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CONVEX CLUSTERING VIA OPTIMAL MASS TRANSPORT

FRANCESCA P. CARLI, LIPENG NING, AND TRYPHON T. GEORGIOU ∗

Abstract. We consider approximating distributions within the framework of optimal mass
transport and specialize to the problem of clustering data sets. Distances between distributions are
measured in the Wasserstein metric. The main problem we consider is that of approximating sample
distributions by ones with sparse support. This provides a new viewpoint to clustering. We propose
different relaxations of a cardinality function which penalizes the size of the support set. We establish
that a certain relaxation provides the tightest convex lower approximation to the cardinality penalty.
We compare the performance of alternative relaxations on a numerical study on clustering.

1. Introduction. The analysis of data sets invariably requires approximating
observed sample distributions by ones that belong to a particular family. Instances
include modeling using sums of Gaussians. While such families can in principle be
quite general, the metric used to quantify mismatch ought to reflect appropriate
features. A natural geometry is that provided by optimal mass transport endowing
the space of distribution with, for instance, the Wasserstein metric dW2

. Throughout
we will use this metric to study approximation problems. We specialize to a family S
of distributions with sparse support on discrete spaces with application to clustering.

In more detail, we consider the problem of approximating a given sample distri-
bution p0 with a distribution p1 belonging to a class S by solving the problem

min
p1∈S⊂P

dW2
(p0, p1) . (1.1)

Throughout, our spaces are discrete and P denotes the probability simplex. Member-
ship in S can typically be relaxed by introducing a suitable penalty function

min
p1∈P

dW2
(p0, p1) + λI(p1) (1.2)

where the function I penalizes p1 /∈ S and λ > 0. In this paper, we specialize to
the case where the set S represents the family of distributions having a sparse sup-
port on a discrete space, which leads to a cardinality penalized optimization problem.
The sparse atoms of the support correspond to the representatives of different clus-
ters. Association to those clusters’ representatives is provided by the solution to the
aforementioned optimal mass transportation problem and is dictated by the optimal
transportation plan (see below for details).

A heuristic for cardinality that has attracted a lot of attention in recent years
is `1–norm regularization [19, 7, 3, 2, 4]. However, this cannot be used to promote
sparsity on a probability simplex since the `1 norm of a probability measure is always
one (see e.g., the recent paper by Pilanci et al. [16]). In the present paper, we propose
relaxations of the cardinality penalty on the probability simplex. The main idea is to
express the cardinality penalty in terms of the optimal transportation plan Π between
the sample distribution and a target distribution with required sparsity properties.
The transportation plan Π is itself a probability distribution on a larger space. We
show that convex relaxations of the cardinality penalty can be realized via a sum–
of–norms penalty on the transportation plan matrix and via the introduction of a
suitable indicator function. This leads to a convex optimization scheme to solve the
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clustering problem. We show that the sum–of–norms relaxation provides the tightest
convex lower approximation of the original cardinality penalty. Finally, we present
numerical examples that underscore the effectiveness and relevance of the proposed
approaches with regard to the problem of clustering data sets.

The paper is organized as follows. In Section 2 we introduce the optimal mass
transportation problem. Optimal transport with a cardinality penalty is introduced
in Section 3 and different relaxations are proposed. In particular a relaxation based
on a sum–of–norms penalty is discussed in Section 3.1 while a relaxation based on
the introduction of auxiliary boolean variables is discussed in Section 3.2. In Section
3.3 we adapt the approach in [16] to our setting and compare with the proposed
techniques. In Section 4 we specialize to the clustering problem of and explain how
it fits into the more general framework introduced so far. We conclude by comparing
the effectiveness of the different relaxations on numerical experiments on clustering
in Section 5.

2. Mass transport and the Wasserstein metric. In this section, we briefly
introduce the problem of optimal mass transport. We refer the reader to [20, 17, 18, 21]
for a survey of the subject. The original formulation of the problem goes back to G.
Monge in 1781 [15], while the modern formulation is due to L. Kantorovich in 1942
[12]. Below we present the Monge-Kantorovich optimal mass transportation (OMT)
problem restricting our discussion to (finite) discrete spaces.

Optimal mass transport. Let X and Y be finite discrete spaces and pX and
pY be probability measures on X and Y, respectively. Let c : X × Y 7→ R ∪ {+∞}
be a cost function, i.e. c(xi, yj) ≥ 0 represents the transportation cost of transferring
one unit of mass from xi ∈ X to yj ∈ Y. Let π : X × Y 7→ [0, 1] be a transference
plan (informally, π(xi, yj) measures the amount of mass transferred from location xi
to location yj). The OMT problem is to minimize the total transportation cost over
the set of (joint) probability measures π with given marginals pX and pY and it is as
follows:

min
π

∑
i,j

c(xi, yj)π(xi, yj)

subject to
∑
j

π(xi, yj) = pX(xi), ∀i∑
i

π(xi, yj) = pY (yj), ∀j

π(xi, yj) ≥ 0, ∀i, j.

The following probabilistic interpretation is standard. If X,Y are random variables
taking values on X and Y with probability distributions pX and pY , respectively, the
OMT problem is to minimize the expectation E π [c(X,Y )] over all admissible joint
distributions π of (X,Y ).

We denote by Π the matrix associated to the transference plan π and by C the
matrix associated to the transference cost, i.e.,

Π = [π(xi, yj)] , C = [c(xi, yj)] ,

for i = 1, . . . , |X |, j = 1, . . . , |Y|, with |Z| denoting the cardinality of the set Z. The
OMT problem can be expressed in matrix notation as follows:

min
Π∈M(pX ,pY )

trace
(
CTΠ

)
(2.1)



where

M(pX , pY ) :=
{

Π | Π1 = pX ,Π
T1 = pY ,Π ≥ 0

}
and 1 is a vector of ones of suitable dimension.

Wasserstein metric. Consider the case where Z is a metric space with metric
d(·, ·), and X ,Y ⊆ Z, and consider the problem of optimal transport between two
probability measures as before. When the transportation cost c(·, ·) is equal to d(·, ·)q
with q > 0, the OMT induces a metric on the space of probability measures having
finite qth-moments [20, Chapter 7]. Herein, we are interested in the case where q = 2.
More specifically, we view X ,Y as sets of points in a Euclidean space. The Euclidean
metric induces a metric on Z := X ∪ Y and thereby a cost c(·, ·) so that

Ci,j = ‖zi − zj‖2.

The optimal transport cost

dW2(p1, p2) := min
Π∈M(p1,p2)

trace(CTΠ), (2.2)

where Π is the joint probability on Z × Z as before, gives rise to the 2-Wasserstein
metric between p1 and p2: √

dW2(p1, p2).

For the case where X ,Y ⊆ Z are not necessarily equal and for p1 = pX having support
on X and p2 = pY having support on Y, Π will have support on X × Y. Therefore
the optimization in (2.2) can be carried out with Π restricted to be a probability
distribution on X × Y and C restricted to correspond to distances between points in
these two spaces, i.e., Ci,j = ‖xi − yj‖2.

3. The cardinality penalty & relaxations. We now return to considering
the optimization problem in (1.2) specializing I(·) to be the cardinality function
card(·) giving the number of nonzero entries of the argument. We propose alternative
convex relaxations that are suitable to the case where the optimization variable is a
probability vector.

We first rewrite problem (1.2), namely,

min
p1≥0

1T p1=1

dW2 (p0, p1) + λcard (p1) , (3.1)

in terms of the transportation plan Π. Indeed, from (2.2) and since

p1 = ΠT1,

problem (3.1) can be rewritten as

min
Π≥0

Π 1=p0

trace
(
CTΠ

)
+ λcard

(
Π>1

)
. (3.2)

The optimal value will be denoted by Jopt.
Cardinality penalized problems are in general NP–hard to solve, being combina-

torial in nature. The cardinality function is nonconvex and is usually replaced by the
`1-norm which is a convex surrogate [1, Chapter 6]. Evidently, such a relaxation is
not applicable here since we are dealing with probability vectors. Below, in 3.1 and
3.2, we propose two alternative relaxations that are applicable to our setting and, in
3.3, we discuss an additional relaxation which has recently been proposed in [16].



3.1. Rank regularization and sum–of–norms relaxation. The main idea
underlying the relaxation proposed below is to express the cardinality penalty in
terms of the rank of a certain linear map of the transportation plan Π. To this end,
we denote by ei ∈ RN the standard unit N -vector with 1 in the ith entry and with Ei
the single–entry diagonal matrix with a 1 in position (i, i). Moreover, we denote by Πi

the ith column of Π. We introduce the map F that associates to each transportation
plan Π the rectangular block–diagonal matrix with diagonal block-entries the columns
of Π,

F (Π) :=

N∑
i=1

Ei ⊗ (Π ei) =


Π1 0 . . . 0
0 Π2 . . . 0
...

...
0 0 . . . ΠN

 , (3.3)

where ⊗ stands for the Kronecker product. Whenever it is clear from the context we
simplify the notation and denote F (Π) simply by F . The matrix FTF is diagonal
with ith diagonal entry the scalar product 〈Πi,Πi〉. Since 〈Πi,Πi〉 = 0 if and only if
Πi = 0, we have

card(ΠT1) = rank
(
FTF

)
= rank (F )

and (3.2) now becomes

min
Π≥0

Π 1=p0

trace
(
CTΠ

)
+ λ rank (F (Π)) . (3.4)

Denote by ||F ||2 the spectral norm of F and by ||F ||∗ its nuclear norm. Due
to the particular structure of F , FTF is diagonal and the cardinality of diag(FTF )
coincides with the rank of F . Then, ||F ||∗, which is defined as the sum of the singular
values, is simply

||F ||∗ = ‖
(
diag(FTF )

) 1
2 ‖1

=

N∑
i=1

||Πi||2.

Utilizing the well-known fact that the nuclear norm represents the convex envelope
of the rank function on a (bounded set) of matrices (Fazel et al. [10]), we obtain the
following result.

Proposition 3.1. The convex envelope of rank(F (Π)) on the set {Π |Π1 = p0, Π ≥ 0}
is

φ(Π) =
1

||p0||2

N∑
i=1

||Πi||2 .

Proof: Since by [10, Theorem 1], it holds that ||M ||∗/a is the convex en-

velope of rank(M) over the set {M | ||M ||2 ≤ a}, the only thing that remains to
prove is that ||F ||2 is bounded by ‖p0‖2 on the feasible set. Indeed, for every



Π ∈ {Π |Π1 = p0, Π ≥ 0}, F (Π) given by (3.3), it holds that

||F ||2 = max
i

√
eig (FTF )

= max
i

eig



||Π1||2 0 . . . 0

0 ||Π2||2 . . . 0
...

...
0 0 . . . ||ΠN ||2




= max
i
{||Πi||2} ≤ ‖

∑
i

Πi‖2 = ‖p0‖2 ,

as claimed.
It follows that the rank–penalized problem (3.4) can be relaxed into

min
Π≥0

Π 1=p0

trace
(
CTΠ

)
+

λ

‖p0‖2

N∑
i=1

‖Πi‖2 . (3.5)

where the sum–of–norms penalty is a Group–Lasso–type penalty [22] with the groups
given by the columns of the transference plan Π.

3.2. Integer programming and fractional relaxation. In this section, an
alternative relaxation of Problem (3.2) is presented. To this aim, we introduce the
indicator function

yi =

{
1, if Πi 6= 0
0, otherwise

whose entries reflect the sparsity pattern of the columns of Π. Then, clearly,

card(ΠT1) = ‖y‖1,

Moreover, since the the columns of Π must sum up to p0, the following inequality
holds

Π ≤ p0y
T .

This leads to the following equivalent formulation of (3.2)

minimize
Π,y

trace
(
CTΠ

)
+ λ‖y‖1 (3.6)

subject to Π1 = p0,

Π ≥ 0,

Π ≤ p0y
T ,

yi ∈ {0, 1}.

Problem (3.6) is not convex due to the integer constraints yi ∈ {0, 1}. A standard
relaxation of an integer program is

minimize
Π,y

trace
(
CTΠ

)
+ λ‖y‖1 (3.7)

subject to Π1 = p0,

Π ≥ 0,

Π ≤ p0y
T ,

yi ∈ [0, 1],



where yi ∈ {0, 1} is relaxed into yi ∈ [0, 1]. This formulation is similar to the so called
facility location problem in Operations Research [8, 9], where typically the matrix Π
is Boolean ((0, 1)-entries) and p0 has integer entries, and a number of works has been
devoted to the design of specialized LP–rounding algorithm for reconstructing integer
solutions starting from a solution of a relaxed problem (see e.g. [14, 5, 6, 11]).

In section 5, the relaxation (3.7) will be compared with the sum–of–norms relax-
ation (3.5) on a clustering application.

3.3. Relaxation inverse of the `∞-norm . The relaxation discussed below
is a special case of a problem that is addressed by Pilanci et al. in [16] where they
consider sparse minimizers of general convex functions on probability simplices. The
key idea in [16] is to utilize the inverse of the `∞-norm of the probability vector (here,
p1) as a surrogate for the cardinality. Indeed, in general,

‖p1‖1 ≤ card (p1) ‖p1‖∞ ,

and since p1 is a probability vector,

1

‖p1‖∞
≤ card (p1) .

Problem (3.2) can thus be relaxed to

min
Π≥0

Π 1=p0

trace
(
CTΠ

)
+

λ

‖ΠT1‖∞
. (3.8)

Note that (3.8) is still not a convex problem. Nevertheless, it can be solved exactly
by using the following N convex programs (see [16, Proposition 2.1])

min
i=1,...,N

 min
Π≥0

Π 1=p0

trace
(
CTΠ

)
+

λ

[ΠT1]i

 (3.9)

where
[
ΠT1

]
i

denotes the ith component of the vector ΠT1.
In [16], this relaxation has been applied to estimate the (sparse) coefficients vector

of a Gaussian mixture in the exemplar based convex clustering framework of [13].
The relaxation based on the `∞–norm will be compared with the sum–of–norm

relaxation (3.5) and the relaxation based on the integer programming formulation
(3.7) in Section 5.

4. Clustering via OMT. In this section, we describe how ideas from optimal
mass transport can be applied for clustering points in a metric space. Consider a data
set X = {x1, . . . ,xN} ⊂ Rd. A common way to address the problem is to select a
subset of cluster representatives and associate points to these representatives in such
a way to minimize a given cost functional, which is usually the sum of the square
distances between points and associated cluster representatives. Here we observe
that the problem of optimally selecting a subset of data points as cluster centers,
can be seen as an optimal mass transportation problem where a sample distribution
p0 is associated to the data points in X and a distribution p1 is associated to the
cluster centers. Cluster centers are chosen in such a way to minimize the optimal
transportation cost between p0 and p1. In this, p1 is to be determined based on the
requirements that its support consists of a few points (few cluster representatives).



This leads to a convex clustering scheme where the optimal transportation plan Πopt

can be computed by solving one of the proposed relaxations of (3.2) and clustering is
achieved according to the following rules:

• Choice of cluster representatives: the point xj is a representative of a cluster
if ∃ a point xi such that Πopt

ij > Πopt
i` for all ` 6= j,

• Association of points to cluster representatives: assign the point xi to the
cluster representative xj if Πopt

ij > Πopt
i` for all ` 6= j.

5. Experimental results. Following the scheme of the previous section, we
now compare the relaxations introduced so far on a clustering example. In particular,
we consider synthetic data in R2 sampled from 4 Gaussian distributions with means{

(0, 5) ,

(
−5

√
3

2
,−5

2

)
,

(
5

√
3

2
,−5

2

)
, (8, 2)

}

respectively, and common covariance given by[
0.8 0
0 0.8

]
.

The clustering obtained by solving (3.5), (3.7) and (3.9) for different values of λ
are shown in Figures 6.1, 6.2 and 6.3, respectively. The clusters representatives are
denoted by a black cross while data points belonging to different clusters are denoted
by different shapes and colors.

From the experimental results, we see that both the relaxation based on the
sum–of–norms and the one based on the integer programming formulation are able
to achieve the correct clustering. In particular, as it can be seen from panels (c) and
(d) in Figures 6.1 and 6.2, for values of λ approximately between 20 and 100, both
methods correctly partition the data set into 4 clusters. For λ = 220 both methods
partition the data set into 3 clusters. By further increasing the value of the parameter
λ, data are finally “grouped” in a unique cluster, which happens approximately for
λ = 750.

The clustering produced by optimizing (3.9) is shown in Figure 6.3. When applied
to our particular problem, the penalty based on the `∞–norm is less effective than the
proposed relaxations in promoting sparsity of the clusters representatives distribution.
Clustering results for different values of the parameter λ are shown in Figure 6.3. For
λ = 100, the data points are “grouped” in a unique cluster. By decreasing the value
of λ the method is able to isolate the biggest cluster, while all the other points remain
unclustered (each point is chosen as the representative of itself). There are no values
of λ for which the penalty based on the `∞–norm is able to correctly partition the
data set in four clusters.

The three relaxations have also been applied to a data set with 10 clusters gen-
erated by sampling 10 Gaussian distributions with means{

(−2.5, −12.5) , (5, −10) , (0, −5) , (−4.5, −5) , (−5, 0) ,

(−6, 5) , (−1.5, 2.5) , (3.5, −1) , (7.5, −2.5) , (10, 2.5)
}

and common covariance [
0.2 0
0 0.2

]
.



The experimental results are reported in Figure 6.4, 6.5 and 6.6, respectively. Once
again, the sum–of–norms relaxation and the relaxation based on integer programming
are able to achieve the correct clustering, while there are no values of λ for which the
penalty based on the `∞–norm is able to correctly partition the data set in ten clusters.

6. Conclusions. In this paper, we considered the problem of approximating
distributions within the framework of optimal mass transport. We focused on ap-
proximating sample distributions with distributions having sparse support. Standard
`1 regularization cannot be used to promote sparsity on a probability simplex since
the `1 norm of a probability measure is always one. We proposed relaxations of the
cardinality penalty which are applicable to probability simplices. One of these relax-
ation has the property to be the tightest convex lower approximation of the original
cardinality penalty. When applied to a clustering problem, the proposed framework
leads to convex clustering schemes, thus overcoming sensitivity to initialization of
classical clustering algorithms such as k–means. The proposed relaxations have been
tested on a clustering problem with synthetic generated data. Both the relaxation
based on the sum–of–norms and on the integer programming formulation act effec-
tively in promoting sparsity of the clusters representatives distribution and are able
to produce the correct clustering.
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Fig. 6.1: Output clustering via the solution of the sum–of–norms relaxation (3.5) for
different values of the parameter λ. The clusters representatives are denoted by a
black cross. Different shapes and colors have been used to denote points belonging to
different clusters.
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Fig. 6.2: Output clustering via the solution of the LP formulation (3.7) for different
values of the parameter λ. The clusters representatives are denoted by a black cross.
Different shapes and colors have been used to denote points belonging to different
clusters.

−5 0 5 10
−6

−4

−2

0

2

4

6

(a) λ = 100

−5 0 5 10
−6

−4

−2

0

2

4

6

(b) λ = 40

−5 0 5 10
−6

−4

−2

0

2

4

6

(c) λ = 10

−5 0 5 10
−6

−4

−2

0

2

4

6

(d) λ = 4

Fig. 6.3: Output clustering via the solution of the `∞–norm relaxation (3.9) for dif-
ferent values of the parameter λ. The clusters representatives are denoted by a black
cross. Different shapes and colors have been used to denote points belonging to dif-
ferent clusters.



−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(a) λ = 1500

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(b) λ = 300

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(c) λ = 30

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(d) λ = 10

Fig. 6.4: Output clustering via the solution of the sum–of–norms relaxation (3.5) for
different values of the parameter λ. The clusters representatives are denoted by a
black cross. Different shapes and colors have been used to denote points belonging to
different clusters.

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(a) λ = 1500

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(b) λ = 300

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(c) λ = 30

−8 −6 −4 −2 0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

(d) λ = 10

Fig. 6.5: Output clustering via the solution of the LP formulation (3.7) for different
values of the parameter λ. The clusters representatives are denoted by a black cross.
Different shapes and colors have been used to denote points belonging to different
clusters.
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Fig. 6.6: Output clustering via the solution of the `∞–norm relaxation (3.9) for dif-
ferent values of the parameter λ. The clusters representatives are denoted by a black
cross. Different shapes and colors have been used to denote points belonging to dif-
ferent clusters.
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