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Scale Effects and Extrapolation in 
Ecological Experiments 

G ( ) R A N  E N G L U N D  A N D  S C O T T  D. C O O P E R  
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I. S U M M A R Y  

M o s t  ecological  exper iments  are  pe r fo rmed  on  spa t ia l  and  t empora l  scales 
tha t  are  much  smal ler  and  shor te r  t han  the systems and  t ime frames o f  
interest .  Ava i l ab le  da ta ,  however ,  suggest  tha t  exper imenta l  results often 
change  with the size o f  the exper imen ta l  a rena  and  the d u r a t i o n  of  the 
exper iment  (i.e. are sca le-dependent) .  As  a consequence,  the in te rp re ta t ion  
of  exper imenta l  results  of ten requires  ex t r apo l a t i on  f rom the l imited 
spat ia l  and  t empora l  scales o f  exper imenta l  systems to the much  larger  
and  longer  scales o f  na tu ra l  systems. In this pape r  we discuss the 
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implications of scale-dependence, particularly spatial scale-dependence, for 
the design and interpretation of experiments. We suggest that the problem 
of extrapolation across scales should be avoided when possible, either by 
matching the physical size of experimental units with the size of the system 
of interest or by designing small-scale experimental systems so that the 
processes of interest are given a realistic representation. When this is not 
possible it becomes necessary to translate experimental results to other 
scales, which requires that the mechanisms that generate scale-dependence 
are understood and that they can be incorporated into models that make 
predictions for other scales. We review and classify sources of scale- 
dependence in ecological responses to perturbations and describe attempts 
to incorporate these mechanisms into scaling models. Among the mechan- 
isms we describe are exchange processes, nonlinear averaging in hetero- 
geneous systems, and arena artifacts. At present, we do not know if 
available scaling models can make accurate quantitative extrapolations 
from experimental to natural scales. Thus, the primary, current value of 
scale models is the identification of scale ranges with particularly weak or 
strong scale-dependence. 

We also note that well-known statistical methods for design, parameter 
estimation and inference can be used as a framework for extrapolation in 
field experiments, in the sense that observations from a small number of 
experimental units can be used to draw conclusions about whole systems. 
We discuss the value of different statistical designs as tools for extrapolation 
and note that the choice of scale of an experiment is a critical design 
decision. The scale of a design is determined by grain (size of experimental 
units or blocks) and the extent or range covered by the design. The scale 
range, delimited by grain and extent, determines the scale of the background 
heterogeneity that can influence the strength of treatment effects. Moreover, 
both grain and extent are related to the variance among experimental units, 
which means that the choice of scale influences the statistical power of a 
design as well as the magnitude of the aggregation error, a bias that can arise 
when the mean value of a set of measurements made in small experimental 
units are taken to represent a larger, more heterogeneous system. 

II .  I N T R O D U C T I O N  

Much of our current understanding of the processes that control the 
dynamics of populations and communities stems from perturbation 
experiments. Typically some environmental factor, such as the density of 
competitors, predators, or resources, is manipulated in experimental units 
and unmanipulated units are used as controls. The approach has gained 
high status in ecology because it allows us to test mechanistic hypotheses 
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under realistic conditions (Diamond, 1986; Underwood, 1986, 1997: 
Hairston, 1989). 

The fundamental assumption underlying the approach is that experi- 
mental results can be extrapolated to the natural systems of interest. In the 
last two decades there has been an intense debate over the validity of this 
assumption, particularly statistical issues such as the spatial arrangement of 
experimental units, choice of statistical model, and how to obtain adequate 
replication (e,g. Hurlbert, 1984; Underwood, 1986, 1990; Dutilleul, 1993, 
1998a,b; Heffner et  al., 1996). Recently, more attention has focused on 
the realism of experiments, for example the spatial and temporal scales of 
manipulations, the assemblage of experimental communities, and the 
strength of treatments (e.g, Tilman, 1989; Englund, 1997; Peckarsky et  al., 
1997; Schneider et  al., 1997; Thrush et  al., 1997; Bernardo, 1998; Cooper 
et  al., 1998; Gardner et  al., 2001). 

Extrapolation across spatial scales has been singled out as a particularly 
important problem (Levin, 1992; Carpenter, 1996; Englund and Olsson, 
1996; Schindler, 1998; Kemp et al., 2001). Support for this view comes from 
the observation that most experiments are performed in experimental 
systems that are much smaller than the systems of interest (Kareiva and 
Andersen, 1988; Duarte et  al., 1997; Petersen et al., 1999; Englund et al., 
2001), and that responses to experimental treatments often change with the 
size of the experimental system (e.g. Gieskes et  al., 1979; Hall et  al., 1991, 
1993; Carignan and Planas, 1994; Barica et  al., 1980; Duffield and 
Aebischer, 1994; Sarnelle, 1997; Cooper et  al., 1998; Schindler, /998: 
Pace, 2001). This view has been reinforced by the increasing awareness of 
the strong relationship between patterns and processes and the spatial and 
temporal scales of observation (Wiens, 1989; Levin, 1992). 

The term scale has several different meanings in ecology (Meentemeyer 
and Box, 1987; Schneider, 2001a). Often ecologists use scale simply to mean 
the area or volume of an object and the time frame of observations (O'Neill 
and King, 1998). Another common definition relates to the finding that 
observed patterns in environmental heterogeneity change with the grain and 
extent of observations (Gardner, 1998; Wiens, 2001; Schneider, 2001b). The 
scale of a set of observations are defined as the grain, which usually refers to 
the area or time span covered by individual samples, and the extent, which 
refers to the total range in time or space over which samples are distributed. 
Both aspects of scale are relevant for extrapolation in ecological 
experiments. 

The small size of experimental systems may cause them to respond 
differently to experimental treatments than their large-scale natural 
counterparts. The theory used to address this problem includes mechanistic 
scaling models that can be used to translate results from small to large 
systems (Frost et al., 1988; Englund et  al., 2001), and dimensional analysis. 
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which can be used to construct small experimental systems that respond to 
manipulations in the same way as their natural counterparts (Uhlmann, 
1985; Petersen and Hastings, 2001). In the first part of this paper we review 
this body of theory. Because dimensional analysis and scaling models 
require that the mechanisms generating scale-dependence are understood, 
we also review many of these mechanisms. 

In addition to extrapolation from small to large units, experimentation 
also involves extrapolation by using observations from many small units to 
form a mean or a sum that is used to describe a large population or a large 
system. Statistical theory for experimental design, parameter estimation, 
and inference is a framework that often is used for this type of extrapolation 
in field experiments. We review statistical models, in particular, mixed 
model designs, which may be useful for this form of extrapolation. This type 
of extrapolation often involves the problem of aggregation error (Rastetter 
et al., 1992). The response of a small subsystem is not equal to the response 
of the large system if responses to manipulations are nonlinear and if there is 
heterogeneity among subsystems. Thus, we will also review techniques for 
dealing with this source of error; however, we first review the evidence that 
experimental outcomes vary with arena size. 

IlL HOW OFTEN DO EXPERIMENTAL 
RESULTS DEPEND ON ARENA SIZE? 

The evidence that experimental results change with the size of experimental 
units comes from studies where the same treatments have been applied at 
more than one spatial scale. Such multiscale experiments are scarce and 
most have been performed in aquatic systems, i.e. freshwater and marine 
pelagic systems (Gerhart and Likens, 1975; Gieskes et  al., 1979; Mazumder 
et al., 1990; Sarnelle, 1997), stream benthic systems (Cooper et  al., 1998; 
Kohler and Wiley, 1997), and marine hard and soft bottom systems (Sousa, 
1984; Hall et  al., 1993; Quinn and Keough, 1993; Fernandes et al., 1999). 
Terrestrial examples of multiscale experiments are fewer and mainly limited 
to soil and agricultural systems (Duffield and Aebischer, 1994; Brown and 
Lightner, 1997). The questions most often addressed in multiscale 
experiments are related to the effects of trophic interactions (Lafontaine 
and Leggett, 1987; Cooper et  al., 1998; Bertolo et  al., 1999), disturbance 
and colonization (Sousa, 1984; Smith and Brumsickle, 1989; Ruth et  al., 
1994; Thrush et  al., 1996; Anderson, 1998), fragmentation (Banks, 1998, 
1999; Bowers and Dooley, 1999), and toxicants on natural communities 
(Perez et  al., 1991; Morris et  al., 1994; Flemer et  al., 1995, 1997; Cairns 
et  al., 1996). 
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To rigorously examine the frequency with which experimental results 
change with arena size, we examined experiments addressing trophic 
relationships in marine and freshwater pelagic systems. We chose these 
systems and studies because they are reasonably homogenous in methodol- 
ogies, habitat structure, and organisms. We searched for papers in biological 
abstracts, as well as reference lists in published papers, and found 10 papers 
that examined the effects of nutrients or predators on planktonic organisms 
using realistic communities (Table 1). When a paper included more than one 
response, we included a maximum of four responses from a paper and, thus, 
ended up with a total of 22 responses for analysis. 

We first examined the frequency with which the authors of these papers 
concluded that their results changed with experimental scale, The authors 
presented a conclusion for 15 of these responses and inferred that large- and 
small-scale responses differed in eight cases. In many cases, conclusions 
were based on tests with low statistical power and some of the largest effects, 
as determined by differences or ratios between control and treatment 
responses, were deemed nonsignificant (e.g. Bertolo et al., 1999). As a 
consequence, we also quantified the slope of observed relationships between 
ecological responses and arena sizes. As a standardized measure of the size 
of responses or effects, we used the log response ratio, LRR, given by In(Ru 
Rt) where Rc and Rt are the responses in control and treatment units 
(Osenberg et al., 1997; Hedges et al., 1999). In most experiments cylindrical 
containers were used. In these multiscale experiments, we measured the 
linear dimension of experimental units as depth for experiments where the 
area was held constant, as radius where depth was kept constant, and as 
the cubic root of the volume when both area and depth were altered. The 
strength of scale-dependence was quantified as the slope of the log-log 
relationship between LRR and LENGTH,  i.e. 

Slope = In(LRR2/LRR1)/In(LENGTH2/LENGTHI).  

This index of  the strength of  scale-dependence was chosen because it is 
dimensionless and thus lends itself to comparisons between different 
systems. A second reason for the choice of this index is that some scale 
models predict power relationships between ecological responses and 
arena size and such relationships, of course, are linear on a log-log plot 
(see Section IV.E). A disadvantage of this index is that it cannot be used if 
the sign of the response changes with arena size. This was the case for six of 
the responses examined in our analysis and some of these were quite 
strongly affected by the size of the experimental units (Barica et al., 1980: 
Proulx et al., 1996). 

Table 1 shows that positive and negative slopes for relationships between 
ecological responses and arena size were equally common. As benchmarks, 
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we suggest that a slope of :t:I should be regarded as showing strong scale- 
dependence and a slope of ~0.33 as moderate scale-dependence, A slope of 
one (or minus one) means that increasing the container radius or depth one 
order of magnitude produces commensurate increases (or decreases) in 
ecological response, whereas a slope of ±0.3 means that the response is 
doubled or halved. Using these benchmarks we conclude that a majority of 
the responses (10 out of 16) showed moderate to strong scale-dependence 
(Table 1). 

In some studies, the effects of arena size on ecological responses may have 
been confounded by other factors such as habitat diversity and the duration 
or timing of experiments (Table 1). Some of these multiscale experiments, 
however, appeared to be unconfounded by other factors and still showed 
strong scale-dependence in ecological responses (e.g. Gieskes et  al., 1979: 
Petersen et al., 1997). The scale-dependence of experimental results also has 
been demonstrated in various benthic (Linton and Davies, 1988; Hall et  al., 
1991, 1993; Thrush et al,, 1996; Kohler and Wiley, 1997; Cooper et al., 1998: 
Bergstr6m and Englund, 2002), littoral (Sousa, 1984; Quinn and Keough, 
1993), and terrestrial habitats (Duffield and Aebischer, 1994; Schoener and 
Spiller 1995). 

IV. E X T R A P O L A T I O N  F R O M  SMALL 
TO LARGE S Y S T E M S  

A. Defining the Scale of Interest 

A first crucial step when designing an experiment is to define the spatial 
scale of the focal question, which depends on the processes, organisms, 
constraints, or responses of interest (Wiens, 1989; Perrson and Diehl, 1990: 
Levin, 1992; Cooper and Barmuta, 1993; Poff, 1997; Cooper et  al., 1998: 
Gardner et  al., 2001). In general, the scale of the question should be the 
main determinant of the design of the experiment. 

A useful distinction can be made between conceptual experiments 
and system-specific experiments (Pace, 2001). System-specific experiments 
are meant to mimic a particular natural system. Both processes and 
environmental conditions should be realistic and it is hoped that experi- 
mental results can be extrapolated to a specific field situation. To this 
category belong many experiments where the density of a key predator or 
competitor is manipulated in the field with the objective of estimating the 
effects of this species on population and community parameters. For 
system-specific experiments, it is often possible to define the scale of interest 
both in terms of grain and extent. For example, an experiment examining 



168 G. ENGLUND AND S.D. COOPER 

nutrient limitation in lakes could define the grain as individual lakes of a 
certain size, and extent as all lakes of this size within a certain geographic 
area. 

In contrast, conceptual experiments are focused on scientific generality 
and the testing of general models. The important point is to reproduce the 
processes of interest rather than to mimic a particular system. Experimental 
tests of food chain models using laboratory cultures of microorganisms 
(Luckinbill, 1974; Kaunzinger and Morin, 1998) and experiments conducted 
in facilities such as the Ecotron (Lawton, 1996) serve as examples of 
conceptual experiments. In short, conceptual experiments are conducted in 
model systems, which capture a key feature or process of interest and test 
general models focused on this feature or process. For conceptual 
experiments, it is often not possible to specify the scale of interest as the 
size of a system. Instead relevant scales may be defined relative to some 
scale-dependent property of the system, such as the edge to area ratio of the 
system or habitat, the relative mobility of interacting organisms, or the 
relative magnitudes of migration and vital rates (Uhlmann, 1985; Schneider 
et al., 1997; Englund, 1997). 

B. Matching Experiments with the Scale of Interest - Dimensional 
Analysis 

Once the scale of interest is defined then an experiment can be designed so 
that the results are applicable to that scale. The most straightforward 
strategy is to match the scale of the experiment to the scale of interest. In 
system-specific experiments, matching requires that experimental units be of 
the same size and heterogeneity as the system of interest. This is feasible in 
some systems. For example, in streams composed of semi-isolated pools it is 
common that fish have a patchy distribution at the pool-to-pool scale. For 
many hypotheses related to the patchy distribution of fish on this scale, it is 
clear that pools are the relevant experimental units and, fortunately, fish 
densities in pools are easy to manipulate (Cooper et al., 1990; Wiseman et al., 
1993; Sih et al., 1992; Englund, 1999). 

In many cases, however, the system of interest is much larger than feasible 
experimental units, particularly when testing hypotheses about factors 
controlling population processes. "Whole-system" manipulations, which 
encompass the scales appropriate for examining the population or 
community dynamics of most organisms, are only feasible in a limited 
number of systems, such as lakes, ponds, and islands, and for a limited 
number of factors. For example, in lakes it is relatively easy to manipulate 
nutrient concentrations but very difficult to manipulate densities of 
predatory insects. Thus, in many situations, the only alternative is to 
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perform small-scale experiments and attempt to translate the results to 
larger scales. 

For conceptual experiments the objective is to obtain a realistic 
representation of critical processes, rather than matching the physical 
dimensions of natural and experimental systems. As scale effects often can 
be attributed to changes in the relative importance of two or more critical 
processes or variables, this often requires that realistic ratios between critical 
variables be preserved. For example, experiments examining the effects of 
the spatial structure of a population on its dynamics should incorporate 
realistic relative magnitudes of within-patch processes (birth and mortality) 
and between-patch processes (emigration and immigration) (e.g. Hanski, 
1997; Tilman et al., 1997). If critical ratios can be reproduced in small-scale 
experiments, this may allow the direct application of results from model 
systems to natural systems (Petersen and Hastings, 2001). Several authors 
have suggested that dimensional analysis can be used as a tool for matching 
experimental and natural scales in ecology (Uhlmann, 1985; Schneider et al., 
1997; Petersen and Hastings, 2001). 

1. Matching Scales Using Dimensional Analysis 

Dimensional analysis is an established method in engineering for 
constructing small-scale models of bridges, boats, buildings, etc. that 
behave similarly to their real world counterparts. The method requires the 
formulation of a mathematical model that describes the dynamical 
behavior of both the prototype and the physical model. The mathematical 
model is then used to derive critical nondimensional variables that govern 
the behavior of the prototype and the physical model. A nondimensional 
variable is simply one that has been constructed by combining original 
model parameters or variables so that their units cancel out. To ensure 
dynamical similarity between physical model and prototype, the model is 
designed so that the values of the critical nondimensional variables are the 
same as for the prototype (Legendre and Legendre, 1998). A reduction in 
the size of a model system usually means that important components are 
distorted and the general principle for model design is to counteract these 
distortions through compensatory distortions in other components. The 
formal mathematical apparatus for performing dimensional analysis is well 
developed and useful introductions are found in Platt (198l) and Legendre 
and Legendre (1998). A simple example that illustrates the general 
principles is the application of the Reynolds number to create 
model systems for bodies moving through water. The Reynolds number 
is a dimensionless number that describes the balance between the inertial 
and viscous forces acting on an object moving in a fluid. It is useful 
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because it characterizes the degree of turbulence. The Reynolds number is 
given by 

Re  : U L / v ,  (1) 

where the U is the velocity of the object (uni t=ms-I) ,  L is the length of 
the object (unit =m),  and v is the kinematic viscosity of the medium 
(unit = m: s-l). R e  is dimensionless because the units of U, L and v cancel 
out. If we are planning to use a small-scale model (small L) to study the 
behavior of a larger prototype (large L) and want to preserve the Reynolds 
number we can see from Eq. (1) that there are two options, i.e. the velocity 
can be increased or the viscosity decreased. 

Applying dimensional approaches to the design of ecological experiments 
involves consideration of a range of conceptual and practical matters 
(reviewed in Petersen and Hastings, 2001). Ecological systems are more 
complex than physical systems and often the effects of system size on their 
dynamics are not well understood. Thus a difficulty when applying the 
method is to identify the critical variables to be conserved. Attributes of 
ecological systems that often are distorted in small-scale experiments include 
space and time scales, environmental heterogeneity, environmental gradi- 
ents, and interactions between adjacent habitats (Petersen and Hastings, 
2001). Which, and how many, of the identified variables to conserve in order 
to preserve the match between model and real counterpart behavior depends 
on the nature of the research question, e.g. the processes of interest and the 
desired level of realism. System-specific experiments demand a greater 
degree of realism than conceptual experiments and thus require a higher 
degree of similarity. 

In practice, the design approach prescribed by dimensional thinking 
involves matching the scale attributes of organisms, processes, and the 
abiotic environment. Often this amounts to preserving the "effective scale," 
which describes the scale of the system as experienced by the organisms. 
Effective scales are dimensionless ratios that are calculated by standardizing 
attributes of the experimental system by attributes of the organisms. As an 
example, consider an experiment that examines the effect of spatial structure 
on the dynamics of a patchily distributed population. In this experiment an 
important effective scale may be the distance between patches divided by the 
dispersal or movement distance of the organisms. Effective scales can be 
manipulated by changing the absolute dimensions of the experimental 
system or by altering the scale attributes of the organisms (movement 
distance, reproductive rate, perceptive grain and extent, etc.). A common 
strategy to preserve the effective scale in small experimental arenas is to use 
small experimental organisms (Wiens et al., 1993; Gonzales et al., 1998). The 
study by Ires et al. (1993) illustrates the principle. Ims et al. found that the 
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habitat use responses of organisms of different size (root voles and 
capercaillie grouse) were similar as long as the ratios between home range 
size and fragment size were comparable. Many tests of ecological theory 
using artificial communities of small organisms, such as mites and 
protozoans, could also serve as examples of the principle (Huffaker, 1958; 
Luckinbill, 1974; Kaunzinger and Morin, 1998, Lawler, 1998; Gonzales 
et al., 1998). 

In other situations, the objective may be to conserve effective hetero- 
geneity or effective gradients. Huisman et al. (1999) used a reaction- 
diffusion model of phytoplankton species dynamics to determine if the 
phytoplankton dynamics of a deep lake could be reproduced in a shallow 
mesocosm. A formal dimensional analysis of the model showed that a ten- 
fold reduction in depth should be accompanied by an increase in turbidity of 
the same magnitude, which would lead to a compression of the light 
gradient. Preserving the effective gradient required that the transport of 
algae along the compressed gradient was similar to that in the lake. This 
could be obtained by decreasing the diffusion coefficient 100 times. This 
scaling would lead to increased densities of all organisms but leave the 
outcome of competition unaltered. 

An important limitation to the application of dimensional approaches to 
ecological experiments is our inability to manipulate many scaling 
attributes, in particular organismal attributes such as mobility, reproductive 
rate, home range size, acclimation to changing conditions, etc. Often, the 
only option is to choose different species that makes the method less useful 
for system-specific experiments, where the biotic community is fixed. 
Physical scaling attributes may also be difficult to manipulate. A common 
problem in aquatic mesocosm experiments is that the ratio of wall area to 
volume is much higher than in natural systems, but it is impossible to build a 
small mesocosm with a very low wall to volume ratio. At present, the use of 
dimensional analysis is also limited by our ignorance about the scaling 
relationships that governs the dynamics of many natural systems. Finally, 
many ecological variables respond to multiple environmental factors, either 
sequentially or simultaneously, and their net responses cannot be distilled to 
a dimensional model using a few key factors. 

C. Extrapolation when Responses Vary with Arena Size 

Often it is not possible to match the scale of an experiment with the scale of 
interest, so it becomes necessary to extrapolate experimental results to other 
spatial scales. In some cases it is possible to extrapolate across scales by 
using scaling models that describe relationships between responses and, for 
example arena size or experiment duration. Such models allow investigators 
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to translate small-scale results to larger scales, and can identify situations 
when responses are scale-independent. Scaling models can be developed 
from empirical relationships or mechanistic models; however, the latter 
requires that the mechanisms causing scale-dependence have been identified 
and their effects are well known. Knowledge of the mechanisms causing 
scale-dependent responses also is essential when delimiting the spatial and 
temporal domains where empirical and mechanistic models are valid. In the 
following sections we will first describe and classify mechanisms causing 
scale-dependence, then delineate some scaling models, and, finally, demon- 
strate the use of scaling rules in identifying scale-domains with strong or 
weak scale-dependence. 

D. Mechanisms Causing Scale-Dependence 

When discussing mechanisms for responses varying with arena size, it is 
important to distinguish between exclosure experiments and enclosure- 
exclosure experiments. In the first type of experiment some organisms, 
usually predators or competitors, are excluded from an area with a fence or 
cage, and the surrounding, unmanipulated habitat functions as a control. In 
essence, a very large unit, the natural system, is compared with a very small 
unit, the cage or arena. This means that treatment effects are likely to be 
confounded with the effects of any scale-dependent processes that influence 
the response variable. For example, if the densities of a species are enhanced 
in cages because the organisms aggregate along walls, this will cause 
estimates of treatment effects to be biased, and the magnitude of the bias 
will be scale-dependent given that the strength of the wall effect on the 
density of organisms varies with arena size (e.g. Doherty and Sale, 1985). 
In enclosure-exclosure experiments confounding is not expected to be a 
problem because treatments are assigned to identical and replicated 
experimental units. Instead, scale-dependent responses can occur because 
the effects of treatment factors are modified by scale-dependent processes 
(Peterson and Black, 1994). In ANOVA terminology, this corresponds to a 
"scale-treatment interaction." For example, if, in a predation experiment, 
predation rate is density dependent (predation rate per prey varies with prey 
density) and prey density varies with arena size, then scale-dependent 
predation rates per prey will be observed. 

When reviewing empirical and theoretical literature, we encountered a 
large number of mechanisms that can cause experimental responses to 
change with the size of experimental units. We have chosen to parse this 
diverse collection of mechanisms into six partly overlapping categories. Our 
first category includes mechanisms related to exchange processes and the 
following two classes are related to observations that environmental 
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heterogeneity and organizational complexity usually increase with the scale 
of the experimental system. Our fourth category is termed "number effects" 
and deals with scale effects that occur because large systems include a larger 
number of organisms than small systems and the fifth class of mechanisms 
producing scale-dependent results deals with interactions between the 
response time of an experimental system and its size. These are all 
mechanisms that cause ecological responses to change with system size, 
unrelated to the use of enclosures (called fundamental scaling relationships 
in Petersen et al., 1997). In contrast, our last category includes scale effects 
that are caused by the use of enclosures. Enclosure artifacts are usually 
related to the use of fences, walls, etc. and we refer to this class of 
mechanisms as "wall effects." 

1. Exchange  Processes 

The arenas used in ecological experiments vary in their degree of openness, 
i.e. their permeability to the exchange of organisms and matter between 
their interiors and exteriors. The influence of many exchange processes on 
within-system dynamics is a function of perimeter-to-area ratios (or area/ 
volume). Because this ratio is a function of arena size, it is expected that the 
influence of exchange often is scale-dependent. A well-studied empirical 
example is the negative relationship between per capita emigration rate and 
patch or arena size for many terrestrial insects (Kareiva, 1985; Matter, 1997: 
Sutcliffe et al., 1997; Thomas and Kunin, 1999: Hanski et al., 2000: Petit 
et al., 2001). 

The effects of organismal exchange (immigration, emigration) on 
experimental responses have been studied primarily in predation experi- 
ments in stream systems. Cooper et al. (1990) performed a meta-analysis of 
stream experiments and found a negative relationship between predator 
impacts on prey populations and various indices of prey mobility. 
Experiments where prey migration across cage boundaries is manipulated 
by varying the size of the mesh used to enclose predators show that prey 
migration rates often affect the impact of predators on prey populations: 
however, the direction of this effect is variable and depends on prey 
behavioral responses to predators (Cooper et al., 1990: Lancaster et al., 
1991; Dahl and Greenberg, 1999; Sih and Wooster, 1994). A negative 
relationship between predator impact and prey migration is expected if prey 
decrease their dispersal rates in the presence of predators and actually 
accumulate and become denser in predator versus control cages, or if prey 
movements are independent of predator densities. The opposite pattern is 
expected if prey have a strong avoidance response, i,e. increase their 
dispersal rates in the presence of predators, contributing to an observed 
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predator reduction of prey densities beyond that expected from predator 
consumption rates alone. 

Thus, we should expect predator impacts to change with scale in 
experiments where prey migration depends on arena size. Theory suggests 
that this should be the case when arenas are large compared to the 
movement scale of the organisms (i.e. each movement step does not result in 
emigration from the arena (see scaling models; movement rates, Englund and 
Hamb~ick ms). Available data on stream invertebrates suggest that indeed 
per capita emigration and colonization rates are scale-dependent on the 
scales typically used in stream experiments (Lancaster, 2000; Englund et al., 
2001; Englund and Hamb~ick, unpublished data). The interactive effects of 
prey exchange and arena size on predator impacts on prey populations were 
examined in a series of models by Englund (1997, presented in detail in 
Section IV.E.5). Cooper et al. (1998) examined the effects of predatory 
stoneflies on Baetis mayfly nymphs in stream channels ranging from 0.4 to 
25 m in length. The effect of predators on prey densities decreased with 
increasing channel length. This was an expected result as Baetis nymphs 
usually increase their emigration rates in response to stonefly predators. In 
short, the model predicted that stonefly effects on mayfly prey would be 
enhanced by mayfly fleeing behavior at small scales, but that large scale 
impacts would be due entirely to stonefly consumption of mayflies. Similar 
results, however, were observed in channels where the prey exchange was 
prevented suggesting that some mechanism other than prey exchange (e.g. 
changes in environmental heterogeneity) was involved. 

Exchanges of matter and energy between the inside and outside of 
experimental arenas have not been studied to the same extent as organismal 
movements; however, we expect the influence of these exchanges to be 
governed also by perimeter:area ratios. Petersen et al. (1997) presented data 
on primary productivity in mesocosms that were of identical shape and that 
ranged in size from 0.1 to 10 m 3. Under light-limited conditions it was found 
that primary productivity per unit volume decreased with increasing 
mesocosm size. Petersen and colleagues argued that total primary 
productivity should be proportional to the surface area that receives light 
under light-limited conditions. Thus, a low productivity per volume in large 
(and deep) mesocosms reflected the low ratio of surface area to volume. 

2. Spatial Heterogeneity 

Heterogeneity is a scale-dependent quantity in the sense that its description 
is determined by the grain (or resolution) and extent (or range) of 
observations. A general result is that the spatial heterogeneity of biotic 
and abiotic conditions within an arena increases with increasing arena area. 
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This scale-dependence of spatial heterogeneity can modify experimental 
responses in several different ways. 

When the environment is heterogeneous on a scale that is large compared 
to the size of experimental arenas, it is likely that increasing arena size leads 
to a change in the mean levels of driving variables. For example, increasing 
the size of the experimental unit can alter the proportion of the area that 
functions as a prey refuge, affecting, in turn, the rate of predation (Englund 
and Olsson, 1996; Sarnelle, 1997). Although there are situations where the 
proportion of refuge space may increase or decrease with arena size, we 
suspect that large arenas usually contain a higher proportion of prey refuge 
habitat than small arenas, simply because it does not make sense to perform 
a small-scale predation experiment in a habitat where predators cannot 
capture prey. 

Even if the mean level of a driving variable is scale-independent, it is likely 
that its spatial variance within experimental arenas increases with increasing 
arena size (see Section IV.E.6, Figure 7b, Wiens, 1989: Levin, 1992; 
Gardner, 1998). This scale-dependence of the within-arena variance for the 
driving variable can render the studied mean response scale-dependent if the 
level of the response variable is a nonlinear function of the driving variable 
(Rastetter et al., 1992; Chesson, 1998). To see that variation in a driving 
variable, Z, can alter the observed response, F(Z),  consider the simple case 
when the driving variable only takes two values, Z~ and Z2, and the function 
relating Z and F(Z) is nonlinear as shown in Figure l a, The expected 
response for this case is indicated by A inFigure la. If, instead, the driving 
variable takes only one value, equal to Z, the response indicated by B is 
expected. The effect of increased variability in the independent variable on 
the response is the difference between A and B in Figure la. In this figure, 
we can also see that the difference between A and B can be increased by 
increasing the depth of the curvature of the function and by increasing the 
variance in Z (i.e. increasing the distance between ZI and Z2). 

The potential importance of spatial heterogeneity is well-documented in 
mathematical population and community ecology. Spatially explicit models, 
such as reaction-diffusion models, lattice simulations, and individual based 
models, show that spatial heterogeneity in the densities of organisms often 
arise as a result of limited movements and local interactions between 
individuals (Tilman et al., 1997), or arise from local stochastic variation in 
vital rates (Donalson and Nisbet, 1999). Heterogeneity alters global process 
rates if local processes are nonlinear as described above (e.g. Chesson, 1998). 
Often the processes generating heterogeneity also produce positive or 
negative correlations between the local densities of interacting populations. 
Such spatial correlations affect contact rates, e.g. encounter rates, between 
predators and prey, and thus have effects on global process rates (Law and 
Dieckmann, 2000). The influences of heterogeneity on the dynamics of 
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Figure l a) The figure illustrates that variation in a driving variable Z can alter the 
response F(Z). If the driving variable takes two values, Zr and Z2 the response 
indicated by A is expected and if the driving variable takes one value Z the response 
indicated by B is expected, b) Encounter rate as a function of prey density in a system 
with perfect coaggregation of predators and prey. The plotted function is of the form 

2 Ec~ N .  The encounter rate for a homogeneous system with density N is denoted C, 
whereas D denotes the encounter rate in heterogeneous system consisting of two 
habitats with densities N - x  and N+ x. 

interacting populations have been studied by comparing spatially explicit 
models and so-called mean-field models, which deal with the dynamics of 
mean densities averaged over space. Such comparisons show that spatial 
heterogeneity has a range of important effects on the outcome of species 
interactions, altering the qualitative outcome of competition (Levin and 
Pacala, 1997), promoting coexistence between competitors (Lehman and 
Tilman, 1997), stabilizing consumer-resource dynamics (deRoos et al., 1991; 
Nisbet et al., 1997; Pascual and Levin, 1999; Gurney and Veitch, 2000; but 
see Donalson and Nisbet, 1999) and influencing such food web character- 
istics as connectance and interaction strength (Keith, 1997). There is also 
empirical support for many of these predictions (e.g. Huffaker, 1958; Maly, 
1978; Holyoak and Lawler, 1996; Holyoak, 2000a,b). 

An empirical example where scale-dependent variation in driving 
variables caused the outcome of experimental manipulations to be scale- 
dependent was given in Bergstr6m and Englund (2002). The interactions 
between a predatory isopod and its amphipod prey were studied in short- 
term experiments with no prey reproduction and constant average prey and 
predator densities across containers of different volume. It was found that 
the per capita mortality rate of prey increased with container size. Both 
predators and prey aggregated along container walls and their local densities 
along the walls were highest in large containers. Bergstr6m and Englund 
argued that the scale-dependent per capita mortality rate of prey was caused 
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by the scale-dependent coaggregation of predators and prey. A simple 
model, shown in Figure lb, can be used to illustrate this argument. Assume 
that predators track prey density perfectly, so that the predator density (P) 
is a fixed proportion of prey density (N), and assume that the encounter rate 
(E) is proportional to the product of prey and predator density. Thus we 
have Ecx N 2 (Figure lb). A uniform prey density (N) produces the encounter 
rate response indicated by C in Figure l b, whereas a higher average 
encounter rate (D) will result if there are two equally sized habitats with prey 
densities N - x  and N+  x. Increasing the spatial variation (x) increases the 
difference between C and D. This means that an increase in arena size that 
results in more pronounced predator-prey coaggregation, and thus higher 
spatial covariation in predator and prey densities, is expected to increase 
encounter rate. 

The two conditions required for this kind of scale effect to occur, 
nonlinear relationships between independent and response variables and 
increasing spatial variance with increasing size of the focal system, are 
widespread in ecological systems, suggesting that this scale-dependent 
mechanism is ubiquitous. General techniques that correct for scale effects 
caused by this mechanism are given in Section IV.E.6. 

3. Organizational Complexity 

Small-scale experimental systems often have a simpler structure than their 
natural counterparts, which can alter responses to experimental manipula- 
tions. When an experimental community is assembled by sampling a small 
fraction of the natural system, it is likely that the experimental community 
contains a reduced number of species and, consequently, that food chains 
are shorter and less complex than in larger natural systems (e.g. Schoener, 
1989: Have, 1993; Spencer and Warren, 1996). Species most likely to be 
excluded unintentionally from experimental arenas are those occurring in 
low numbers, e.g. large species at high trophic levels and species strongly 
reduced by predation or competition. The low diversity of small systems 
limits the range of possible responses, which is particularly problematic in 
experiments where strong predators or competitors are removed. Obviously, 
a species that is excluded by a dominant competitor cannot respond to the 
removal of that competitor if it is not present and unable to colonize fi'om 
some other system. 

An empirical example of this mechanism was provided by Kohler and 
Wiley (1997) who studied the effects of Glossosoma, a grazing caddisfly that 
is a competitive dominant in small Michigan streams, on the rest of the 
stream community. Reductions in Glossosoma density in whole streams, 
caused by an invading parasite, resulted in the appearance of several species 
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of grazing caddisflies, which were presumably reduced to undetectable 
densities by Glossosoma in the unaltered situation. In contrast, Glossosoma's 
effects on these caddisflies could not be demonstrated in small-scale removal 
experiments, probably because experimental units were too small to include 
very rare taxa or because these units were too small to attract or 
accommodate taxa colonizing from other areas. 

Experimental systems may also have a simplified structure because some 
components are too large to be included. Trees, elephants, whales, salmon, 
and other large or wide ranging species must often be excluded. This is 
also true for many abiotic processes such as large-scale turbulence and 
stratification/destratification events in aquatic mesocosms (Scheurer et al., 
2001). Feedback mechanisms that involve the transport of organisms or 
matter may also require very large areas to be expressed. For example, 
Kohler and Wiley (1997) reported an increase in the densities of filter- 
feeding insect taxa when the dominant caddisfly grazer Glossosma 
was reduced in whole streams, presumably because declines in the domi- 
nant grazer caused large increases in algal biomass over large areas of 
the stream bottom resulting in higher levels of drifting algal food for 
filter-feeders. Such impacts were not observed in small, short-term field 
experiments, presumably because the spatial and temporal scales of grazer 
reductions were not sufficient to produce these large-scale, long-term 
indirect effects. 

4. Number-Dependent Processes 

If we increase the size of experimental units while keeping densities of 
organisms constant, there will be more individuals in large units. This can 
cause scale-dependence if the effects of an experimental treatment depend 
on the number of individuals present in each unit. For example, interference 
between predators can reduce predation rates, but requires more than one 
predator in the system. Similarly, aggregating, flocking, or schooling 
behaviors, which often affect predation rates, require a certain number of 
individuals to be expressed. Extinction thresholds are another form of 
number-dependence. In a classic laboratory study, Luckinbill (1974) studied 
cyclic population dynamics in a simple model protozoan community with 
one prey species and one predator species. One or both species quickly went 
extinct in small arenas but persisted much longer in large arenas. Crowley 
(1979) analyzed the system mathematically and suggested a hypothesis 
accounting for this pattern. He assumed that populations go extinct when 
the number of individuals, rather than the density of individuals, falls below 
a threshold. Increasing the total area of an arena, and thus the total number 
of individuals, decreases the probability that the total number will fall below 
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this threshold; consequently, expected persistence times increase with 
increasing arena size. 

The number of habitat patches available to a population also can 
influence the risk of extinction. Populations whose long-term persistence 
depends on the movement of organisms between patches show increasing 
probabilities of extinction as the number of patches or subpopulations 
decrease (e.g. Holyoak and Lawler, 1996; Hanski, 1997: Hassel and 
Wilson, 1997). 

5. EJ~['ects of Experiment Duration; Interactions Between Response Time 
and System Size 

Theoretical and empirical investigations show that there are often delays in 
the responses of populations and communities to manipulations or 
perturbations. As a consequence, the temporal scale of experiments is very 
important in determining if transient dynamics or equilibrium responses are 
being observed. Interactions between response times and system size can 
cause responses to be scale-dependent if (a) the time to steady state alter an 
experimental perturbation depends on arena size and (b) the experiment is 
sampled before steady state is reached. There is a range of mechanisms that 
potentially could cause response times to increase with spatial scale. 

For open predation experiments, where prey movements affect local prey 
densities, Englund's (1997) model predicts that the time to reach steady state 
is particularly fast in small experiments where very high per capita migration 
rates are expected (see Section IV.E.5 and Figure 6). Similarly, it has been 
suggested that the time to reach chemical steady state in a lake after a 
perturbation is a function of hydrological turnover rate and, thus, of inflow 
rates and lake volume (Schindler, 1998). In these examples, it is the 
magnitudes of exchange rates in prey or water that determine the response 
time. Another illustration of this principle is that the time required for 
recolonization after a disturbance usually increases with patch size (e.g. 
Smith and Brumsickle, 1989; Duffield and Aebischer, 1994; Lancaster, 2000). 

Sampling effects may affect response times. Large (and rare) taxa are 
often excluded from small units due to sampling effects. Because large taxa 
tend to have low vital rates (Peters, 1983; Schmidt-Nielsen, 1984; Dickie and 
Boudreau, 1987), we expect their presence to prolong response times. Also, 
small units tend to have shorter and simpler food chains (Schoener, 1989; 
Have, 1993; Spencer and Warren, 1996), and some mathematical models 
suggest that more complex food webs have longer recovery times after a 
perturbation (Pimm and Lawton, 1977). 

Finally, as stated above, theoretical and empirical evidence suggests 
that the time to extinction increases with arena size (Luckinbill, 1974: 
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Crowley, 1979; Dickerson and Robinson, 1986; Bengtsson, 1993; Schoener 
and Spiller, 1995; Donalson and Nisbet, 1999). Species extinctions can have 
dramatic effects on the dynamics of natural systems (see review by Pimm, 
1991) and we expect that extinctions, when they occur in experimental 
systems, will alter the effects of experimental treatments on ecological 
responses. 

Although direct empirical evidence is scarce, it seems reasonable to 
assume that slower responses in large systems can cause treatment effects to 
be scale-dependent. This may make experiments conducted at different 
scales hard to interpret or compare, because manipulations conducted in 
arenas of different size will, at any given time, be at different points in their 
response trajectories. As a consequence, the appropriate temporal scale of 
an experiment will often depend on arena size. Indeed, it seems that many 
ecologists have adopted this view. Several recent meta-analyses reported 
positive correlations between the duration of experiments and the size of 
experimental arenas (Duarte et al., 1997; Petersen et al., 1997; Lodge et al., 
1998; Rafaelli and Moiler, 2000). 

6. Wal l  Ef fec ts  

Walls and fences can have large effects on ecological patterns and processes 
and we expect their influences to be most important in small arenas, because 
small arenas have a large ratio of wall or edge to interior habitat. Walls, 
fences, or cage sides affect experimental systems and influence experimental 
outcomes because they are used as substrates by sessile organisms, because 
they alter the behavior of the enclosed organisms, because they alter 
environmental conditions (e.g. current velocity, sedimentation, air flow) 
inside cages, or because they hinder the exchange of organisms, matter, or 
energy. 

The most intensively studied wall effect is the growth of periphyton on the 
sides of aquatic mesocosms. Although periphyton also grow on hard 
substrata in natural systems, it is clear that mesocosms, owing to their small 
size, have unrealistically high wall area to volume ratios. Wall periphyton 
often dominate primary production in mesocosms within 2-4 weeks (Rees, 
1979; Chen et  al., 1997) and can influence important processes such as the 
uptake and regeneration of nutrients and the partitioning and degradation 
of toxic substances (Eppley et al., 1978; Perez et al., 1991; Chen et al., 1997). 
Wall growth is particularly problematic when phytoplankton assemblages 
are the focus of an investigation because there can be intense competi- 
tion for nutrients between periphyton and phytoplankton in small 
mesocosms (Chen et al., 1997). Various mechanisms seem to influence the 
contribution of the wall periphyton to the total primary production in 
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experimental containers (Dudzik et al., 1979; Chen et al., 1997; see Section 
IV.E.2). 

Walls can affect the behavior of organisms in various ways. Above we 
described the aggregation of organisms along walls, which can affect the 
strength of predatory and competitive interactions (see Section IV.D.2). 
Walls may provide cover for prey from predators, food for grazers, 
(Kennelly, 1983) and a favorable light environment for organisms preferring 
low light levels (Steele, 1996). Several authors have suggested that walls 
decrease predation rates because predators are stressed, or do not exhibit 
normal foraging behaviors, in small containers (Virnstein, 1977; Theliacker, 
1980; Choat, 1982; Schofield et al., 1988; ¢0iestad, 1990; Wilson, 1991: 
Paradis et al., 1996; Heath and Houde, 2001). Others have suggested that 
the presence of walls increase predation rates (Peckarsky, 1991), possibly 
because predators trap prey in corners or because predators and prey 
aggregate along walls (Bergstr6m and Englund, 2002). 

Finally, it has often been demonstrated that walls and fences alter 
environmental conditions and exchange processes. Opaque walls cause a 
reduction in the amount of light available for primary production and this 
effect is most pronounced in small experimental units (Kennelly, 1991: Chen 
et al., 1997). Walls also can alter the transmission of wave or wind energy. 
Usually walls impede the transfer of wave energy to the enclosed water 
body, which results in lower turbulence levels in mesocosms compared to the 
surrounding habitat (Verduin, 1969; Steele et al., 1977; Bloesch et al., 1988: 
Petersen et al., 1998); however, the opposite pattern also has been reported 
(Quay, 1977: cited in Schindler, 1998). The level of mixing can affect a range 
of critical processes in pelagic systems, including nutrient dynamics, primary 
productivity, competitive interactions among phytoplankton species, and 
the growth and feeding rates of zooplankton (Perez et al., 1977: Saiz and 
Alcaraz, 1991; Saiz et al., 1992; Petersen et al., 1998', Huisman et al., 1999). 

Cages often alter flow patterns and sediment deposition inside and 
around experimental units (Snelgrove et al., 1995). For example, Kennelly 
(1991), who used cages to exclude fish in a kelp community, found greater 
reductions in water flow and higher sedimentation rates in small than in 
large cages. Often cages act like "sediment traps" causing increased internal 
densities of both organisms and sediments (Peckarsky and Penton, 1990). 
For example, Lancaster et al. (1990) found that the density of stream 
invertebrates in cages open to organismal exchange was four times higher 
than in the surrounding stream habitat during a period with high flow. 

Solid walls can affect ecological processes by blocking the movements of 
organisms. A common situation is that prey migrate daily to avoid habitats 
or areas where predators are dense or particularly efficient (e.g. Jacobsen 
and Perrow, 1990; Ohman, 1990; Sih, 1992). Preventing such prey move- 
ments can substantially increase predation rates. Melville and Maly (1981) 
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presented data on the vertical distribution of predatory Chaoborus larvae 
and their zooplankton prey suggesting that zooplankton avoid Chaoborus 
by diel patterns in vertical migration. In a subsequent experiment they 
showed that preventing prey vertical migration increased predation rates 
3-5 times compared to situations where zooplankton were allowed to 
vertically migrate. This situation is less likely to occur in large arenas 
because large (or deep) arenas more likely include habitats where prey can 
take refuge. Models incorporating this mechanism are given in Sih et al. 
(1988) and Englund and Olsson (1996). 

E. Scaling Models 

Several researchers have suggested that we should develop scaling models 
that describe how experimental results change with arena size and which, 
thus, can be used to extrapolate small-scale results to larger scales (Frost 
et al., 1988; Wiens, 1989; Perez et al., 1991; Schneider et al., 1997). Such 
models also can be used to identify situations where experimental outcomes 
are scale-independent and, therefore, where extrapolations to other scales 
are relatively uncomplicated. Sealing models can be mechanistic or 
empirically derived and we present some examples of such models below. 
Most of the models deal with scale-dependent mechanisms related to arena 
edges and are based on simple geometric relationships, such as those 
between arena perimeter and area (or surface area and volume). 

1. Movement  Rates 

Englund and Hambfick (ms) used diffusion models and random walk 
simulations to demonstrate that the scale-dependence of migration rates 
depends on the relationship between movement scale and patch size 
(Figure 2). The scale of movements is, in most situations, determined by 
the length of steps, which in an empirical context can be interpreted as the 
lengths of directed movements. When patches are large compared to the 
scale of movements, the relationship between migration rate (m) and patch 
size (S IZE)  is described by a power function m = k × S I Z E  -~ where k is a 
constant and fl describes the strength of the scale-dependence (domain III in 
Figure 2). The scale coefficient fl depends on the dimensionality of the patch 
and is 1 for linear habitats and l - d / 2  for two-dimensional patches (d is 
the fractal dimension of the perimeter). Thus, for two-dimensional arenas 
with smooth perimeters (e.g. circles or quadrates) the dimension is d--1 
and the scale coefficient is fl=0.5. The dimensionality of the perimeter 
of natural "two-dimensional" patches is typically somewhat higher than 1 
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Figure 2 General scale-dependence of log per capita emigration rate versus patch 
size based on analyses of theoretical models. Roman numerals indicate scale domains 
that differ in the degree of predicted scale-dependence. In domain I there is scale 
independence and in domain lII a power function relationship, whereas domain II 
represents an intermediate zone (modified after Englund and HambS.ck ms). 

(d=  1.1-1.5) (e.g. Rex and Malanson, 1990), and, thus, such patches are 
expected to show weaker scale-dependence (/~ = 0.25-0.45). 

For patches small compared to the scale of movements (domain 1 in 
Figure 2), per capita emigration rates are predicted to be independent of 
patch geometry and size. This result occurs because steps taken by 
organisms in the patch are so large that every movement results in 
emigration. As a consequence, small changes in patch size have no effect on 
the per capita emigration rate. 

Empirical observations support these theoretical results. Englund 
(unpublished data) found that the scale coefficient (/~) for emigration by 
aquatic invertebrates decreased with increasing step size, and the scaling 
coefficients for migration in terrestrial insects in natural two-dimensional 
patches tend to be in the expected range, i.e./~ = 0.2-0.5 (e.g. Karevia, 1985; 
Kuussaari et al., 1996; Matter, 1997; Sutcliffe et al., 1997: Thomas and 
Kunin, 1999: Hanski et al., 2000; Petit et al., 2001). 

2. Growth o f  Wall Periphyton in Aquatic Mesocosms 

Several authors have suggested that the biomass of periphyton per unit 
volume in cylindrical mesocosms should be inversely proportional to the 
radius (r) of the container. This relationship is based on the fact that the 
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Figure 3 A model of the scale-dependence of periphyton biomass in a mesocosm 
experiment. The biomass of periphyton per volume (By) is given by Eq. (1) in the text 
and radius refers to the radius of mesocosms. Parameter values are taken from the 
autumn experiment in Chen et al. (1997). 

ratio between wall area (A) and volume (V) for a cylinder is equal to 2/r, and 
the assumption that periphyton biomass per unit wall area is independent of 
container size. 

In an experimental study, Chen et al. (1997) found that the biomass per 
unit wall area (BA), rather than being independent of container size, 
decreased linearly with the wall area to volume ratio (A/V), i.e. BA= 
a -- b(A/V) where a and b are constants. Multiplying this expression by A~ V 
gives the scaling relationship for biomass per volume B y =  a ( A / V ) -  
b(A/V) 2. Substituting A~ V with 2/r gives 

Bv = 2a/r - 4b/r 2. (2) 

This equation produces a hump-shaped relationship between biomass per 
volume and container size (Figure 3). At large scales By decreases in 
proportion to 1/r which indicates that periphyton biomass is determined by 
surface area-to-volume ratios. However, in small containers some other 
process, represented by the negative term (-4b/r2), influences the scale- 
dependence of By. 

3. Predation Along Edges 

Predation rates can be affected by edges because predators are more 
effective at encountering or catching prey in edges or corners. For example, 
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if predators and prey have a random distribution and predators catch most 
of their prey near container walls, we can expect the number of prey eaten 
by predators to be approximately proportional to the wall area. Thus, the 
number of prey eaten per predator (E) in a cylindrical container should be 
approximately proportional to the ratio between wall area and container 
volume i.e. E ~x r -1, where r is the radius. The scaling relations found in 
empirical studies often deviate from this expectation. A common result in 
studies of pelagic predator-prey systems is that feeding rates increase 
with arena size (Cooper and Goldman, 1982; Fulton, 1982; LaFontaine 
and Leggett, 1987; Marras6 et al., 1992; Gorokhova and Hansson, 1997: 
Bergstr6m and Englund, 2002). As discussed in Section IV.D.2, a possible 
explanation for this pattern is scale-dependent aggregation along edges by 
both predators and prey (Bergstr6m and Englund, 2002). 

A simulation model incorporating this mechanism for scale-dependent 
effects was developed by Bergstr6m and Englund (2002). Predators and prey 
were assumed to perform a random walk in a circular arena that was divided 
into an interior habitat and a narrow wall habitat. When an individual 
encountered the wall, the direction of the next step was determined by the 
organism's affinity for the wall, a variable specifying the probability that the 
next step would be taken along or away from the wall. Encounter rates were 
assumed to be proportional to the product of predator and prey density in 
each habitat. The model predicted a positive relationship between predator-- 
prey encounter rates and arena radius in small arenas, but a negative 
relationship in larger arenas (Figure 4). The initial increase of encounter rate 
occurred because densities of predators and prey in the wall habitat 
increased with increasing arena size. This raised the encounter rate in the 
wall habitat and, thus, the predator-prey encounter rates in the whole arena. 
Several mechanisms accounted for the declining phase of the curve, the most 
important being that individuals in large containers spent a larger 
proportion of their time in the interior habitat before encountering the wall. 

4. Competition Between Littoral Grazers 

MacNally (1997, 2000) used spatially explicit simulation models to examine 
how foraging behavior and arena size affected the consumption rates and 
exploitation competition among intertidal grazers, such as gastropods. 
Consumers were placed in model habitats consisting of cells arranged in a 
grid. Within cells, algal growth was density-dependent and algal mortality 
due to consumption was described by a satiating functional response. 
Consumers moved between cells but did not grow, die, or reproduce. 
Experiments with enclosures of different size were simulated by restricting 
movements to a smaller number of cells. 
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Figure 4 The graph shows how encounter rates change with arena radius when 
predators and prey coaggregate in a narrow edge habitat. Predictions were generated 
by the simulation model presented in Bergstrfm and Englund (2002). The two curves 
represent different values of wall affinity, which is the probability that an individual 
that has encountered a wall will take the next step along the wall or into the interior. 
Encounter rate values are standardized by dividing by the encounter rate expected if 
predators and prey have a random distribution. 

In general, the model predicted increasing grazer consumption rates with 
increasing enclosure area; however, this pattern was modified by the grazers' 
foraging strategies and movement rates. For  optimal foragers that selected 
the most profitable food patches, a different pattern was observed. At low 
and intermediate grazer movement rates, the effects of  enclosure size on 
grazer consumption rates were notably nonlinear with the lowest consump- 
tion rates observed in enclosures of  intermediate size (MacNally, 2000). As a 
consequence, the outcome of  exploitative competitive interactions between 
grazers using different foraging strategies changed with arena size in a rather 
complex manner. Competition coefficients observed in simulated enclosures 
differed from those of  free-ranging individuals by as much as 30-40%, and 
for some foraging strategies it was found that small scale experiments would 
produce erroneous conclusions about the relative strengths of  intra versus 
interspecific competition at large scales. 

5. Predation and Prey Movements 

Englund (1997) analyzed scale-dependence in the effects of  predators on 
local prey populations using models of  open predation experiments where 
prey could move into and out of  experimental units. The fundamental 
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assumptions of these models were that the influence of prey migration on 
prey density decreased with increasing scale whereas predation rate was 
scale-independent. A consequence of these assumptions is that prey densities 
are controlled by prey migration in small arenas and by direct predation in 
large arenas. One of the models was intended to mimic short-term cage 
experiments performed in a system without predators in the surrounding, 
natural habitat. It was assumed that prey densities were determined by 
migration in control units and by both migration and consumption in 
predator units, i.e. 

dnc/dt  = mono -- mcnc (3) 

dnp/dt  = mono - (mp + q)np (4) 

where the subscripts c, p, and o denote control units, predator units, and the 
area outside the experimental units, n is prey density, q is predation rate per 
prey, and m is a constant that relates the number of individuals that cross 
the perimeter (i.e. cage walls) per unit time to the density in the source area. 
Scale-dependence is introduced by assuming that the constant, m, decreases 
with arena size, i.e. m = k x S I Z E  -s ,  where k is a constant and/~ describes 
the strength of the scale-dependence. 

This model predicts that predator impacts on prey densities ( P I =  In(no/ 
np)) vary in a sigrnoidal fashion with increasing arena size as long as the 
migration rate is scale-dependent (/~ > 0)(Figure 5). The relationship between 
PI  and arena size can be positive or negative depending on the behavioral 
response of the prey to predators. Increasing PI  with increasing arena size is 
expected if prey migration is independent of  predator presence (rap = rn~ in 
Figure 5) or if prey "freeze" in response to predators, i.e. decrease their 
dispersal out of predator units (rap<me). The opposite relationship, 
i.e. decreasing PI  with increasing arena size, is expected if prey increase 
their dispersal out of predator versus control units (e.g. m v > mc in Figure 5). 
Arena size also affects the response time of prey populations to predators 
(Figure 6). In small arenas, the PI  value quickly reaches an asymptote set 
by ln(mp/mc) whereas PI  in very large arenas is predicted to increase 
linearly from small to moderate amounts of time (t), i.e. P I =  qt (Englund 
et al., 2001). 

6. Scale-Dependent Heterogeneity and Nonlinear 
Responses - Aggregation Error 

If small-scale experiments show a nonlinear relationship between a response 
(e.g. consumer consumption rate) and independent variable (e.g. resource 
density), then these results cannot be extrapolated directly to larger scales if 
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Figure 5 Predicted relationships between predator impact and spatial scale for 
experiments performed in a habitat without predators in the background, The 
predator impact index is given by P I =  ln(nJ%),  where ne and np are prey densities in 
control and predator treatment units, mp = 2me refers to a situation where area- 
specific migration rates are higher in predator than control cages (avoidance), 
mp = me means that emigration rates are equal in the two types of cages, and mp = 0.5 
me refers to a situation where prey decrease emigration rates in the presence of 
predators ("freezing"). Predictions were generated by solving Eqs (3) and (4) with 
respect to time (see Englund et al., 2001) and assuming that migration rates 
m c( Area -~/2. Consumption rate (q) is 0.01 per unit time, area-specific emigration 
rate in control cages (me) is 0.05 per unit time, and the model is run for 20 time units. 
At the top we have indicated the approximate boundaries between the three scale 
domains described in the text. 

levels of  the independent variable in the larger system are more spatially 
heterogeneous than in the experimental system. The underlying mechanism 
is illustrated in Figure 1. The bias caused by this mechanism is often called 
aggregation error and there are several general methods that can be used to 
modify a function estimated f rom small-scale units so that it applies to 
larger and more heterogeneous systems (O'Neill and Rust, 1979; O'Neill, 
1979; King, 1992; Rastetter et  al., 1992). 

When the small-scale function is simple and the variation between small- 
scale units can be quantified, it is often possible to derive a corrected 
function that gives an unbiased description of the behavior of  the large-scale 
system. One such method is extrapolation by expected value (Rastetter et  al., 
1992). Extrapolation by expected value requires that the small-scale function 

f(z) is known and that the variation among small-scale units in the driving 
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Figure 6 Predicted changes in predator impact on prey density (P/) through time 
for experiments conducted at three different spatial scales. Predictions were 
generated by solving Eqs (3) and (4) with respect to time (see Englund et al, 2001) 
and assuming that migration rates m ~x Area-1/2. Area-specific emigration rates were 
0.05 per time unit in control cages and 0.1 per time unit in predator cages• Other 
parameter values are given in Figure 5. 

variable (z) is quantified by a probability density function p(z). The resulting 
large-scale function F is found by solving the integral 

7 F = f (z )p(z )  dz (5) 

The resulting equation has a different structure than its small-scale 
counterpart as the original driving variable (z) is replaced by the parameters 
of the probability density function p(z). Alternatively, spatial variation 
among small-scale units can be described by specifying the driving variable 
(z) as a function of the spatial coordinates, z = g ( x , y )  (for details and 
relevant models see King 1992). 

When the small-scale function is complex, it may become impossible to 
solve the integrals, or the complexity of the solution may reduce its 
usefulness. A Taylor series expansion can be used to find simpler 
approximate functions. Expanding the small-scale function.flz) around the 
mean (5) yields the following series 

+/(2)(~)m2 ~ - - ~ .  " ' .f~3)(~) , f(4)(5 ) 
F -I- - ~ .  rn3 + - - ~ m 4  (6) 

where f (0(5) is the ith derivative of f(z) evaluated at 5 and mi is the ith 
statistical moment o f f ( z )  about 5, i.e. m2 is the variance, m3 is the skew, and 
m4 is kurtosis (Chesson, 1998). The first term in this series is the small-scale 
function, f(z), evaluated at the mean value of the heterogeneous driving 
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variable (z). The following terms represent corrections to this first estimate. 
If  the small-scale function can be approximated by a quadratic equation, a 
good approximation to the large-scale function F is obtained by retaining 
the first two terms. The resulting large-scale function is given by 

e = f(5) + c~r 2, (7) 

where a 2 is the variance in z among small-scale units and c=0.5f"(5) 
(Chesson, 1998). The following example illustrates how this result can be 
used. The densities (N) of an organism in a number of small patches are 
recorded and it is found that the change in densities from one year to the 
next in a patch is described by the equation: 

Nt+l = Nt  + rNt(1 - N t / K ) .  (8) 

If  we want to find an equation that describes the dynamics of the collection 
of patches using the mean density across all patches (Nt) as the argument we 
can apply Eq. (7). The second derivative of Eq. (8), (d2Nt+t/dN2t) ,  is - 2 r / K .  
Thus the correction factor is c--- - r / K  and the corrected equation is 

/Vt+l = l~rt -k- r]~t(1 - IV t /K)  - cr2r/K, (9) 

where a2 is the variance in density among the patches. Equation (9) is exact 
because Eq. (7) is a quadratic function and the higher order terms in the 
moment expansion are zero. For functions not well approximated by a 
quadratic, it may be necessary to retain more terms which requires the 
estimation of higher statistical moments (skew, kurtosis etc.). 

So far we have shown how corrections can be made for a single variable. 
Although the methods can be extended readily to include corrections for 
several variables (see Rastetter et  al., 1992), the complexity of the resulting 
functions will often prevent their application. Extrapolation by calibration 
is another approximate method that can be used when large-scale data are 
available (Rastetter et  al., 1992). In this case, the small-scale function is 
fitted to the large-scale data and new parameter values are estimated. The 
most important strength of this method is that it allows all sources of 
aggregation errors to be corrected, even unknown sources, without 
increasing the complexity of the model. An obvious disadvantage is that it 
requires large-scale data, when it is precisely the lack of such data which 
motivates the need for extrapolations from small to large scales. 

A related problem is an active area of research in mathematical 
population ecology. The output of spatially explicit simulation models 
often deviates substantially from corresponding mean-field models that 
ignore spatial variation in the levels of driving variables. Due to the 
complexity of spatial simulation models, it is often difficult to elucidate the 
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essential processes that determine spatial and temporal dynamics; however, 
understanding can be obtained by formulating analytically tractable models 
that reproduce the output of spatial simulation models. One method to 
simplify stochastic spatial models is to use moment equations. The mean 
abundances of each species are described as functions of mean densities, 
variances, and covariances. As variances and covariances are dynamic 
state variables that are influenced by local interactions, it is necessary to 
formulate equations that govern variances and covariances as well. These 
equations contain third-order moments, which also are dynamic entities. It 
is thus necessary to find methods to truncate the series of equations. 
Important results are given in, for example, Matzuda (1992), Pacala and 
Levin (1997), Pascual and Levin (1999), Ellner (2001), and Filipe and 
Gibson (2001). 

Because the error caused by nonlinear averaging is approximately 
proportional to the variance among small-scale units (c~2), it is important 
to know how this variance depends on the grain and extent of our observa- 
tions. A general pattern is that an increase in the grain (with extent kept 
constant) reduces the variance among units at a decelerating rate (Figure 7a) 
(Wiens, 1989; Gardner, 1998). For a randomly distributed variable (no 
spatial autocorrelation), the variance is expected to be inversely propor- 
tional to grain size, i.e. the relationship is described by a power function of 
the form V A R I A N C E  : k x A R E A  ~, with 13 being equal to -1 (Wiens, 1989; 
Gardner, 1998). Note that this result assumes that the random variable is a 
concentration variable, such as the density of organisms. If the variable is 
spatially autocorrelated, which is the case for the tree density data shown in 
Figure 7a, the slope parameter (13) will generally be between 0 and -1 
(Wiens, 1989; He et al., 1994; Gardner, 1998). In contrast, an increase in the 
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extent of an experiment (with grain kept constant) causes the variance 
among units to increase at a decelerating rate (Figure 7b), because new types 
of patches will be encountered at a decelerating rate as the range of 
observations increases. From these relationships it follows that the 
magnitude of the aggregation error is a function of the scope, or the ratio 
of extent/grain (Schneider et al., 1997). In general the magnitude of the 
aggregation error is expected to increase with increasing scope. However, 
for more complex functions involving several variables with opposing 
effects on the aggregation error, the opposite pattern can be observed 
(Melbourne, 2000). 

F. Using Scaling Models to Identify Critical Scales and 
Scale Domains 

Scaling models used for quantitative extrapolation must be validated by 
comparing predictions with empirical data, and the empirical domain for 
which the model has validity must be carefully defined. Because experi- 
mental results typically are influenced by more than one scale-dependent 
process, we also expect that useful scaling models often will include several 
different processes. Obviously, few, if any, of the scaling models presented 
above meet these criteria. 

At this stage we believe that the value of scaling models primarily lies in 
their ability to make broad, qualitative predictions. Perhaps most 
importantly, they can be used to identify scale domains with little or no 
scale-dependence, making extrapolations across scales straightforward. This 
use of scaling models is exemplified by a study of grazing on bacteria 
(Marras6 et al., 1992). Marras+ et al. (1992) found that container size had 
little effect on grazing rates when containers were one liter in volume or 
larger, resulting in their subsequent use of l-liter containers in experiments. 

Many of the models based on perimeter/area relationships suggest that 
scale-dependence in ecological responses to manipulations or perturbations 
tend to disappear at large scales. The contribution and effects of wall 
periphyton on total primary production approach zero at large scales (Chen 
et al., 1997) and the effect of predators on prey densities approaches an 
asymptote set by the product of time and predation rate in the model 
examined by Englund (1997). Likewise, in the model of predation along 
edges it was found that encounter rate was unaffected by predator-prey 
coaggregation above a certain arena size (Bergstrrm and Englund, 2002). 
Other factors and processes that cause scale-dependent responses also have 
an asymptotic or logistic relationship with arena size. This is true for species 
richness (He and Legendre, 1996), for number effects due to interference and 
grouping behaviors, and for the effects of demographic stochasticity and the 
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number of subpopulations on extinction risk (Bengtsson, 1989; Hassel and 
Wilson, 1997). It, thus, may be possible to identify a threshold size above 
which scale-dependence is negligible. Experiments in this scale domain 
should provide accurate estimates of whole-system responses. A relevant 
question, then, is how small arenas can be and still provide accurate 
estimates of large-scale results. Sarnelle (1997) examined this question in the 
context of Daphnia's effects on micro-zooplankton and concluded that 
experiments in large plastic bags (diameter 1.5 m, depth 7 m), but not in 
small bags (15 1), provided reasonably accurate estimates of whole-lake 
responses to Daphnia removals. Englund (1997) used models of predation in 
an open system to answer a similar question, namely, how much migration 
could be allowed given that predator impacts on prey populations should be 
within ~5% of the impact seen at the whole (i.e. closed) system scale (i.e. the 
population level response). He found that a migration rate representing 
1 4 %  of the prey population inside arenas per day would produce similar 
results to those at the largest scales, given experimental durations and 
predation rates typical for stream predation experiments. Much lower 
relative migration rates were required if prey altered their movement 
behaviors in response to the presence of predators. 

Scaling models of this type also can be used to identify scale domains 
where scale-dependent responses are very strong or complex. Extrapolation 
of experimental results obtained in such domains to other scales is likely to 
be especially difficult. Scale domains with particularly strong scale- 
dependence can be identified in the model of wall periphyton (radius 
0.2-0.4 m, Figure 3) and in the model of predator impacts on prey in open 
predation experiments (arenas of intermediate size, Figure 5). 

Often the strongest scale-dependencies are observed at the "critical scale," 
where two antagonistic rates are of equal magnitude. In the model shown in 
Figure 5 the strongest scale-dependence occurred when both migration and 
predation mortality influenced prey densities. Critical scales can be plotted 
in a rate diagram such as Figure 8. In this plot the solid lines indicate 
the spatial and temporal scales where movement and mortality rates are 
equal for large Atlantic cod (Schneider et al., 1999). In such a graph it is 
easy to determine what processes dominate responses or patterns at the 
scale covered by an experiment or a sampling program. It also has been 
proposed that results should not be extrapolated across critical scales 
(Schneider, 2001 b). 

We used a related approach to study scale domains for published stream 
predation experiments using the model in Englund (1997). Figure 5 shows 
that the model can be used to identify three scale domains: a small-scale 
domain where prey movements (including movement responses to 
predators) control prey densities, a large-scale domain where prey densities 
are controlled by predation, and an intermediate domain where both 
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Figure 8 Rate plot comparing mortality rate (M) and movement rate (F) as a ratio 
(R =M/F) in large Atlantic cod (length > 100cm). Estimates of rates are based on 
literature data. Because published estimates of rates varied between studies, two lines 
were drawn that represent critical scales (R= 1). The lines were calculated using 
either a high estimate of mortality rate and a low estimate of movement rate or a low 
mortality rate and a high movement rate, respectively. Thus the area between the two 
lines represents scales where data are not precise enough to determine which of the 
two rates is higher. Lines were computed with Monte Carlo methods (redrawn from 
Schneider et aL, 1999). 

processes are important. Response times also differ among domains, with 
the longest times to equilibrium being predicted for experiments conducted 
in the large-scale domain (Figure 6). To determine the scale domain of  
published experiments, we used estimates of  prey migration rates and 
predator consumption rates reported in the literature, as well as Englund's 
(1997) model, to simulate scale-dependence in the results of  experiments 
examining the effects of  stream predators on benthic prey (Englund et al., 
2001). Figure 9 shows the predicted scale-dependence of  predator impacts 
on prey for a small experiment, where 1.5 m long channels were used as 
experimental units (Dahl, 1998), and a much larger experiment, where 35-m 
long sections of  a stream were used (Forrester, 1994). For  two highly mobile 
prey taxa, Baetis and Simuliidae, Dahl's experiment was conducted in the 
small-scale domain with weak scale-dependence and predator impacts 
controlled by prey movements (Figure 9a), whereas the predicted predator 
impact on mayfly taxa was close to the asymptotic value predicted for very 
large arenas in Forrester's experiment (Figure 9b). Thus Forrester's 
experiment belongs to the large-scale domain where predator consumption 
of  prey controls predator impacts on prey populations. This exercise 
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Figure 9 Predicted relationships between predator impacts on prey taxa (P/) and 
spatial scale in two experiments. Predictions were calculated using a model assuming 
that there are predators in the background habitat. The model was parameterized 
using predation and prey migration rates given in Forrester (1994) for the treatment 
with intermediate char density, and Dahl (1998) for the trout treatment. P I  is defined 
in Figure 5. Arrows denote the length of experimental units used in each experiment 
(from Englund et al., 2001). 

suggests that some results of Dahl's experiment should be interpreted in 
the light of habitat selection models rather than traditional models of 
population dynamics, whereas the results of Forrester's experiment may 
indicate predator impacts on prey populations. 

An analysis of a data set that included most stream predation experiments 
published before 1997 showed that most studies used arenas that were much 
smaller than those of Dahl and Forrester. Seventy-three percent of the 
experiments were performed in arenas ranging from 0.1 to 1 m in length, 
indicating that many of these experiments estimated the effects of prey 
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movements  and habitat  selection rather than the effects of  direct predation 
on local prey populations (Englund et al., 1999a,b). 

V. E X T R A P O L A T I O N  BY C O M B I N I N G  

M A N Y  S M A L L - S C A L E  M E A S U R E M E N T S  

A. Statistics as a Framework for Extrapolation 
in Field Experiments 

Statistical theory relevant to experimental design, parameter estimation, and 
inference is used frequently as a framework for extrapolation in the sense 
that observations of a limited number of individual units are used to draw 
conclusions about whole populations or systems. General statistical theory 
and methods are available in standard textbooks (Wirier et  al., 1991; Manly, 
1992). The use of mixed model designs and random block or site factors is a 
particularly powerful framework for extrapolation in field experiments 
(Dutilleul, 1993, 1998a,b; Beck, 1997). As an example of a mixed model 
design, consider an experiment where a treatment with two levels is applied 
to pairs of ponds, which are near each other. The pairs, henceforth called 
blocks, are randomly chosen from a larger population of ponds. A design of 
this type is called "mixed" because it contains both a random factor (block) 
and a fixed factor (treatment). The strength of this design is that it allows 
conclusions about treatment effects to be generalized to the population of 
ponds (Beck, 1997). It is crucial, however, that the units specified by the 
block factor are selected at random. Ecologists commonly repeat experi- 
mental manipulations at different sites that are selected because they 
represent different levels of some environmental factor, e.g. sheltered/ 
exposed or dry/moist conditions (Menge et  al., 1994; Englund and Krupa, 
2000). In these cases the site factor must be treated as a fixed factor and, 
strictly, treatment responses cannot be extrapolated beyond the examined 
sites (Winer et  al., 1991; Beck, 1997). An alternative to mixed model designs 
is completely randomized designs where treatments are applied to randomly 
selected experimental units (Winer et  al., 1991). This design allows 
extrapolation to a larger population of units but, because it does not 
account for spatial heterogeneity on scales larger than experimental units, it 
will often have lower statistical power than block designs (Dutilleul, 1993, 
1998a,b). Finally, if environmental factors potentially affecting treatments 
are selected a priori, then investigators often use ANCOVA designs which 
allow the influence of environmental factors on treatment effects to be 
inferred. However, results cannot be extrapolated outside the range of 
values of environmental factors encountered. 
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The treatment effect in a mixed model ANOVA design, i.e. the differences 
in response between treated and control units within blocks, is analogous to 
individual observations in a sampling program. This suggests that we can 
apply general theory about how the scale of a sampling program affects its 
sensitivity to spatial heterogeneity at different scales (Allen and Hoeckstra, 
1991). According to this theory we expect that an increase in the sampling 
grain and/or extent makes the sampling program more sensitive to large- 
scale heterogeneity. Because different processes create heterogeneity at 
different scales, it is, to some extent, possible to control the processes that 
are studied by selecting the scales of observation (Allen and Hoeckstra, 
199l). Thus, this theory suggests that the grain and extent of experiments 
determines the scale of heterogeneity and, thus, the underlying processes 
that can possibly modify treatment effects. Conversely, this reasoning 
implies that experiments conducted at different scales test somewhat 
different hypotheses even though identical treatments are applied. As a 
consequence, the grain and extent of an experiment should be a deliberate 
choice, motivated by the hypothesis tested and based on knowledge about 
how heterogeneity of the system under study changes with the scale of 
observation. 

Other practical and statistical considerations typically influence the design 
and scale of experiments, perhaps most importantly the trade-off between 
scale (grain and extent) and statistical power. Increasing the extent, by 
covering a larger area or by covering a wider range in some environmental 
variable, tends to increase the variation among experimental units 
(Figure 7b) and thus reduces statistical power. Conversely, restricting the 
experiment to a small area, or a narrow range of environmental conditions, 
increases statistical power but reduces the generality of the results. The grain 
of an experiment also may influence its statistical power. If the size of 
experimental units are increased, this leads to reduced variation among 
experimental units and blocks (Figure 7a), and thus to increased statistical 
power. Another important aspect of the scale of an experimental design is 
the lag or the distance between neighboring units. As the lag influences the 
degree of spatial autocorrelation in the observed responses, it can affect the 
accuracy of estimated parameter values and confidence intervals (e.g. Carrol 
and Perrson, 1998; Bonham and Reich, 1999). 

B. Sample Experiments, System-Unit Experiments, and 
Aggregation Error 

When discussing extrapolation in field experiments it is useful to distinguish 
between "system-unit experiments," where each experimental unit is a 
system that we want to make inferences about, and "sample experiments," 
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where the experimental units are samples from a larger system and the 
objective is to use observations from the experimental units to estimate 
parameters that characterize the large-scale system. An example of a system- 
unit experiment could be the manipulation of fish densities in a number of 
small isolated lakes. The objective, then, could be estimating parameters 
that describe the effects of fish manipulations on prey densities in this 
population of lakes. The parameters can be used to predict predator effects 
on prey densities in a typical lake with similar characteristics. An example of 
a sample experiment would be to subdivide a small lake into sectors and 
manipulate fish densities in the sectors (e.g. Tonn et al., 1992), with the 
objective of using observations in sectors to estimate parameters that 
describe the effects of fish density on prey populations in the entire lake. 
Other examples are many field experiments in agricultural research. A field, 
which often corresponds to the scale of interest, is subdivided into plots that 
receive different treatments. 

The nature of extrapolation is different in the two types of experiments 
because the experimental units are different (parts or the whole). One 
consequence is that aggregation error is a potential problem in sample 
experiments but not in system experiments. This, in turn, has implications 
for how measurements made in experimental units should be aggregated in 
sample experiments. Aggregation errors can arise when measurements made 
on small-scale units are applied to larger and more heterogeneous units 
(Rastetter et al., 1992; Chesson, 1998). In particular, such errors occur when 
a) the studied response is a nonlinear function of variables or parameters, 
and b) there is variation among small-scale units in these variables or 
parameters (see Section IV.D.2. and Figure la for an explanation of this 
mechanism). To illustrate this problem, consider a sample experiment with a 
mixed model design. Predator densities are manipulated so that units within 
blocks either have natural predator densities, P, or no predators, and the 
densities of prey, Np and Arc, in predator and control cages are recorded 
after some time t. A biological interaction coefficient such as a---ln(Nc/Np)/ 
Pt  (Laska and Wootton, 1998; Osenberg et al., 1997) is estimated with the 
ultimate objective of incorporating it into a population model that can 
predict the dynamics of the predator and prey populations (Berlow et al., 
1999; see also a critique in Abrams 2001). Note that the interaction 
coefficient, a, corresponds to the attack coefficient in a model of the form 
Nt---N0e -~t, and thus that its relation to prey density (Nt) is nonlinear. 

If we first calculate a for each block and then the mean a value for all the 
blocks (which would be the natural choice for a system-unit experiment), i.e. 
a -=- (1/n) ~]7=1 ln (Nci /Npi ) / tP ,  and include this estimate of a in a population 
model, then the predicted dynamics will not accurately reflect the dynamics 
of the entire system, given that there is variation in a among blocks. If, 
instead, a is calculated from the mean density for all predator units and the 
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mean for all control units, i.e. a = ln(Nc/Np)/Pt ,  the resulting estimate can 
be used to characterize changes in prey densities owing to predation in the 
whole system. 

In this simplified example, the objective was to estimate a single response 
value for an entire system and it was possible to calculate an unbiased 
estimate of the large-scale response. However, often we want to estimate 
how response values vary across some heterogeneous property of the 
system, such as the functional response that describes how the interaction 
coefficient varies with prey density (e.g. Melbourne, 2000). In this case, it 
may be possible to estimate a small-scale function from experimental data if 
there is sufficient variation among units in the driving variable, and a large- 
scale function, that describes the ecological responses of the larger and more 
heterogeneous system, can be estimated using the methods proposed in 
Section IV.E.6. 

C. How to Quantify Heterogeneity 

From the discussion in the two previous sections it is clear that knowledge 
about how the heterogeneity of the study system changes with scale can 
improve the design and interpretation of field experiments. Many statistical 
techniques have been developed to examine relationships between scale and 
heterogeneity (Legendre and Fortin, 1989; Rossi et al., 1992; Cressie, 1993; 
Legendre, 1993; Cooper et al., 1997). Different techniques can deal with 
categorical (presence/absence, patch type) or quantitative (density, biomass, 
concentration) data and include methods based on fractal geometry and 
information theory, pattern analysis, nested hierarchical ANOVAs, spatial 
autocorrelation and semivariogram analysis, relationships between symme- 
trical matrices (e.g. Mantel test), and, when examining dominant scales of 
periodic patterns, spectral analysis (Legendre and Fortin, 1989; Diggle, 
1990; Hastings and Sugihara, 1993; Legendre, 1993; Cooper et al., 1997). 
These and similar techniques can provide metrics for quantifying aspects of 
spatial heterogeneity or patchiness in measured variables, including the size, 
shape, magnitude, spatial arrangement, and connectedness of patches or 
continuous variation in measured variables over space. 

Autocorrelation and semivariogram analyses can be used to delineate 
ranges of spatial dependence, where values at one spot are correlated with 
those at a distant spot, versus spatial independence, allowing the 
experimentalist to space experimental units so that they are independent. 
On the other hand, these techniques can allow the modeling of spatial 
dependence directly to permit valid parameter estimation and hypothesis 
testing (Cressie, 1993; Legendre, 1993; Carrol and Pearson, 1998; Bonham 
and Reich, 1999). Hierarchichal ANOVAs are particularly useful for 



200 G. ENGLUND AND S.D. COOPER 

predicting the magnitude of aggregation error for different combinations of 
grain and extent (e.g. Melbourne, 2000). Often, quantitative studies of the 
scales of patchiness and correlations between densities of interacting species 
are used to formulate hypotheses about the mechanisms that generate 
spatial structure (Underwood et al., 2000). Such studies provide valuable 
information about the scale of experimentation that should be used when 
testing these hypotheses. Maps or functions describing spatial patterns in 
driving variables can be used to distribute experimental arenas so that they 
encompass the range of environmental conditions of interest, allow the clear 
designation of blocks for block designs, and weight overall responses by the 
relative area encompassed by each set of environmental conditions 
(Legendre, 1993; Thrush et al., 1997). Finally, analyses of time series data, 
for example via spectral analysis, can be used to determine the duration of 
experiments so that experiments encompass the temporal patterns, cycles, 
and processes of interest (Platt and Denman, 1975). 

VI. CONCLUDING REMARKS 

Ecologists will continue to perform experiments in systems that are much 
smaller and shorter lived than the natural systems of interest. This is because 
small-scale experiments often are the only practical alternative but also 
because small-scale experiments offer advantages over large experiments in 
terms of control and interpretability. Thus, we need a theory that allows us 
to use results of small-scale experiments to make predictions about the 
behavior of natural systems. Ideally, such a theory should allow us to make 
unbiased predictions with known precision. Although this may be an 
unachievable objective at present, such theory could usefully indicate the 
direction of future research. 

Our review shows that important advances have been made in the 
development of such a scaling theory. To develop this theory further, it is 
important to widen its empirical base. Meta-analyses of experiments 
performed at different scales may help us to identify environmental 
conditions, types of systems or organisms, and other conditions where 
scale-dependent processes dominate (e.g. Petersen et al., 1999; Englund et al., 
2001); however, it is important to remember that such analyses are 
correlative and that the observed effects of arena size often are confounded 
with other experimental conditions, such as treatment strength and 
experiment duration that vary with arena size. Multiscale experiments, 
where the same treatment is applied to systems of different size, are 
particularly valuable (Cooper et al., 1998). Such experiments produce less 
ambiguous results than meta-analysis and can be used to construct empirical 
scaling functions (e.g. Chen et al., 1997). 
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In addition, multiscale experiments often engender hypotheses about the 
mechanisms that produce scale-dependent responses. A detailed under- 
standing of such mechanisms is necessary when constructing mechanistic 
scaling models. We expect that small-scale laboratory experiments in combi- 
nation with simple mathematical models will be a useful approach (e.g. 
Bergstr6m and Englund, 2002). Detailed behavioral analyses of organisms 
constrained to small arenas can help us to understand and model many scale 
artifacts (Heath and Houde, 2001). Further development of scaling models 
requires tests in multiscale experiments and comparisons between experi- 
mental and whole natural systems. Such tests validate model predictions and 
promote the modification and refinement of model assumptions. However, 
few, if any, rigorous tests of scaling models have been published to date. 

Dimensional analysis, both in its formal mathematical form and as the 
more intuitive dimensional approach proposed by Petersen and Hastings 
(2001), is a powerful tool and we expect that its systematic application will 
greatly improve the designs of conceptual experiments. A particularly useful 
concept when applying dimensional thinking is "effective scale," which 
relates the dimensions of the physical environment to scaling attributes of 
organisms (e.g. size and movement). However, its application requires 
detailed knowledge about organismal scaling attributes such as perceptive 
grain and extent for different environmental variables, and movement 
parameters, such as step length, step frequency, and turning rates (Morris, 
1987, 1992; Turchin, 1998). Dimensional analysis also can be a useful tool 
when standardizing measurements used in different studies (Paloheimo and 
Dickie 1965). For example, when comparing the outcomes of experiments 
conducted at different scales in a meta-analyses, it may often be more 
meaningful to use the effective scale (e.g. arena size relative to organism 
body size or duration in generation units) rather than the absolute scale of 
the arena as an explanatory variable (Englund et al., 2001). 

The fact that experimental responses often are scale-dependent no 
doubt renders the study of ecology more difficult. The dilemma faced 
by the experimental ecologist has been formulated as "whether one does 
experiments and ignores scale, or whether one respects scale and abandons 
experiments" (Wiens, 2001). We hope that this review has demonstrated 
that there is a growing theory that allows us to consider scale problems 
when designing, and interpreting the results of, experiments. 
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