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Abstract

Free superfluid helium droplets constitute a véesatedium for diverse experiments in physics
and chemistry that range from studies of the furetatal laws of superfluid motion to the synthesis of
novel nanomaterials. In particular, the emergericpiantum vortices in rotating helium droplets iemf
the most dramatic hallmarks of superfluidity andegi detailed access to the wavefunction descrithieg
guantum liquid. This review provides an accountemfent advances in studying the rotational motibn o
isolated, nano- to micron-scale superfluid helinoptets. Especially, ultrafast X-ray and XUV sckttg
technigues enabled by X-ray free electron lasedshégh-order harmonic generation have facilitatesl t
in situ detection of droplet shapes and the imaging ofexostructures inside individual, isolated droplets.
New applications of the “cryogenic nanolabs” arscdssed that may range from studies of quantunephas

separations to mechanisms of low temperature agtioeg

Keywords: helium nano-droplets, superfluidity in 4-He, quantum vortices, X-ray coherent diffraction
imaging, free electron lasers.
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1.Introduction

Free superfluid helium droplets constitute a vélssatedium for a diverse range of experiments in
physics and chemistry. Following an Annual ReviewPhysical Chemistry article two decades ago (1),
research involving He droplets has been highligimes number of reviews. (2-18) In many applicasion
He droplets serve as an ultracold matrix for spscwpic interrogation of single molecules, radicaid
ionic species. In addition, clusters may be regaligpared inside droplets upon sequential capfisimgle
atoms and molecules. Low temperatures of abouk @0; 20) in combination with the weak interaction
of dopants with the homogeneous quantum liquid renment result in very narrow spectral lines.
Embedded single molecules also provide a uniqued [mobe for superfluidity on an atomic length scal
which has been studied via renormalization of mdhacrotational constants. (19-22) The coupling of
molecular rotors to the helium bath has also beebhqul via adiabatic and impulsive alignment of dupa
molecules in strong laser fields, (23-25) wherdigyeéncapsulation in He droplets enabled a highgnede

of alignment than in free molecules (26).

More recently, superfluid droplets have emergedigigue nano-laboratories for the study of
quantum effects in finite isolated systems. Belbw tritical temperature df, = 2.17 K,“He enters the
superfluid phase (often referred to as He Il) thaks any viscosity, and its motion is describedaby
wavefunction (27-31). Non-rotating superfluid dretglhave a spherical shape. A rotating dropletgvew
is deformed due to centrifugal forces and storesaitgular momentum in the form of one or multiple
guantum vortices (29-31). Droplet shapes and thiexaonfigurations they contain provide the most
complete characterization of the macroscopic wavetfon of a superfluid droplet. Imaging vortices,
however, is challenging due to their extremely $o@ie diameters of only ~2 A. It is commonly féteited
by doping droplets with foreign particles that @sale near the vortex cores by hydrodynamic foiges (
34). The particles either serve as “contrast agdotsin situ imaging or are deposited on substrates and
imagedex situ. This paper reviews experiments on vortex visa#itin in bulk superfluid He and, in

particular, recent advances in imaging quantumicastin sub-micrometer sized He droplets. Thedatte



has become possible bysitu transmission electron microscopy (TEM) and ulstifasitu x-ray scattering
using X-ray free electron lasers (XFELs) and femtosid high-order harmonic generation (HHG) light

sources.

This article starts with a brief introduction inttee vorticity in superfluid helium followed by an
overview on detecting and tracing quantum vortiogdsulk He Il. Moving to microscopic, self-contathe
systems, we discuss the shapes of rotating clasmichsuperfluid droplets and thex situ tracing of
guantum vortices in He droplets by electron micopsoof deposits left behind after doped dropletsant
on a substrate. Three sections are dedicated fatds developments @fi situ detection and imaging of
shapes and vorticities of free helium nanodrofigtsiltrafast X-ray scattering. Section 6 introduties
technigue and describes the detection of dropkgpeshand vortex lattices. Section 7 details themeot
diffraction imaging of few vortex configurations individual He droplets by a droplet-assisted phase
reconstruction technique that determines the straaif dopant clusters. This is followed by a d&sion
of the impact of doping on the vortex kinematichjehk turns out to be significant in many casesreebls
to be taken into account when comparing measuredpagdicted vortex configurations. Finally, we
summarize and give an outlook toward some of tientific opportunities that arise from the techréqu

presented in this work.

2.Quantum vorticesin superfluid “He droplets

Quantum vortices are among the most dramatic hetenaf superfluidity (28; 30; 31; 35). In
contrast to a normal fluid, which rotates as adrigbdy with the same angular veloaityas its container, a
superfluid will remain at rest for small values of Above a certain criticakn, however, the
thermodynamically stable state of the superfluaiides one or more quantum vortices (36; 37). fixed
angular velocity, such as in a rotating bucket erpent, the equilibrium is given by minimizing tifree

energy in the rotating frame (36; 38). In the cafsa free droplet with a constant angular momenttine,



equilibrium is defined by the minimum of the fremeegy in the laboratory frame (36). A quantum veorte
has a quantized velocity circulation in unitseeh/M=9.97x10° m?1s?, whereh is Planck’s constant and
M is the mass of tht#He atom. (30; 31) Free vortices with multiglguanta are unstable with respect to
dissociation into several singly quantized vorti¢2®; 31) Due to centrifugal effects, the densitjiquid
helium in the vortex core is depleted (39; 40)tHa absence of any experimentally determined densit
profiles, the core region of quantum vortices teofrepresented as a cylindrical void with a radug.1

nm (30; 41). Within this so-called hollow core mbderectilinear vortex passing through the cenfea

cylinder with lengtH and radiusRR (or a spherical vessel or a droplet with radi)ishas an energy of (36;

37)
= ool g (B
Eeyr =22 In E) (2.1)
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Here, po = 145 kgm?is the density of liquid helium at low temperatu#2). The angular

momentum per He atom of a rectilinear quantum wagé=h/2z.

The local velocity in the superfluid(r), of constant density is given by the gradienthef phase

of the macroscopic wave functio,as (28; 30; 31)
v(r) = %vsm . (2.3)

For a vortex with a single unit of circulation thbase winds by®around the vortex core. As a
result, the velocity at a distancé&om the core of a singly quantized rectilineartea is tangential with an

absolute value of:

v(r) = = (2.4)

2mr



If the total angular momentum in the quantum ligisidess thark per atom, a vortex at some
distance away from the rotational axis may be farf88). Each vortex must terminate perpendicular to
the liquid’'s boundary to ensure zero flux through surface. Therefore, non-central vortices in létsp
are curved and carry a smaller amount of energy tieatral, rectilinear vortices (36; 37; 43). Ndtat

curved vortices are not stationary but rotate addbe fluid’s rotational axis.

Egs. (1-4) show that away from the core region,kihetic energy per unit volume of the liquid
changes as 1/r2. A foreign particle displaces liquid and thus reglsithe total kinetic energy of the fluid.
The net effect is the attraction of a particle tohvide vortex core, which can also be interpretearaeffect
of Bernoulli forces resulting from the velocity dgiant in eq.(2.4) (34). The effective particle bingl
energies, as obtained by density functional th¢éDRyT) for a number of atoms and molecules, arehen t
order of a few Kelvin (39; 44). For example, thading energy of Xe atoms was estimated between 3.2
K(45) and 5.0 K(39). Semiclassical matter wave walions estimate an impact parameter@b nm for
the capture of a Xe atom by a vortex (46). Recettiycapture dynamics of Ar and Xe atoms by Heleéto
vortices have been studied via TDFT calculatiord.(#he results of the calculations presented gui€
2.1 reveal that upon impact, trapping of the phasics facilitated by energy dissipation through theation
of large amplitude deformations of the vortex casewell as helical Kelvin waves (30; 31) on thetewr

core.



Fig. 2.1. Capture of Ar atom by a vortex ifHe droplet of 1000 atoms. A: An Ar atom (green dumtllides

at 360 m/s with a droplet containing a single teaar vortex. B: The Ar atom penetrates into theptet, inducing
density waves. C: A He solvation shell is builtuamd the Ar atom. D: The Ar atom approaches theewotE: The Ar
atoms reaches the vortex core and induces vorséartdon. F: The Ar atom is trapped by the vortekich continues

to oscillate. The time is indicated in each fraMedified from (47).

Upon increase of the of a bucket filled with superfluid helium or ofgtangular momentunh,
of a superfluid droplet, thermodynamically stabdafigurations involve several quantum vorticestha
idealized case of a thin plane-parallel layer iotpiat o, vortices are predicted to form an equilateral
triangular lattice (30), which may be viewed as gWer crystal with a lattice structure defined b t

mutual repulsion of the vortices. The angular vi2yoe can be obtained from the average vorticity asy (28

W= "VZ—" , (2.5)

whereny is the areal density of the vortices. The angmamentum of the system per He atonk/@
multiplied by the total number of vortices. Caldgth configurations of multiple vortices in a cylard
resemble equilateral triangular patterns closenéodenter, but exhibit noticeable circular defoioret
toward larger radii (48). Analytic expressions fbe free energy of symmetric arrangements of ditaig
vortices in a cylinder (38) and a sphere (49) Hzeen derived. The shapes and dynamics of bareesrti
in a container with fixed boundary conditions candalculated using the Biot-Savart law (50-53). The
equilibrium corresponds to a vortex configuratibattis stationary in a frame rotating at samélowever,

the implementation of this approach, which requaasulation of the vortex images, is only feasitue



simple geometries, such as in a square channglinaer or a sphere (48; 50-53). Similar calculasidor
systems with free deformable surfaces, such asopladror for doped vortices have not yet been

demonstrated.

Currently, DFT (16; 45) remains the orly initio computational technique that yields the shapes
of droplets and geometries of vortices therein a#i ms the phase of the wavefunction (related & th
velocity field by eq. (2.3)) in a free droplet wirspecific total angular momentum (43; 54). Fig.shows
calculated density of He droplets containing twaitee vortices. The vortex cores are marked byetegl
densities, which are represented as black dotuimes along the direction of angular momentum and
perpendicular to it, respectively. The vortices stegionary in the frame rotating with which increases
with the number of vortices. With increasiagthe droplets become oblate and the vortex cordtgans

become increasingly axially symmetric.

000
0 ®|0 w

Fig. 2.2. Helium droplet containing 15000 atomstimgs2, 4, 7, and 9 vortices in panels A, C, B &hd

respectively. The images on the left and rightaarepanel show the density cross sections perpdadio and along

the direction of the angular momentum, respectivehe density is color coded from black to orargeresponding
to zero and bulk liquid density, respectively. Miagti from Ref. (43).



3. Detection and Imaging of vorticesin bulk *He

Various imaging techniques have been developediforalizing vortices, all of which employ
tagging of the vortex cores with impurities. Alrgatthe first experimental demonstration of quantized
circulation by Vinen (35), later refined by Zimmeamm and co-workers (55), used a variation of thési
A vortex was attached to a micrometer-diametenmatibg wire stretched along the center of a rotatin
bucket filled with He Il. The presence of the vargave rise to a splitting of the otherwise degateer
vibrational modes of the wire due to the Magnusdfflt was also shown that multiply quantized ieext
may be stabilized by the wire.(35; 55) While thastnique provided pioneering results, it was exélgm

challenging and not suited to study free vortices.

In most of the later experiments, to allow for mibfithe vortices were doped with impurities such
as electrons, neutral or ionized atoms, and lgrggticles such as hydrogen or metallic clusterslykan
mobility measurements used ion scattering and tngpp vortices (56-59). Rayfield and Reif perforne
drift velocity measurements on positive and negaitims in He |l with various kinetic energies (560w
temperatures of 0.3-0.6 K ensured minimal scatgeoiinthe ions on thermal excitations. The astonighi
finding was that the drift velocity waaversely proportional to the kinetic energy (56; 57), whleld the
authors to conclude that the ions were attaché@éoquantized vortex rings. The measurementsol okt

first and only experimental determination of thetes core radius of ~0.1 nm (56; 57).

The first images of the geometric arrangementseéal vortices inside rotating He Il required
extensive experimental developments by Packardcandorkers spanning about a decade (32; 61-63).
They employed electrons to trace vortex configoratias illustrated in Fig. 3.1.a. (32). Due to Paul
repulsion, electrons in liquid He are surrounded3Bynm diameter voids (“bubbles”) (64; 65), and ar
readily trapped by quantum vortices. The electnerse extracted from the liquid by an electric field
aligned along the axis of rotation and accelertddrd a phosphor screen that was imaged ontoem vid

camera. Fig. 3.1.b shows examples of patternsradatait increasing, which are in qualitative agreement



with theoretical predictions (32; 38). For companisFig. 3.1c shows the vortex pattern in a diluaggting
BEC of sodium atoms held in a magnetic trap (60jil&r to He I, rotation of a BEC is also realizby

the emergence of quantized vortices (28). The xqrétterns in the BEC are highly symmetric and leithi
triangular lattice structures as predicted by Absiv (66) and Tkachenko (67). Despite the evident
similarities among Figs.3.1b,c, we note that BE@y witen be viewed as quasi two-dimensional systems
(31; 60; 68; 69). In comparison to dilute BECs hieltraps,’He droplets are self-contained and represent

a strongly interacting superfluid.
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Figure 3.1: a) First imaging of vortices in in riig He 1l (from (32)). A tritium source at the bon is used to inject
electrons that attach to the vortex cores. Thetreles are extracted and accelerated onto a phosuneen. The
electron trajectories are stabilized by an axi&Mmagnetic field. The resulting pattern is traitged to the electronic
imaging system via fiber optics. b) Images of veorderays at different angular velocities rangingnir0.30 & in
image (a) to 0.597sin image (1). ¢) Vortex pattern in a dilute rotagiBEC of sodium atoms (from (60)). The BEC
was set in rotation by a laser stirring technicdféer turning off the laser beams, the BEC wasva#ld to equilibrate
for some time (~ms - s), then magnified by baltigtkpansion before its density distribution wasotgd by resonant
absorption imaging. The axis of rotation is perpeumladr to the image plane in b) and c). Typicatali€es between
vortices are on the order of ~3pfh in He Il and ~5um for the Na BEC.
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While the experiments by Packard and co-workersigea a first direct visualization of vortex
configurations in rotating He Il, they also facedaral complications that, ultimately, limited aount
of quantitative information gained from the stud{8g; 63). In particular, vortex instabilities inthd by

mechanical disturbances were a limiting factor. &tmer, the experiments only imaged the terminaitsoi



of the vortices at the liquid’s surface, while th&dimensional shapes remained unknown. These

limitations were only overcome more than a quaréstury later, using an optical imaging approach.

Borrowing concepts from classical fluid dynamicgpesxments, techniques were developed based
on in situ imaging of the spatial distribution of tracer pads. Micron-scale hydrogen clusters are
particularly prominent tracers that form relativestyable suspensions in liquid He (33; 70-74). Biga
shows the imaging experiment developed by Bewlethtlop, and Sreenivasan (75). Hydrogen tracer
particles were created upon injection of anHé gas mixture. After setting the cryostat in tiota and
cooling LHe belowT,, the tracers form an array of parallel lines withameal density given by eq.(2.5)
(Fig. 3.2b (28; 33)). This setup enabled signift@avances including studies of extended rectilinegex
lattices (33), the decay of vortex rings (76), &l as quantum turbulence (77; 78), Kelvin wave® @hd

vortex reconnection events (80; 81). An exampleHerlatter is shown in Fig. 3.2c (81).

cryostat

sheet
forming
optics

trigger
computer

batteries —» <575

Figure 3.2: a) Vortex imaging inside a rotatingastat. The entire apparatus resting on the aiiifgear set in rotation,
providing images of hydrogen tracer particles mitbtating frame (75). b) In the rotating supediuik, clusters align
along vertical lines, tracing arrays of rectilingartices (33). ¢) Reconnection event between tertices marked by
red and blue lines in the upper row. Arrows in ltheer row indicate tracer velocity vectors duritg treconnection

(81).



A drawback of the hydrogen tracer technique, howasehat it is difficult to extend towards much
lower temperatures, thus interactions of the tagéth thermal excitations in the liquid influenciee
observed dynamics. The spatial resolution is @tsibdd by the optical imaging approach. These Eitins
prompted further experimental developments, inigalar, toward using X-ray scattering on nm sized

tracer particles as outlined in sections 5-8.

Recently, the tracer technique has been applieshg¢asure the velocity field of the normal
component in He I(34; 82-84). Tracing by H&excimers enabled observation of turbulence inithrenal
component flow (83; 85; 86). However, tracing afgie vortices by H& has not yet been demonstrated.
Both the normal fluid component of He Il as wellqasntized vortices may impact the tracer motiath an

disentangling the different contributions is chafjang (34; 84).

Figure 3.3: a) Laser ablation in liquid He: 1-mdtal target, 2-laser focus, 3-microscope slideeldetrode array, 5-
TEM grids. The entire setup is placed in a liquid bath (T=1.6 K) inside an optical cryostat andset beam is
focused onto the metal target through the cryagitadow. Voltages may be applied between adjacemtdes both
to study the impact of electric fields on the naiteviormation process as well as to study the etadtproperties of
nanowire networks undén situ andex situ conditions. After laser exposure for ~minutes-Isotiie microscope slide
and TEM grids are removed and inspected by optiize) and TEM (d-g) microscopy. Sediments depogitstbelow
the target (b) and below the electrode array (b)kétdifferent particle coverages and charactierishapes with ~nm
thin, ~mm long filaments appearing underneath thetedes (87). TEM images reveal similar mesosoateowire
network structures for Sn (d,f) and In (e,g) tasdauit with different crystalline sub-structuresggesting different
coagulation dynamics (88). The scale is shown ahganel.



Another class of experiments involves depositiotrater particles on substrates that are studied
by standard microscopy techniques after removahefHe liquid (87; 89). Figure 3.3a shows a setup
developed by Gordoet al. to study nanowires created by laser ablation fineetal targets in liquid He (87;
89; 90). Figures 3.3b and 3.3c show optical miavpgdimages of sediments deposited just below figeta
and underneath the electrode array, respectivéihdt-resolution TEM images of the latter (Fig..8-8)
reveal web-like networks af10 nm diameter wires. The authors assign the foomaf the nanostructures
to growth inside vortices that attach to the palretectrodes (87-90). However, laser ablation énlitduid
He is a rather violent and highly complex procdsst produces a large variety of neutral and charged
products (91; 92), which may result in the formataf various nanoparticles even in the absencapf a
vortices. The formation of metal nanowires is obsdrin experiments with both normal fluid and
superfluid He. While the characteristic nanowirests and densities sometimes differ considerabiypéo
two fluid phases (87), in some experiments they\areially indistinguishable (89). Laser ablation
experiments, therefore, are likely to have an imjraceveloping novel nanomaterials, for exampte, f
nanocatalytic applications (87; 93) rather tharditg vorticity in He Il. Nevertheless, the conceyft
tracing vortices in He 1l by metal particles hasyided important impulses for the study of voriigit free

He nanodroplets as will be described in more dataikction 5.

4. Shapes of spinning classical and superfluid droplets

Before proceeding to experiments on rotating slyddréiroplets it is instructive to review rotation
in classical viscous droplets. Starting with Newtihre equilibrium shapes of rotating astronomicalibs
held together by gravitation have attracted gnet@rést (94). It has been shown that the shapegaifng
liquid droplets held together by capillary forcesldmg to the same class of solutions and can sesve
laboratory scale emulations of astronomical objé¥33. The shapes of classical rotating droplete lieen
extensively studied theoretically (95-99) and ekpentally (99; 100). The shape of a droplet exewuti

rigid body rotation (RBR) is defined by the balarmtween capillary forces from surface tension and



centrifugal forces. The shape diagram for a rogatiroplet is shown in Fig. 4.1a (95-99), and iscdesd

in terms of the reduced angular momentimand reduced angular velocity, which are given by:

A:;?EL
VBl pR (4.1)
3
o= PR g,
sl (4.2)

Here, L andw are the angular momentum and angular velocitye&svely, in absolute units; is the
surface tension of the liquid,is its density, and R is the radius of a sphedcaplet with the same volume
as the distorted droplet. Droplets with differeimes but the same values/sdfandQ have the same shape.
Upon increasing\ from zero, the equilibrium shape of a droplet geslfrom spherical to oblate axially
symmetric (D), as indicated by the curve near the origin in Big. AtA = 1.2 the curve branches. The
upper D,y branch, shown as a dashed curve, is unstableresgect to quadrupole deformations. Stable
shapes are described by the lower branch repragemtblate droplets with 3 symmetry that resemble
triaxial ellipsoids for 1.2 <A < 1.5, dumbbells foA > 1.5 and eventually become unstable againsofissi
for A>2. Unstable B, D and higher multipole paths that branch at highendQ along the Dn curve
are not shown in Fig. 4.1 (97). The numeric surfam&ours of the [ and Dr droplets at differenA are
presented in the Supplementary Material of referdh01). The droplet shapes can be characterizéteby
distances of the surface to the center along tmgeally perpendicular directiona:is the distance along
the rotational axisg is the distance along the long axis perpendidalax whereas is the intermediate
distance along the axis perpendicular todrendc axes ¢=b in axially symmetric shapes). The droplet

asymmetry is characterized by three aspect rati®R3$ as shown in Fig. 4.1b (101).
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Fig. 4.1. A. Red curve: stability diagram for cliass rotating droplets as a function @Qf andA, see egs. (4.1, 4.2).
The upper branch corresponds to oblate axisymmstapes, whereas the lower branch to prolate tvedshapes.
A calculated capillary wave branch is shown in bi54). The bifurcation point is located at= 1.2,Q = 0.56 with
AR =1.48. B. AR, vsA for classical axially symmetric oblate (red) anmtbtlobed prolate (green, blue, brown) droplet
shapes. Reproduced from Ref. (101).

The study of equilibrium shapes of rotating supsdfldroplets has only very recently become
feasible (see sections 6, 7). RBR is not possible s$uperfluid, which instead bears angular monmentu
through a collection of quantum vortices (28-31a @otential flow (54; 102-104). Angular momentuamc
also be stored in the form of elementary excitaiguch as phonons, rotons and ripplons, the botitsn
of which is small at the typical temperature T 4 & in He droplets (15; 101). In the case of axiall
symmetric droplets at low T, the entire angular reatam is contained in vortices. In the limit ofaage
numbers of vortices, they arrange in an equilaterahgular lattice and, away from the vortex cores
produce velocity fields similar to those for RBRB{21). For example, the shape of a rotating sudrih
a cylindrical container adopts a parabolic surfzatour similar to that of a classically rotatimguid (29;

30; 105). Therefore, the shapes of rotating axisgtmim superfluid droplets are expected to resemble
classical droplets rotating at the samd.. Some deviations have been predicted by DFT cationls for
small droplets due to the relatively low numbervoftices and surface effects (43). The situatign is
however, more complex in prolate rotating supedfidioplets, where the angular momentum may stem

from vortices as well as from capillary waves tiing along the droplet’'s equator. The latter inmpra



quadrupolar velocity field that is substantiallyfeient from that in RBR. Very recent DFT calcuteis
(54) show that capillary waves produce a diffetamnch in theA, Q diagram and have a larger aspect
ratio compared to classical prolate shapes fos#imeA, which is shown as a blue curve in Fig. 4.1. In
classical droplets, capillary waves as well asivestdecay rapidly into RBR due to viscosity, eyt may
persist indefinitely in an isolated superfluid degp Therefore, the shapes of prolate superflumpldts
may differ significantly from their classical coenparts. Currently, the accurate shapes of prgtatd
possibly higher order multipole) superfluid dropleémain to be discovered. One of the motivatiams f
the X-ray and XUV scattering experiments describexctions 6 and 7 is to obtain the shapes ofrfujk
droplets and the corresponding vortex configuratiah different angular momenta and in droplets of
different sizes in order to assemble the stabilingram for superfluid droplets, such as that fassical

droplets in Fig. 4.1.

5. Ex situ tracing of quantum vorticesin He droplets

The availability of large helium droplets has ceghenticing new opportunities to study almost
perfectly isolated, self-contained micro- and naoale superfluids (6; 9; 106). However, virtualbne of
the established methods for studying bulk supetfigan be applied to free droplets. Each dropleteha
unique size, shape and state {f),which can only be characterized by probing indiixl droplets (107;
108). While trapping of millimeter sized superfliig drops by laser (109) and magnetic (110) fiaks
been achieved, corresponding studies of vorticityehnot been reported. Attempts to detect vorticity
nanodroplets via spectroscopy on embedded molecalasined inconclusive (9). Instead, the first
experimental evidence for the existence of quadtiz@tices in He droplets was provided byexrsitu

imaging experiment of the Vilesov group (Fig. 5111)).

In the experiment, helium droplets with averagerdigers of 100-1000 nm containing, on average,

(Nye)=10" - 2 x 10° atoms were doped with ~101¢ Ag atoms (Fig. 5.1a). Downstream, the doped



droplet beam collided with substrates, which waentremoved from the vacuum system and imaged by
TEM. Figures 5.1b and 5.1c show characteristic &godition patterns obtained for the smallest argekt
droplets, respectively. While the small dropletsduce round ~nm sized Ag patterns, deposition kgela
droplets leads to ~10 nm thin, ~500 nm long Agnfigants that consist of many separate or partiaiedu
~10 nm diameter clusters (Fig. 5.1d). The charetierlength of the filaments is comparable to the
~700 nm average diameter of the large doped dofildtl). The authors concluded that the filamergs a
produced via pinning of Ag atoms and clusters tarmum vortices inside the large droplets. It was
hypothesized that liquid may acquire vorticity dodnhomogeneous flow and breakup of normal liquid
inside the nozzle. The angular momentum is themsteared into superfluid vortices upon evaporative
cooling of the droplets beloWy in vacuum. The study was followed by a numberegfasition experiments

in other groups. Yang, Ellis and co-workers showeat the formation of nanowires in He droplets is a
universal process (112). In addition to Ag (11Bgy produced nanowires from Ni, Cr, Au, and Si {142

well as from sequentially added Ag and Si atom2)11



Figure 5.1:Ex situ imaging of vortices in He droplets. a) Droplets generated by expanding liquid helium through
a cryogenically cooled, micron size nozzle intowan and doped while passing through a hot pickilldibed with

Ag vapor. Upon impact of the doped droplets onia ¢iarbon film, the helium evaporates while the #tguctures
formed inside the droplets remain attached to thstsate and are subsequently investigated by TiNFor ~100
nm diameter droplets, the deposition patterns@ued. ¢) For droplets originally ~im in diameter, the deposition
patterns assume filament-like shapes, consistehtakister pinning to quantum vortices. d) The nifigt view of

a single trace reveals a fragmented substructtom(f111)).

Understanding the effect of the droplet surfaceaot@as well as reconstruction dynamics upon
warm-up and transfer of the deposited structurésadEM is a critical aspect in deposition expenits.
The effects of surface diffusion on the depositedpgs has been studied in great detail in a sefies
experimental and theoretical investigations inEnest group (113-116). In Ref. (113) Ag depositseve
kept at 77 K during deposition and transferred twy®-TEM in which the sample temperature could be
varied between 77 K and 363 K. These studies vegez Extended to Au, Cu, and Ni nanowires, which
were examined with ~1 nm resolution TEM at tempees up to ~1600 K (114). As shown in Fig. 5.2a,e,
the nanostructures have continuous, ramified strastwhen kept at sufficiently low temperaturesctsu
structures may result from fusing a large numbefilafents produced on vortices. During the heating
process, however, breakup into nanospheres andatsoccurs. In particular, for Ag the transitiakes
place below room temperature, which explains thgrfrented structures observed in previous deposition

experiments (111; 112). The surface smoothing Kugaoints, and fragment nanostructure contrat¢tion



minimize the number of surface atoms are well répced by simulations using a 3D diffusion model as

illustrated in Figures 5.2c,d and 5.2g,h (114; 116)

Au e) Agr=-15°¢9 Ag
S
{r
}
{
Au f)  Agr-z3¢ h Ag

Figure 5.2: Measured (a,b,e,f) and simulated (dh)ljgetal dopant deposition patterns after soffitag of doped He
droplets, illustrating the temperature dependesikup of deposited nanostructures (from (114)) t&deor details.

While the described surface reconstruction effaftesr deposition are experimentally accessible,
the effect of the droplet impact on the initiallgpbsited nanostructure morphologies is not. THogjitio
calculations have been developed to study the disanf the deposition (117-120). Comparison of
classical trajectory (CT) and quantum mechanicaDFID calculations describing the impact ofHesoo
droplet on a rutile Tig{110)-(1x1) surface show distinct differences (1XJFlculations for dopetHe
droplets with up to T0He atoms and 5000 dopant atoms confirm soft lapgincesses for both Au atoms
(119) and Ag clusters (120) with essentially usitigking probability and a very limited impact afrface

diffusion during the deposition process onto amotshcarbon substrates.

Dopant deposition techniques also provide a rautegate unique, stable nanomaterials that cannot
be obtained by any other means (13; 121; 122) fif$teAg/Au and Ni/Au core-shell metal nanopartile
assembly in He droplets was demonstrated by Ydis &hd co-workers (123). Ernst and co-workers

created Au/Ag and Ag/Au core-shell nanowires thiosgquential pickup of Au and Ag atoms by ~300



nm diameter droplets, and characterized them byete-specific nanoimaging techniques (124; 125).
Lindsay and co-workers extended the method toweaditeation of highly porous “cluster materials2§1

128), such as pre-reactive nanocomposites of magneand perfluoropolyether (PFPE). The work
illustrated the potential of the deposition teclugiqdo create high energy density metal-oxidizeronan

composites that are challenging to produce by dadwmiques due to their inherently high reactiyit®7).

6. XUV and X-ray diffraction experiments

Thein situ imaging of individual He nanodroplets and embedpadicles has recently become
possible through diffraction experiments that méilradiation from XFELs and HHG light sources. Ehre
characteristics of these light sources are crifimathis advance: 1) The wavelengths are suffityeshort
to resolve features as small &20 nm (129; 130). 2) The pulses have a large endiugh(=10'®
photons/crafor X-rays and=10' photons/crhin the XUV) to generate a sufficient number ofttaad
photons (16) from the interaction of a single X-ray/XUV pulséth a single droplet. 3) The pulses are
short enough<£100 fs) such that the scattering pattern is notrétl by droplet motion or destructive
kinetics following the absorption of X-ray photon&lesov, Gessner, Bostedt and co-workers performed
small-angle X-ray scattering experiments at theati€oherent Light Source (LCLS) XFEL at SLAC
National Accelerator Laboratory to study free sfipat “He droplets containing ~3@ ~10* atoms
(diameterd =~ 200-2000 nm) (108) (Fig. 6.1). In the experimend6-fs long pulses with a repetition rate
of 120 Hz and 1.5 keV photon energy intersectezhéimruous He droplet beam, resulting in a few scig
events per minute. It was found that the diffratifinages of doped, micrometer-sized droplets adidribit
Bragg patterns consistent with aggregation of teed¥pants on vortices that are arranged into tulang
lattices (Fig. 6.1b,c). From the pattern in Fig.cg.a vortex density afy = 4.5 x 16°* m? and, using eqn.

(5), an angular velocity = 2.2 x 16 s* is derived.



Figure 6.1: a) Single-shot X-ray diffraction expeent at LCLS XFEL. A beam of pure or Xe-doped Hepliets is
intersected by the XFEL beam and diffraction pattesf individual droplets are recorded. b),c) Fopel droplets,
Bragg patterns are observed, consistent with aggjmygof Xe clusters in triangular vortex latticd¥-f) Pure droplet
diffraction patterns indicating both spherical &t centrifugally distorted (e,f) droplet shapebich are illustrated
in green (modified from (108)).

While many pure droplet scattering patterns areutdr as expected from scattering off sphericaéctsj
(Fig. 6.1d), almost half of the patterns exhibisatropies of more than 6%, indicating that rotgtinoplets
have large centrifugal distortion as illustratediy green pictograms in Fig. 6.1. Some diffracpatterns
exhibit aspect ratios up to 2.5 and pronouncechsity anomalies (streaks) as shown in Fig. 6.1& Th
distorted patterns are well described by scattesinmilations using shapes of classical rotatingslras
discussed in section 4. For the streaked imagegn@-1f, this analysis leads to an estimated argul
velocity ofo = 1.4 x 16 s*. Note that some of the vortex densities and angalacities observed in free
droplets are at least ~5 orders of magnitude lalgerthe ones observed in the rotating bucketrarpeats
described in section 3 (32; 33). Some of the oleskpatterns were assigned to axially symmetrig,(D
shapes with aspect ratios beyond the stabilityt [|fR=1.48) for two-lobed deformations (see secddn

(101; 108), in agreement with theoretical prediti¢96).



The study was followed by significant activitiespgmbe superfluid He droplets via ultrafast singldse
diffraction (101; 129-132). Employing larger scéttg angles compared to the first LCLS experiment,
several groups confirmed the existence of prolasgldts belonging to the lower branch of the sigbil
curve in Fig. 4.1A for large angular momenta (1@38]; 132). Wide-angle scattering contains more
information about the three-dimensional shape obhject than small-angle scattering signals, which
primarily represent the projection of the objectlom detector plane. Figure 6.2a shows a diffragiittern
recorded by Vilesov and co-workers at the LCLS wiithh separate detectors, capturing extended small-
angle scattering signals. The distinctly curveglgrstreak is well reproduced by the simulatiorFig.
6.2b. It is based on the prolate triaxial dropletfse with a depression around the droplet waiglalied

in Fig. 6.2c, which corresponds to a droplet with1.5 (101). Studies with longer XUV wavelengths
yielded large number of diffraction images at wiattering angles (131; 132). Figures 6.2d,e skaw t
examples of streaked scattering patterns recorgdd®ionzée and co-workers using an intense HHG light
source operating simultaneously at four differeav@lengths between ~47 and ~72 nm (131). The very
pronounced curvature and overall structure of ttedtering pattern Fig. 6.2e is captured well by the
simulation in Fig. 6.2f that results from the bixprolate (“pill-shaped”) droplet shown in the@asMost
recently, Mdller and co-workers conducted an XU¥frdction experiment on pure He droplets at the
FERMI XFEL using wavelengths between 32 and 65 &B2). The wide-angle scattering experiments
confirmed the existence of prolate triaxial rotgtsuperfluid droplets with pill- and dumbbell-lishapes

and, more generally, that the shapes of superfltaglets resemble those of their classical countésp



a) b) c)

Figure 6.2: Observation of prolate rotating He detgpvia wide-angle single-shot X-ray (a-c) (104 XUV (d-f)
(131) diffraction. a) Composite X-ray scatterindtpen recorded atvh= 850 eV simultaneously with a small-angle
(red rectangle) and a wide-angle (grey squarejesaag detector at the LCLS, revealing a notablyved triple
streak (scattering angle®l0°). b) Simulated diffraction pattern for a triabprolate droplet pictured in c). d), e)
Curved streaks from wide angle XUV diffraction wgis HHG light source (= 17 - 27 eV, scattering angles
<40°). f) Simulated diffraction pattern of a biaxgblate (“pill-shaped”) droplet pictured in theséat.

Interestingly, no axisymmetric oblate shapes withezt ratios beyond the classical stability limit
were reported in either of the XUV diffraction siesl (131; 132), in contrast to the LCLS experiments
(101; 108). The discrepancy may be connected tsigmficantly different droplet generation condits.
More studies, however, are needed to consolidadiridings. We note that both XUV and X-ray light
sources provide complementary opportunities antlesiges. For example, the theoretical descriptibn o
X-ray scattering by helium droplets is relativelsagghtforward as it falls within the Rayleigh-Gabgbye
approximation for scattering off optically thin elis (101; 108). This is not the case for studiethé
XUV, where refraction is significant and which régumore elaborate Mie scattering calculations }131
Principally, shorter wavelengths translate intoghér resolution limit, which can be relevant, ésample,
to resolve ~nm scale vortex tracer structures $smtion 7, (129; 130)). On the other hand, it isegally

easier to record wide-angle scattering signalsragér wavelengths due to higher scattering effefhe



method of choice, therefore, depends on the goalno&xperiment and, to a significant part, on the

availability of a particular light source.

7. From diffraction patternsto droplet shapes and dopant density distributions

As illustrated in section 6, single-shot X-ray afidV diffraction is a powerful tool to study shapes
and vorticities of superfluid He droplets. At itgre, the concept and its experimental implementaie
very straightforward, essentially only requiringiatense, focused beam of pulsed light and a detéot
record the scattering pattern. The key challengeielver, is to translate the recorded scatterintepet
into real-space density distributions. The recartsiton of an object from its scattering patterneferred
to as coherent diffractive imaging (CDI) (133-14&9r optically thin objects and small scatteringlas,
the complex amplitude of the scattered radiatioresponds to the two-dimensional (2D) Fourier tfams
(FT) of the projection of its density distributiamto the detector plane (101; 137; 138). Therefore,
reconstructing the object density is principallysgible through inverse FT of the scattering amgétu
However, the measured diffraction patterns onlyijol®the moduli squared of the amplitude whereas th
scattering phases are unknown. Thus, CDI requiesgconstruction of the missing phase informatipn

iterative phase retrieval algorithms (133-138).

The fundamental assumption of CDI is that the migphase information can be retrieved through
oversampling of the scattering patterns (133-138g availability of XFELs has spawned a flurry of
activities in the field and we refer to correspangireviews (139-141). So far, CDI has only been
demonstrated for optically thin samples, which edek refractive objects. For the specific caseoped
helium droplets, Tanyag al. developed an iterative phase retrieval algorithat ¢ffectively uses the host
droplet as a reference scatterer with a knownestagt amplitude (129). Figure 7.1 outlines the aptof
the droplet CDI (DCDI) method, which is based omadified version of the error reduction algorithm

(133).
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Figure 7.1: Left: Schematic of the DCDI algorithRight: Example diffraction data (al), reconstrucsaanple
densities (a2) and phases (a3) and calculateddiifin pattern (a4). The black circle in (a2) irdés the droplet
boundary. See text for details (129).

DCDI takes advantage of the fact that the sizesirape of host droplets can be derived from a
central ring structure in the diffraction pattesree for doped droplets. The diffraction amplitudetien
the sum of the known real amplitude from the dropled the unknown (in general complex) amplitude
from the dopants. The reconstruction is initiatgd HX of the 2D projection of the droplet density
distributionp(x,y), giving G(x,y)=|G(x,y)| €*¥. The modulus |G| of the FT is then replaced bysthere
root of the measured intensliyss while the phase is retained, resulting in a modified scatteringpiitude
G'(x,y). Inverse FT of G' provides a first estimafehe combined density distributigr(x,y) of droplet
and dopants. This distribution is adjusted basati®@known physical properties of the host-dopgsitesn,
imposing constraints such as that the dopantsraide the droplet's contour, that the dopant densit
exceeds the shot noisg,and positivity of the imaginary part of the dépsiThen, a new iteration of the

FT/inverse FT cycle is initiated until the modu|@ of the calculated scattering pattern has cgeeeto



m. Figure 7.1 shows an example including a meas{a&dand a calculated (a4) diffraction pattern
along with the reconstructed density distributia@)(and scattering phases (a3) of xenon clusteidea
~600 nm diameter droplet, revealing a symmetriarggement of six quantum vortices. The smallest
reconstructed feature is ~18 nm across, whichrigpaoable to the theoretical limit for the spatedalution
in small-angle CDI of /0mx =~ 12 Nnm, Wheréex is the maximum scattering angle of the experinenta

diffraction patterns.

Fig. 7.1 a2 shows that the Xe density is concegdratithin six flaments separated by about 100—
200 nm. The formation of the filaments is consisteith the condensation of dopant atoms onto thieso
of quantum vortices. The image in Fig. 2(a2) isststent with an approximately hexagonal patter@-of
shaped filaments imaged at some angle with reg¢pdbe symmetry axis. It is evident that the filanse
have kinks and exhibit an inhomogeneous densityiltision. These effects may result from recongtamnc
of Xe filaments, whereby the van der Waals forogsta minimize the filament surface. Future studies
should provide more details on the mechanism ofildmments’ formation and reconstruction, in pautar

when molecular dopants are used.

Jonest al. employed the DCDI technique to study the spati@regements of Xe-doped vortices
in small © =~ 200 nm) helium droplets containiflly, ) ~ 108 He atoms as illustrated in Figure 7.2 (130).
The reconstructed Xe cluster densities (Fig. 7.EBRreveal symmetric arrangements of few vortices
located close to the droplet surface and far away feach other. These observations deviate from DFT
based predictions for vortex locations in pure titsp(43), which has been attributed to the impédthe
Xe dopants on the rotational energy and angular embam. A more detailed discussion of this effect is
provided in section 8. The results also demonstitz¢ vorticity can have a dramatic impact on the
distribution of dopants inside He nanodropletsoifn the XFEL experiments, He droplets were comigon
modeled as isotropic, spherical objects with ngale dopants located close to the center (142)fadie
that the clusters can be found far away from thmere(130) should be taken into account when mnodeli

for example, the interaction of reactive dopantthersynthesis of nanomaterials in He nanodroplets.
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Figure 7.2: Few-vortex configurations (B2-F2) in082nm diameter helium droplets, imaged by singla-stiray

DCDI of Xe tracer particles (B1-F1). The black &&sand ellipses indicate the droplet boundariég. Viortex axes
are along the line of sight in B2,D2 and notaltgd in E2, F2. For comparison, B3-F3 show thewated diffraction
patterns of the reconstructed objects (130).

8. Effects of doping on vortex kinematics

The imaging of vortices in He nanodroplets reliastoe decoration of vortex cores with clusters
containing a large number of Xe atoms. This seghi@sents a discussion of the impact of dopinghen t
vortex coordinates, which is based on the modatutaions presented in Ref. (143). We limit the
discussion to a single vortex, the position of whis expected to be most sensitive to doping. In
equilibrium, the doped vortices are stationary ifraane rotating with some angular velocity, The

equilibrium configuration of a doped vortex in adrdroplet with total angular momentum

L= Lot + Lous : (8.1)

is determined by minimizing the total energy

E = Evort + Eclust +V

solv ?

(8.2)



whereLyort (Evort) @andLaus (Eaus) are the angular momenta (kinetic energies) ofitineex and of the cluster
revolving with the vortex, respectivelysy is the van der Waals solvation energy of the eluist the He
droplet (143). Some constraints regarding the xaste@pe are inevitable in the model calculatiods)1
Analytic solutions folL.otandEvo are known for a rectilinear vortex in a cylind86{ 38) and in a sphere
(49), whereas the shape of undoped curved vomizgsbe obtained via numeric calculations (36; &7).
is convenient to present the discussion in termedificed quantities defined as:

r =

; L,Lr:_ E:ianda)r:_,
R 0)

L 7
L) ™ E( w(0)
whereL(0), E(0) andw(0) are values for a rectilinear vortex at the eenf the droplet andis the minimum
distance between the vortex and the rotational &xisa bare vortex in @= 100 nm droplett(0) = 8.9
x 10’ h, E(0) = 1.1x16 K andw(0) = 1.08 10rad s". Fig. 8.1 shows the calculated valuesrfoE; andew;
versusL, for anR=100 nm droplet containing a single curved vor@itferent curves are for bare and
doped vortices decorated with experimentally fdasiimbers of Xe atoms arranged into filamentadfir

Rxe as indicated (143).

——&=0.1nm, no Xe
+ R,=25nmm
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Fig. 8.1. Theoretical estimates of (a) reducedldxjiuim positionr,, (b) reduced enerdst, and (c) reduced
angular velocityw: as a function of the reduced angular momentufor a curved quantum vortex in a
spherical droplet witlRie = 100 nm, containing W = 8.9 x 10 helium atoms. The results for a bare vortex
(&= 0.1 nm) are shown in red. The results for curvardices withRx.=2.5 nm, 5 nm and 10 nm filaments
containing 3.4x1%) 1.4x10, and 5.4x19Xe atoms are shown by green, blue and black cegpectively.
Reproduced with permission from Ref. (143).



Fig. 8.1 a) shows that, with decreasinga bare vortex moves away from the center, urtidches
the surface of the droplet where it annihilatels;at 0. The presence of Xe atoms leads to an inci&ase
for most values of; that can be ascribed to a centrifugal force orvthieex. For the narrowest Xe filament
(Rxe = 2.5 nm), the curves for, E; andw, closely follow those for the bare vortex until ttheped vortex
reaches the surface region. Upon increase of ldmadnt diameter (mass), the curves exhibit pronedinc
discontinuities. In particular, thHex. = 10 nm solution bifurcates to the surface redmm.; < 0.7, while
the E: andw: solutions exhibit pronounced slope discontinuitiBlsese trends indicate a transition from
kinematics dominated by the vortex in the intenérthe droplets to those determined by the solmatio
potential and rotational energy of the Xe filameluise to the surface. In the surface region, thgilan
velocity of a bare vortex increases rapidly, whemeaof a doped vortex decreases and even becomes
negative at small,. Solutions with negative: are metastable, whereas the stable solution gamels to
a revolving filament without a vortex (143).

The results of the model calculations indicate it positions of doped vortices in axially
symmetric droplets can be used to characterize tbgitional state (143). Vortex locations awaynrthe
surface region with, less than ~0.8 may be used to estimate the diopieational energy, total angular
momentum, and angular velocity. However, when Xistelrs are found in the surface region, the system
is dominated by the kinetic energy and solvatioteptial of the dopants, and the kinematic parameter

cannot be deduced from the positions of the clastéh reasonable accuracy.

9. Conclusions and Outlook

Superfluid helium provides unique opportunitiestiady the similarities and differences between
guantum mechanical and classical phenomena in s@Empc systems. The study of rotational motion and
fluid shapes has long played an important rolénis tespect. The recently developed capabilityrtage

shapes and vorticities of individual helium nangliets has created new possibilities to investigate



guantum hydrodynamics in free, isolated, self-cioiith systems in new regimes of rotational excitatio
and with vanishingly small external perturbationsthin only a few years, the traditional perceptairiHe
nanodroplets as perfectly homogeneous, isotropieerical objects that may be challenging to set in
rotation has been replaced by a much more divécag@. Droplets exhibit angular momenta rangirogfr
negligible to~10M: per atom with corresponding shapes varying frohesgs and spheroids (101; 108)
rotating relatively slowly to dumbbells (101; 13132) on the verge of disintegration due to cengafu
forces. In oblate biaxial droplets, the angular raotam is stored in multiple quantum vortices that a
arranged in symmetrical configurations such asdpidar lattices (108; 129; 130). The combined eftéc
vortices and capillary waves on the droplet shapaliscussed in section 4.1, is still to be exploéne
may speculate that the interplay between quantutices and capillary waves (which are not damped in
superfluids) may yield shapes not attainable issital drops.

Currently, it is not possible to make a direct canigon between the shapes of classical and
superfluid droplets, because both angular momerdangular velocities are estimated from the shdpes
would be desirable to simultaneously determine létoghapes and corresponding vortex configurations,
which will yield L andw. Such measurements would allow to gene€ate A correlation diagrams for
superfluid droplets, such as the ones for classiogblets shown in Fig. 4.1, revealing similaritesd
differences between classical and quantum rotafibe.origins of the droplets’ rotational excitatiduring
the jet expansion should be further studied andiblysused to create advanced sources with sharper
droplet size- and angular momentum-distributiors. @xample, nozzles with longer channels operating
T< T, may be used to study quantum turbulence (51-5378:786). In order to gain a better understanding
of the impact of vortices on rotating He dropletysds, future experiments will be extended’Hie
nanodroplets3He droplets remain normal fluid under typical expental conditions, providing an
opportunity to study similarities and differencesveeen rotating superfluid and normal fluids uralarost
identical conditions.

An extension of these studies to mixete-*He droplets presents another frontier. At T < K87

a phase separation occurs into a nearly fideephase on the droplet surface arftha rich phase in its



interior (144). The morphology of the phases imtiog droplets is still to be discovered. In additithe
mechanism of phase separation has been extendigelyssed for several decades. Proposed mechanisms
include quantum tunneling and vortex-assisted phseggaration (145). Classical low-temperature
experiments cannot yield a definitive answer dugh® relatively slow rate of temperature change
achievable in a conventional cryostat and the epordingly small level of supersaturation. The
evaporative cooling rate of droplets can reachKki8, opening an opportunity to study real-timeektios

and underlying mechanisms of the phase separation.

Imaging of doped helium nanodroplets has demomstrateveral new opportunities for
fundamental studies of superfluid hydrodynamics it application as a cryogenic matrix. DCDI has
been employed to map quantum vortices containinglXsters with ~20 nm resolution (129; 130). The
studies revealed a significant impact of dopingl@vortex locations (130). A natural extensionhafse
studies will be the imaging of vortex constellagdn larger doped droplets as well as in prolatesor
lobed He droplets. More generally, the DCDI techirignay be utilized fam situ microscopy studies on a
diverse range of nano-clusters.

The aggregation of particles inside liquid heliusnniot only instrumental for the detection of
vortices but also intriguing in its own right (146he unhindered motion of foreign particles arfitieint
dissipation of the heat of formation renders Heptdts unique cryogenic “test tubes” for aggregation
experiments close to absolute zero temperaturamtient temperatures, aggregation usually evolves
toward structures characterized by a global mininirtne free energy landscape. At low temperatures,
however, inter-particle interactions dominate, vatasr entropic effects are negligible. Therefore,kwea
intermolecular orientation forces, such as dipapsld (147), or hydrodynamic attraction by quantum
vortices, play a significant role during the apmtoaf particles, yielding unusual structures, sash
atomically thin chains(147) or fractals (146). O ther hand, aggregation dde droplets devoid of
vortices may be used to study low-temperature aggian in a perfectly isotropic liquid. DCDI prowéd
a route to study the structure and formation dyearnof such aggregates in great detail, poteniglgbling

routes to synthesize novel nanomaterials.



Whether for the study of superfluidity in finite aiilets, quantum nucleation, low-temperature
chemistry, or for applications of rotating, supeidl nano-labs in materials synthesis, the recevaracks
in helium nanodroplet imaging techniques have egtakciting new opportunities awaiting to be exptbr
by experiments and theory alike. A relatively smnaiinber of studies by only a few groups has sigaifily
enhanced our understanding of quantum vorticity rational motion in nanoscale superfluid droplets
The expansion of these early studies toward a fawgbr range of topics will greatly benefit fronetfast
pace at which laboratory- and accelerator-basedfait XUV- and X-ray light sources are currentiyriy
developed and implemented. The basic techniques leen demonstrated, they are ready to be exploited

and expanded by a growing community.
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