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Abstract

Impulse Control and Optimal Stopping

by

Yann-Shin Aaron Chen

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lawrence C. Evans, Co-chair

Professor Xin Guo, Co-chair

This thesis analyzes a class of impulse control problems for multi-dimensional jump dif-
fusions in a finite time horizon. Following the basic mathematical setup from Stroock and
Varadhan [44], this paper first establishes rigorously an appropriate form of the Dynamic
Programming Principle (DPP). It then shows that the value function is a viscosity solution
for the associated Hamilton-Jacobi-Belleman (HJB) equation involving integro-differential

operators. Finally, it proves the W
(2,1),p
loc regularity for 2 ≤ p <∞ of the viscosity solution for

HJB with first-order jump diffusions. Furthermore, it proposes a new regularity framework
for second-order jump diffusions in the optimal stopping problem.
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Chapter 1

Introduction

Stochastic control is the subject that involves studying the following problem; given a
stochastic process with a control input that can influence the trajectory of the process,
we would like to find the best control policy, with respect to certain objective. For this
thesis, we will focus on the case of the underling process being a solution to the stochastic
differential equation, with various modification, such as Poisson jumps. The two problems
we will investigate are the impulse control problem and optimal stopping.

The impulse control problem considers the solution of a stochastic differential equation,
in which the only control at a given time is an impulse. An impulse simply push the process
to a different point at a chosen stopping time. The process therefore would have jump type of
discontinuity whenever such an impulse is applied. The optimal stopping problem considers
again the solution of a stochastic differential equation. The only control that we can apply
is a stopping time.

The typical method of solving the stochastic control involves looking at the optimal
payoff, as a function of the starting time and location. Although we do not a priori know
the optimal control policy, the theoretical optimal payoff often times satisfies certain non-
linear partial differential equation, usually known as the Hamilton-Jacobi-Bellman’s equation
(HJB). The study of the existence, uniqueness, and regularity of that HJB would give us clues
about the optimal control, and in some cases the precise formula of that optimal control.

We have chosen to study both the impulse control problem and optimal stopping problem
because they are closely related, in the sense that the impulse control problem can be thought
of as an iterated stopping problem, in which every single impulse to the impulse control
problem is a stopping for a stopping problem, along with a new stopping problem starting
at the location which the impulse pushes the process to. In this thesis, we first tackle the
impulse control problem without Poisson jumps. Then, as we add the Poisson jumps into
the mix, the HJB becomes much more complicated, and we go back to the corresponding
optimal stopping problem to build a new regularity theory for integro-differential equations,
which will be suitable for the impulse control problem setting.
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Precise Setup This thesis considers the following class of impulse control problem for an
n-dimensional diffusion process Xt. In the absence of control, Xt is governed by an Itô’s
stochastic differential equation

Xt =x0 +

∫ t

t0

b(Xs−, s)ds+

∫ t

t0

σ(Xs−, s)dWs

+

∫ t

t0

∫
j1(Xs−, s, z)N(dz, dt) +

∫ t

t0

∫
j2(Xs−, s, z)Ñ(dz, dt).

here W is a standard Brownian motion, Ñ = N(dt, dz) − ρ(dz)dt with N a Poisson point
process on [0, T ] × Rk with density ρ(dz)dt, W and N are independent in an appropriate
filtered probability space (Ω,F ,P), and b, σ, j1, j2 satisfy suitable regularity conditions to
be specified later. If a control policy V = (τ1, ξ1; τ2, ξ2; . . .) is adopted, then Xt evolves as

Xt =x0 +

∫ t

t0

b(Xs−, s)ds+

∫ t

t0

σ(Xs−, s)dWs +
∑
i

ξi1(τi≤t)

+

∫ t

t0

∫
j1(Xs−, s, z)N(dz, dt) +

∫ t

t0

∫
j2(Xs−, s, z)Ñ(dz, dt).

Here the control (τi, ξi)i is of an impulse type such that τ1, τ2, . . . is an increasing sequence
of stopping times with respect to FW,Nt , the natural filtration generated by W and N , and
ξi is an Rn-valued, FW,Nτi

-measurable random variable.
The objective is to choose an appropriate impulse control (τi, ξi)i so that the following

cost function is minimized:

J [x0, t0, τi, ξi] =E

[∫ T

t0

f(Xx0,t0,τi,ξi
t , t)dt+

∑
i

B(ξi, τi)1{t0≤τi≤T} + g(Xx0,t0,τi,ξi
T )

]
.

Here f : Rn× [0, T ]→ R is the running cost function, B : Rn× [0, T ]→ Rn is the transaction
cost function, and g : Rn × R is the terminal cost function.

Literature Review. Impulse control, in contrast to regular and singular controls, allows
the state space to be discontinuous and is a more natural mathematical framework for many
applied problems in engineering and economics. Examples in financial mathematics include
portfolio management with transaction costs [5, 29, 30, 15, 35, 40], insurance models [26, 9],
liquidity risk [33], optimal control of exchange rates [27, 36, 8], and real options [46, 34].

There is a rich literature on stochastic control problems. [19] is one of the earliest refer-
ences. For impulse control problem, the earliest work is the well-known book by Bensoussan
and Lions [4], where value functions of the control problems for diffusions without jumps
were shown to be the solutions of quasi-variational-inequalities and where their regularity
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properties were established when the control is strictly positive and the state space is in a
bounded region. It points out a clear connection between the impulse control problem and
the optimal stopping problem, and its corresponding variational inequality, which is studied
in [3] by the same authors. These books were written before the notion of viscosity solution
was invented.

After the development of viscosity solutions, there are renewed interest in stochastic
control. The viscosity solution framework fits perfectly into the control problem, both deter-
ministic and stochastic types. For reference on viscosity solution, see [12], [13], and [11]. The
book [17] has a proof on the value function of the deterministic control problem being the
viscosity solution of the Hamilton-Jacobi PDE. A standard reference on control problems in
general and its relation to viscosity solution is [20].

Although the connection between deterministic control and Hamilton-Jacobi equation
can be proved without much of difficulty, the stochastic control counterpart, including the
optimal stopping, regular/singular/impulse control problems, is highly non-trivial. There are
mainly two approaches to this. One approach is to focus on solving for the value function
the associated (quasi)-variational inequalities or Hamilton-Jacobian-Bellman (HJB) integro-
differential equations, and then establishing the optimality of the solution by a verification
type theorem. (See Øksendal and Sulem [39].) Another approach is to characterize the value
function of the control problem as a (unique) viscosity solution to the associated PDEs,
and/or to study their regularities. The former approach assumes sufficient regularity of
the value function (usually C2), which in some cases are not fully established. The latter
approach requires at least certain version of the Dynamic Programming Principle (DPP),
which is again often times assumed without explicit proof, or only proved for the class of
feedback controls. [20] has a proof of DPP for the regular control problem restricted to
the feedback controls. Yong and Zhou [47] contains a more general proof of DPP, although
without all the delicate details. Tang and Yong [45] stated the DPP and refers the proof to
[21], which contains some but not all the details. On the other hand, Ishikawa [25] established
some version of the DPP and the uniqueness of the viscosity solution for diffusions without
jumps. More recently, Seydel [43] used a version of the DPP for feedback controls to study
the viscosity solution of control problems on jump diffusions.

The regularity of the impulse control problem is built on top of the regularity for the
corresponding optimal stopping problem, as the connection is already exploited in [4]. More
recent literature tend to adopt the notion of the viscosity solution. Guo and Wu [24] proves
the regularity for the elliptic case without jumps. Based on the restrictive setup of [43],
Davis, Guo and Wu [14] proves the case with first-order jump diffusions in an infinite time
horizon. However, the regularity for the jump case with non-local operator above order one
is significantly more difficult. Bayraktar and Xing [2] proved it for the parabolic case, for
operator strictly less than 2, under the assumption that the diffusion coefficients are constant
in time and space.

The difficulty of the higher order operator lies in the fundamental theory of linear integro-
differential equation on bounded domain. The book by Garroni and Menaldi [23] gives a
rather comprehensive account for the integro-differential operator, but we find many of the
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regularity results unsuitable for our purpose, because it imposes conditions on the integral
operator near the boundary of a bounded domain, and these assumptions do not make any
sense for the general unbounded domain problem. In this thesis, we attempt to develop new
regularity theory for the linear integro-differential equation. Then we apply the theory to
the optimal stopping problem, which is a the building block for regularity for the impulse
control problem. Our approach completely solves the regularity for optimal stopping and
impulse control problem in unbounded domain in one dimension, and the regularity for the
optimal stopping on bounded domain.

There is also a rich literature on the optimal stopping problem. [3] showed that the
value function of the optimal stopping problem satisfies the variational inequality, before the
notion of viscosity solution was developed. Another valuable source is [22]. [38] proves that
the value function is the viscosity solution to the variational inequality for the elliptic case
without jumps on unbounded domain. There are a few that discusses optimal stopping with
jump diffusion in particular. Also see [37] and Pham [41]. Pham [42] proved that the value
function for the parabolic case on unbounded domain is Holder continuous.

Our Results. This thesis is organized as the following.

• In the second chapter, we follow the classical setup of Stroock and Varadhan [44] and
work on the natural filtration of the underlying Brownian motion and the Poisson
process, instead of the “usual hypothesis”, i.e., the completed right continuous filtra-
tion adopted in previous work. Within this framework and based on the estimation
techniques developed in Tang and Yong [45] for diffusion processes without jumps, we
prove a general form of the DPP.

We remark that various forms of the DPP for impulse controls of jump diffusions
have been exploited quite literally in the stochastic control literature, and their proofs
can be found for several cases, yet not with the full generality needed in this thesis.
For instance, our result includes those in [45] and [43] as special cases and includes
non-Markov controls. Because of the inclusion of the jumps in the diffusion processes
and the possibility of non-Markov controls, there are essential mathematical subtlety
and difficulties, hence the necessity to adopt the classical and framework of [44]. This
framework ensures certain properties of the regular conditional probability, and ensures
that the controlled jump diffusions are well defined. These properties are crucial for
rigorously establishing the DPP. In a way, our approach to the DPP is in the similar
spirit of Yong and Zhou [47] for one-dimensional regular controls. For more generality,
we have added regular control into our problem, although it is not needed in other
chapters. We also want to point out that the proof can easily be modified for the
optimal stopping problem.

Note that there are separate lines of research on the DPP, including the weak DPP
formulation by Bouchard and Touzi [7] and Bouchard and Nutz [6], as well as the



CHAPTER 1. INTRODUCTION 5

classical work by El Kaouri [16]. However, it does not seem easy for us to fit their
results to our problem and setup.

• In the third chapter, we show that the value function is a viscosity solution in the sense
of [1]. This form of viscosity solution is convenient for the HJB equations involving
integro-differential operators, which is the key for analyzing control problems on jump
diffusions. Note that [1] contains a very general uniqueness proof of the viscosity
solution.

Closely related to our work in this aspect are the works of [43] and [45]. The former
allowed only Markov controls and the latter did not deal with jump diffusions.

• In the fourth chapter, we prove the W
(2,1),p
loc regularity for the value function with

first-order jumps. We will also provide a proof of local uniqueness of the viscosity
solution, which is appropriate to study the regularity property. We also include a
further extension, W

(2,1),∞
loc , with some rather mild additional assumptions. Some of

the methods here are proceeded by [22].

Compared to [14] for an infinite horizon problem, this thesis is on a finite time horizon
which requires different PDEs techniques. Moreover, [14] did not study the DPP, nor
the uniqueness of the viscosity solution, and was restricted to Markov controls. Thus
it built partial results in a restrictive setting.

• In the last chapter, we attempt to develop a new regularity theory for linear elliptic
integro-differential equations. Along with Lenhart [31] thesis providing us the Lp-
estimates for the Dirichlet problem, we prove the regularity for the elliptic optimal
stopping problem on bounded domain for second-order non-local operators. Our result
can be extended to the parabolic equation, and ultimately the impulse control problem
on unbounded domain in one space dimension.
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Chapter 2

Dynamic programming principle and
viscosity solutions

2.1 Problem formulation and main results

Filtration Fix a time T > 0. For each t0 ∈ [0, T ], let (Ω,F ,P) be a probability space that
supports a Brownian motion {Ws}t0≤s≤T starting at t0, and an independent Poisson point
process N(dt, dz) on ([t0, T ],Rk \ {0}) with intensity L⊗ ρ. Here L is the Lebesgue measure
on [t0, T ] and ρ is a measure defined on Rk \ {0}. For each t ∈ [t0, T ], define {FW,Nt }t0≤t≤T
to be the natural filtration of the Brownian motion W and the Poisson process N , define
{Ft0,t[t0, T ]} to be {FW,Nt }t0≤t≤T restricted to the interval [t0, t].

Throughout the paper, we will use this uncompleted natural filtration {Ft0,t[t0, T ]}. This
specification ensures that the stochastic integration and therefore the controlled jump diffu-
sion to be well defined. (See Lemma 4.3.3 from Stroock & Varadhan [44]).

Now, we can define mathematically the mixed control problem, starting with the set of
admissible controls.

Definition 1. The set of admissible regular control U [t0, T ] consists of all previsible process
u : Ω × [t0, T ] → U with respect to the filtration {FW,Nt0,s }t0≤s≤T for some separable metric
space U .

Definition 2. The set of admissible impulse control V [t0, T ] consists of pairs of sequences
{τi, ξi}1≤i<∞ such that

1. τi : Ω → [t0, T ] ∪ {∞} such that τi are stopping times with respect to the filtration
{FW,Nt0,s }t0≤s≤T ,

2. τi ≤ τi+1 for all i,

3. ξi : Ω→ Rn \ {0} is a random variable such that ξi ∈ FW,Nt0,τi .
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Now, given an admissible impulse control {τi, ξi}1≤i<∞, a stochastic process (Xt)t≥0 fol-
lows a stochastic differential equation with jumps,

Xt =x0 +

∫ t

t0

b(Xs−, s, us)ds+

∫ t

t0

σ(Xs−, s, us)dWs +
∑
i

ξi1(τi≤t)

+

∫ t

t0

∫
j1(Xs−, s, us, z)N(dz, dt) +

∫ t

t0

∫
j2(Xs−, s, us, z)Ñ(dz, dt). (2.1)

Here Ñ = N(dt, dz) − ρ(dz)dt, b : Rn × [0, T ] × Rn, σ : Rn × [0, T ] → Rn×m, and j1, j2 :
Rn × [0, T ]× Rk → Rn. For each (τi, ξi)i ∈ V [t0, T ], u· ∈ U [t0, T ] and (x0, t0) ∈ Rn × [t0, T ],
denote X = X t0,x0,u·,τi,ξi .

The stochastic control problem is to

(Problem) Minimize J [x0, t0, u·, τi, ξi] over all (τi, ξi) ∈ V [t, T ], u· ∈ U [t0, T ], (2.2)

subject to Eqn. (2.1) with

J [x0, t0, u·, τi, ξi] = E
[∫ T

t0

f(s,X t0,x0,u·,τi,ξi
s )ds+ g(X t0,x0,u·,τi,ξi

T )

]
+E

[∑
i

B(ξi, τi)1{t0≤τi≤T}

]
.

(2.3)
Here we denote V for the associated value function

(Value Function) V (x, t) = inf
(τi,ξi)∈V[t,T ]

J [x, t, u·, τi, ξi]. (2.4)

In order for J and V to be well defined, and for the Brownian motion W and the Poisson
process N as well as the controlled jump process Xx0,t0,u·τi,ξi to be unique at least in a
distribution sense, we shall specify some assumptions in Section 2.2.

The focus of the paper is to analyze the following HJB equation associated with the value
function

(HJB)

{
max{−ut + Lu− f − Iu, u−Mu} = 0 in Rn × (0, T ),
u = g on Rn × {t = T}.

Here

Iφ(x, t) =

∫
φ(x+ j1(x, t, z), t)− φ(x, t)ρ(dz)

+

∫
φ(x+ j2(x, t, z), t)− φ(x, t)−Dφ(x, t) · j2(x, t, z)ρ(dz), (2.5)

Mu(x, t) = inf
ξ∈Rn

(u(x+ ξ, t) +B(ξ, t)), (2.6)

Lu(x, t) = −tr
[
A(x, t) ·D2u(x, t)

]
− b(x, t) ·Du(x, t) + ru(x, t). (2.7)
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Main result. Our main result states that the value function V (x, t) is a uniqueW
(2,1),p
loc (Rn×

(0, T )) viscosity solution to the (HJB) equation with 2 ≤ p < ∞. In particular, for each
t ∈ [0, T ), V (·, t) ∈ C1,γ

loc (Rn) for any 0 < γ < 1.
The main result is established in three steps.

• First, in order to connect the (HJB) equation with the value function, we prove an
appropriate form of the DPP. (Theorem 1).

• Then, we show that the value function is a continuous viscosity solution to the (HJB)
equation in the sense of [1]. (Theorem 2).

• Finally, we show that the value function is W
(2,1),p
loc for 2 ≤ p <∞, and in fact a unique

viscosity solution to the (HJB) equation. (Theorem 8).

All results, unless otherwise specified, are built under the assumptions specified in
Section 2.2.

2.2 Standing assumptions

Assumption 1. Given t0 ≤ T , assume that

(Ωt0,T ,F , {Ft0,t[t0, T ]}t0≤t≤T ) =(C[t0, T ]×M [t0, T ],

Bt0,T [t0, T ]⊗Mt0,T [t0, T ],

{Bt0,t[t0, T ]⊗Mt0,t[t0, T ]}t0≤t≤T )

such that the projection map (W,N)(x·, n) = (x·, n) is the Brownian motion and the Poisson
point process with density ρ(dz)× dt under P, and for t0 ≤ s ≤ t ≤ T ,

C[t0, T ] ={x· : [t0, T ]→ Rn, xt0 = 0},
M [t0, T ] =the class of locally finite measures on [t0, T ]× Rk \ {0},
Bs,t[t0, T ] =σ({xr : x· ∈ C[t0, T ], s ≤ r ≤ t}),
Ms,t[t0, T ] =σ({n(B) : B ∈ B([s, t]× Rk \ {0}), n ∈M [t0, T ]}).

Assumption 2. (Lipschitz Continuity.) The functions b, σ, and j are deterministic mea-
surable functions such that there exists constant C independent of t ∈ [t0, T ], z ∈ Rk \ {0},
u ∈ U , such that

|b(x, t, u)− b(y, t, u)| ≤ C|x− y|,
|σ(x, t, u)− σ(y, t, u)| ≤ C|x− y|,∫

|z|≥1

|j1(x, t, u, z)− j1(x, t, u, z)|ρ(dz) ≤ C|x− y|,∫
|z|<1

|j2(x, t, u, z)− j2(x, t, u, z)|2ρ(dz) ≤ C|x− y|2.
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Assumption 3. (Growth Condition.) There exists constant C > 0, ν ∈ [0, 1), such that for
any x, y ∈ Rn,

|b(t, x, u)| ≤L(1 + |x|ν),
|σ(t, x, u)| ≤L(1 + |x|ν/2),∫

|z|≥1

|j1(x, t, u, z)|ρ(dz) ≤C(1 + |x|ν),∫
|z|<1

|j2(x, t, u, z)|2ρ(dz) ≤C(1 + |x|ν).

Assumption 4. (Hölder Continuity.) f : [0, T ] × Rn × R and g : Rn → R are measurable
functions such that there exists C > 0, δ ∈ (0, 1], γ ∈ (0,∞) such that

|f(t, x, u)− f(t, x̂, u)| ≤ C(1 + |x|γ + |x̂|γ)|x− x̂|δ,
|g(x)− g(x̂)| ≤ C(1 + |x|γ + |x̂|γ)|x− x̂|δ,

for all t ∈ [0, T ], x, x̂ ∈ Rn, uinU .

Assumption 5. (Lower Boundedness) There exists an L > 0 and µ ∈ (0, 1] such that

f(t, x, u) ≥− L,
h(x) ≥− L,

B(ξ, t) ≥L+ C|ξ|µ,

for all t ∈ [0, T ], x ∈ Rn, u ∈ U , ξ ∈ Rn.

Assumption 6. (Monotonicity and Subadditivity) B : Rn × [0, T ] → R is a continuous
function such that for any 0 ≤ s ≤ t ≤ T , B(t, ξ) ≤ B(s, ξ), and for (t, ξ), (t, ξ̂) being in a
fixed compact subset of Rn × [0, T ), there exists constant K > 0 such that

B(t, ξ + ξ̂) +K ≤B(t, ξ) +B(t, ξ̂).

Assumption 7. (Dominance) The growth of B exceeds the growth of the cost functions f
and g so that

δ + γ <µ,

ν ≤µ.

Assumption 8. (No Terminal Impulse) For any x, ξ ∈ Rn,

g(x) ≤ inf
ξ
g(x+ ξ) +B(ξ, T ).
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Assumption 9. Suppose that there exists a measurable map M : Rn× [0, T ]→M(Rn\{0}),
in which M(Rn \ {0}) is the set of locally finite measure on Rn \ {0}, such that one has the
following representation of the integro operator:

Iφ(x, t) =

∫
[φ(x+ z, t)− φ(x, t)−Dφ(x, t) · z1|z|≤1]M(x, t, dz).

Also, assume that for (x, t) in some compact subset of Rn × [0, T ], there exists C such that∫
|z|<1

|z|2M(x, t, dz) +

∫
|z|≥1

|z|γ+δM(x, t, dz) ≤ C.

Notations Throughout the paper, unless otherwise specified, we will use the following
notations.

• 0 < α ≤ 1.

•
A(x, t) = (aij)n×n(x, t) =

1

2
σ(x, t)σ(x, t)T .

• Ξ(x, t) is the set of points ξ for which MV achieves the value, i.e.,

Ξ(x, t) = {ξ ∈ Rn : MV (x, t) = V (x+ ξ, t) +B(ξ, t)}.

• The continuation region C and the action region A are

C := {(x, t) ∈ Rn × [0, T ] : V (x, t) < MV (x, t)}, (2.8)

A := {(x, t) ∈ Rn × [0, T ] : V (x, t) = MV (x, t)}. (2.9)

• Let Ω be a bounded open set in Rn+1. Denote ∂PΩ to be the parabolic boundary of Ω,
which is the set of points (x0, t0) ∈ Ω such that for all R > 0, Q(x0, t0;R) * Ω. Here
Q(x0, t0;R) = {(x, t) ∈ Rn+1 : max{|x− x0|, |t− t0|1/2} < R, t < t0}.
Note that Ω is the closure of the open set Ω in Rn+1. In the special case of a
cylinder, Ω = Q(x0, t0;R), the parabolic boundary ∂PΩ = (B(0, R)× {t = 0}) ∪
({|x| = R} × [0, T ]).
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• Function spaces for Ω being a bounded open set,

W (1,0),p(Ω) = {u ∈ Lp(Ω) : uxi ∈ Lp(Ω)},
W (2,1),p(Ω) = {u ∈ W (1,0),p(Ω) : uxixj ∈ Lp(Ω)},
C2,1(Ω) = {u ∈ C(Ω) : ut, uxixj ∈ C(Ω)},

C0+α,0+α
2 (Ω) = {u ∈ C(Ω) : sup

(x,t),(y,s)∈Ω,(x,t)6=(y,s)

|u(x, t)− u(y, s)|
(|x− y|2 + |t− s|)α/2

<∞},

C2+α,1+α
2 (Ω) = {u ∈ C(Ω) : uxixj , ut ∈ C0+α,0+α

2 (Ω)},
Lploc(Ω) = {u|U ∈ Lp(U) ∀open U such that U ⊂ Ω \ ∂PΩ},
W

(1,0),p
loc (Ω) = {u ∈ Lploc(Ω) : u ∈ W (1,0),p(U) ∀open U such that U ⊂ Ω \ ∂PΩ},

W
(2,1),p
loc (Ω) = {u ∈ Lploc(Ω) : u ∈ W (2,1),p(U) ∀open U such that U ⊂ Ω \ ∂PΩ}.

2.3 Dynamic programming principle

Theorem 1. (Dynamic Programming Principle) Assuming (A1), (A2), (A3), (A4), and
(A5). For t0 ∈ [0, T ], x0 ∈ Rn, let τ be a stopping time on (Ωt0,T , {Ft0,t}t≤T ), we have

V (t0, x0) = inf
u·∈U [t0,T ]

(τi,ξi)∈V[t0,T ]

E
[∫ τ∧T

t0

f(s,X t0,x0,u·,τi,ξi
s )ds

]

+E

[∑
i

B(ξi, τi)1τi≤τ∧T + V (τ ∧ T,X t0,x0,u·,τi,ξi
τ∧T )

]
. (2.10)

In order to establish the DPP, the first key issue is: given a stopping time τ , understand
how the martingale property and the stochastic integral change under the regular conditional
probability distribution (P|Fτ ). The next key issue is the continuity of the value function,
which will ensure that a countable selection is adequate without the abstract measurable
selection theorem. (See [18]).

To start, let us first introduce a new function that connects two Brownian paths which
start from the origin at different times into a single Brownian path. This function also
combines two Poisson measures on different intervals into a single Poisson measure.

Definition 3. For each t ∈ [t0, T ], define a map Πt = (Πt
1,Π

t
2) : C[t0, T ] × M [t0, T ] →

C[t0, t]×M [t0, t]× C[t, T ]×M [t, T ] such that

Πt
1(x·, n) =(x|[t0,t], n|[t0,t]×Rk\{0}),

Πt
2(x·, n) =(x|[t,T ] − xt, n|(t,T ]×Rk\{0}).

Note that this is an Ft0,T [t0, T ]/Ft0,t[t0, t] ⊗ Ft,T [t, T ]-measurable bijection. Therefore,
for fixed (y·,m) ∈ C[t0, T ]×M [t0, T ], the map from C[t, T ]×M [t, T ]→ C[t0, T ]×M [t0, T ]
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defined by

(x·, n) 7→(Πt)−1(Πt
1(y·,m),Πt

2(x·, n))

= (x·∨t − xt + y·∧t,m|[t0,t]×Rk\{0} + n|(t,T ]×Rk\{0})

is Ft,s[t, T ]/Ft0,s[t0, T ]-measurable for each s ∈ [t, T ].
Next, we need two technical lemmas regarding (P|Fτ ). Specifically, the first lemma

states that the local martingale property is preserved, and the second one ensures that the
stochastic integration is well defined under (P|Fτ ).

According to Theorem 1.2.10 of [44],

Lemma 1. Given a filtered space, (Ω,F , {Ft}0≤t≤T ,P), and an associated martingale {Mt}0≤t≤T .
Let τ be an F-stopping time. Assume (P|Fτ ) exists. Then, for P-a.e. ω ∈ Ω, Nt = Mt−Mt∧τ
is a local martingale under (P|Fτ )(ω, ·).

Lemma 2. Given a filtered space (Ω,F , {Ft}0≤t≤T ,P), a stopping time τ , a previsible process
H : (0, T ]× Ω→ Rn, a local martingale M : [0, T ]× Ω→ Rn such that∫ T

τ

|Hs|2d[M ]s <∞

P-almost surely, and Nt =
∫ t
τ
HsdMs (a version of the stochastic integral that is right-

continuous on all paths). Assume that (P|Fτ ) exists. Then, for P-a.e. ω ∈ Ω, Nt is also the
stochastic integral

∫ t
τ
HsdMs under the new probability measure (P|G)(ω, ·).

Proof. First assume that
∫ T
τ
H2d[M ] is bounded and M is a L2-martingale. The conclusion

is clearly true when H is an elementary previsible process of the form
∑m

i Zi1(Si,Ti]. Now let
H(n) be a sequence of such elementary previsible process that converges to H uniformly on
Ω× (0, T ]. Let N

(n)
t =

∫ t
τ
H

(n)
s dMs, and Nt =

∫ t
τ
HsdMs.

First we show that quadratic variation is preserved under regular conditional probability
distribution. By Lemma 1, Qt = Mt−Mt∧τ is a martingale. Consider the quadratic variation
[Q] under P. By definition, Q2

t − [Q]t is a martingale. Thus by Lemma 1, for almost every
ω, Q2

t − [Q]t − (Q2
t∧τ − [Q]t∧τ ) is martingale under (P|Fτ )(ω).

Q2
t − [Q]t − (Q2

t∧τ − [Q]t∧τ )

=(Mt −Mt∧τ )
2 − ([M ]t − [M ]t∧τ )

−
(
(Mt∧τ −Mt∧τ )

2 − ([M ]t∧τ − [M ]t∧τ )
)

=Q2
t − ([M ]t − [M ]t∧τ )

This shows that under (P|Fτ )(ω), [Q]
(P|Fτ )(ω)
t = [M ]t− [M ]t∧τ . This allows us to simply write

[·] instead of [·](P|Fτ )(ω). Hence, ∫ T

τ

H2d[M ] =

∫ T

τ

H2d[N ]
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is bounded under (P|Fτ )(ω).
By the definition of H(n),

EP
[
lim inf

n
E(P|Fτ )(ω)

[∫ T

τ

|H(n)
s −Hs|2d[Q]s

]]
≤ lim inf

n
EP
[
E(P|Fτ )(ω)

[∫ T

τ

|H(n)
s −Hs|2d[Q]s

]]
= lim inf

n
EP
[∫ T

τ

|H(n)
s −Hs|2d[M ]s

]2

= 0.

Thus, lim infn E(P|Fτ )(ω)
[∫ T

τ
|H(n)

s −Hs|2d[Q]s

]
= 0 for almost every ω. On the other

hand,

EP
[
lim inf

n
E(P|G)(ω) [Nn

T −NT ]2
]

≤ lim inf
n

EP [E(P|G)(ω) [Nn
T −NT ]2

]
≤ lim inf

n
EP [Nn

T −NT ]2 = 0.

So we have

lim inf
n

E(P|G)(ω) [(Nn −N)T ]2 = 0,

for P-a.e. ω. This proves the claim. The general case follows from the localization technique.

Now, we establish the first step of the Dynamic Programming Principle.

Proposition 1. Let τ be a stopping time defined on some setup (Ω, {Ft0,s}). For any impulse
control (τi, ξi) ∈ V [t0, T ],

J [t0, x0, u·, τi, ξi] =E

[∫ τ∧T

t0

f(s,X t0,x0,u·,τi,ξi
s , us)ds+

∑
i

B(ξi, τi)1τi<τ∧T

]
+ E

[
J [τ ∧ T,X t0,x0,u·,τωi ,ξ

ω
i

τ∧T− , uω· , τ
ω
i , ξ

ω
i ]
]
. (2.11)

Here τωi , ξ
ω
i are defined as follows. For t ∈ [t0, T ], for each (y·,m) ∈ C[t0, T ] ×M([t0, T ] ×

Rk \ {0}),

ut,y·,m· (x·, n) =u·((Π
t)−1(Πt

1(y·,m),Πt
2(x·, n))),

τ y·,mi (x·, n) =τi((Π
t)−1(Πt

1(y·,m),Πt
2(x·, n))),

ξy·,mi (x·, n) =ξi((Π
t)−1(Πt

1(y·,m),Πt
2(x·, n))).
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And for each ω,

uω· = uτ(ω),W·(ω),N(ω)

τωi = τ
τ(ω),W·(ω),N(ω)
i ,

ξωi = ξ
τ(ω),W·(ω),N(ω)
i .

Proof. Consider (P|Ft0,τ ) on (Ωt0,t, {Ft0,t}). Since we are working with canonical spaces, the
sample space is in fact a Polish space (see [28] Theorem A2.1 and A2.3), and the regular
conditional probability exists by Theorem 6.3 of [28]. Since Polish spaces are completely
separable metric spaces and have countably generated σ-algebra, Ft0,τ is countably generated.
By Lemma 1.3.4 from Stroock & Varadhan [44], there exists some null set N0 such that if
(x·, n) /∈ N0, then

(P|Ft0,τ )((x·, n), {(y·,m) : Π
τ(x·,n)
1 (y·,m) = Π

τ(x·,n)
1 (x·, n)}) = 1.

Therefore, for ω = (x·, n) /∈ N0, τi = τωi , and ξi = ξωi almost surely.
Moreover, by Lemma 2, the stochastic integrals are preserved. Therefore, for ω /∈ N0, the

solution to Eq. (2.1) remains a solution to the same equation on the interval [τ(ω), T ] with
(τωi , ξ

ω
i ) ∈ V [τ(ω), T ]. So X t0,x0,u·,τi,ξi on the interval [τ(ω), T ] has the same distribution as

Xτ(ω),y,τωi ,ξ
ω
i for y = X t0,x0,u·,τi,ξi

τ(ω) (ω) under (P|Ft0,τ )(ω, ·) for ω /∈ N0.

Now, to obtain the Dynamic Programming Principle, one needs to take the infimum on
both sides of Eq. (2.11). The part of “≤” is immediate, but the opposite direction is more
delicate. At the stopping time τ , for each ω, one needs to choose a good control so that
the cost J is close to the optimal V . To do this, one needs to show that the functional J is
continuous in some sense, and therefore a countable selection is adequate.

The following result, the Hölder continuity of the value function, is essentially Theorem
3.1 of Tang & Yong [45]. The major difference is that their work is for diffusions without
jumps, therefore some modification in terms of estimation and adaptedness are needed, as
outlined in the proof.

Lemma 3. There exists constant C > 0 such that for all t, t̂ ∈ [0, T ], x, x̂ ∈ Rn,

−C(T + 1) ≤V (t, x) ≤ C(1 + |x|γ+δ),

|V (t, x)− V (t̂, x̂)| ≤C[(1 + |x|µ + |x̂|µ)|t− t̂|δ/2 + (1 + |x|γ + |x̂|γ)|x− x̂|δ].

Proof. To include the jump terms, it suffices to note the following inequalities,

E
∣∣∣∣∫ t

t0

∫
j1(s,Xs, us, z)N(dz, ds)

∣∣∣∣β ≤E(∫ t

t0

∫
|j1(s,Xs, us, z)|ρ(dz)ds

)β
,

E
∣∣∣∣∫ t

t0

∫
j2(s,Xs, us, z)Ñ(dz, ds)

∣∣∣∣β ≤E(∫ t

t0

∫
|j2(s,Xs, us, z)|2ρ(dz)ds

)β/2
.
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Moreover, in our framework, ξ̄(·) and ξ̂(·) would not be in V [t̂, T ] because it is adapted to
the filtration {FW,Nt,s }t≤s≤T instead of {FW,N

t̂,s
}t̂≤s≤T . To fix this, consider for each ω ∈ Ωt0,T ,

ξ̄ω(·) =ξ̄((Πt̂)−1(Πt̂
1(ω),Πt̂

2(·))),
ξ̂ω(·) =ξ̂((Πt̂)−1(Πt̂

1(ω),Πt̂
2(·))),

and consequently use E
[
J [t̂, x, ξ̄ω]

]
instead of J [t̂, x, u·, ξ̄].

Given that the value function V is continuous, we can prove Theorem 1.

Proof. (Dynamic Programming Principle) Without loss of generality, assume that τ ≤ T .

J [t0, x0, u·, τi, ξi] =E

[∫ τ

t0

f(s,X t0,x0,u·,τi,ξi
s )ds+

∑
i

B(τi, ξi)1τi<τ

]
+ E

[
J [τ,X

t0,x0,u·,uω· ,τ
ω
i ,ξ

ω
i

τ− , uω· , τ
ω
i , ξ

ω
i ]
]

≥E

[∫ τ

t0

f(s,X t0,x0,u·,τi,ξi
s , us)ds+

∑
i

B(τi, ξi)1τi<τ

]
+ E

[
V (τ−, X t0,x0,u·,τi,ξi

τ− )
]
.

Taking infimum on both sides, we get

V (t0, x0) ≥ inf
(τi,ξi)∈Vt0

E

[∫ τ

t0

f(s,X t0,x0,u·,τi,ξi
s , us)ds+

∑
i

B(τi, ξi)1τi≤τ + V (τ,X t0,x0,u·,τi,ξi
τ )

]
.

Now we are to prove the reverse direction for the above inequality. Fix ε > 0. Divide
Rn×[t0, T ) into rectangles {Rj×[sj, tj)} disjoint up to boundaries, such that for any x, x̂ ∈ Rj

and t, t̂ ∈ [sj, tj),

|V (x, t)− V (x̂, t̂)| <ε,
|tj − sj| <ε,

diam(Rj) <ε.

For each Rj, pick xj ∈ Rj. For each (xj, tj), choose uj ∈ U [tj, T ], (τ jk , ξ
j
k) ∈ V [tj, T ], such

that V (xj, tj) + ε > J [tj, xj, τ
j
i , ξ

j
i ]. Let

Aj = {(X t0,x0,u·,τi,ξi
τ , τ) ∈ Rj × [sj, tj)}.

And, A0 = {τ = T}. Note that {Aj}j partitions the sample space C[t0, T ]×M [t0, T ]. Define
a new stopping time τ̂ by:

τ̂ = tj on Aj, j > 0
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and τ̂ = T on A0. Note that τ̂ ≥ τ .
Define a new strategy (τ̂i, ξi) ∈ V [t0, T ] û· ∈ U [t0, T ] and by the following,

û(t,W·, N) =

{
u(t,W·, N) if t0 ≤ t ≤ τ̂

uj(t,Π
tj
2 (W·, N)) if τ̂ = tj < t,X t0,x0,u·

τ̂ ∈ Ri

∑
i

ξ̂i1τ̂i≤t =

{ ∑
i ξi1τi≤t if t ≤ τ,∑
i ξi1τi≤τ +

∑
i,j 1Aj(ξ

j
i 1τ ji ≤t

)(Π
tj
2 (W,N)) if t > τ.

In other word, once τ is reached, the impulse will be modified so that there would be no
impulses on [τ, τ̂), and starting at τ̂ , the impulse follows the rule (τ ji , ξ

j
i ) on the set Aj. Now

we have,

V (t0, x0) ≤ J [t0, x0, û·, τ̂i, ξ̂i]

=E

[∫ τ̂

t0

f(s,X t0,x0,u·,τ̂i,ξ̂i
s , ûs))ds+

∑
i

B(τ̂i, ξ̂i)1τ̂i<τ̂ + J
[
τ̂ , ûω· , X

t0,x0,τ̂i,ξ̂i
τ̂− , τ̂ωi , ξ̂

ω
i

]]

=E
[∫ τ

t0

f(s,X t0,x0,u·,τi,ξi
s , us))ds

]
+ E

[∫ τ̂

τ

f(s,X t0,x0,u·,τ̂i,ξ̂i
s ), ûs)ds

]
+ E

[∑
i

B(τi, ξi)1τi<τ

]

+ E

[∑
j

J
[
tj, X

t0,x0,ûω· ,τ̂i,ξ̂i
tj− , τ̂ωi , ξ̂

ω
i

]
1Aj

]
.

The last equality follows from the fact that, τ̂i is either < τ , or ≥ τ̂ , so τ̂i < τ̂ implies that
τ̂i = τi < τ . Since ûω· = u·(Π

−1(Πτ̂
1(W (ω), N(ω)),Π2(·))) = uj· (·) on the set Aj for (τ̂j, T ],

and any fixed u0 on (τ, τ̂ ].

V (t0, x0) ≤E
[∫ τ

t0

f(s,X t0,x0,û·,τi,ξi
s , us))ds

]
+ E

[∫ τ̂

τ

f(s,X t0,x0,û·,τ̂i,ξ̂i
s ), ûs)ds

]
+ E

[∑
i

B(τi, ξi)1τi≤τ

]
+ E

[∑
j

J
[
tj, X

t0,x0,τ̂i,ξ̂i
tj− , uj· , τ

j
i , ξ

j
i

]
1Aj

]

≤E
[∫ τ

t0

f(s,X t0,x0,u·,τi,ξi
s , us)ds

]
+ E

[∫ τ̂

τ

f(s,X t0,x0,û·,τ̂i,ξ̂i
s , ûs))ds

]
+ E

[∑
i

B(τi, ξi)1τi≤τ

]
+ E

[∑
j

V (tj, X
t0,x0,û·,τ̂i,ξ̂i
tj− ))1Aj

]
+ ε.
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Now, for the second term in the last expression, we see

E
[∫ τ̂

τ

f(s,X t0,x0,û·,τ̂i,ξ̂i
s , ûs)ds

]
≤ E

[∫ τ̂

τ

C(1 + |Xs|γ+δ)ds

]
≤E

[∫ τ̂

τ

C(1 + Eω|Xs −Xτ |γ+δ + |Xτ |γ+δ)ds

]
≤E

[∫ τ̂

τ

C(1 + |Xτ |µ)ds

]
≤ E

[
Eω
[∫ τ̂

τ

C(1 + |Xτ |µ)ds

]]
≤E [εC(1 + |Xτ |µ)] ≤ Cε(1 + |x0|µ). (2.12)

Therefore, it suffices to bound the following expression,

E

[∑
j

[V (tj, X
t0,x0,û·,τ̂i,ξ̂i
tj− )− V (τ,X t0,x0,u·,τi,ξi

τ− )]1Aj

]
.

First, note that on the interval [τ, τ̂), X = X t0,x0,û·,τ̂i,ξ̂i solves the jump SDE with no
impulse:

Xt∧τ̂ −Xτ =

∫ t∧τ̂

τ

b(s,Xs, ûs)dt+

∫ t∧τ̂

τ

σ(s,Xs, ûs)dW

+

∫ t∧τ̂

τ

∫
j1(s,Xs, ûs, z)N(dz, ds)

+

∫ t∧τ̂

τ

∫
j2(s,Xs, ûs, z)Ñ(dz, ds).

In particular, under (P|(F◦)W,Nt0,τ ), τ , X t0,x0,û·,τ̂i,ξ̂i
τ and τ̂ are all deterministic, hence the fol-

lowing estimates

E(P|(F◦)W,Nt0,τ
)(ω)|Xτ̂(ω)|β ≤C(1 + |Xτ(ω)|β), if β > 0,

E(P|(F◦)W,Nt0,τ
)(ω)|Xτ̂(ω) −Xτ(ω)|β ≤C(1 + |Xτ(ω)|β)(τ̂(ω)− τ(ω))β/2∧1

≤C(1 + |Xτ(ω)|β)εβ/2∧1, if β ≥ ν.

Thus, let Eω = E(P|(F◦)W,Nt0,τ
)(ω), we see

Eω[V (tj, X
t0,x0,û·,τ̂i,ξ̂i
tj− )− V (τ,X t0,x0,u·,τi,ξi

τ− )]

≤Eω
[
C(1 + |Xτ (ω)|µ + |Xτ̂ |µ)|τ̂ − τ(ω)|δ/2 + C(1 + |Xτ (ω)|γ + |Xτ̂ |γ)|Xτ̂ −Xτ (ω)|δ

]
≤C(1 + |Xτ (ω)|µ + Eω|Xτ̂ |µ)εδ/2 + CEω

[
(1 + |Xτ (ω)|γ + |Xτ̂ |γ)|Xτ̂ −Xτ (ω)|δ

]
≤C(1 + |Xτ (ω)|µ)εδ/2 + C

(
Eω [(1 + |Xτ (ω)|γ + |Xτ̂−|γ]p

′
)1/p′ (

Eω
[
|Xτ̂ −Xτ (ω)|δ

]p)1/p
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(where p = µ/δ > 0, and 1/p+ 1/p′ = 1)

≤C(1 + |Xτ (ω)|µ)εδ/2 + C

(
1 + |Xτ (ω)|γ +

(
Eω|Xτ̂−|γp

′
)1/p′

)
(Eω|Xτ̂ −Xτ (ω)|µ)δ/µ

≤C(1 + |Xτ (ω)|µ)εδ/2 + C (1 + |Xτ (ω)|γ) (1 + |Xτ(ω)|µ)δ/µε(ν/2∧1) δ
µ

≤C(1 + |Xτ (ω)|µ)εδ/2 + C (1 + |Xτ (ω)|µ) ε(ν/2∧1) δ
µ .

Taking expectation, we get

E

[∑
j

[V (tj, X
t0,x0,û·,τ̂i,ξ̂i
tj− )− V (τ,X t0,x0,u·,τi,ξi

τ− )]1Aj

]
≤C(1 + E|Xτ |µ)εδ/2 + C (1 + E|Xτ |µ) ε(ν/2∧1) δ

µ

≤C(1 + |x0|µ)εδ/2 + C (1 + |x0|µ) ε(ν/2∧1) δ
µ .

The last inequality follows from Corollary 3.7 in Tang & Yong [45].
With these two bounds, and taking ε→ 0, we get the desired inequality and the DPP.
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Chapter 3

The value function as a viscosity
solution

In this section, we establish the value function V (x, t) as a viscosity solution to the (HJB)
equation in the sense of [1].

Notation 1.

I1
θ [φ](x, t) =

∫
|z|<θ

φ(x+ z, t)− φ(x, t)−Dφ(x, t) · z1|z|<1, ρ(dz),

I2
θ [u](x, t) =

∫
|z|≥θ

u(x+ z, t)− u(x, t)−Dφ(x, t) · z1|z|<1ρ(dz),

with the boundary condition u = g on Rn × {t = T}.

Theorem 2. (Value Function as Viscosity Solution) The value function V (x, t) is a con-
tinuous viscosity solution to the (HJB) equation in the following sense: if for any φ ∈
C2(Rn × [0, T ]),

1. u − φ achieves a local maximum at (x0, t0) ∈ B(x0, θ) × [t0, t0 + θ) with u(x0, t0) =
φ(x0, t0), then V is a subsolution

max{−φt + Lφ− f − I1
θ [φ]− I2

θ [u], u−Mu}(x0, t0) ≤ 0.

2. u ≥ φ and u − φ achieves a local minimum at (x0, t0) ∈ B(x0, θ) × [t0, t0 + θ) with
u(x0, t0) = φ(x0, t0), then V is a supersolution

max{−φt + Lφ− f − I1
θ [φ]− I2

θ [u], u−Mu}(x0, t0) ≥ 0.

Proof. Step 1. Suppose V − φ achieves a local maximum in B(x0, θ) × [t0, t0 + θ) with
V (x0, t0) = φ(x0, t0), we prove by contradiction that (−φt+Lφ−I1

θ [φ]−I2
θ [V ]−f)(x0, t0) ≤ 0.
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Suppose otherwise, i.e. (−φt + Lφ− I1
θ [φ]− I2

θ [V ]− f)(x0, t0) > 0. Then without loss of
generality we can assume that −φt + Lφ − I1

θ [φ] − I2
θ [V ] − f > 0 on B(x0, θ) × [t0, t0 + θ).

Since the definition of viscosity solution does not concern the value of φ outside of B(x0, θ)×
[t0, t0 + θ), we can assume that φ is bounded by multiples of |V |. Let X0 = Xx0,t0,∞,0 and

τ = inf{t ∈ [t0, T ] : Xt /∈ B(x0, θ)× [t0, t0 + θ)} ∧ T.

By Ito’s formula,

E
[
φ(X0

τ , τ)
]
− φ(x0, t0) =E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [φ])(X0
s−, s)ds

]
.

Meanwhile, by Theorem1,

V (x0, t0) ≤ E
[∫ τ

t0

f(X0
s , s)ds+ V (X0

τ , τ)

]
.

Combining these two inequalities, we get

E
[
V (X0

τ , τ)
]
− E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [φ])(X0
s−, s)ds

]
≤E

[
φ(X0

τ , τ)
]
− E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [φ])(X0
s−, s)ds

]
=φ(x0, t0) = V (x0, t0) ≤ E

[∫ τ

t0

f(X0
s , s)ds+ V (X0

τ , τ)

]
.

That is,

E
[∫ τ

t0

(−φt + Lφ− I1
θ [φ]− I2

θ [φ]− f)(X0
s−, s)ds

]
≤ 0.

Again by modifying the value of φ outside of B(x0, θ) × [t0, t0 + θ), and since V ≤ φ in
B(x0, θ) × [t0, t0 + θ), we can take a sequence of φk ≥ V dominated by multiples of |V |
such that it converges to V outside of B(x0, θ)× [t0, t0 + θ) from above. By the dominated
convergence theorem, I2

θ [φ] converges to I2
θ [V ]. Thus,

E
[∫ τ

t0

(−φt + Lφ− I1
θ [φ]− I2

θ [V ]− f)(X0
s−, s)ds

]
≤ 0,

which is a contradiction. Therefore, we must have (−φt+Lφ− I1
θ [φ]− I2

θ [V ]−f)(x0, t0) ≤ 0,
and since V ≤MV , we have max{−φt + Lφ− I1

θ [φ]− I2
θ [V ]− f, V −MV }(x0, t0) ≤ 0.

Step 2. Suppose V − φ achieves local minimum in B(x0, θ)× [t0, t0 + θ) with V (x0, t0) =
φ(x0, t0). Then if (V −MV )(x0, t0) = 0, then we already have the desired inequality. Now
suppose V −MV ≤ −ε < 0 and −φt + Lφ− I1

θ [φ]− I2
θ [V ]− f < 0 on B(x0, θ)× [t0, t0 + θ).
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Assuming as before that φ is bounded by multiples of |V | outside of B(x0, θ) × [t0, t0 + θ).
By Ito’s formula

E
[
φ(X0

τ , τ)
]
− φ(x0, t0) = E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [V ])(X0
s−, s)ds

]
.

Consider the no impulse strategy τ ∗i =∞ and let X0 = X t0,x0,u·,∞,0. Define the stopping
time τ as before, i.e,

τ = inf{t ∈ [t0, T ] : Xt /∈ B(x0, θ)× [t0, t0 + θ)} ∧ T.

Then for any strategy (τi, ξi) ∈ V ,

J [t0, x0, τi, ξi]

=E
[∫ τ1∧τ

t0

f(s,X t0,x0,u·,τi,ξi
s )ds+B(τ1, ξ1)1{τ1≤τ∧τ1} + J [τ1 ∧ τ,X t0,x0,u·,τi,ξi

τ1∧τ , τi, ξi]

]
≥E

[∫ τ1∧τ

t0

f(s,X t0,x0,u·,τi,ξi
s )ds+ 1{τ1≤τ}(B(τ1, ξ1) + V (X t0,x0,u·,τi,ξi

τ1
, τ1))

]
+ E

[
1{τ1>τ}V (X t0,x0,u·,τi,ξi

τ , τ)
]

≥E
[∫ τ1∧τ

t0

f(s,X0
s )ds+ 1{τ1≤τ}MV (X0

τ1
, τ1)

]
+ E

[
1{τ1>τ}V (X0

τ , τ)
]

≥E
[∫ τ1∧τ

t0

f(s,X0
s )ds+ V (X0

τ1∧τ , τ1 ∧ τ)

]
+ ε · P(τ1 ≤ τ)

≥V (t0, x0) + ε · P(τ1 ≤ τ).

Therefore, without loss of generality, we only need to consider (τi, ξi) ∈ V such that τ1 > τ .
Now, the Dynamic Programming Principle becomes,

u(x0, t0) = E
[∫ τ

t0

f(X0
s , s)ds+ V (X0

τ , τ)

]
.

Now combining these facts above,

E
[
V (X0

τ , τ)
]
− E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [φ])(X0
s−, s)ds

]
≥E

[
φ(X0

τ , τ)
]
− E

[∫ τ

t0

(φt − Lφ+ I1
θ [φ] + I2

θ [φ])(X0
s−, s)ds

]
=φ(x0, t0) = V (x0, t0) = E

[∫ τ

t0

f(X0
s , s)ds+ V (X0

τ , τ)

]
E
[∫ τ

t0

(−φt + Lφ− I1
θ [φ]− I2

θ [φ]− f)(X0
s−, s)ds

]
≥ 0.
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Again by modifying the value of φ outside of B(x0, θ) × [t0, t0 + θ), and since V ≥ φ in
B(x0, θ) × [t0, t0 + θ), we can take a sequence of φk ≤ u dominated by multiples of |V |
such that it converges to V outside of B(x0, θ)× [t0, t0 + θ) from above. By the dominated
convergence theorem, I2

θ [φ] converges to I2
θ [V ]. Hence

E
[∫ τ

t0

(−φt + Lφ− I1
θ [φ]− I2

θ [V ]− f)(X0
s−, s)ds

]
≥ 0,

which contradicts the assumption that (−φt+Lφ− I1
θ [φ]− I2

θ [V ]−f)(x0, t0) < 0. Therefore,

max{−φt + Lφ− I1
θ [φ]− I2

θ [V ]− f, V −MV }(x0, t0) ≥ 0.
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Chapter 4

Regularity of the value function

To study the regularity of the value function, we will consider the time-inverted value function
u(x, t) = V (x, T−t). Accordingly, we will assume that aij, bi, f , B and j are all time-inverted.
This is to be consistent with the standard PDE literature for easy references to some of its
classical results, where the value is specified at the initial time instead of the terminal time.

The regularity study is built in two phases.
First in Section 4.2, we focus on the case without jumps . We will construct a unique

W
(2,1),p
loc regular viscosity solution to a corresponding equation without the integro-differential

operator on a fixed bounded domain QT with QT = B(0, R)× (δ, T ] for R > 0 and δ > 0,{
max{ut + Lu− f, u−Ψ} = 0 in QT ,
u = φ on ∂PQT ,

(4.1)

in which φ(x, t) = V (x, T−t) and Ψ(x, t) = (Mu)(x, t). The local uniqueness of the viscosity
solution then implies that this solution must be the time-inverted value function, hence the
W

(2,1),p
loc smoothness for the value function.

Then in Section 4.4, we extend the analysis to the case with a first-order jump and
establish the regularity property of the value function.

4.1 Preliminary results

To analyze the value function, we also need some preliminary results, in addition to the
DPP.

Lemma 4. The set

Ξ(x, t) := {ξ ∈ Rn : MV (x, t) = V (x+ ξ, t) +B(ξ, t)}

is nonempty. Moreover, for (x, t) in bounded B′ ⊂ Rn × [0, T ], {(y, t) : y = x + ξ, (x, t) ∈
B′, ξ ∈ Ξ(x, t)} is also bounded.
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Proof. This is easy by B(ξ, t) ≥ L+ C|ξ|µ, −C ≤ V ≤ C(1 + |x|γ+δ), and µ > γ + δ.

Lemma 5. (Theorem 4.9 in [32]) Assume that aij, bi, f ∈ Cα
loc(Rn × (0, T )). If −ut + Lu =

f in C in the viscosity sense, then it solves the PDE in the classical sense as well, and

u(x, T − t) ∈ C2+α,1+α
2

loc (C).

Lemma 6. The value function V and MV satisfies V (x, t) ≤MV (x, t) pointwise.

Lemma 7. MV is continuous, and there exists C such that for any x, y ∈ Rn, s < t,

|MV (x, t)−MV (y, t)| ≤C(1 + |x|γ + |y|γ)|x− y|δ,
MV (x, t)−MV (x, s) ≤C(1 + |x|µ)|t− s|δ/2.

Proof. First we prove continuity. For each ξ, V (x, t) + B(ξ, t) is a uniformly continuous
function on compact sets. And since Ξ(x, t) is bounded for (x, t) on compact sets, taking
the infimum over ξ on some fixed compact sets implies that MV is continuous.

For the Hölder continuity in t, let ξ ∈ Ξ(x, s), then

MV (x, t)−MV (x, s)

≤V (x+ ξ, t) +B(ξ, t)− V (x+ ξ, s)−B(ξ, s)

≤C(1 + |x|µ)|t− s|δ/2,

given that B(ξ, s) ≥ B(ξ, t) for s < t.

As a consequence, the continuous region C is open.

Lemma 8. Fix x in some bounded B ⊂ Rn. Let ε > 0. For any

ξ ∈ Ξε(x, t) = {ξ : V (x+ ξ, t) +B(ξ, t) < MV (x, t) + ε},

we have
V (x+ ξ, t) +K − ε < MV (x+ ξ, t). (4.2)

In particular, Let CK/2 = {(x, t) ∈ Rn× [0, T ] : V (x, t) < MV (x, t)−K/2}. If ξ ∈ ΞK/2(x, t),
then (x+ ξ, t) ∈ CK/2.

Proof. Suppose ξ ∈ Ξε(x, t), i.e.

V (x+ ξ, t) +B(ξ, t) < MV (x, t) + ε.
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Then,

MV (x+ ξ, t) = inf
η
V (x+ ξ + η, t) +B(η, t)

= inf
η
V (x+ ξ + η, t) +B(ξ + η, t)−B(ξ + η, t) +B(η, t)

≥ inf
η
V (x+ ξ + η, t) +B(ξ + η, t)−B(ξ, t) +K

= inf
η′
V (x+ η′, t) +B(η′, t)−B(ξ, t) +K

=MV (x, t)−B(ξ, t) +K

>V (x+ ξ, t)− ε+K.

Let ε = K/2, we get that ξ ∈ ΞK/2(x, t) implies x+ ξ ∈ CK/2.

Lemma 9. MV is uniformly semi-concave in x, and MVt is bounded above in the distribu-
tional sense on compact sets away from t = T .

Proof. Let A be a compact subset of Rn × [0, T − δ]. For any ξ ∈ Ξ(x, t) for (x, t) ∈ A,
(x + ξ, t) lies in a bounded region B independent of (x, t). For any |y| = 1 and δ > 0
sufficiently small,

MV (x+ δy, t)− 2MV (x, t) +M(x− δy, t)
2δ

≤(V (x+ δy + ξ, t) +B(ξ, t))− 2(V (x+ ξ, t) +B(ξ, t)) + (V (x− δy + ξ, t) +B(ξ, t)))

2δ

=
V (x+ δy + ξ, t)− 2V (x+ ξ, t) + V (x− δy + ξ, t)

2δ
≤C‖D2V ‖B∩CK/2 ,

which is bounded by Lemma 5. Similarly,

MV (x, t+ δ)−MV (x, t)

δ

≤V (x+ ξ, t+ δ) +B(ξ, t+ δ)− (V (x+ ξ, t) +B(ξ, t))

δ

=
V (x+ ξ, t+ δ)− V (x+ ξ, t)

δ
+
B(ξ, t+ δ)−B(ξ, t)

δ
≤C‖Vt‖B∩CK/2 .

4.2 W
(2,1),p
loc Regularity for cases without jumps

The key idea is to study a corresponding homogenous HJB, based on the following classical
result in PDEs.
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Lemma 10. (Theorem 4.9, 5.9, 5.10, and 6.33 of [32]) Let α ∈ (0, 1]. Assume that
aij, bi, f ∈ C0+α,0+α

2 (QT ), aij is uniformly elliptic, φ ∈ C0+α,0+α
2 (∂PQT ). Then the linear

PDE {
ut + Lu = f in QT ;
u = φ on ∂PQT .

(4.3)

has a unique solution to (4.3) that lies in C0+α,0+α
2 (QT ) ∩ C2+α,1+α

2
loc (QT ).

Indeed, given Lemma 10, let u0 be the unique classical solution to (4.3), with the bound-
ary condition φ(x, t) = V (T−t, x). Then, our earlier analysis (Lemma 3) of Hölder continuity
for the value function implies that V (x, T − t)− u0(x, t) solves the following “homogenous”
HJB, {

max{ut + Lu, u−Ψ} = 0 in QT ,
u = 0 on ∂PQT .

for Ψ = Ψ−u0. Since V ≤MV , we have Ψ(x, t) = (Ψ−u0)(x, t) = (MV −V )(x, T − t) ≥ 0
on ∂PQT .

Therefore, our first step is to study the above “homogenous” HJB.

Step I: Viscosity solution of the “homogenous” HJB

Theorem 3. Assume

1. aij, bi,Ψ ∈ C0+α,0+α
2 (QT ),

2. (aij) uniformly elliptic,

3. Ψ is semiconcave,

4. Ψt is bounded below, in the distributional sense.

Then there exists a viscosity solution u ∈ W (2,1),p(QT ) to the homogenous HJB{
max{ut + Lu, u−Ψ} = 0 in QT ,
u = 0 on ∂PQT .

(4.4)

Furthermore, u ∈ W (2,1),p(QT ) for any p > 1.

To prove this theorem, we first consider a corresponding penalized version. For every
ε > 0, let βε : R→ R be a smooth function such that βε(x) ≥ −1, βε(0) = 0, β′ > 0, β′′ ≥ 0,
β′ε(x) ≤ C/ε for x ≥ 0, β′ε(0) = 1/ε and as ε → 0, βε(x) → ∞ for x > 0, βε(x) → 0 for
x < 0. One such example is, β(x) = x/ε for x ≥ 0 and it smooth extension to x < 0. We
see that there is a classical solution u to the penalized problem, assuming some regularity
on the coefficients aij, bi,Ψ.
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Lemma 11. Fix ε > 0. Suppose that aij, bi,Ψ ∈ C2+α,1+α/2(QT ), and (aij) is uniformly
elliptic. Then exists a unique u ∈ C4+α,2+α/2(QT ) such that{

ut + Lu+ βε(u−Ψ) = 0 on QT ,
u = 0 on ∂PQT .

(4.5)

Note that Friedman [22] proved a similar result for a W 2,p solution for the elliptic case us-
ing the Lp estimates. He then used the Schauder estimates to bootstrap for the C2 regularity.
Our proof is more elementary using only the Schauder estimates.

Proof. Define the operator A : C2+α,1+α/2(QT )→ C2+α,1+α/2(QT ) by the following: A[v] = u
is the solution to the PDE{

ut + Lu+ βε(v −Ψ) = 0 on QT ,
u = 0 on ∂PQT .

By the Schauder’s estimates (Theorem 4.28 in [32]), we have,

‖u‖C2+α,1+α/2(QT ) ≤ C‖βε(v −Ψ)‖Cα,α/2(QT )

≤ Cε‖v −Ψ‖Cα,α/2(QT ).

Thus the map A is clearly continuous and compact.
The next step is to show that the set {u : u = λA[u], 0 ≤ λ ≤ 1} is bounded. Then we

can apply Schaefer’s Fixed Point Theorem (Theorem 9.4 in ([17]). Suppose u = λA[u] for
some 0 ≤ λ ≤ 1. Then, {

ut + Lu+ λβε(u−Ψ) = 0 on QT ,
u = 0 on ∂PQT .

Since

‖u‖C2+α,1+α/2(QT ) ≤ Cε‖v −Ψ‖Cα,α/2(QT ))

≤ Cε(‖u‖Cα,α/2(QT ) + ‖Ψ‖Cα,α/2(QT ))

≤ Cε(‖u‖1/2

C(QT )
‖u‖1/2

C2+α,1+α/2(QT )
+ ‖Ψ‖Cα,α/2(QT ))

≤ 1

2
‖u‖C2+α,1+α/2(QT ) + Cε(‖u‖C(QT ) + ‖Ψ‖Cα,α/2(QT )).

Thus

‖u‖C2+α,1+α/2(QT ) ≤ Cε(‖u‖C(QT ) + ‖Ψ‖Cα,α/2(QT )).

So we only need to bound u independent of λ now.
If λ = 0, then u = 0. So we can assume that λ > 0. Suppose u has a maximum at

(x0, t0) ∈ QT . Then, −λβε(u(x0, t0) − Ψ(x0, t0)) = (ut + Lu)(x0, t0) ≥ 0, βε(u(x0, t0) −
Ψ(x0, t0)) ≤ 0, u(x0, t0) ≤ Ψ(x0, t0), and u = 0 on ∂PQT . So we get u ≤ ‖Ψ‖L∞(QT ).
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For a lower bound, consider the open set Ω = {u < Ψ} in QT . Since in Ω, ut + Lu ≥ 0,
u ≥ inf∂PΩ u. Yet, ∂PΩ ⊂ ∂PQT ∪ {u ≥ Ψ}, and in both cases u is bounded below. Thus we
conclude that u is bounded independently of λ, and ‖u‖L∞(QT ) ≤ ‖Ψ‖L∞(QT ).

Now Schaefer’s Fixed Point Theorem (Theorem 9.4 in [17]) gives us the existence of
u ∈ C2+α,1+α/2(QT ) that solves (4.5). Now we have −βε(u − Ψ) ∈ C2+α,1+α/2(QT ). By the
Schauder’s estimates again, we have u ∈ C4+α,2+α/2(QT ).

Next, consider the case with Cα,α/2(QT ) coefficients. We will smooth out the coefficients
first to the above result, and then let ε → 0. More precisely, let (aε)ij, (bε)i,Ψ

ε ∈ C∞(QT )
be such that they converge to the respective function in Cα,α/2(QT ) and Ψ

ε ≥ 0 on ∂PQT .
This is possible because Ψ ≥ 0 on ∂PQT . Define Lε to be the corresponding linear operator
and uε to be the unique solution to{

uεt + Lεuε + βε(u
ε −Ψ

ε
) = 0 on QT ,

uε = 0 on ∂PQT .

Now we establish some bound for βε(u
ε −Ψ

ε
), in order to apply an Lp estimate.

Lemma 12. Assuming Ψ is semiconcave in x, i.e.

∂2Ψ

∂ξ2
≤ C,

for any direction |ξ| = 1, and

∂Ψ

∂t
≥ −C,

where both derivatives are interpreted in the distributional sense. We have

|βε(uε −Ψ
ε
)| ≤ C,

with C independent of ε.

Proof. Clearly βε ≥ −1, so we only need to give an upper bound. The assumption above
translates to the same derivative condition on mollified Ψ

ε
, which can be interpreted classi-

cally now. Thus we have

Ψ
ε

t + LεΨ
ε ≥ −C.

Suppose uε −Ψ
ε

achieves maximum at (x0, t0) ∈ QT , then

(uε −Ψ
ε
)t + Lε(uε −Ψ

ε
)(x0, t0) ≥ 0.



CHAPTER 4. REGULARITY OF THE VALUE FUNCTION 29

Hence

−βε(uε −Ψ
ε
)(x0, t0) = (uεt + Lεuε)(x0, t0)

≥ (Ψ
ε

t + LεΨ
ε
)(x0, t0) ≥ −C,

in which C is an upper bound independent of ε. On the other hand, if it achieves maximum
on ∂PQT , we get uε − Ψ

ε ≤ 0 since Ψ
ε ≥ 0 on ∂PQT . Either way we have an upper bound

independent of ε.

Now with this estimate of the boundedness of βε(u
ε−Ψ

ε
), we are ready to prove Theorem

3.

Proof. Lemma 12 allows us to apply Lp estimate:

‖uε‖W (2,1),p(QT ) ≤ C‖βε(uε −Ψ
ε
)‖Lp(QT ) ≤ C,

for p > 1. Thus there exists a sequence εn → 0 and u ∈ W (2,1),p(QT ) such that

uεn ⇀ u

weakly in W (2,1),p(QT ). For p large enough, there exists α′ > 0 such that uε → u in
Cα′,α′/2(QT ), so uε → u uniformly in QT .

On one hand, since βε(u
ε − Ψ

ε
) ≤ C, yet βε(x) → ∞ as x > 0, hence u ≤ Ψ. Suppose

u−φ achieves a strict local maximum at (x0, t0), then uε−φ achieves a strict local maximum
at (xε0, t

ε
0) and (xε0, t

ε
0)→ (x0, t0) as ε→ 0, then

lim
ε→0

(φt + Lεφ)(xε0, t
ε
0) ≤ lim inf

ε→0
βε(u

ε(xε0, t
ε
0)−Ψ(xε0, t

ε
0)) ≤ 0.

So (φt + Lφ)(x0, t0) ≤ 0.
On the other hand, if u−φ achieves a strict local minimum at (x0, t0), then uε−φ achieves

a strict local maximum at (xε0, t
ε
0) and (xε0, t

ε
0) → (x0, t0) as ε → 0. If u(x0, t0) < Ψ(x0, t0),

then for small ε, u(xε0, t
ε
0) < Ψ(xε0, t

ε
0),

lim
ε→0

(φt + Lεφ)(xε0, t
ε
0) ≥ lim sup

ε→0
βε(u

ε(xε0, t
ε
0)−Ψ(xε0, t

ε
0)) ≥ 0.

Step II: Uniqueness of the HJB equation without jump terms

Proposition 2. Assuming that aij, bi, f,Ψ, f are continuous in QT , and φ continuous on
∂PQT , the viscosity solution to the following HJB equation is unique.{

max{ut + Lu− f, u−Ψ} = 0 in QT ,
u(t, x) = φ on ∂PQT .

(4.6)
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Remark. Note that this is a local uniqueness of the viscosity solution. We later apply
φ(x, t) = V (x, T − t) and Ψ(x, t) = (Mu)(x, t) to our original control problem.

Proof. Let W,U be a viscosity subsolution and supersolution to (4.6) respectively. Then W
is clearly a viscosity subsolution to vt + Lv − f = 0, with W ≤ Ψ. On the other hand, at
any fixed point (x0, t0), either U(x0, t0) = Ψ(x0, t0) or U satisfies the viscosity supersolution
property at (x0, t0).

Define

W ε(x, t) = W (x, t) +
ε

t− δ
for ε > 0. Note that W ε is still a viscosity subsolution of vt + Lv − f = 0. For fixed ε, α, β,
define

Φ(t, x, y) = W ε(x, t)− U(x, t)− α|x− y|2 − β(t− δ).

Denote B = B(0, R). Suppose max(x,t)∈QT W
ε(x, t)− U(x, t) ≥ c > 0. There exist α0, β0, ε0,

such that for α ≥ α0, β ≤ β0, and ε ≤ ε0, we have

max
(t,x,y)∈[δ,T )×B×B

Φ(t, x, y) ≥ c/2 > 0.

Let (t̄, x̄, ȳ) ∈ (δ, T )×B×B be the point where Φ achieves the maximum. Since Φ(δ, 0, 0) ≤
Φ(t̄, x̄, ȳ), we get

α|x̄− ȳ|2 ≤ h(|x̄− ȳ|),

in which h is the modulus of continuity of U . Since the domain is bounded, α|x̄− ȳ|2 ≤ K
for some fixed constant K independent of α, ε, β. We have |x̄− ȳ| ≤

√
K/α, which implies

α|x̄− ȳ|2 ≤ ω(

√
K

α
).

Denote ω as the modulus of continuity of Ψ. We have two cases:

1. U(ȳ, t̄) = Ψ(ȳ, t̄). We have

W ε(x̄, t̄) ≤Ψ(x̄, t̄) +
ε

t̄− δ
≤ω(|x̄− ȳ|) + Ψ(ȳ, t̄) +

ε

t̄− δ
=ω(|x̄− ȳ|) + U(ȳ, t̄) +

ε

t̄− δ
.

Thus

W ε(x̄, t̄)− U(ȳ, t̄) ≤ ω(|x̄− ȳ|) +
ε

t̄− δ
.
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2. U(ȳ, t̄) < Ψ(ȳ, t̄). By the same analysis as Theorem V.8.1 in [20],

β ≤ ω(α|x̄− ȳ|2 + |x̄− ȳ|).

Fix ε ≤ ε0, β ≥ β0. For each α ≤ α0, one of the two cases is true. If case 2 occurs infinitely
many times as α → ∞, we have a contradiction, thus case 1 must occur infinitely many
times as α→∞. We have the inequality

W ε(x, t)− U(x, t)− β(t− δ)
=Φ(x, x, t) ≤ Φ(x̄, ȳ, t̄)

≤W ε(x̄, t̄)− U(ȳ, t̄)

≤ω(

√
1

α
h(

√
K

α
)) +

ε

t̄− δ
.

Let α → ∞, then W ε(x, t) − U(x, t) − β(t − δ) ≤ ε
t̄−δ . Let β → 0, then ε → 0, we get

W (x, t) ≤ U(x, t).

Now, combining Theorem 3 and Proposition 2, together with Lemma 10 for the C(QT )∩
C

2+α,1+α
2

loc (QT ) solution to (4.3), we have

Step III: Regularity of the (HJB) equation without jump terms

Proposition 3. Assume

1. aij, bi,Ψ ∈ C0+α,0+α
2 (QT ),

2. (aij) uniformly elliptic,

3. Ψ is semiconcave,

4. Ψt is bounded below, in the distributional sense,

5. φ ∈ C0+α,0+α/2(QT ).

Then there exists a unique viscosity solution u ∈ W (2,1),p
loc (QT ) ∩ C(QT ) to the PDE{

max{ut + Lu− f, u−Ψ} = 0 in QT ,
u = φ on ∂PQT ,

for any p > 1.

Finally, since Mu(x, t) is semi-concave from Lemma 9, replacing Ψ(x, t) by Mu(x, t) gives
us the regularity property of the value function.
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Theorem 4. Assuming ρ = 0, the value function V (x, t) is a W 2,p
loc (Rn × (0, T )) viscosity

solution to the (HJB) equation with 2 ≤ p <∞. In particular, for each t ∈ [0, T ), V (·, t) ∈
C1,γ
loc (Rn) for any 0 < γ < 1.

In fact, if one adds additional assumption of aij and bi in W
(2,1),∞
loc (Rn× [0, T ]), then with

more detailed and somewhat tedious analysis, one can establish W
(2,1),∞
loc regularity for the

value function. For more details, see Chen [10].

4.3 W
(2,1),∞
loc Regularity for cases without jumps

In fact, with an extra assumption, one can establish W
(2,1),∞
loc regularity.

Assumption 10. (W
(2,1),∞
loc Regularity) The functions aij and bi are in W

(2,1),∞
loc (Rn× [0, T ]).

First we start with the solution to (4.5). Differentiate it against t, we get

uεtt + Lεuεt + Lεtu
ε + β′ε(u

ε −Ψε)(uεt −Ψε
t) = 0

in which Lεtu = −(aεij)tu
ε
xixj

+ (bεi)tu
ε
xi

.
Fix r > 0, and let φ be a cutoff function that is = 1 on Q′T , defined as:

Q′T = {(x, t) ∈ QT : (|x− y|2 + |t− s|) > r, for all (y, s) ∈ ∂PQT}

and 0 within r/2 distance from the boundary ∂PQT . Compute (φuεt)t − Lε(φuεt):

(φuεt)t − Lε(φuεt)
=(φt + Lεφ)uε + φ(uεtt + Lεuεt)− 2aεijφxiuxjt

=(φt + Lεφ)uε + φ(−Lεtuε − β′ε(uε −Ψε)(uεt −Ψε
t))− 2aεijφxiuxjt

=(φt + Lεφ)uε + φ(−Lεtuε − β′ε(uε −Ψε)(uεt −Ψε
t))− 2(aεijφxiut)xj + 2(aεijφ)xjut

The following classical result is useful here. (See [32] Theorem 6.15 and Corollary 6.16.)

Theorem 5. Suppose aij, bi ∈ L∞(QT ), (aij) uniformly elliptic, h1, h
i
2 ∈ Lp(QT ) for p >

n+ 2, there exists a solution u to the following PDE:{
ut − aijuxixj + biuxi = h1 + (hi2)xi in QT

u = 0 on ∂PQT

with the following bound:

‖u‖L∞(QT ) ≤ C(‖h1‖Lp/2 + ‖h2‖Lp)
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In order to apply the above Lemma to φuεt, we need to show that β′(uε−Ψε) is bounded,
independently of ε. Recall that |βε(uε −Ψε)| ≤ C, and since for x ≥ 0, β′(x) ≥ β′(0) = 1/ε,
so when uε > Ψε,

1

ε
(uε −Ψε) ≤ βε(u

ε −Ψε) ≤ C

And we know that β′ε(x) ≤ x/ε for x ≥ 0,

β′ε(u
ε −Ψε) ≤ (uε −Ψε)+

ε
≤ C

The lower bound on β′ is clear, so β′(uε −Ψε) is bounded independently of ε.
We arrive the following conclusion:

Lemma 13. ut is bounded in Q′T independently of ε

Back to the solution to (4.5). Differentiate both sides against direction η ∈ Rn with
|η| = 1, we get

uεtηη + Lεuεηη + β′′ε (uε −Ψε)(uεη −Ψε
η)

2 + β′ε(u
ε −Ψε)(uεηη −Ψε

ηη)

=(aεij)ηηu
ε
xixj

+ 2(aεij)ηu
ε
xixjη

− (bεi)ηηu
ε
xi
− 2(bεi)ηu

ε
xiη

=(aεij)ηηu
ε
xixj

+ 2
(

(aεij)ηu
ε
xjη

)
xi
− 2(aεij)ηxiu

ε
xjη
− (bεi)ηηu

ε
xi
− 2(bεi)ηu

ε
xiη

Note that the right hand side can be written as hε1 +(hε,i2 )xi , in which for every Q′T ⊂ QT ,
with a positive distance away from the parabolic boundary, ‖hε1‖Lp(Q′T ) ≤ C, ‖hε,i2 ‖Lp(Q′T ) ≤ C
for some C independent of ε.

Fix r > 0, and let φ be a cutoff function that is = 1 on Q′T , which is defined as:

Q′T = {(x, t) ∈ QT : (|x− y|2 + |t− s|) > r, for all (y, s) ∈ ∂PQT}

and 0 within r/2 distance from the boundary ∂PQT . Compute (φuεηη)t − Lε(φuεηη):

(φuεηη)t + Lε(φuεηη)

=(φt + Lεφ)uεηη + φ(uεηηt + Lεuεηη)− 2(aεij)xiu
ε
xjη

=(φt + Lεφ)uεηη − 2(aεij)xiu
ε
xjη

+ φ
(
hε1 + (hε,i2 )xi − β′′ε (uε −Ψε)(uεη −Ψε

η)
2 − β′ε(uε −Ψε)(uεηη −Ψε

ηη)
)

=(φt + Lεφ)uεηη − 2(aεij)xiu
ε
xjη

+ φhε1 + (φhε,i2 )xi − φxih
ε,i
2

− φβ′′ε (uε −Ψε)(uεη −Ψε
η)

2 − φβ′ε(uε −Ψε)(uεηη −Ψε
ηη)

The right hand side, excluding βε terms, can now as before, written as h̃ε1 + (h̃ε,i2 )xi , in
which ‖h̃ε1‖Lp(QT ) ≤ C, ‖h̃ε,i2 ‖Lp(QT ) ≤ C for some C independent of ε. Note that φuεηη = 0
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on ∂PQT . We can apply Theorem 5 again and obtain bounded solution vε for the respective
ε. We find that wε = φuεηη − vε solves the following equation:{

wεt + Lεwε + φβ′′ε (uε −Ψε)(uεη −Ψε
η)

2 + φβ′ε(u
ε −Ψε)(uεηη −Ψε

ηη) = 0 in QT

wε = 0 on ∂PQT

We know that |vε| ≤ C independent of ε. Now we will try to bound wε.

Lemma 14. wε, defined as above, is bounded above, independently of ε. And thus, uηη is
bounded above on Q′T .

Proof. Suppose wε has a maximum at (x0, t0) ∈ QT , then (wεt + Lεwε)(x0, t0) ≥ 0, thus

φβ′ε(u
ε −Ψε)(uεηη −Ψε

ηη) ≤ 0

If φ(x0, t0) = 0, then wε(x0, t0) = −vε(x0, t0), which is bounded. On the other hand if
φ(x0, t0) > 0, then since β′(x) > 0, we get uεηη(x0, t0) ≤ Ψε

ηη(x0, t0). Then wε(x0, t0) =
φ(x0, t0)uεηη(x0, t0)−vε(x0, t0) ≤ Ψε

ηη(x0, t0)−vε(x0, t0). The initial assumption that Ψ being
semiconcave gives us a bound on Ψε

ηη independent of ε. Either way wε is bounded above
independently of ε. So now we have a uniform upper bound on uεηη = wε + vε in Q′T .

Now, for each (x0, t0) ∈ Q′T , we can find a new coordinate system with orthogonal
transofrmation such that aεij(x0, t0)uxixj = λiuyiyi with λi bounded above and below away
from 0, independent of (x0, t0) and ε. Then, we have

|λiuεyiyi(x0, t0)| ≤ |uεt(x0, t0)|+ |βε(uε(x0, t0)−Ψε(x0, t0))| ≤ C

in which C is independent of ε. For uεy1y1 , we have

−C ≤ λ1uεy1y1 +
∑
i 6=1

λiuyiyi ≤ C

λ1uεy1y1 ≥ −C −
∑
i 6=1

λiuyiyi ≥ −C ′

Proceed similarly for other components, we get uεyiyi being bounded uniformly in ε and
(x0, t0) ∈ Q′T . Since mixed second derivative can be written as a linear combination of the
pure second derivatives against a basis, we get the conclusion:

Lemma 15.

‖uεt‖ ≤ C

‖D2uε‖ ≤ C

in Q′T , for C not depending on ε.

Therefore, we have

Theorem 6. With additional assumption 10 and assuming there is no jump term ρ = 0, the
value function V (x, t) is in W 2,p

loc (Rn × (0, T )) for any 2 ≤ p < ∞. In particular, for each
t ∈ [0, T ), V (·, t) ∈ C1,γ

loc (Rn) for any 0 < γ < 1.
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4.4 Regularity for value function of first-order jump

diffusion

Careful checking of our analysis for the case without jumps in Section 4.2 reveals that we
could relax our assumption on f to be bounded instead of Hölder continuous, and take f ε

to be Hölder continuous and converge to f in L∞. This observation is key for the regularity
with jumps.

To proceed, we will add two new assumptions in this subsection.

Assumption 11. The operator I[φ] is of order-δ, i.e, for (x, t) in any compact subset of
Rn × [0, T ], there exists C such that∫

|z|<1

|z|δM(x, t, dz) < C <∞.

Remark. Since δ ∈ (0, 1], this implies that
∫
|z|<1
|z|M(x, t, dz) < C.

Assumption 12. The measure M(x, t, dz) is continuous with respect to the weighted total
variation, i.e., for (xn, tn)→ (x0, t0),∫ (

|z|γ + |z|δ
)
|M(xn, tn, dz)−M(x0, t0, dz)| → 0.

Proposition 4. With additional assumptions 11 and 12, there exists a unique u ∈ W (2,1),p(QT )
viscosity solution of the following equations,{

max{−ut + Lu− f − Iu, u−MV } = 0 in QT ,
u = V (x, T − t) on ∂PQT ,

(4.7)

in the following sense. For any φ ∈ C2(Rn × [0, T ]),

1. If u− φ achieves a local maximum at (x0, t0) ∈ QT , then

max{−φt + Lφ− f − I0[V ], u−MV }(x0, t0) ≤ 0;

2. If u− φ achieves a local minimum at (x0, t0) ∈ QT , then

max{−φt + Lφ− f − I0[V ], u−MV }(x0, t0) ≥ 0.

Here

I0[V ](x, t) =

∫
V (x+ z, t)− V (x, t)−Dφ(x, t) · z1|z|<1ρ(dz),

with the boundary condition u = g on Rn × {t = T}.
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Proof. Let bi = bi −
∫
ziM(x, t, dz) and f =

∫
u(x + z, t) − u(x, t)M(x, t, dz). It suffices to

show that bi and f are bounded. In fact we will show that they are continuous.

Step 1, f is continuous:
Let xn → x0, then∣∣∣∣∫ V (xn + z, t)− V (xn, t)M(xn, t, dz)−

∫
V (x0 + z, t)− V (x0, t)M(x0, t, dz)

∣∣∣∣
≤
∣∣∣∣∫ (V (xn + z, t)− V (xn, t)) (M(xn, t, dz)−M(x0, t, dz))

∣∣∣∣
+

∣∣∣∣∫ (V (xn + z, t)− V (xn, t))− (V (x0 + z, t)− V (x0, t))M(x0, t, dz)

∣∣∣∣ .
For the first term,∣∣∣∣∫ (V (xn + z, t)− V (xn, t)) (M(xn, t, dz)−M(x0, t, dz))

∣∣∣∣
≤C

∫
(1 + |xn|γ + |z|γ) |z|δ|M(xn, t, dz)−M(x0, t, dz)|

≤C
∫
|z|γ + |z|δ|M(xn, t, dz)−M(x0, t, dz)| → 0.

For the second term, the integrand → 0 as n → ∞. So by the dominated convergence
theorem, ∣∣∣∣∫ (V (xn + z, t)− V (xn, t))− (V (x0 + z, t)− V (x0, t))M(x0, t, dz)

∣∣∣∣
≤
∫
C(1 + |xn|γ + |z|γ)|z|δ + C(1 + |x0|γ + |z|γ)|z|δM(x0, t, dz)

≤C
∫
|z|γ + |z|δM(x0, t, dz) <∞.

Therefore f is continuous in x. Now let tn → t0,∣∣∣∣∫ V (x+ z, tn)− V (x, tn)M(x, tn, dz)−
∫
V (x+ z, t0)− V (x, t0)M(x, t0, dz)

∣∣∣∣
≤
∣∣∣∣∫ (V (x+ z, tn)− V (x, tn)) (M(x, tn, dz)−M(x, t0, dz))

∣∣∣∣
+

∣∣∣∣∫ (V (x+ z, tn)− V (x, tn))− (V (x+ z, t0)− V (x, t0))M(x0, t, dz)

∣∣∣∣ .
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For the first term,∣∣∣∣∫ (V (x+ z, tn)− V (x, tn)) (M(x, tn, dz)−M(x, t0, dz))

∣∣∣∣
≤
∫
C(1 + |x|γ + |z|γ)|z|δ |M(x, tn, dz)−M(x, t0, dz)|

≤C
∫
|z|γ + |z|δ |M(x, tn, dz)−M(x, t0, dz)| → 0,

as tn → t0. For the second term, the dominated convergence theorem implies∣∣∣∣∫ (V (x+ z, tn)− V (x, tn))− (V (x+ z, t0)− V (x, t0))M(x0, t, dz)

∣∣∣∣
≤
∫
C(1 + |x|γ + |z|γ)|z|δM(x, t0, dz) <∞.

Therefore f is continuous in t.

Step 2, bi is continuous:
This follows easily from Assumption 12. Let (xn, tn)→ (x0, t0),∣∣∣∣∫

|z|<1

z[M(xn, tn, dz)−M(x0, t0, dz)]

∣∣∣∣ ≤∫
|z|<1

|z||M(xn, tn, dz)−M(x0, t0, dz)|

≤
∫
|z|δ|M(xn, tn, dz)−M(x0, t0, dz)|,

which goes to 0 as n→∞.
Step 3, replace bi by bi = bi −

∫
ziM(x, t, dz) and f by f = f +

∫
u(x + z, t) −

u(x, t)M(x, t, dz), and follow the same line of reasoning in the proof for Proposition 3.

Notice, however, the “apparent” difference between the two types of viscosity solutions:
the one in the above proposition, and the one in Theorem 2. Therefore, we need to show
that the viscosity solution in Theorem 2 is also a viscosity solution of Eqn. (4.7). Then,
with the standard local uniqueness of HJB of equation (4.7), the regularity of value function
is obtained.

Theorem 7. V is also a solution of equation (4.7), with additional assumptions 11 and 12.

Proof. Suppose V − φ has a local minimum in B(x0, θ0)× [t0, t+ θ0). Then we know that

max{−φt + Lφ− f − I1
θ [φ]− I2

θ [V ], V −MV } ≤ 0

for any 0 < θ < θ0. And with the additional assumptions, I1
θ [φ] + I2

θ [V ] → I0[V ] as θ → 0.
Therefore we have

max{−φt + Lφ− f − I0[V ], V −MV } ≤ 0

The other inequalities can be derived similarly.
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In summary,

Theorem 8. (Regularity of the Value Function and Uniqueness) With additional assump-

tions 11 and 12, the value function V (x, t) is a unique W
(2,1),p
loc (Rn× (0, T )) viscosity solution

to the (HJB) equation with 2 ≤ p <∞. In particular, for each t ∈ [0, T ), V (·, t) ∈ C1,γ
loc (Rn)

for any 0 < γ < 1.
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Chapter 5

Optimal stopping for second order
jump diffusions

5.1 Integro-differential equations

Let M(x, dz) be the Levy measure on Rn \ {0}, such that∫
|z|>0

(|z|2 ∧ 1)M(x; dz)

is bounded in x ∈ Rn, and for each Γ ∈ B(Rn \ {0}),∫
Γ

(|z|2 ∧ 1)M(x; dz)

is uniformly continuous for x ∈ Ω. (These are the set of conditions imposed to ensure the
existence of weak solution to the jump diffusion).

We would like to solve the equation{
Lu− Iu = f in Ω
u = g on Ωc

in which Lu = −aijuxixj + biuxi + cu, and

Iu(x) =

∫
0<|z|

u(x+ z)− u(x)−Du(x) · z1|z|<1 M(x, dz)

First, we will break up Iu into three pieces: Let r = diam(Ω).

Iu(x) =

∫
|z|≥r

u(x+ z)− u(x)M(x; dz)−Du(x) ·
∫
r≤|z|<1

z M(x; dz)

+

∫
0<|z|<1

u(x+ z)− u(x)−Du(x) · z1|z|<1 M(x, dz)
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If r < 1, then we simply don’t have the second term. For the first term, x+ z lies outside
of Ω, thus we have∫

|z|≥r
ϕ(x+ z)M(x; dz)− u(x)

(∫
|z|≥r

M(x; dz)

)
−Du(x) ·

∫
r≤|z|<1

z M(x; dz)

∫
|z|≥rM(x; dz) and

∫
r≤|z|<1

zM(x; dz) are uniformly continuous in x, these two terms can be

absorbed into c and (bi) in the elliptic operator. For the problem to be well-defined, we need∫
|z|≥r g(x + z)M(x; dz) to be at least bounded. Thus we will need to impose extra growth

assumption on g and M to fix this. For the rest of the section, we will assume the following,

Assumption 13. M(x, dz) is supported on some ball B(0, r) \ {0}, and thus

Iu(x) =

∫
0<|z|<1

u(x+ z)− u(x)−Du(x) · z1|z|<1 M(x, dz)

+

∫
1≤|z|<r

u(x+ z)− u(x) M(x, dz)

=I1u(x) + I2u(x)

Notation 2.

dx =d(x, ∂Ω) = inf{|x− y| : y ∈ ∂Ω}
dx,y = min{d(x, ∂Ω), d(y, ∂Ω)}
Ωδ ={y ∈ Ω : d(y, ∂Ω) ≥ δ}
ΩI ={x+ suppM(x, dz) : x ∈ Ω} = {x ∈ Rn : d(x,Ω) ≤ r}

[u]α;Ω = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|α

|u|0;Ω = sup
x∈Ω
|u(x)|

|u|α;Ω =|u|0;Ω + [u]α;Ω

|u|(β)
0;Ω = sup

x∈Ω
dβx|u(x)|

[u]
(β)
0;Ω = sup

x∈Ω
dβ+α
x,y

|u(x)− u(y)|
|x− y|α

|u|(β)
α;Ω =|u|(β)

0;Ω + [u]
(β)
0;Ω

|u|(β)
k+α;Ω =

k∑
j=0

|Dku|(β+k)
α;Ω
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5.2 C2+α Theory

We need to make the following assumption:

Assumption 14. 1. For δ > 0, let

K1(δ) = sup
x∈Ω

∫
0<|z|<δ

|z|2 ∧ 1M(x; dz)

Then K1(δ) is finite for each δ > 0, and K1(δ)→ 0 as δ → 0. Let K1 denote K1(r).

2. For δ > 0,

K2(δ) = sup
x,y∈Ω

∫
0<|z|<δ |z|

2 ∧ 1|M(x; dz)−M(y; dz)|
|x− y|α

Then K2(δ) is finite for each δ > 0, and K2(δ)→ 0 as δ → 0. Let K2 denote K2(r).
In other words, M is Holder continuous uniformly in Ω, and as we reduce the integration

radius δ, we can make this Holder constant as small as we want.

Lemma 16. Under the Assumption 13 and 14, let ϕ ∈ C2+α(ΩI), then Iϕ ∈ Cα(Ω), and
for ε > 0, we have the following estimates:

|Iϕ|0;Ω ≤ ε|D2ϕ|0;ΩI + C(|ϕ|0;ΩI + |Dϕ|0;ΩI )

[Iϕ]α;Ω ≤ ε[D2ϕ]α;ΩI + C([ϕ]α;ΩI + [Dϕ]α;ΩI )

and combined together, with interpolation inequality,

|Iϕ|α;Ω ≤ ε|D2ϕ|α;ΩI + C(|ϕ|α;ΩI )

for C = C(ε,K1, K2).

Proof. Let 0 < δ < 1.

Iϕ(x) =

∫ 1

0

(1− s)
∫

0<|z|<δ
zT ·D2ϕ(x+ sz) · z M(x; dz)ds

+

∫
|z|≥δ

ϕ(x+ z)− ϕ(x)− z ·Dϕ(x)1|z|<1M(x; dz)ds

Thus for δ small enough,

|Iϕ|0;Ω ≤ ε|D2ϕ|0;ΩI + C(|Dϕ|0;ΩI + |ϕ|0;ΩI )
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On the other hand,

|Iϕ(x)− Iϕ(y)|

≤
∣∣∣∣∫ 1

0

(1− s)
∫

0<|z|<δ
zT · (D2ϕ(x+ sz)−D2ϕ(y + sz)) · z M(x; dz)ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

(1− s)
∫

0<|z|<δ
zT ·D2ϕ(y + sz) · z (M(x; dz)−M(y; dz)ds

∣∣∣∣
+

∣∣∣∣∫
|z|≥δ

(ϕ(x+ z)− ϕ(y + z))− (ϕ(x)− ϕ(y))− z · (Dϕ(x)−Dϕ(y))1|z|<1M(x; dz)ds

∣∣∣∣
+

∣∣∣∣∫
|z|≥δ

(ϕ(y + z)− ϕ(y)− z ·Dϕ(y)1|z|<1) (M(x; dz)−M(y; dz))ds

∣∣∣∣
≤K1(δ)[D2ϕ]α;ΩI +K2(δ)|D2ϕ|0;ΩI

+ 2[ϕ]α;ΩI

∫
|z|≥δ

|z|2

δ2
M(x; dz) + [Dϕ]α;ΩI

∫
|z|≥δ

|z|2

δ
M(x; dz)

+

∫
|z|≥δ

(
2|ϕ|0;ΩI

|z|2

δ2
+ |z||Dϕ|0;ΩI

|z|
δ

)
|M(x; dz)−M(y; dz)|

≤
[
(K1(δ) +K2(δ))[D2ϕ]α;ΩI + C([ϕ]α;ΩI + [Dϕ]α;ΩI )

]
|x− y|α

By choosing δ sufficiently small, we get the desired result.

Lemma 17. Under the Assumption 13 and 14, and assume ∂Ω ∈ C2+α, if ϕ ∈ C2+α(Ω) ∩
Cα(ΩI), then for ε > 0, there exists C = C(ε,K1, K2) such that

|Iϕ|(2−α)
α;Ω ≤ ε|D2ϕ|α;Ω + C(|ϕ|α;ΩI\Ω + |Dϕ|α;Ω)

Proof. Given ϕ ∈ C2+α(Ω) ∩ Cα(ΩI), we first extends ϕ to ΩI such that the extension ϕ̃
is in C2+α(ΩI) with ‖ϕ̃‖C2+α(ΩI) ≤ C‖ϕ‖C2+α(Ω). So we need to estimate I(ϕ − ϕ̃) to get

the conclusion. Thus, let ϕ′ = ϕ − ϕ̃, we know that ϕ′ = 0 in Ω, and ϕ′ ∈ Cα(ΩI), with
|ϕ′|α;ΩI ≤ C|ϕ|α;Ω.

Step 1. For any x ∈ Ω such that d(x, ∂Ω) < 1,

Iϕ′(x) =

∫
x+z /∈Ω

ϕ′(x+ z)M(x, dz)

=

∫
x+z /∈Ω

ϕ′(x+ z)− ϕ′(x+ t(x, z)z)M(x, dz)
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in which t(x, z) = inf{t ≥ 0 : x+ tz ∈ Ω}.

|Iϕ′(x)| ≤[ϕ′]α;ΩI

∫
x+z /∈Ω

|z − t(x, z)z|αM(x, dz)

≤[ϕ′]α;ΩI

∫
|z|>d(x,∂Ω)

|z|αM(x, dz)

≤[ϕ′]α;ΩI

1

d(x, ∂Ω)2−α

∫
|z|2M(x, dz)

≤C[ϕ′]α;ΩI

1

d(x, ∂Ω)2−α

Step 2. Let x, y ∈ Ω. Denote dx,y = min{d(x, ∂Ω), d(y, ∂Ω)}.

|Iϕ′(x)− Iϕ′(y)| ≤

∣∣∣∣∣
∫
|z|>dx,y

ϕ′(x+ z)(M(x, dz)−M(y, dz))

∣∣∣∣∣
+

∫
|z|>dx,y

|ϕ′(x+ z)− ϕ′(y + z)|M(x, dz)

≤|ϕ′|0;ΩI

∫
dx,y<|z|

|z|2

d2
x,y

|M(x, dz)−M(y, dz)|

+

∫
|z|>dx,y

|x− y|α[ϕ′]α;ΩI

|z|2

d2
x,y

M(x, dz)

≤|ϕ
′|0;ΩI + [ϕ′]α;ΩI

d2
x,y

|x− y|α

Combine these pieces, we have

|Iϕ|(2−α)
α;Ω ≤|Iϕ̃|(2−α)

α;Ω + |Iϕ′|(2−α)
α;Ω

≤C|Iϕ̃|α;Ω + C|ϕ′|α;ΩI

≤ε|D2ϕ̃|α;ΩI + C|ϕ̃|α;ΩI + C|ϕ′|α;ΩI

≤ε|D2ϕ|α;ΩI + C|ϕ|α;ΩI

Notation 3. Let ϕ ∈ C0(ΩI \ Ω), define the operator Iϕ : {u ∈ C2(Ω) : u = ϕ on ∂Ω} →
C(Ω) by defining the extension

ū =

{
u x ∈ Ω
ϕ x ∈ ΩI \ Ω

and define Iϕu = Iū. If ϕ = 0, we simply write I0u = Iϕu.
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We can derive more delicate estimates in the case when u = 0 on ∂Ω:
First we need an interpolation inequality:

Lemma 18. Let ϕ ∈ C2(Ω), let α ∈ (0, 1],

|Dϕ|(1−α)
0;Ω ≤ C[ϕ]α;Ω + ε|D2ϕ|(2−α)

0;Ω

Proof. Fix x ∈ Ω, and let d = µdx = d(x, ∂Ω), for µ ∈ (0, 1). Let x′ and x′′ be the two
endpoints of the segment of length 2d parallel to the xi-axis, with x being the center of the
segment. By the mean value theorem, there exists x̄ on the line segment such that

|ϕxi(x̄)| = |ϕ(x′)− ϕ(x′′)|
2d

≤ [ϕ]α;Ω(2d)α

2d
=

[ϕ]α;Ω

21−αd1−α

Thus

|uxi(x)| =
∣∣∣∣uxi(x̄) +

∫ 1

0

Duxi(x̄+ s(x− x̄)) · (x− x̄)ds

∣∣∣∣
≤|uxi(x̄)|+ d|D2u|0;Ω(1−µ)dx

≤ [ϕ]α;Ω

21−αd1−α + d
|D2u|(2−α)

0;Ω

(1− µ)2−αd2−α
x

≤ [ϕ]α;Ω

21−αµ1−αd1−α
x

+
µ

(1− µ)2−α

|D2u|(2−α)
0;Ω

d1−α
x

Thus, for µ sufficiently small,

d1−α
x |ϕxi(x)| ≤ ε|D2ϕ|(2−α)

0;Ω + C[ϕ]α;Ω

Take supremum over x and sum over i, we get the desired inequality.

Lemma 19. If ϕ ∈ C2+α,(−α)(Ω), then I0ϕ ∈ Cα,(2−α)(Ω) and for each ε > 0, there exists
C = C(ε,K1, K2) such that

|Iϕ|(2−α)
α;Ω ≤ ε|D2ϕ|(2−α)

α;Ω + C[ϕ]α;Ω

and since [ϕ]α;Ω = [ϕ]
(−α)
α;Ω , we can use interpolation to get

|Iϕ|(2−α)
α;Ω ≤ ε|ϕ|(−α)

2+α;Ω + C|ϕ|(−α)
0;Ω

Proof. Step 1. Given x ∈ Ω, fix µ ∈ (0, 1), and let d = µdx = d(x, ∂Ω), for µ ∈ (0, 1). Let
d′ = dx − µdx = (1− µ)dx.
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|Iϕ(x)| ≤
∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(x+ sz)z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(x)M(x; dz)

∣∣∣∣+

∣∣∣∣∫
|z|≥d

z ·Dϕ(x)M(x; dz)

∣∣∣∣
≤K1(d)|D2ϕ|0;Ωd′

+ [ϕ]α;Ω

∫
|z|≥d
|z|αM(x; dz) + |Dϕ|0;Ωdx

∫
|z|≥d
|z|M(x; dz)

≤K1(d)
|D2ϕ|(2−α)

0;Ω

d′2−α
+ [ϕ]α;Ω

∫
|z|≥d

|z|2

d2−αM(x; dz) +
|Dϕ|(1−α)

0;Ω

d1−α
x

∫
|z|≥d

|z|2

d
M(x; dz)

≤K1(µ · diam(Ω))
|D2ϕ|(2−α)

0;Ω

(1− µ)2−αd2−α
x

+K1
[ϕ]α;Ω

µ2−αd2−α
x

+K1

|Dϕ|(1−α)
0;Ω

µd2−α
x

Pick µ small enough such that K1(µ · diam(Ω)) ≤ ε, and by the interpolation inequality
Lemma 18, we get

|Iϕ|(2−α)
0;Ω ≤ ε|D2ϕ|(2−α)

0;Ω + C[ϕ]α;Ω

in which C = C(ε,K1,Ω).
Step 2. Fix x, y ∈ Ω. Let dx,y = min{d(x, ∂Ω), d(y, ∂Ω)}, and d = µdx,y for µ ∈ (0, 1),

d′ = (1− µ)dx,y.

|Iϕ(x)− Iϕ(y)| ≤
∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zT (D2ϕ(x+ sz)−D2ϕ(y + sz))z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(y + sz)z ds (M(x; dz)−M(y; dz))

∣∣∣∣ (5.1)

+

∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(y + z)− ϕ(x) + ϕ(y)M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

(ϕ(y + z)− ϕ(y))(M(x; dz)−M(y; dz))

∣∣∣∣ (5.2)

+

∣∣∣∣∫
|z|≥d

z · (Dϕ(x)−Dϕ(y))M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

z ·Dϕ(y)(M(x; dz)−M(y; dz))

∣∣∣∣ (5.3)

We will break up these six terms into three groups.

Part a). Bound the first two terms (5.1).
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∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zT (D2ϕ(x+ sz)−D2ϕ(y + sz))z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(y + sz)z ds (M(x; dz)−M(y; dz))

∣∣∣∣
≤K1(d)[D2ϕ]α;Ωd′

|x− y|α

+ |D2ϕ|0;Ωd′

∫
|z|<d
|z|2|M(x; dz)−M(y; dz)|

≤K1(d)
[D2ϕ]

(2−α)
α;Ω

d′2
|x− y|α

+K2(d)
|D2ϕ|(2−α)

0;Ω

d′2−α
|x− y|α · diam(Ω)α

dαx,y

Part b). Bound the second two terms (5.2).

∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(y + z)− ϕ(x) + ϕ(y)M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

(ϕ(y + z)− ϕ(y))(M(x; dz)−M(y; dz))

∣∣∣∣
≤2

[ϕ]α;Ω|x− y|α

d2

∫
|z|≥d
|z|2M(x; dz)

+ [ϕ]α;Ω

∫
|z|≥d
|z|α |z|

2−α

d2−α |M(x; dz)−M(y; dz)|

≤2K1

d2
[ϕ]α;Ω|x− y|α

+
K2

d2−α [ϕ]α;Ω|x− y|α ·
diam(Ω)α

dαx,y

Part c). Bound the last two terms (5.3).
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∣∣∣∣∫
|z|≥d

z · (Dϕ(x)−Dϕ(y))M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

z ·Dϕ(y)(M(x; dz)−M(y; dz))

∣∣∣∣
≤[Dϕ]α;Ωdx,y

∫
|z|≥d

|z|2

d
M(x; dz)|x− y|α

+ |Dϕ|0;Ωdx,y

∫
|z|≥d

|z|2

d
|M(x; dz)−M(y; dz)|

≤ K1

µd2
x,y

[Dϕ]
(1−α)
α;Ω |x− y|α

+
K2

µd2
x,y

|Dϕ|(1−α)
0;Ω |x− y|α · diam(Ω)α

By interpolation, we know that [Dϕ]
(1−α)
α;Ω ≤ ε|D2ϕ|(2−α)

0;Ω + C|Dϕ|(1−α)
0;Ω , and by Lemma

18, |Dϕ|(1−α)
0;Ω ≤ C[ϕ]α;Ω + ε|D2ϕ|(2−α)

0;Ω , thus, by picking µ small enough, we can get

[Iϕ]
(2−α)
α;Ω ≤ ε|D2ϕ|(2−α)

α;Ω + C[ϕ]α;Ω

Lemma 20. If ϕ ∈ C2+α,(0)(Ω) ∩ Cα(ΩI), then Iϕ ∈ Cα,(2)(Ω), and for each ε > 0, there
exists C = C(ε,K1, K2) such that

|Iϕ|(2)
α;Ω ≤ ε|D2ϕ|(2)

α;Ω + C|ϕ|0;Ω + C[ϕ]α;ΩI

and thus,

|Iϕ|(2)
α;Ω ≤ ε|ϕ|(0)

2+α;Ω + C|ϕ|0;Ω + C[ϕ]α;ΩI

Proof. Step 1. Given x ∈ Ω, fix µ ∈ (0, 1), and let d = µdx = d(x, ∂Ω), for µ ∈ (0, 1). Let
d′ = dx − µdx = (1− µ)dx.
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|Iϕ(x)| ≤
∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(x+ sz)z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(x)M(x; dz)

∣∣∣∣+

∣∣∣∣∫
|z|≥d

z ·Dϕ(x)M(x; dz)

∣∣∣∣
≤K1(d)|D2ϕ|0;Ωd′

+ 2|ϕ|0;ΩI

∫
|z|≥d

M(x; dz) + |Dϕ|0;Ωdx

∫
|z|≥d
|z|M(x; dz)

≤K1(d)
|D2ϕ|(2)

0;Ω

d′2
+ 2|ϕ|0;ΩI

∫
|z|≥d

|z|2

d2
M(x; dz) +

|Dϕ|(1)
0;Ω

dx

∫
|z|≥d

|z|2

d
M(x; dz)

≤K1(µdx)
|D2ϕ|(2)

0;Ω

(1− µ)2d2
x

+ 2K1
|ϕ|0;ΩI

µ2d2
x

+K1

|Dϕ|(1)
0;Ω

µd2
x

And by the interpolation inequality |Dϕ|(1)
0;Ω ≤ ε|D2ϕ|(2)

0;Ω +C|ϕ|0;Ω for C depending on ε, we
get

≤2K1(µdx)
|D2ϕ|(2)

0;Ω

(1− µ)2d2
x

+ (2K1 + C)
|ϕ|0;ΩI

µ2d2
x

Take supremum over x, we get

|ϕ|(2)
0;Ω ≤

K1(µ · diam(Ω))

(1− µ)2
|D2ϕ|(2)

0;Ω +
2K1 + C

µ2
|ϕ|0;ΩI

By picking µ small enough so that K1(µ · diam(Ω)) ≤ ε, we get

|Iϕ|(2)
0;Ω ≤ ε|D2ϕ|(2)

0;Ω + C|ϕ|0;ΩI

in which C = C(ε,K1,Ω).
Step 2. Fix x, y ∈ Ω. Let dx,y = min{d(x, ∂Ω), d(y, ∂Ω)}, and d = µdx,y for µ ∈ (0, 1),
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d′ = (1− µ)dx,y.

|Iϕ(x)− Iϕ(y)| ≤
∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zT (D2ϕ(x+ sz)−D2ϕ(y + sz))z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(y + sz)z ds (M(x; dz)−M(y; dz))

∣∣∣∣ (5.4)

+

∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(y + z)− ϕ(x) + ϕ(y)M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

(ϕ(y + z)− ϕ(y))(M(x; dz)−M(y; dz))

∣∣∣∣ (5.5)

+

∣∣∣∣∫
|z|≥d

z · (Dϕ(x)−Dϕ(y))M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

z ·Dϕ(y)(M(x; dz)−M(y; dz))

∣∣∣∣ (5.6)

Part a) Bound (5.4).

∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zT (D2ϕ(x+ sz)−D2ϕ(y + sz))z dsM(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|<d

∫ 1

0

(1− s)zTD2ϕ(y + sz)z ds (M(x; dz)−M(y; dz))

∣∣∣∣
≤K1(d)[D2ϕ]α;Ωd′

|x− y|α

+ |D2ϕ|0;Ωd′

∫
|z|<d
|z|2|M(x; dz)−M(y; dz)|

≤K1(d)
[D2ϕ]

(2)
α;Ω

d′2+α
|x− y|α

+K2(d)
|D2ϕ|(2)

0;Ω

d′2
|x− y|α · diam(Ω)α

dαx,y

≤K1(diam(Ω)dx,y)
[D2ϕ]

(2)
α;Ω

(1− µ)2+αd2+α
x,y

|x− y|α

+K2(diam(Ω)dx,y) · diam(Ω)α
|D2ϕ|(2)

0;Ω

(1− µ)2d2+α
x,y

|x− y|α

Part b) Bound (5.5).
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∣∣∣∣∫
|z|≥d

ϕ(x+ z)− ϕ(y + z)− ϕ(x) + ϕ(y)M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

(ϕ(y + z)− ϕ(y))(M(x; dz)−M(y; dz))

∣∣∣∣
≤2[ϕ]α;ΩI |x− y|α

∫
|z|≥d

|z|2

d2
M(x; dz)

+ 2|ϕ|0;ΩI

∫
|z|≥d

|z|2

d2
|M(x; dz)−M(y; dz)|

≤2K1

d2
[ϕ]α;ΩI |x− y|α ·

diam(Ω)α

dαx,y

+
2K2

d2
|ϕ|0;ΩI |x− y|α ·

diam(Ω)α

dαx,y

≤2K1 · diam(Ω)α

µ2d2+α
x,y

[ϕ]α;ΩI |x− y|α

+
2K2 · diam(Ω)α

µ2d2+α
x,y

|ϕ|0;ΩI |x− y|α

Part c) Bound (5.6). ∣∣∣∣∫
|z|≥d

z · (Dϕ(x)−Dϕ(y))M(x; dz)

∣∣∣∣
+

∣∣∣∣∫
|z|≥d

z ·Dϕ(y)(M(x; dz)−M(y; dz))

∣∣∣∣
≤[Dϕ]α;Ωd |x− y|α

∫
|z|≥d

|z|2

d
M(x; dz)

+ |Dϕ|0;Ωd

∫
|z|≥d

|z|2

d
|M(x; dz)−M(y; dz)|

≤K1

d

[Dϕ]
(1)
α;Ω

d1+α
|x− y|α

+
|Dϕ|(1)

0;Ω

d

K2

d
|x− y|α · diam(Ω)α

dαx,y

≤K1

[Dϕ]
(1)
α;Ω

µ2+αd2+α
x,y

|x− y|α

+K2 · diam(Ω)α
|Dϕ|(1)

0;Ω

µ2d2+α
x,y

|x− y|α
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By picking a sufficiently small µ, and by the interpolation inequality |Dϕ|(1)
α;Ω ≤ ε|D2ϕ|(2)

α;Ω+
C|ϕ|0;ΩI , we get

[Iϕ]
(2)
α;Ω ≤ ε|D2ϕ|(2)

α;Ω + C|ϕ|0;ΩI + C[ϕ]α;ΩI

Now we proceeds to the existence of the solution to the integro-differential equation:

Assumption 15. Let aij, bi, c be functions defined on Ω such that

1.

|aij|α;Ω, |bi|α;Ω, |c|α;Ω ≤ Λ

2.

aijξiξj ≥ λ|ξ|2

3.

c ≥ 0

Lemma 21. Under the Assumption 13, 14, and 15, suppose Ω = B = B(x0, R), f ∈
Cα,(2−β)(B), and u ∈ C0(B) ∩ C2(B) solves the following equation{

Lu− I0u = f in B
u = 0 on BI \B

Then for any β ∈ (0, 1),

|u|(−β)
0;B ≤ C|f |(2−β)

0;B

for some C = C(β, n,R, λ,Λ).

Proof. The proof is a direct extension of Lemma 6.21 in Gilbarg & Trudinger’s. Without
loss of generality, assume that x0 = 0. Let w1 = (R2 − |x|2)β. We know that

Lw1 ≥(R2 − |x|2)β−2
[
4β(1− β)λ|x|2 + 2β(nλ− b(x) · x)(R2 − |x|2)

]
≥β(R2 − |x|2)β−2

[
4(1− β)λ|x|2 + 2(nλ−

√
nΛ|x|)(R2 − |x|2)

]
For some R0, 0 ≤ R0 < R, the expression in the brackets is positive if R0 ≤ |x| ≤ R. Thus,
there exists c1 and c2, depending on β, n,R, λ,Λ such that

Lw1(x) ≥
{
c1(R− |x|)β−2 if R0 ≤ |x| < R
−c2(R− |x|)β−2 if 0 ≤ |x| < R0
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On the other hand,

I0w1 =

∫ 1

0

∫
x+sz∈B

(1− s)zT ·D2w1(x+ sz) · z M(x; dz) ds

=

∫ 1

0

(1− s)
∫
x+sz∈B

β(R2 − |x|2)β−2
[
−4(1− β)zT (x+ sz)(x+ sz)T z

+(R2 − |x|2)(−2)|z|2
]
M(x; dz)ds

≤0

Now let w2 = eγR − eαx1 , for γ ≥ 1 + Λ/λ.

Lw2 =a11α2eαx1 − αeαx1b1 + c(eαR − eαx1)
≥λe−αR

Then

Lw2(x) ≥
{

0 if R0 ≤ |x| < R
c3(R− |x|)β−2 if 0 ≤ |x| < R0

where c3 = λe−αR(R−R0)2−β. For the integral part,

I0w2 = −
∫ 1

0

∫
x+sz∈B

z2
1α

2eαx1+sz1M(x; dz)ds ≤ 0

Let w = γ1w1 + γ2w2, for γ1 = 1/c1, and γ2 = (1 + c2/c1)/c3. We get

Lw − I0w ≥ (R− |x|)β−2

Thus applying the maximum principle on ±u− |f |(2−β)
0;Ω w(x), we get |u(x)| ≤ |f |(2−β)

0;Ω w(x).
Now for each x ∈ B, assume without loss of generality that it lie on the x1 axis. Then

we get the inequality

|u(x)| ≤ C|f |(2−β)
0;Ω (R− |x|)β = C|f |(2−β)

0;Ω d(x, ∂B)β

for C = C(β, n,R, λ,Λ).

Theorem 9. Under the Assumption 13, 14, 15, suppose Ω is an open ball given f ∈
Cα,(2−α)(Ω), then there exists a unique u ∈ C2+α,(−α)(Ω) such that{

Lu− I0u = f in Ω
u = 0 on ΩI \ Ω

and we have the following estimates

|u|(−α)
2+α;Ω ≤ C|f |(2−α)

α;Ω
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Proof. Define the operator A : C2+α,(−α)(Ω)→ C2+α,(−α)(Ω) such that, A[v] = u if and only
if {

Lu− I0v = f in Ω
u = 0 on ΩI \ Ω

The existence and uniqueness of u follows from Lemma 6.21 and Theorem 6.22 of Gilbarg
and Tridinger’s. And we have the estimates:

|u|(−α)
2+α;Ω ≤C(|f |(2−α)

α;Ω + |I0v|(2−α)
α;Ω )

≤C|f |(2−α)
α;Ω + Cε|v|(−α)

2+α;Ω + C|v|(−α)
0;Ω

Now we can apply the Schaefer’s Fixed Point Theorem to get the existence. Let A[v1] = u1

and A[v2] = u2. Then,

|u1 − u2|(−α)
2+α;Ω ≤C|I0(v1 − v2)|(2−α)

α;Ω ≤ ε|v1 − v2|(−α)
2+α;Ω + C|v1 − v2|(−α)

α;Ω

So A is continuous. Let K be a bounded set in C2+α,(−α)(Ω). Let v ∈ K, u = A[v],

|u|(−α)
2+α;Ω ≤C|f |

(2−α)
α;Ω + Cε|v|(−α)

2+α;Ω + C|v|(−α)
0;Ω

with the previous lemma, |v|(−α)
0;Ω ≤ C|f |(2−α)

0;Ω , so the right hand side is bounded on the set
K. By Arzela-Ascoli Theorem, the operator A is compact. Now suppose Lu = λI0u+ f for
λ ∈ [0, 1]. Then, as before,

|u|(−α)
2+α;Ω ≤C|f |

(2−α)
α;Ω + Cε|u|(−α)

2+α;Ω + C|u|(−α)
0;Ω

≤C|f |(2−α)
α;Ω + Cε|u|(−α)

2+α;Ω + C|f |(2−α)
0;Ω

Pick ε to be sufficiently small, we get

|u|(−α)
2+α;Ω ≤ C|f |(2−α)

α;Ω

This proves the existence, as well as uniqueness because of linearity and the estimate.

Theorem 10. Under the Assumption 13, 14, 15, suppose Ω is an open ball given f ∈
Cα(Ω). For each f ∈ Cα(Ω) and ϕ ∈ C2+α(∂Ω) ∩ Cα(ΩI \ Ω), There exists a unique
u ∈ C2+α

loc (Ω) ∩ C0(Ω) such that {
Lu− Iϕu = f in Ω
u = ϕ on ∂Ω

Moreover, we have the following bound:

|u|α;Ω + [D2u]
(2−α)
α;Ω ≤ C|f |α;Ω + C|ϕ|2+α;∂Ω + C|ϕ|α;Ω\Ω
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Proof. First, let u1 be the solution to{
Lu = f inΩ
u = ϕ on ∂Ω

We know that u1 ∈ C2+α(Ω) with the estimates

|u1|2+α;Ω ≤ C(|f |α;Ω + |ϕ|2+α;∂Ω)

Then we look for the solution to{
Lu− I0u = Iϕu1 in Ω
u = 0 on ∂Ω

in which I0u is to extend u to be 0 on ΩI \Ω and apply operator I to it. If we find a solution
to this, call it u2, then u = u1 + u2 solves the original problem. We know by the previous
analysis that,

|Iϕu1|(2−α)
α;Ω ≤ε|u1|α;Ω + C|ϕ|α;ΩI\Ω

≤C|f |α;Ω + C|ϕ|2+α;∂Ω + C|ϕ|α;Ω\Ω

Thus, the problem is reduced to, given f̃ ∈ Cα,(2−α)(Ω), we need to find solution u2 to the
problem {

Lu2 − I0u2 = f̃ in Ω
u2 = 0 on ∂Ω

Then the previous theorem gives us the existence, with the inequality:

|u2|(−α)
2+α;Ω ≤C|Iϕu1|(2−α)

α;Ω

≤C|f |α;Ω + C|ϕ|2+α;∂Ω + C|ϕ|α;Ω\Ω

Combine u1 and u2, and notice that |u2|α;Ω ≤ C|u2|(−α)
2+α;Ω, and [D2u1]

(2−α)
α;Ω ≤ C[D2u1]α;Ω, we

can obtain the inequality

|u|α;Ω + [D2u]
(2−α)
α;Ω ≤ C|f |α;Ω + C|ϕ|2+α;∂Ω + C|ϕ|α;Ω\Ω

The uniqueness follows from the linearity and maximum principle.

5.3 Regularity for variational inequality with

second-order non-local operator

Suppose Ω is an open ball. Given the obstacle Ψ such that ϕ ≤ Ψ on ∂Ω, we will prove a
regularity result for the following problem:
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{
max{Lu− Iu, u−Ψ} in Ω
u = ϕ in Ωc

Consider the approximation scheme

{
Luε − Iuε + βε(u

ε −Ψε) = f in Ω
uε = ϕ in Ωc

in which Ψε ∈ C∞(Ω) ∩ Cα(Ω) is a smooth approximation to Ψ ∈ Cα(Ω) with Ψε ≥ ϕ
on ∂Ω, βε : R → R is defined such that βε is smooth, 0 ≤ β′ε ≤ 1

ε
, βε ≥ −1, βε(0) = 0, and

as ε→ 0, βε → 0 on (−∞, 0], and →∞ on (0,∞).
Instead of solving this directly, we will instead decompose uε = u1 + uε2, in which

{
Lu1 − Iu1 = f in Ω
u1 = ϕ in Ωc

{
Luε2 − Iuε2 + βε(u

ε
2 − (Ψε − u1)) = 0 in Ω

uε2 = 0 in Ωc

Given the results from the previous section, we know that under the Assumption 13,
14, 15, if f ∈ Cα(Ω), ϕ ∈ C2+α(∂Ω) ∩ Cα(ΩI \ Ω), we can find a unique classical solution
uε1 ∈ C2+α(Ω) ∩ Cα(Ω). Now we need to show the existence of classical solution uε2:

Theorem 11. Under the Assumption 13, 14, 15, suppose Ψ̃ε ∈ C2+α(ΩI) such that Ψ̃ε ≥ 0

on ΩI \ Ω and Ψ̃ε is semi-concave, there exists uε2 ∈ C2+α,(−α)(Ω) such that{
Luε2 − Iuε2 + βε(u

ε
2 − Ψ̃ε) = 0 in Ω

uε2 = 0 in Ωc

Proof. Define the operator A : C2+α,(−α)(Ω)→ C2+α,(−α)(Ω), such that A[v] = u if and only
if {

Lu− Iu+ βε(v − Ψ̃ε) = 0 in Ω
u = 0 in Ωc

It is clear that v − Ψ̃ε ∈ Cα(Ω), so βε(v − Ψ̃ε) ∈ Cα(Ω), so u ∈ C2+α,(−α)(Ω) exists and is
unique.

First we show that A is continuous. Let A[v1] = u1, A[v2] = u2, then{
(L− I)(u2 − u1) +

(
βε(v2 − Ψ̃ε)− βε(v1 − Ψ̃ε)

)
= 0 in Ω

u2 − u1 = 0 in Ωc
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By Theorem 9, we know that

|u2 − u1|(−α)
2+α;Ω ≤C|βε(v2 − Ψ̃ε)− βε(v1 − Ψ̃ε)|(2−α)

α;Ω

≤C|β′ε|0|v2 − v1|(2−α)
α;Ω

≤C
′

ε
|v2 − v1|(−α)

2+α;Ω

in which C ′ depends on the diameter of Ω. This shows that the map A is continuous.
Next we need to show compactness:

|u|(−α)
2+α;Ω ≤C|βε(v − Ψ̃ε)|(2−α)

α;Ω

≤C|β′ε|0|v − Ψ̃ε|(2−α)
α;Ω

≤C
′

ε
(|v|(−α)

2+α;Ω + |Ψ̃ε|(−α)
2+α;Ω)

again C ′ depends on the diameter of Ω. Combine this with Arzela-Ascoli’s Compactness
result, we can easily conclude that A is compact.

We now show that the set {u ∈ C2+α,(−α)(Ω) : λA[u] = u, 0 ≤ λ ≤ 1} is bounded.

|u|(−α)
2+α;Ω ≤Cλ|βε(u− Ψ̃ε)|(2−α)

α;Ω

≤C|β′ε|0|u− Ψ̃ε|(2−α)
α;Ω

≤C
′

ε
(|u|(−α)

α;Ω + |Ψ̃ε|(2−α)
α;Ω )

≤C
′

ε
(δ|u|(−α)

2+α;Ω + Cδ|u|(−α)
0;Ω + |Ψ̃ε|(2−α)

α;Ω )

If δ is small enough, we can subtract it off to the left hand side, and obtain

|u|(−α)
2+α;Ω ≤Cε|u|

(−α)
0;Ω + Cε|Ψ̃ε|(2−α)

α;Ω

≤Cε|βε(u− Ψ̃ε)|(2−α)
0;Ω + Cε|Ψ̃ε|(2−α)

α;Ω

We will then show that |βε(u− Ψ̃ε)| is bounded.

First of all, it is bounded below by definition. Suppose u − Ψ̃ε achieves maximum at
x0 ∈ Ω, then (L− I0)(u− Ψ̃ε)(x0) ≥ 0.

βε(u− Ψ̃ε) ≤ βε(u− Ψ̃ε)(x0) ≤ −(L− I)Ψ̃ε(x0)

And since Ψε is semi-concave, we know that (L−I)Ψ̃ε = (L−I)(Ψε−u1) = (L−I)Ψε−f ≥
−C for some constant C. We conclude that βε(u − Ψ̃ε) is bounded. On the other hand, if

u−Ψ̃ε achieves maximum on ΩI \Ω, since we are given that u ≤ Ψ̃ε on ΩI \Ω, we immediately

conclude that βε(u− Ψ̃ε) ≤ 0. Either way, we have
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|u|(−α)
2+α;Ω ≤ Cε + Cε|Ψ̃ε|(2−α)

α;Ω

So the set {u ∈ C2+α,(−α)(Ω) : λA[u] = u, 0 ≤ λ ≤ 1} is bounded, and we can apply the
Schaefer fixed point theorem to obtain the existence of solution.

Corollary 1. Under the assumptions of the preceding theorem, βε(u
ε
2 − Ψ̃ε) ≤ C for C

independent of ε.

Assumption 16. There exists measure ν(dz) on Rn \ {0} such that
∫
|z|2ν(dz) < ∞, and

bounded non-negative measurable function m : Ω × Rn \ {0} → R such that M(x, dz) =
m(x, z)ν(dz). Furthermore, m(x, z) is Lipschitz in x, independent of z.

Note that this assumption implies Assumption 14. The following theorem is proved in
[31]:

Theorem 12. Under the Assumption 13, 14, 15, 16, and in addition, aij, bi, c, f are
Lipschitz. Then there exists u ∈ W 1,p

0 (Ω) ∩W 2
loc(Ω) such that u solves{

Lu− I0u = f in Ω
u = 0 in Ωc

and, there exists constant C such that

|u|1,p;Ω ≤ C|f |0

as well as C ′ depending on Ω′ b Ω such that

|u|2,p;Ω′ ≤ C ′

Remark. This is not exactly how the theorem is stated in [31], but essentially the same
proof would go through for the conditions stated here.

Theorem 13. Given the Assumption 13, 14, 15, 16, and in addition, aij, bi, c are Lipschitz,

Ψ̃ ∈ Cα(ΩI) such that Ψ̃ ≥ 0 on ΩI \ Ω and Ψ̃ is semi-concave, there exists u2 ∈ W 1,p
0 (Ω) ∩

W 2,p
loc (Ω) such that {

max{Lu2 − I0u2, u2 − Ψ̃} = 0 in Ω
u2 = 0 in Ωc

Proof. By the preceding corollary, we know that |βε(uε2 − Ψ̃ε)| ≤ C independent of ε. By
the previous theorem, we also know that |uε)2|1,p;Ω ≤ C, and for compact subsets Ω′ b Ω,
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|uε)2|2,p;Ω′ ≤ C ′. Therefore, there exists subsequence εk → 0 and u2 ∈ W 1,p
0 (Ω) ∩W 2,p

loc (Ω)
such that

uε2 ⇀ u2 weakly in W 1,p
0 (Ω)

uε2 ⇀ u2 weakly in W 2,p
loc (Ω)

Therefore, uε2 → u2 uniformly in certain Cγ Holder space. Therefore, u2 is a viscosity solution

to max{Lu2 − I0u2, u2 − Ψ̃} = 0 with u2 = 0 on ΩI \ Ω.

Let u = u1 + u2, we finally conclude that

Theorem 14. Given the Assumption 13, 14, 15, 16, and in addition, aij, bi, c, f are
Lipschitz, f ∈ Cα(Ω), Ψ ∈ Cα(ΩI), Ψ is semi-concave, ϕ ∈ C2+α(∂Ω) ∩ Cα(ΩI \ Ω), and
Ψ ≥ ϕ on ΩI \ Ω, there exists u ∈ C(ΩI) ∩W 2,p

loc (Ω) such that{
max{Lu− Iu− f, u−Ψ} = 0 in Ω
u = ϕ in Ωc

in the viscosity sense.

Remark. For the optimal stopping problem on unbounded domain in one dimension, we
can usually prove Holder continuity using moment estimates on the stochastic differential
equation. Then we can restrict our equation to any small open interval, and the theorem
above along with local uniqueness shows that the function is locally W 2,p

loc , since the boundary
of the interval is just two points. In particular, the value function is C1,γ

loc for some γ > 0,
and the smooth fitting principle holds. We can extend this further to parabolic problems as
well.
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