (y1yg)_1§(ylé)) - (070707()’/\0 = ﬁ® (ylyQ)_1€<ylé))>
Ii(ffe®(¢e,€) = (0,0, ffe) ®cer (€', &)

— (0,0,0,0, ff ® (11y2) '&(wre)) € U,

and

((fop)@eE) = (0,0,0,0,(f o p) @),
I(/S/(<f/7 f7 p/) ® f_@) = (fla f? Pl> ®G({p (07 OJ f_@)
— (0,0,0,0,(fop) @ee).
It follows that every element of F?E?[y]| is associated in the quotient to a unique repre-
sentative in U by applying "

Remark 3.4.1. The map (" describes the inclusion of the morphisms of Hom sz (R, R)
that factor through X;. The maps [ ;5 and [§ are in fact isomorphisms, as can be seen

using isomorphisms:

Hom o5y (X1, X2) ®qer Homer () (Xo, R) — Homp(g) (X1, R),

Hom g () (R, X2) ®gee Hom o) (Xo, X1) — Homgo(p) (R, X1),

which are produced by reasoning as in Lemma 3.2.14 using that R is a finite direct sum

of summands of Xj.

3.4.1.3 EF

We do not have a matrix presentation of the components of the product EF from the

Rickard equivalence. Instead, in this section, we proceed by studying the quotient directly,
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by components, determining the quotient projection I' from the tensor product over A to
the tensor product over C', as well as the structure of the quotient itself.

As before, in each bulleted section we propose a component of I'. Here the arguments
following a bulleted line also must justify the structure of the codomain of the I' component
written in that bulleted line. The domains are known, and in each case the annihilated
submodule Im (7 — I§) + Im(I5 — I§) is defined already. Our method is to write down a map
called I';; from the appropriate domain, show that it is surjective, and show that its kernel

is Im ([ — Ij) + Im(I5 — I§). The codomain of I' can be summarized in a matrix:

&S
X
>
£l
lle
X
>

G Go F2[y] Ly

EF[y]® E*[ylaFly] ElylG: ® E*[y]cLs
G1Fly]| ® (Ga)cF*ly]  G1G1 @ (G2)gLa

lle

(3.4.3)

r | EFly] Ely]G
G Fly] G:1G1@® EF[y]

e We have I'y; : EF[y| @ EQ[y]GFQ[y] — EF[y| given by (IdEF[y],w).

Define a map w : E*[y] ®apy,) F*ly] — EF[y] by:

erex ® fofi = er.fo(yre2) ® f1 = e1 @ fa(yie2). f1.

Let ¢1 € FE[y] be given in the second summand of (the bimodule form) G* =~ A[y] ®
FEly]. Observe that (61®<,01(y162))®f2f1 and 6162®((f20y1g01)®f1) are both sent by w to
e1-(faoy101)(y1€2) ® f1. This means w is middle-linear over generators in both summands
of GT¥, so it descends to a map, also called w, from the tensor product E?[y|cF?[y] taken

over G7°.
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— I : EE[ylaF?[y] — EF[y] given (using bimodule forms) by

e1®e® fofi— e ® (f1 o Efs0 (e, Y162, 0))
—e1® (fioEfao (C®uyes))
=e1® fi(-fa(yres))
= e1 ® fa(yre2). f1
(observe the notation f; o Efy: E'Xy — Xj in the first line),
~ Ij: EE[yleF?[y) = E*[yleF[y),
— I} : E?y|cFF|y] — EF[y] given (using bimodule forms) by
e1e2 ® fo @ fi— ((0, f2,0) 0 e1e2) ® fi

=y (Efo)(yiya(ere2)) ® fi

= e1.fa(y1€2) ® f1
(observe the notation ejey : X7 — E'X5 in the first line),

— I : B[y]cFFy] > E*[y]aF[y].

We see that [}, = w and I§ = w after identifying EE[y] = E*[y] and FF[y] = F*[y]. It
follows that the kernel of I'y; is the image of Ij; — I§, which is also the image of Iy — Iy,

and thus ker(I'y;) = Im ([ — 1) + Im(I5 — I) as desired.

Remark 3.4.2. The map w corresponds on the models to the map given by composition:

Hom o) (X2, R) ®ger Hompeo gy (R, X2) — Hompo(p) (X2, X2).

e We have I'y; : G1F[y] @ (G2)cF?|y] — G1Fy] given by (Idg, rpy, w').
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Let o' : (Go)aF?|y] — G1F[y] be defined (using bimodule forms) by

(€/7 €, £/> ® f2f1 — ((07 f27 0) © (6/7 €, 5,)) ® fl
= (£e). 7 Efoo (12m(-® (e = 1) + 113:8) ) ©

= (fale), Efror(-@(e—me)) + E(from) o) ® fr
— Iy : G\Ely]aF?ly] — G1F[y] given (using bimodule form) by

ge® fofi = g® ((f1 oEfs)o0 (€,y1€,0))

= 9 ® fa(vyre).f1,
— I : G1ElylaF?ly] — (G2)aF?[y] given (using bimodule forms) by

0,01) ®e® fofi — ((6, yie,0) o (0, 901)) ® faf1
= (067 9y167 901(*) ® 6) ® f2f17
— I} : (G2)gFFly] — G1F[y] given by the map w' (after identifying F'F[y] with F?[y]),
— I (G2)cFF[y] S (Go)aF2[y).

We show that w’ o Ig = Ié:

W' ((Be, 0yre, 01 @ €) ® fofr) = (fa(Oy1€), E(fao9n) © (91 ®€)) ® f
= (0f2(y1e), 1. fo(y1€)) ® fi
= (0, ¢1)-f2(y16) ® f1
= I5((0,01) ®e® fofr).

Thus Iy — Iy = (' — Id)I5, and therefore Im(I — I§) < Im(l; — I§). Tt follows that

ker(T'y;) = Im(I5 — Ij) + Im (/5 — If), as desired.

e We have Flg : E[y]Gl @ EZ[y]GLQ - E[y]Gl given by (IdE[y]Gl,w”).
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Let w” : E*|y]gLs — E[y|G; be defined (using bimodule forms) by

€1€2 ® (f/7 f? p,) — €1 ® ((f/7 f7 p/) o (627y1€2> 0))

=e1® (f(yrea) + f'(e2), Eff oT(C®e2) + p' (- ® yne2)).

— I EE[ylcLs — E[y]G: given by the map w” (after identifying FE[y] with E?[y]),
— 1% BE[yloLs S E2[ylaLs,

— I} : E*[y]laFy]G1 — E[y]G: given (borrowing from I} of I'y;) by
e1e2 @ f2® g €1 ® fa(yr€2).9,
— I} : E?[y|cF|y]G1 — E*|y]cLa given (using bimodule forms) by

e162Q [ (6, 1) — ere2® ((6, 1) © (0, f,0))

=e1e2® (0, f.0, f @ p1).

We show that w” o I§ = I§:

(1628 (0.0, ¢10 BF)) = e1® (f{1e2)0, (10 EN)(- @ prea))
= e1® (f(y1e2).0, o1(—f(yre2)))
= e1® (f(y1€2)6, f(ne2) 1)
= e1® f(y1e2).(0, 1)
— I(e12® f @ (0,01)).

Thus I5 — If = (w" —1d)I§, and therefore Im (/5 — I§) < Im(Iy — If). Tt follows that
ker(I'yg) = Im(Ij — I7) + Im(I5 — I), as desired.

IdGlGl wl//

e We have I'yy : G1G1 ® (Ga)g Ly — G1G1 @ EF[y]| given by
0 K
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Below we describe the maps I, I3, I3, I§, and define a map w” : (Gg)cLe — G1G1, and

4

we show that w"” oI = I} and w” o I§ = I5. Then we describe a decomposition of (Ga)a Lo

into (A[y], A[y])-sub-bimodules (G2)cLs = H® EF[y] where H = Im([f) + Im(I). The
projection onto EF[y] is called k. (This copy of EF[y] lies in the kernel of w”.) From all
this it follows that ker(I'yz) = Im(/5 — I5) + Im(/5 — I§) and 'y describes the projection

to the quotient.
— Iy G1E|ylgLs — G1G; given (borrowing from I[’g of I'12) by

g®e® (f', f,p) —

g (f'(e) + f(yre), Ef o7(®¢€) + p'(-®@y1e)),
— 1% : G1E[ylaLs — (Ga)eLa given (borrowing from 14 of I'yy) by
(0,01) @e® L — (fe,0yre, p1(-) ®e) @,
— It (Gy)aF[y]Gr — G1Gy given (borrowing from I} of Ta) by
(¢ e,8)®f®g—
(fle), Ef or((® (e —me)) + E(foym)o€) @y,
IV (Ga)aF[y]C1 — (Ga)aLs given (borrowing from IZ of T'13) by
9@ f®(0,01) = g® (0, f.0,f® 1)

Now we define a morphism of (A[y], A[y])-bimodules w” : G2 ®ap, L2 — G1G1, and then

n

we show that w” descends to a morphism w” : Go ®cer Ly — G1G1 by showing that it is

middle-linear over generators of G in FE[y|. Let (¢/,e,&) ® (f', f,p') € G2 ®apy) L2 be
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an arbitrary simple tensor. We define:

W (e )R (f )~ (el ® ) +e(e® ), FE( oy F)(E ® )
+FEe(EQf)+o(e® f)—o(y€ ® f)) ® (1,0)
(L0 ® (O,sFE(e@p’) + a(e/®f’)>
+oFE(e®p) — oFE(e ® ) + FEo(¢ ® f') + FE(e o F)FE(E @ p).

The last four terms, beginning with o F'/E(e ® p'), are elements of FEFE[y|. They are

interpreted in the last summand of GGG using the decomposition of bimodules:

G1 ®apy) G1 = Aly|® FE[y]® FE[y|® FEFE]y], )

(97 ()01) ® (9/7 (pll) — (99/7 690/17 ()01'9/7 ¥1 ® 90/1) .

We can also give a decomposition of Gy ®ap,) Le into (Aly], Aly])-bimodules:
G2 ®apy) L2 = EF[y|* @ FE*F[y|** ® EF*E[y]™ © FE*F*E[y],
(€,e,8)R(f f,p) > (€®f, R f e® [ e®f)

DR, e@p)DERNRNDE®/)

Each of the terms in the formula for w” is a morphism of (A[y], A[y])-bimodules.

Definition 3.4.3. Using the two ordered decompositions above, the map w” : Gy ®ayy)

Ly — GGy is given by the following matrix:

€ 0 0 ¢ 0 0 0 0 0
o 0 0 0 0 eF'E 0 0 0
0 —coyF 0 o 0 0 FFEe FE(eoylF) 0
0 0 00 —(coyF)FE oFE FEo 0 FE( o y1F)FE

Lemma 3.4.4. The map w" is middle-linear over the action of generators of the summand

FE[y] < G*.
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Proof. We first compute the middle actions (¢/, e,£").¢1 and 1.(f', f, p') for p1 € FE[y| <

G, (¢,e,&') € Gy, and (f', f,p') € Lo, both in bimodule form. These are:

(€,e,&).01 = (p1(e), y1p1(e), Epr o T(-® (e — 1€)) + E(pryr) 0 £')
or1.(f, f.p) = (0, foympr+ flop, EfforoEp +p' o E(91901>>~

Using the formulas above, one easily computes the images under w” of (¢,e,&).01 ®

(f', f,p) and (¢/,e,&)® p1.(f', [, ') and checks that they agree. O

Corollary 3.4.5. It follows from Lemma 3.4.4 that w"” determines a morphism of (Aly], Aly])-

bimodules W" : (Gy)gLs — G1Gh.

We show next that w” o I§ = I} and w"” o Ij = I5. The formula for w” is determined
by these conditions and may be derived from them. Evaluating the right side of the first

equation:

w” o I5((0,01) @e@ (', f, 7))
= w"((be,0pe,01 @) @ (f', [, 1))
= (f'(0e) + f(Oyre), 1. f (yre) + ¢1.f'(e)) ® (1,0)
+(1,00® (0, (-®0yie) + Ef o 7(-®be))
+(0,0)® (0, Ef or(®e) + p'(-@p1e))
= (0-(f'(e) + f(yre))s 1-(f'(e) + f(wne))) ® (1,0)
+(0,01)® (0, Ef or(-®e) + p(-®@yi¢))
= (0,01)® (f'(e) + f(yre), Ef o T(c®e) + p/(-®yre))

= I5((0.01) ®e® (£, f.0).
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Now evaluating the right side of the second equation:

"o I ((¢,e,6) @ f @ (0, 1))

= w"((¢,e,€)® (0, 1.6, f ® 1))

— (f(e).0, E(f.001) 0 + E(f0) o 7(_® (e — 11¢'))) @ (1,0)
+(L0)® (0, f(e)-1) + (0, Ef o 7(-® (e — 11€)) @ (0, 1)
+ (0, E(f o) o €') ® (0, 1)

= (f(e), E(fomn) o + Ef o7(-® (e — n€))) ® (6,0)

+ (fle), Ef or(-® (e —y1€) + E(foy1) o) ®(0,¢1)

= (f(0). Ef o7(-® (e — 1)) + E(f o 1) 0 &) ® (6, 1)

= (¢, e.€) ® f® (6, 01))-

Now the product (Ga)g Lo is the quotient of the product (G'2) afy) L2 by the image of 7' —~”,

where:
— 7" (G2 ®apy FE[Y]) ®ay L2 — (G2) apy L2 given by

(€, e,f)@pr®L—

(¢1(e), yrpr(e), BoroT(_@ (e —y€)) + E(proy) o) @,
— 7" G2 ®apy) (FE[y] ®apy) L2) — (G2) agy) L2 given by

g®¢1®(f/7f7pl)'_)

9@ (0, f o1+ foyp, Eff ot o Epr +p o E(y11)).

There is a copy of EF[y] in (G2) apy) L2 generated by terms of the form (0, e,0)® (f’,0,0).
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Let H be its direct complement. The images of 7/ and 7" lie in H, so (G3)gLy =

H @ EF[y], where H is the quotient of H by the image of 7/ —+".

The image of Ij includes every term of the form (e,y16,01 ® €) ® ¢, and the image
of I} includes every term of the form g ® (0, f, f ® ¢1). By adding appropriate linear
combinations of terms of the first form, one obtains any element (e,yie, &) ® ¢, and
similarly from terms of the second form one obtains any g ® (0, f, p'). It follows that

Im (I} + I}) = H.

3.4.2 Maps p): computation

In this section we derive formulas for the maps py in terms of the (Aly], A[y])-bimodule

decompositions of the four components of the matrix expressions of EF and FE and C.

3.4.2.1 Map &

We begin by computing the map & : EF' — FE. Recall that ¢ is defined by 6 = FEEo F7F o
ﬁEI:’ ,and 7, €, and 7 are determined already. We will need formulas for each component of
0 in its matrix presentation.

We use the following technique to derive the formulas. We start with an appropriate
matrix coefficient of the element [7(1)] € [FE], together with an arbitrary generator of a
component of the matrix [EF]. Then we write the latter as a sum of simple tensor products
of elements of [E] with elements of [F]. As a point of notation, this will be said to lie
in [E] - [F] (and similarly for other matrix products). Then we write [7(1)] in [F] - [E],
and taking another tensor product we have an element we can write in [F] - [E] - [E] - [F].
Upon this we apply [F] - [] - [F] using the formulas from Def. 2.3.4. We view the result
in [F]-[E] - [EF), apply [F] - [E] - [€] to obtain an element of [F] - [E] - [C], view this in

[FE]-[C], and allow the coefficient in [C] to act on the right on the coefficient in [FE].
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The result is the image under [] of the arbitrary generator in [FF] with which we began.
The following bulleted lines state the results of this procedure, and the procedure itself is

carried out in detail in the paragraphs below those lines.

e We have [7]q1 : [EF]11 — [FE]i1 given by (&) using the decompositions:

— [EF)11 = EF|y],

— [FE) = (G1)eGy = Gy = Aly] ® FE[y].

We take [7(1)]11 = (1,0) ® (1,0) € (G1)¢Gy = [FE]y; (using bimodule form), and an

arbitrary generator e® f € EF[y] = [EF]y;. The product of these in [F'E] - [EF] can be

represented in [F| - [E]-[E]- [F] by:

, 0 0 e Fly] L E[y] E? E[y] E? Fly] L
(000) (% 8) - (58) - (£0) e (wf’y] L;) . ( 1] G[2y1> . ( ] G[2y1> . (F?ffy] L;)
The middle factors give (1,0) ® e € Gy Qapy) Ely|. Passing through I'y; of Eq. 3.4.1, this
represents (e,yie,0) € Gy = [E?]y. Applying 7]y yields (0,e,0) € Go, which may be

represented by:

(6 0e0) - (a0 0) € [E]-[E].

Then:

and

0 0 r e, _
(6%7) - (0 0ew) == (5%67) € (%) = [FE].
Finally letting f € C' act on the right, we have:

(0060} (99) = <(f(€)1EJ;OT(—®€)) 8) e [FE).

The nonzero coefficient may be interpreted as (e(e® f),o(e® f)).

131



e We have [7]a1 : [EF )91 — [FE]2 given by (é Zé)a) using the decompositions:

— [EF]n = G1F|y] = Fly] ® FEF[y],

— [FE)s = L» = F[y| @ Fy] ® F2E[y).

Let us choose an expression for n(1) = Idg € Hom4(4F, E) as a sum of simple tensors in

FFE:

n(l) = Zfa@@a € FE c FEly],
aeQ

where (@) is some finite index set. Using f,, e, for a € @), we find an expression for [7(1)]s2

in (Lg)GGQI
Lemma 3.4.6. The element

D (£a,0,0) ® (€4,0,0) + »(0, £, 0) ® (0, €3, 0) € (L2)cGa
aeq® be@

(written using bimodule forms) is sent to Idgr € U under the composition morphism

(Ly)gGo = Uof Lemma 3.2.14. We write [7j(1)]ae for this element.

Proof. We first take composition of the first sum, and then of the second.

Claim 3.4.7. Under the map (Lg)cGy — U, we have:

D 1(f4:0,0) ® (€4, 0,0) — (0,0,0,Id g, 0).
aeQ

Proof of Claim. The matrix [®] giving the degree 1 lower row part of the image, which
is a morphism in Hom gy (R, R) written in U, is ZQEQ (8 fa(f(;@ea) =(39). To compute

the fifth coefficient A° of the image, we find the degree 0 part A of the map on the upper
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row, given by taking the composition E?[y] — A[y] — E*[y]:

D —pr(c®uies) o (EfaoT)

aeQ

= 2 (- Daa ® fulr(- Jea)-ca)
aeQ,deP

= TYTT = YT

(in the second line we introduce notation for a decomposition 7(ee) = >, ,.p 7(€€)1q) ®
7(ee)(2q) for some choices of 7(ee)(a), © = 1,2 and finite index set P, and in the third
line we use that > ., fu(e*).cq = e* for any e* € E[y]). Then A® = 0 is determined by
Eq. (3.2.3) with this A and @. O

Claim 3.4.8. Under the map (L2)cG2 — U, we have:

Z(Oa fba O) ® (07 €b, 0) — (IdE[y]7 07 07 07 O)
be@

Proof of Claim. Computing as above, the matrix [®] is given by (§§), and we have:

Z (-®en+17m(-®e)) o Efy
be@

= Z Ty1(-®ep) o Efyy
be@

= T?Jl(Z fo(2)-€p)

be@

=TY1.

Again, A° = 0 is determined by Eq. (3.2.3) with this A and ®. O
So [7(1)]a2 is sent to (1,0,0,1,0) € U, which indeed corresponds to Idp. ]

Then we take an arbitrary generator (6,p;) ® f € G1F[y] =~ [EF]y. Expressing the
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product (0, 1) @ f®7(1) in [F] - [E] - [E] - [F], we have:

ae®

+Z O(Ofb 0(06b0)) ((9,(4),01)8)'(58)
be@

e ( Elwl Li\ | (E] E*[y] ) . ( Ely] B2[y] ) . ( Elv] L
F2[y] Lo G1 G2 Gi1 G2 F2[y] Ly ) *
Now we interpret (8 (ea?0,0)) . ((9,%1) 8) and (8 (0,601,70)) : ((9,&1) 8) in [EZ] and apply [7]:

a1 1 (€4,0,0) ® (0, 91) = (€4,0,0).(6, ¢1)
= (€a.0,0,—Epy o T(_Qyieq)) € Gy = [E®]y
s (0, 4.0, —7 0 B o T(_®@y1e4)) € [E*]an,
Ty1 2 (0,e5,0)® (6, 1) — (0,¢5,0).(0, 1)
= (p1(e). p(er), Bpr oT(-@ ) € [E*Jn

s (O, o1(ep), To Epro7(L® eb)) € [E2]21
We can represent these in [E] - [E] using the isomorphism Gy = (G5)aG1, g — g®(1,0).
So, after applying [F] - [7] - [F] to the middle terms, we have:

0 0
2 (000) - <0 (o,ea.e,ffoEW(@ylea))) (o) (10)

aeqQ

0 0
+ Z (8 (O,](c)b,O)) ' <0 (0,(,01(65),7'OE4,0107'(7®65)) ) ) ((1?0) 8) ) (g 8) :
be@

Then & : (o) (19) — f e Fly] = [Cla, so by applying [F] - [E] - [¢] and viewing
the first two factors in (Lg)cGse < [FE]Qg we obtain:
0 0 0 0

ZaeQ(fa,0,0)®(O,ea.G,fToEwloT(,(@ylea)) ) € [ E] ’ [C]

0
+ZbeQ (0,f5,0)® (0,(,91 (eb),ToEcplm'(,@eb)) f 0

Now we express this element in Ly = [F E],; by applying the composition map (Ls)¢Ga —
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U and then evaluating the action of f € [C]z on the right. The latter may be computed

by embedding f in L as (0, f,0) and post-composing with this element.

Passing first through the composition map (Ly)gGe — U, we have:

Z (0, eq.0,—To EpioT(_® ylea)) 0 (f4,0,0) — (0,0,6,0,—7 0 Ey 0 T),
aeq)

where for the last component we have used:

Z (-@eab+ 127 ®€4.0) — y1yam 0 Ep1 0 T(_@y1€,)) © (Efg07)
aeQ

=7.0 —yyeTo EproT
=Ty (EOoT)+ yy2(—7 0 Epy o 7),

and the fact that A° = —7 0 Ep; o7 can be deduced by comparing with Eq. (3.2.3) where

[@] = (J%7). Similarly, we have:

Z<O7gpl(eb)770 E(ipl OT(*®€b)> © (O,fb,O) = (@1’0707077 © ESOl OT)v
be@

where again we have used:

Z (7® v1(ep) + Y2 (- ® p1(er)) + t1yaT 0 Epr o T(L® €b)) oEfy
be@

=Ty0o Epr +y1ypro EproT

= 1y1(Ep1) + yiye(T7 o Epy o 7),

so A° = 7o Ep; o7. For the sum of the images, we have (¢1,0,0,0,0) € U. Next we

compute the right action of f € [C']a; on this element:

(0, f,0) 0 (p1,0,0,0,0) = (0.f, fop1, Ef oT o Epy),
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where we have used:

Efo (Tyl(Ewl + EGOT))
=Efo(ry10Ep + Efor)
=FE@.for)+ E(fop1) +tyio(EforoEp).
0

Our final expression for the image of (8 (0,:01)® f) under [7]s is therefore:

0 0 Gi1 Go .
FE|.

c
(0.f,fop1, Ef oToEpy) 0 Ly, U

Il
—
[S—

The bulleted statement follows from the fact that fop; = Fe(p1® f) and EfortoEpy =

Fo(p1® f).

We have [G]12 : [EF |12 — [FE]i2 given by (g y1€%E> using the decompositions:

— [EF|i2 = E[y]G1 = Ely] ® EFE[y],
— [FE]i2 = G2 = E[y] ® E[y] @ FE[y].
We take [7(1)]11 = (1,0)®(1,0) € G1G; = [FE)y1, and an arbitrary generator e® (6, ¢1) €
E[y]Gy = [EF]12. The product of these in [F E]-[EF] can be expressed in [F]-[E]-[E]-[F]
by:

(6%7) - (ao) - (68)- (5%)

and application of [F| - [7] - [F] gives:

(67) - (0 0ew) - (o) - (5%5)-
This is sent by [FE] - [£] to

(6%6") - (0 wipn) € [FE]-[C]
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which, after computing the action, gives

(Qpl(e)ﬂo(e)?Egpl 07-(7@6)) € G2 = [FE]Q

The result follows from the observation that Fo; o7(_®e€) = 0 E(e ® ¢1).

e We have [5’]22 : [EF]QQ - [FE]QQ given by

0O 01 0 O
0 0 0 FeE 0O
n vy 0 0 o
010 0 O

0 0 0 FoE O

using the ordered decompositions from Eq. 3.4.4 and Prop. 3.2.15:

— [EF)y =~ G1G, @ EF[y] =~ A[y]|® FE[y] ® FE[y| ® FEFE[y] ® EF[y],

— [FE)y = U =~ FE[y]®* @ F?E*[y)].

We compute [7]so first on G1G1, and afterwards on EF[y|. We can use the same pre-
sentation for [7(1)]2 as in the calculations for [d]s. Let (6, p1) ® (¢, ¢)) € G1G1 be an
arbitrary generator. Then the presentation for the product in [F] - [E] - [E] - [F] is:

D (8 h) - (B bo) (0l 8) - (20)
aeq

+ 2, (0050)  (00a0) (0o o) (675Y)
be@

e (f i) (Hamm) . (e ()
F2[y] Lo Gi Ga Gi G2 F2ly] Lz )
Using again the calculations for [¢]s;, we see that application of [FEZ] o [F7F] yields:

0 0 0 0 - .
0 (¢1,0,6,0,0) 0 (¢,¢))



This time we compute the action of (6, ¢}) on the right on U using the action of G on

the right on R (Lemma 3.2.2). For the matrix part [®], we have:
e 0] [er 0 popr B¢
o O 0 0 prowr 0.4
The submodule form of (¢1,0,6,0,0) is (¢1,0,6,0,7 o Ep) using:
A=71y(Epy + EforT)
=710 E(y1p1) + 70 EO
=70 Fop.
Then after taking the action, the last coefficient of the submodule form is given by post-
composing with F¢':
A=FE¢p oroEyp

=FE0 oroFEf+ FE6 o1oE(y1p1) + E(y1p)) o0 EO + E(y1¢7]) o 7o E(y11).

To compute the bimodule form, we evaluate Eq. (3.2.3) using the values of [®]:

A =1y (E(¢' op1) + E(0.¢") o) — yay1 (E(9) 0 1) + E(0.9)) 0 T) + y1y2A°
=Ty, 0 By o (Egpl + Efo 7') — yo7 0 E(y19}) © (Egol +FEfo 7‘) + y1y2A°

=Ty10Ef o (Epy + EfoT) + E(y1¢)) o (Epr + E6 o T) + y1yoA°.

By identifying the two expressions we can solve to find A° = E¢) o710 Ep;. So the image

is given using the bimodule form of U by:
0 0 Gi1 Gy L
FE|.
0 (¢ o1, ¢y 001,0.¢,0.01, B o 7o Eipy) Ly U
Using the fact that Ep] o7 0o Ep; = FoE(p1 ® ¢)) and ¢ o 91 = FeE(p1 ® ¢)), one

recovers the first four columns of the matrix of [7]a2.
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For the fifth column of [#]42, we start with an arbitrary generator e®f’ € EF[y] ¢ [EF]s.
The element (0,e,0)® (f/,0,0) € (Ga)g Ly is sent by Iy of [EF] to e® f'. So we consider

the element:

aeqQ)

+Z 0 0.50) (00e0) (60e0) (8¢00)
be@

e ( Fly) Ll) . (E[y] Ez[y]) , (E[y] Ez[y]) _ ( Fly] Ll)
F2[y] Lo G1 Gz G1 G2 F2[y] Ly )
and we compute its image under FEZo F7F. First apply Iy, of [EE] to (e4,0,0)®(0, €, 0)

and (0, e,,0) ® (0, e,0), using the rule for bimodule forms on p. 117:

(€4,0,0) ® (0, € O) 2 (0, —y2(eq ® €), —y2(e, ®€),0) € G,

(0,€5,0)® (0, e 0) 5 (ty1(ep®e),ep®e, e, ®e,0) € Gs.
Next we apply [T]s2 to these elements:

(Oa—y2(€a®€>7—y2<€a®€)70) '[—23 (611@6 €CL®€ Ty2(€a®€),0),

(T ®e), e, Qe e Re,0) (Tl (T(eb ®e),T(es ®e), T(ep ®6),0)-

Note that the formula in Def. 2.3.4 is given for the submodule form of G3. Using
Prop. 2.2.27, one defines a bimodule form in the usual way, where the last coefficient
is x” instead of x. By studying the proof of Lemma 2.3.3, one observes that the action
of 7 on the last coefficient in this bimodule form is (also) given by post-composition with

7FE, whence the final zeros above.

The next step is to express (eqe, €6, —Ty2(eq€),0) and (7(epe), T(epe), T(epe), 0) back in
(G4)G. (i.e. find a preimage under T'ss|(y) 5, ) in order to view them in [E]-[E]. We will

need the notation 7(ee) = >}, p 7(e€)a) ® T(€€)2q) introduced to compute 1] above.
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Claim. We have:

(OvT(eae)(ld)70)®(7—(ea5)(2d) 7y1T(€a€)(24),0) T'a2 _
Z oo 0o (a0 =2 (eqe, €qe, —TYa(eq€), 0),

deP
Z (0, 7(eve)1a), O) ® (O, 7(epe) (24) 0) 22, (T(ebe), T(epe), T(epe), 0).
deP

Proof. The proof is a direct calculation using the bimodules formulation of I'ss|(,).c, On

p. 117. O

Thus, after applying F'7F, we have the element:

0 0 0 0 0 0 0 0
Z (0 (re0)) (0 (o,r(eae)(m,O)) ' <0 (T<eae)(2d>,ylr(eaexzd),O)> (0.(00)

aeQ,deP
0 0 0 0 0 0 0 0
+ Z (o (fa,O,(])) : (0 7(0,Ty1(eae)(1d>70)> . <0 (O,Tyl(eae)(Qd),0)> . (0 (f/7o,0)>
aeQ,deP
0 0 0 0 0 0 0 0
+ Z (0 (o,fb,O)) : (0 (o,r(ebe)<1d>,0)> ' (0 (o,r(ebe)@@,O)) : (0 (f',o,O)) )
beQ,deP

and we need to apply [FE] - & and then realize the result in [F'E]. Observe that:

(0, 791 (€0€) 2y, 0) ® (f,0,0) > 0,

(0, 7(es€) (24, 0) ® (f',0,0) 5 0.
Therefore only the top row will remain. We have in submodule form:

(T(€a€) 2y, 117(¢a€) 201, 0) ® (f,0,0) 2 (' ((eae)aa))s Ef 070 ((®yi7(¢a)20))) € G-

We convert to bimodule form and give this a name:

(0, 01)ad = (f/(T(Gae)(gd)), Ef' o T(,@T(eae)(gd))) e (.

Observe that under the composition isomorphism (Lg)gGo — U we have:

(fa:0,0) ® (0,7(€q€) (1), 0) — (0,0, ful-).T(€a€)(1a),0,0) € U.

140



We are therefore left with:
0 0 0 0 -

. e [FE]-[C).
acQ,deP \ (O, 0, fa(,).T<6a€)(1d), 0, 0) 0 (97 (Pl)a,d

It remains to use the right action of Gi* on R (Lemma 3.2.2) to compute the action of

(0, ¢1)aq- The new matrix is given for each term of the sum by:
Ef oty (- ® 7(€al) 20)) 0 0 fa(-)-7(ea€)(1a)
Ef or(C®7(ea)2a)) f'(T(€a€)(2a)) 0 0

0 Bf oy (fol)-7(eat)ra) @ T(eal) )
0 Efor (fa(,).T(eae)(ld) ® T(eae)@d)>

After summing over a and d this becomes:

soa [0 Efferopr(®@e)) (0 Efor(®e)
s

0 Efor(r(®e)) 0 0
This matrix gives the first four components of the final element of U. To find the fifth,
first in the submodule form, we compute the submodule form of (O, 0, fa(2).7(eal) 14y, 0, 0)

and post-compose with E:

o (rme B (eua) o7
— Epo (Tyl (Efsot(-0)® T(eae)(ld))>
_ <E2f’ oBroy (.- ® T(eae)@d)))
° <7'y1 (Bfaor()® T(6a€)<1d))>
— E*f o Er oy (ry1 (Efu o 7(_ ) @ T(€at)(10)) ® T(€a€) (20)

= E?f'o EToTE o yoin (Efa oT(--) ®@T(€qe)1a) ® T(eae)@d)).

141



Summing over d and a we obtain:

E\af,i) E*f'o EToTE oyoyi (EToTE(--®¢))

=E’f'oEroTEo ET(__®uyie)
=FE*f oETroTEoyEr(._®e¢)

+ B foEBroTE(._®e€)

=E’f'oEBroysTEc E7(__®e)
+E*f o ETo ET(_._®e€)
+E’f'oEToTE(._Q®e¢)

=y B?f o BEroTrEo ET(._®c¢)

+ E*f o EToTE(__®e).
Now to find the bimodule form of the fifth component we consider:
Ty o (E*f o ET(._®e)oT)
=1y oE*f o EToTE(L_®e)

=B fotEoEroTE(L _®e¢)

+ E*f o EToTE(. _®e),

and since this agrees with the expression before it, Eq. (3.2.3) implies that the fifth

component in bimodule form is zero. Note that we have used the fact that TEoETo7E =

EtoT7E o ET. The final expression is (0,0,Ef’ o T(,@ e),0,0) € U =~ [FE],. Observe

that Ef' o7(_®e) = o(e® f'). This gives the fifth column of the matrix of [F]s2, and we

have now justified all components of that matrix.
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3.4.2.2 Maps o #'F and Fi' o1

We continue by computing the maps € o FF and F#'o 71 on the various components of the
matrices [EF], [FE], and [C]. As before, we propose these maps in the bulleted lines and

justify them in the paragraphs following.

e We have [€ o0 Z'F]y; : [EF]11 — [C]i1 given by € o 2%y, F using the decompositions:

— [EFu = EFy],
— [Clu = Aly].

The endomorphism & € End(E) given in Def. 2.3.4 determines an endomorphism of [EF]y;
given by xF on EF[y]. The morphism £ composes elements of E with those of F when

they are interpreted in Hompsg) (X, E'X) and Hompsg)(E'X, X). In particular, e €

Ely] = [E]i1 represents the morphism X; — E’X; given by 1 — yie in degree 0 of the

top row, and f € F[y| = [F]1; represents the morphism given by e — f(e) in degree 0 of

the top row.

e We have [F# o]y, : [Cli1 — [FFE]11 given by (Fth(; y)on) using the decompositions:

Here h;(z1, ..., z,) is the complete homogeneous symmetric polynomial of degree i in the
variables z1, ..., z,. Note the small case interpretations:
(
hz‘_1<l’,y) =0 1=0
h,-,l(x,y) =1 1=1

hifl<x7y) =T +y =2
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Observe that [7]1; is given by 1 — Idy, € GI* = Endgsp)(X3), and Idx, = (1,0) (in
bimodule form). More generally 6 — _.0 € Homa(4F, F)[y] =~ FE[y] < G*. From
Def. 2.3.4 we have the action of [Z];; on G{¥ in submodule form: 7°.(0, @) = (y'0, 2% o ).

We convert this expression to bimodule form:

tiop=2a"0_0+ 2y
=y'0+ (2" —y") o0+ ya'p

=0+ yi (hici(z,y) 0 -0 + 2" 0 1),

so 2°.(0, 1) = (y'0, hi_1(z,y)o_.0+a'0p). In particular, 7°.(1,0) = (v, h;_1(z,y)), which
gives the proposed formula by viewing x,y as endofunctors of F instead of as elements of

We have [£0&'Fly; : [EF ]2 — [C]a given by (2, F(goa'y; F)) using the decompositions:

— [EF]n = GiFly] = Fly]® FEF[y],
— [Cla1 = Fly].

(Here x € End(F)[y] is given by z(f) = fox.) The map [€]s; : G1F|y] — F|y] is given
(using submodule form) by (0,¢) ® f — f o . The endomorphism [Z]y; acts on Gy as
described under the previous bullet: 7%.(0, 1) = (y'0,h;_1(x,y) o .0 + ' 0 ;). Then

[€]21 : G1F[y] — F[y] is given using bimodule form by:

F.0,0)® f > fox'o 0+ forlyp,

and the component data follows from this formula.

_ . 0
We have [Fz*of|a; : [Cla1 — [FE]21 given by v using the decompositions:
F(Fhi—1(z,y)on)



((56)
)e (4 %) = [FE]

Sl
O
O

7((56)) =a((38)-(58)) = (75)-
)-((160)8) = ((0,920)

Here (0, f,0) is written in the bimodule form of L. (The action of f € F[y] < [C]a on

oo

generators in Gy  [FE] is given by F[y|Gy — La, f® (8, ¢) — (0, fo_0, 0o Ef) written

in submodule form, and this image is (0, f o _.0, ¢ o Ef) in bimodule form.)
Now we apply [F'#]5;. Consider that:

[F] - [E] > (La)aGh 3 (0, £,0)® (1,0) £25 (0, £,0) € Ly < [FE].
We have already seen that 7°.(1,0) = (v, h;_1(z,y)) € G4, so we have:

[FZi]21

(07 f7 0) ® (LO) — (O7f7 0) ® (yi’ hi—l(xay))'

Then Iy : (0, £,0) @ (v, hi—1(z,y)) — (0,y'f, 2" o Ef) written in submodule form. In

bimodule form the image is:

(Ovyifa h‘ifl(x7y> © Ef)a

which we compute using:
w0 Bf = (y' + yihia(z,y) o Ef
= EW'f) + yi(hi-1(z,y) o Ef).
Note that F2E[y| 3 h;_1(z,y) o Ef = F(hi—1(z,y) o n)(f).

We have [£0ZF |15 : [EF]12 — [Cli2 given by (2%, (0a’y; F')E) using the decompositions:
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The endomorphism [#]12 acts as 2 on E[y] = [E]y1, and thus as G, on E[y]Gy = [EF]i,
The map [£]12 : E[y]G1 — E[y] is given (using submodule form) by e®(8, ©) — y; ‘o (y1e).
(Recall that e € F[y] indicates the map X; — X, given on the top row by A[y|] — E|y],

1 — yie.) So we have:

[E]12

2 (e) ® (0, 1) — yi "p(a'yie) = z'(e).0 + o1 (z'yre),

and the component data follows from this formula.

We have [F'Z o]]15 : [Clia — [FE]12 given by ( y?yl ) using the decompositions:

(Fhi—1(z,y)on)E

— [Cha = Ely],

— [FE]1» = Ly = E[y] @ E[y] ® FE*[y].

By reasoning as in the [F' o ]y, case, we find:

[C] 5 (§5) "™ (O leme0) ¢ (§1G2) = [FE),

using the bimodule form of Gy. Now we apply [FZ];,. Consider that:

[F]-[E]  (L1)aGs 2 (1,0) ® (e, yie, 0) 23 (e, y1e,0) € Gy < [FE).

In Def. 2.3.4 we have a formula for the action of [Z']ss on Gy < [E] written in terms of the
data eq, es, €. The data (e, y1e,0) corresponds to e; = yie, ea = 0, £ = _® y1e. Applying
[Z%]22 gives e; = y'yre, e = 0, & = _Q y'yre + y1y2hi_1(x2, y) (- ® €), where to compute &

we have used:

$§ o(-®uyie) = (yl + y2hi_1 (22, y)) o (_®uye)

=_® yiyle + y1y2hi—1(z2,y)(c®e).

This corresponds to the data (yie, yiyre, hi—1(x2,y)(_® e)) € (5 in the bimodule form. So
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we have:

Fﬁ?i]lg

(17 O) ® (6, e, 0) ['—) (17 O) ® (yie7 yiyleu hi,1($2, y)(*® 6))

Lo, (yieayiyleahifl(x%y)(—@e)) e Gy C [FE]

Note that FE?[y] 3 hi_1(z2,y)(-®€) = (Fhi—1(z,y) o n)E)(e).

e We have [50 j}iﬁ]gg : [EF]22 - [0]22 given by

Yy 0 0 0 —goh;_q(z,y)F
7 i i —FFEeoF (toh;—1(x1,x2))FonEF
hici(z,y)on o'E Fa' F(eoa'yiF)E —FEioF((hi,g(;:g,;z,zj))))Fo:EF
using the ordered decompositions (recall Eq. 3.4.4):

— [EF)y» = G1G1® EF[y] =~ Aly]® FE[y] ® FE[y] ® FEFE[y] ® EF[y],

— [Cla2 = Gy = Aly] ® FE[y].

Consider the first four columns first, i.e. the restriction of the map to G;G;. Take an

', ¢)). Borrowing a calculation from the case [ 0 Z'F]y we

arbitrary generator (6, p1)® (0
find:

P , ;
(0.00)® (0.61) B (40, hia(w,y) 0 0+ 2 0 1) ® (0, 5)).
Now [£]s2 : G1G1 — Gy is given by composition, so we have:

(y'0, hi—a(z,y) 0 0 + 2" 0 01) ® (¢, ¢))

L (y'00', 0" o hi_1(z,y) o .0+ (.0') oz’ 0 ¢py
+ i o (Ly'f) +¢ho(@ —y) o0+ ¢l ozt o)
= (y'00', hi_1(z,y) 0 00" + ploa’ o 0+ a' o0 o + ¢ oyia’ o).

The first four columns of the matrix of [£ o Z'F ]y can be read off this formula.

The last column gives the restriction of [€ 0 7' F ]y to a map EF|y] — Aly] ® FE[y]. Its
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computation is more involved. We start with a generator e ® f, and note that:

[EF]QQ D (GQ)GLQ =] (0, e, O) ® (f, O, O) '2) e® f € EF[y] C [FE]QQ
Now we must apply [Z ]2 to the first factor, and then compose the factors, thereby applying
[€]22 and giving an element of Gy = End (g (X2).

The data (0,¢,0) corresponds to e; = e = e, £ = Ty1(_® €). The action of [Z']s2 on

G < [E] then gives e; = y'e, eo = x'e, £ = xhoTy;(_L®e). We can compute the composite
with (f,0,0) directly using this information. It is given in submodule form by:
(f oy (y'e —a'e), Ef oroxho Tyl(,®e))

= (f(=hir(z.9)e), Ef om0 zho (@ €)) € G,

It remains to convert this to bimodule form. In the calculation we will use three facts,
easily checked by the reader:

1. ghor =710zt — hi_y(z1,79),

2. :LJQ = yj + thifl(x%y)a

3. ZjJrk:i,l le.hk71<x27 Z/) = hi*2<$17 T, y)

Then we have for the main calculation:

Eforozhory(_®e)
= —Ef ©0TY1 © hi_l(l’l,.fg)(,@e)
=—Efohi_1(r1,22)(-®e) —ynEforohi_1(r1,22)(_®e)

=—Ffo Z 33]1 (yk + Yohi—1 (22, y))(7® e)—y1oEforohii(r,1)(-®e)

jk=i—1

=—Efohi_i(z1,y)(-®e) =y Efo (hi—2(-771a3727y)<—®€) +7o0 hi—1($17$2)(—®€))-
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Then observe that:

—Efohii(r1,y)(-®¢e) = -® f(—hi—1(x,y)e)

= (—eohia(z,y)F)(e®f),

and that:

— Ef o (hi—a(z1,22,9)(c®€) + 7 0 hi_1(21, 72) (- €))
= (—FE€ o) F(T @) hl',l(ilfl,l'2> + hifg(l'l,l'g,y))F @) ?7EF) <€®f)

The formulas in the last column of [ o Z'F ]y, follow.

We have [F7 0 f]a : [Clas — [FE]ss given by:

Fyion Y’y
—Fhi1(z,y)on Y’
0 0
Fzlon 0

F2(hioy (w1, 32) o T — hi—o(x1, 2, y)) o n®  F*hi1(2,y) o FnE

using the ordered decompositions:

— [Cla2 = Gy = Aly] @ FE[y],

— [FE]y» = U = FE[y]®* ® F?E*[y].

Observe first that [77]s2 : G1 — U is determined by (1,0) — Idg = (1,0,0,1,0) € U (using
bimodule forms). Recall (Lemma 3.4.6 used for []s1) that:

(L2)aGa 2 [((1)] = D (fa,0,0) @ (€4,0,0) + (0, f,0) @ (0,5, 0) =2 (1,0,0,1,0) € U.
aeQ be@

The map I's1(1,)6c, i given by composition and hence right Gi-equivariant, so we can

compute any [77]22((0,¢1)) as [7(1)].(0, ¢1) € (L2)cGa. The action of [Fi'] is applied to
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elements of (Ls)sGa, and after that we pass through I'y; again to obtain the final image

in U.

We treat the first column of [FZ* o 7]y, first, and consider the second column afterwards.
For the first column it is enough to consider the case (0, ¢1) = (1,0). Starting with the
first term, the data (e,, 0,0) corresponds to e; = 0, ea = —y1€,, and & = yo7(_® (—y1€4)).
Application of the formula for [7']sy gives 1 = 0, es = —z'y1e,, and & = xh 0 Y7(_ ®

(—y1€4)). Then we convert this to bimodule form, using:

5 0 Yo (-® (—y1€a))
=Y20 %7'(7@ (—v1€q))
=120 Txil(f® (—11€a)) + y1y2hi—1(z1, 22) (- ® e,)

= 3127'(— ® (_?Jlxiea)) + ylthifl(l‘l’ Iz)(— ® ea)a

where in the third line we have used Fact 1 given under the previous bullet. So in bimodule

form we have:
[:i‘i]QQ : (eaa 07 0) — (xieaa 07 hi—l(xla IL‘2)(,® ea)) .
Now applying I's; we obtain:
Z (xie(u 07 hi—l(xla IQ)(*@ ea)) o (fa7 07 O) = (07 07 O) xiu hi—l(mb xQ) o T) € Uu

aeqR

where the last component is computed using:

(127 ® (—mnaea)) + piyahios (w1, 22) (@) ) 0 Efao 7

= —szylxiT + yry2hi—1(x1, 22)T,
together with the facts that ®;; = @5 = ®9; = 0 and Py, = 2° s0:

A=7y1(04+007) —yo1y; 0 (0 + EDPoy 0 T) + y1y2A° = —ya7y; © le oT + y1y2\°.
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Continuing with the second term, the data (0, ey, 0) corresponds to e; = ey, €2 = €, and

¢ = 17y1(L® e). Application of the formula for [Z']sy gives e; = yley, e

¢ =140ty (L®ey). Then we convert this to bimodule form, using:
2y 0 Tyi (- ® )
= 1y (-®a'e) — yrhi1 (w1, 22) (- ® ep)
=Ty (-® 2'ep) — yrhia (21, 9) (- @ )
— y1yehio(71,22,y) (@ )
= _@a'e, + 11 @r'e) — @ (2 — y)e,
— Y1yehi—a(@1, 22,y) (- @ €)

=-® inb + y27(7® fﬂi@b) - ylyzhi—2($1, T2, y)(— ® eb)a

where we have made use of the fact, easily checked by the reader, that:

4. yzhifz(ﬂh, T2, 3/) = hifl(xlny) - hi—l(mla?J)-

So in bimodule form we have:

[7']22 : (0, €5,0) — <_hi—1(l‘17y)€b7yieba —hi—z(%,xmy)(f@eb))-

Now applying I'y; we obtain:
> <—hi—1(331, y)es, y'en, —hia(T1,22,9) (- ® 6b)> ° (0, f1,0)
be@

= (yla —hi—l(fl,y),0,0, _hi—Q(xbx%y)) € U7

where the last component is computed using;:

zhoty((®ep) o Efy = a7ty = 72hy1 — yihi 1 (21, 72)
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together with the facts that @y = y', ®o; = —h;_1(21,7y), P12 = Doy = 0, so:

A=y o (yz 100 T) — YTy © (—hi,l(:cl, y)+ 0o 7') + 1192 A°
= 7y1y" + ryihi1(z1,y) + Y1y A°
= Ty’ + yar (21— y') + A
= yi + yngi + 1192A°
= 13y — yrhic1 (1, ) + y152A°,

so using Fact 4 again:

YoN® = —h;_1 (21, 29) + hi—1(21,y),

A° = —hi—2($1,1‘2,y)~

Finally taking the sum of the two terms, we conclude that [Fi' o 7]y : Aly] — U is

determined by:

l— (Z/ia —hi_1(x1,y), O7xi7 hi—1(x,22) o T — hi_a(1, 22, y))

By describing these coefficients in FE[y| and F?E?[y] instead of in End(E[y]) and

End(E?[y]), we obtain the formulas in the first column of the matrix of [F& o 7).

Now we consider the second column of [Fi' o ]y, a map FE[y] — U. It is found using
the same method but with (6,¢1) = (0,¢1) for a generator ¢, € FE[y]. We have in

bimodule form:

(eaa 07 O)(Ou 901) = (O’ 07 E‘Pl © T(,® _ylea))

(07 b, O)(Oa 901) = ((,01(61;), y1§01(€b), Ep o T(*® eb))?

where we have used the calculations:
E(y1p1) 0 127(-® —y1€a) = Y12 E01 0 T(- @ —y1€4)
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and

E(ypr) o (-®@ep+127(-®e) = -Quipi(es) + yiyeEproT(C®ey).

Starting with the first term, the data (O, 0, Epq OT(,®—ylea)) corresponds to e; = e; = 0
and & = Y12 B o T(_® —y1e,). Application of the formula for [7']s; gives e = e3 = 0
and € = 2% o y1y2 By o T(_L® —1y1€,). Converting this data to bimodule form is trivial. So

we have:
[ji]ZQ : (07 Oa E@l o 7_(7® 7y16a>) — (07 07 xZQ o E(;Dl o 7_(7® *ylea))'
Now applying I'y; we obtain:

2 (O, 0,250 Ep;o7(L® —ylea)) 0 (f4,0,0) = (O, 0,0,0,—Ep; o :cZQT) eU,
aeQ

where the last component is computed using:
Y11oxh 0 B o T(_® —yreq) 0 Efy o7
= —aboyyaEp oty 07
= —1y2 By 0 25T,
Continuing with the second term, the data (¢1(es), y11(es), E107(-®ep)) corresponds to

e1 = y1p1(ep), e2 =0, and & = _®y191(ep) +11y2E@107(_®e;p). Application of the formula

for [Z']52 gives e1 = y1y'pi(ey), €2 = 0, and £ = zh o (L® y1¢1(ey) + y1y2Ep1 0 T(-Q €p)).
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Then we convert this to bimodule form, using:

zho (LQuei(e) + y1eEer o T(Q )

= _®y'niler) +yhia (22, 9) @ ypipi(er)) + yiyaEer o 257(- ® )
= _Qy'yei(en) + yiye <hi—1(5172, y) o Epi(-®ep) + Epy 0 257(-® 6b)>
= _@y'yipi(es) + y1y2Epr o (257 + hi1(22,9)) (- ® e)

=_® ylyi<p1(eb) + 1Y <—ES01 oyrthi—o(w1,72,y)(-®ey) + EproTo 37i1<—® eb)>-

So in bimodule form we have:

[222  (p1(en), prp1(en), BproT(Q€)) —

(yiwl(eb),ywi%(eb)? Ep o (IZQT + hi—1($27y))(—® €b)>-

Now applying I'5; we obtain:
Z (?Ji%(@b), y1y'pi(es), Bpr o (szT + hi—1(zo, y)) (-® 6b)> 0 (0, fy,0)
be@

= (yiywl,yisol, 0,0, B¢y o (@47 + hi—q (22, y))) e,

where the last component is computed using;:

(7® y'yre1(es) + yiyaEpr o (257 + hii (22, ) (- ® 6b)) oEfy

= ' Eer + By o (257 + hisi(22,9)) (@ €),
together with the facts that ®;; = y'y101, ®o1 = Yy, B1a = Poy = 0, s0:
A =1y (Y Eor+007) = 4ryn (Y Epr + 007) + 113 = y'y1 By + y1y2A°.
Taking the sum of the two terms, we conclude that [F'7 o 7]y : FE[y] — U is given by:

$1— (yiylsol,yisOu 0,0, Epy 0 hifl(x%y))'
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The last component, an element of Enda (4 E?)[y], is the same as (F?h;_1(z2,y)oFnE) (¢1).

This gives the formulas in the second column of the matrix of [FZ' o 7]ss.

3.4.3 Maps p,: isomorphisms

Now we have formulas by components for the maps 7, € o F#F, and F#i o 7 that are used
to define the maps py. It remains to make use of the isomorphisms p, determined by o,
gox'F, and Fz' o, together with these formulas, to show that gy are isomorphisms. Note
that p, are already known to give morphisms of (C, C')-bimodules, so it suffices to show that
pa are isomorphisms of sets. We will work again by components and show that [p,];; is an
isomorphism of (A[y], A[y])-bimodules for i, j € {1, 2}.

We remind the reader of our notational convention that E, = Ee, for the idempotents e, €
A of a weight decomposition. Recall that the bimodule E satisfies e;Ee; = 0,49 - €i12Ee;,
and similarly for F' but with ¢ — 2 instead of 7 + 2. Finally, recall Prop. 2.3.26 that gives the

weight idempotents for the algebra C.

e We have for [p]11, A = 0:

[pa]i1 1 EFxaly] — Axia[y] @ FExaly] © Axia[y]®

given by:
A1

[Pr]11 = 8@0@@50$iy1p

1=0

e We have for [p)]11, A <O0:

[x]11 1 EF\[y] @ Axia[y]® = Axii[y] ©@ FE 4 [y]

given by:

[Pa]un = <(<67)7_§1 (Fhily(i:r,y)OTI)) :
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Proposition 3.4.9. The morphism of (Aly], Aly])-bimodules [pr]11 is an isomorphism
for all \.

Proof. When A > 0 and therefore A + 1 > 0, the map:

A
) @ eox'F: EF\;1[y] = FExi1[y]® A>\+1[y]®/\+1
i=0

is just pay1 ®k k[y]. It is an isomorphism because py 1 is an isomorphism.

Claim 3.4.10. When A > 0, the map

A—1
c@e®@eoa'yF : EFvly] = FE [yl @ Ay [y®!

1=0

is also an isomorphism.

Proof. Let M_, € Enda,,,[y (A ,\+1[y]®>‘“) be the endomorphism with matrix coefficients
[M_,] € Mat(x11)x(a+1) (Axt+1[y]°P) given by 1 on the diagonal and —y on the subdiagonal,

and 0 elsewhere. This matrix is invertible, and M_, is an isomorphism. Observe that:
go(—2"yF)=—y-cox"'F.

Using this we write the map in question as a composition of isomorphisms:

A—1 ' 1 0 A 4
0@6@@50$1y1F: o J@C—DeoxlF .
i=0 0 M., i=0
By reordering the first two summands in the codomain, we obtain the map [px]11. O]

When A = 0, the two formulas for [p,]11 agree. Now assume A < 0, so A + 1 < 0 and the
map:

(1)1
(0, Z Fz'o 77) cEFy @ Axi [y]® MY 5 FEy 4 [y] (3.4.5)
i=0
is pa+1 ®k k[y], an isomorphism.
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Claim 3.4.11. When A < 0, the map:
—A—1
(“’ >} Fhia(e,y)o n) EFaly] ® Ayaly]® O — By y)
i=1

is also an isomorphism.

Proof. This time we define an isomorphism M} € Enda, [y (A,\H[y]@_(”l)) with com-
ponents [My]; = 1, [My];; = v*~* for j > i, and [M];; = 0 for j < 4. This is an

upper-triangular invertible matrix:

2 (D=1

o Y (A+1)
_ 01 y ..y (=2
[Mh] - 00 1 ..y O+D)-3
56 i

Now observe that Fz'y/ on = (Fa'on)-y’. We use this and write:

—A-1 —A—2
Z Fhiy(z,y)on = Z Z Falon-y*
i=1 i=0 j+k=i
—(A+1)-1
= ( 2 inon> o My,
i=0

and it follows from this and the isomorphism above the claim that the map of the claim

is an isomorphism. O

By writing out terms, we have:
) —A—1 y e 1 y ... y !
(U) ’ Z <Fhi—1(ﬂ»‘vy)077) -
i=0 o 0 n ... Fhoy(z,y)on

Interchanging the first two summands of the domain, we obtain the form:

1 (8, Y, 927 ce ayi)\il)

—A-1 )
0 (0, > Fhi_1(56,y)077)
i=1

1=

which (by the claim) is manifestly an isomorphism. O
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e We have for [py]21, A = 0:

[r]21 : Fasi[y] @ FEF)(1[y] — Fagaly] @ Fagaly] @ FExii[y] @ Faia[y]®

given by:
1 0
0 Fe
[Pr]o1 =
0 Fo
A—1 A—1 A
D' D Feoa'ylF)
=0 =0

e We have for [py]o1, A < O:

[/3/\]21 : FAH[?J] ® FEFAH[?J] @ F/\+1[?J]@_A - FAH[?J] @ F/\+1[?J] S FQE/\H[?J]

given by:
1 0 0
A1
[l = [0 Fe 2y
a1 =
0 Fo > F(Fhi_i(z,y)on)
=0

Proposition 3.4.12. The morphism of (Aly], Aly])-bimodules [px]a1 is an isomorphism
for all X.

Proof. When A > 0, we have that
A1 '
Fe® Fo ® @ F(eox'yiF) : FEF\ [yl = Fanly] ® F*Exa[y] @ Fyp[y]®
i=0
is an isomorphism, using Claim 3.4.10 and the fact that (horizontal) composition of the
identity functor on I’ with an isomorphism gives an isomorphism. Then [p)]s1 may be

compressed to a lower-triangular 2 x 2 matrix with an isomorphism in position (2, 2), so

it is an isomorphism.
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When A\ = 0, the two formulas for [py]21 agree. Assume now that A < 0, so the map

—A—1
(FU’ Y, F(Fhisi(ay)o ’fz)> : FEF 1 [y] @ Faa[y]® M — FPEy[y]

=1

is an isomorphism using Claim 3.4.11. Now expand the notation of the map [fy]o1 in the

third row:
1 0 0 0
A1
0 Fe 1 >y
-1 =t

0 Fo 0 > F(Fhi_i(z,y)on)

i=1
After switching the second and third summands of the domain, we obtain an upper-

triangular matrix with isomorphisms on the diagonal, so [px]21 is an isomorphism. O
e We have for [py]12, A = 0:

[Aali2 : Ex-1[y] ® EFEx_1[y] = Ex-1[y] ® Ex-1[y] ® FE3_1[y] ® Ex—1[y]®

given by:
0 )
1 ypoek
[Pr]12 =
0 oFk
A—1 A—1 A
Pzt Pleox'yF)E
=0 =0

e We have for [py]12, A < 0:

[6a]12 : Ex-1ly] ® EFE\_1[y] @ Ex[y]® ™ — Exily] @ Ex1[y] @ FE_[y]

given by:
A1
0 ¢eF >y
~ =
[ArJiz= |1 yockE 2 Y
i=0
—A—1
0 oE > (Fhioa(z,y)on)E
i=0
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Proposition 3.4.13. The morphism of (Aly], Aly])-bimodules [px]12 is an isomorphism
for all \.

Proof. When A\ > 0, we have that

A1
cE@oE®@(coa'nF)E: EFE\[y] — BExaly] @ FEL[y] @ Ex-a[y]*
i=0
is an isomorphism, using Claim 3.4.10 with £ applied on the right. Note that E applied
on the right here is equivalent to 5,1 F\_1 applied on the right, and this raises the weight

by 2, so we still invoke the isomorphism py,; for weight \ + 1.

We perform some row operations on the matrix of [gy]12. Subtract y; times the first row
from the second to eliminate the coefficient y; o ¢ . Then exchange the first and second
rows, then exchange the second and third rows, then collapse the second and third into

the notation of the fourth. Obtain:
1 0
A=l A—1 ‘ ;
00D P ' cE@eED P(eoa'y F)E
i=0 i=0
which is upper-triangular with isomorphisms on the diagonal, so the original matrix for

[pa]12 is an isomorphism.

When A\ = 0, the two formulas for [p,]12 agree. Assume now that A < 0, so the map

=1

-1
(UE, Z (Fhi—1(z,y) o U)E>  EFE\[y] @ Exa[y]® ) — FES_[y]

is an isomorphism using Claim 3.4.11. Now expand the notation of the map [p,]12 in the

third row: -
0 eE 1 >y
~ =y
[PaJiz= |1 hoeE u > Y
=1

A
0 oF 0 X (Fhiai(z,y)on)E
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Exchange the first and second rows, then the first and third columns, then collapse the

third and fourth columns into the notation of the third, and obtain:

—A—1
Ly (yler, 2 ylyl)
o
0 1 (5E, 3 yl)

=1

0 0 (JE,_igl(Fhi_l(x,y)on)E>

Since this is upper-triangular with isomorphisms on the diagonal, the original matrix

[pa]12 is an isomorphism. O

e We have for [py]22, A = 0:

[a]22 : Ax_1[y] ® FEA_1[y]®* ® FEFE\_1[y] ® EF\_1[y]

— FE, [y @ FPE;_ [y] ® Ax[y]® @ FE 1 [y]® (3.4.6)

given by: [px]2 =

where

0 0 1 0 0
0 0 0 FeFE 0
n Y1 0 0 o
0 1 0 0 0 ,
0 0 0 FoFE 0
A1 A—1
Y 0 0 0 @ —cohi—1(z,y)F
N P v T ‘ =0
hi—i(z,y)on D a'E D Fa' QD Fleoa'yF)E ©
i=0 i=0 i=0 i=0
A—1
O = (-B —FEeo F(T o hi—y(x1,22) — hi—2($1,$2,y))F onkEF.
i=0
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e We have for [p)]22, A < 0:

[Oa]22 + Axci[y] ® FEA 1 [y]®* @ FEFE,_1[y] ® EF)_1[y]

® A [y® @ FE\ L [y]® ™ - FEAL[y]* @ F?E}_\[y] (3.4.7)

given by: [pa]ze =

—-—1 —-2—1

001 0 0 Fyion S gy
1=0 i=0
—a—1 —A—1
0 0 0 FeE 0 >, —Fhj_1(z,y)on >y
i=0 1=0
n y1 O 0 o 0 0 )
“A—1
01 0 0 O > Fz'on 0
i=0 R
—A—1
0 0 0 FoE 0 o S F2(hi_1(22,y)) o FnE
i=0
where
—a—1
o = Z FQ(hz‘—1($1,372) o7 — hi—2($1,9€2,y)) 0772~
i=0

Proposition 3.4.14. The morphism of (Aly], Aly])-bimodules [py]so is an isomorphism
for all X.

Proof. When \ > 0 and therefore A — 1 > 0, the map
A—2 '
c®@ —coa'F: EFy [yl — FE [yl @ Ay [y]®*!

=0

is an isomorphism. (The minus sign does not interfere.)

Claim 3.4.15. When X\ > 0, the map

A—1
oD (‘B —cohii(z,y)F : EFy.1[y] — FEx 1 [y] © Ay [y

=1

is an isomorphism.

Proof. Define an isomorphism M, € Enda, [, (Ax-1[y]®*"!) with components [M}]; =
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1, [M})i; =y for i > j, and [M]];; = 0 for i < j. This is a lower-triangular invertible

matrix:

Now observe that ¢ o 'y F = ¢/ - ¢ o ' F. Using this, we can write:

A-1 A—2
@ —cohii(z,y)F =P Z y* - (—e o2l F)
i=1 1=0 j4+k=q

A—2
= M o (@—5oij> :
i=0
and it follows from this and the isomorphism above the claim that the map of the claim

is an isomorphism. O

Now assume A > 0 and reorder the summands of the domain and codomain to permute

the rows and columns of the matrix of [py]s2. Let the domain be given in the order:

FE\1[y]®? @ Ax1ly] @ EFs1[y] ® FEFE\_1[y],

where the first two identical summands appear in the same order as before. Let the

codomain be given in the order:

FE\ A [y]®* @ Ax_1[y] ® FE\1[y] ® Ax_1[y]®*
® F?E} [yl ® FEA.[y]l ® FE,[y]®*

where the new summand number (numbered left to right) and corresponding old summand

number are given precisely in the following chart:

new: 1 2 3 4 5 6 7 ... A+3 A+4 AX+5 A+6 ... 2X+5

od: 4 16 37289 ... A+5 2 5 A+6 ... 2\+5.

Writing the matrix of [fy]s2 for A > 0, with columns and rows changed by the above
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permutations, we obtain:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
Y1 0 i o 0
A=l A—1
0 0 Y @ —cohiq(z,y)F 0
i=1 i=1
0 0 0 0 FeFE
0 0 0 0 FoFE
A=l A=l a-1 A—1 .
@ 2'E @ Fz' @ hii(x,y)on © @ Fleoa'y F)E
i=0 i=0 i=0 =0

After compressing the notation of rows 3 and 4 of this matrix, and also of rows 6-8, we

obtain a lower-triangular matrix. The last two diagonal entries are:

g

A—1 )
@ —€o0 hi—l<x7y)F

=1

which is an isomorphism by the claim, and:

FeFE

FoE : FEFE)\_1[y] — FE\1[y] ® F*E}_,[y] ® FE\1[y]®,
A1
@ FleoaiyF)E
i=0

which is an isomorphism for A > 0, and therefore for A + 1 > 0, using Claim 3.4.10 with

F applied on the left and F on the right.

When A = 0 the matrix of [py]22 is given by removing rows 3, 5-(A + 3), and (A + 6)—
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(2X +5):

0 00 0 Fekb

0 00 0 FoFE

When A = 0 we also have isomorphisms:

(n,0) : EFx1[y] © Aly]a1 — FEx1[y]

and

(Eig) : F(FEAH)E[Z/] - Fyxi1Ely] @F(EF/\H)E[?J],

so we see that again the matrix can be written as a lower-triangular matrix with invertible

diagonal entries.

Finally, assume A < 0. We have an isomorphism:

-
("7 2 Fato n) BRG] ® A [y 0 S FE[y),
i=0
which is the isomorphism p)_; ®j k[y]. There is a final claim to check:

Claim 3.4.16. When X\ < 0, the map

a1
(0, n, Y. —Fa'y o n) P EF [yl @ Axafy]® Y — FE (Y]

1=0

is an isomorphism.

Proof. Define an isomorphism M’ € Enda, ) (Ar-1[y]® ") with components [My];;

given by 1 along the diagonal and —y along the subdiagonal. This is a lower-triangular
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invertible matrix. We write the map in question as a composition of isomorphisms:

=1 -
(a,n, Z —inylon> = (O’,T],ZFIiOT]>

1=0 =1
Idgr, 0 0
Idgp, 4y O
© 0 IdA)\ﬂ [v] 0 ©
0o M,
0 0 —Tdu, e

Now let W be the endomorphism of the codomain of [py]22 given by the invertible matrix:

We show that [WW]-[pa]22 is equivalent to a lower-triangular matrix after giving a suitable
permutation of the domain and codomain summands. Let the domain be given in the

order:
EF A -V FE FEFE FE ~-MY R 2
—1[y] @ Ax-[y] ® FE\1[y] @ A—1[y] @ FEx1[y] ® FE 1 [y]*,

where the change of summand numbers is given by the following chart:

new: 1 2 3 4 “A+2 —-A+3 -A+4
old: 5 1 6 7 —A+5 2 4
new: —A+5 —A+6 ... —22+4 —-22+5 —2)\+6

old: —A+7 =A+8 ... =2\ +5 —=A+6 3.

Let the codomain be given in the order:

FE\1[y|®* @ F?E3_[y],
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where the change of summand numbers is given by the following chart:

new: 1 2 3 4 5

old: 3 4 5 2 1.

The matrix of [W] - [pa]o2 for A < 0 agrees with that for [p,]s2 except in the third row,

where it is:

—2—1
(7] 000 o Z —Fx'y0on 0 0).

=0
Writing now the matrix of [W] - [pa]a2 with columns and rows changed by the above

permutations, and compressing the notation for some columns, we obtain:

A1 _
(0,77, > F:clylon> 0 (0,0) 0 0
=
(0,0, > szon) 1 (0,0) 0 0
i=0
“A—1
(0,0,0) 0 (FO’E, D thil(xg,y)anE> 0 o]
a1 = A1
(O,O7 > —Fhi_l(x,y)on> 0 (FeE, > yl) 1 0
=0 “A-1 —A—11=1.
<0,0, > Fylon) 0 (07 > y1y1> y1 1
i=0 i=1

The upper left map is an isomorphism by the Claim proved above. The middle diagonal
map is an isomorphism because it is the isomorphism of Claim 3.4.11 with F' applied on
the left and E on the right. So the matrix is lower-triangular with isomorphisms along

the diagonal. O
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