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Abstract

An essential step in the translation of cell-based therapies for kidney repair involves preclinical 

studies in relevant animal models. Regenerative therapies in children with congenital kidney 

disease may provide benefit, but limited quantitative data on normal development is available to 

aid in identifying efficient protocols for repair. Nonhuman primates share many developmental 

similarities with humans and provide an important translational model for understanding 

nephrogenesis and morphological changes across gestation. These studies assessed monkey kidney 

size and weight during development and utilized stereological methods to quantitate total number 

of glomeruli. Immunohistochemical methods were included to identify patterns of expression of 

tubular proteins including Aquaporin-1 (AQP1), AQP2, Calbindin, E-Cadherin, and Uromodulin. 

Results have shown that glomerular number increased linearly with kidney weight, from 1.1 × 103 

in the late first trimester to 3.5 × 105 near term (P < 0.001). The ratio of glomeruli to body weight 

tripled from the late first to early second trimester then remained relatively unchanged. Only 

AQP1 was expressed in the proximal tubule and descending Loop of Henle. The ascending Loop 

of Henle was positive for AQP2, Calbindin, and Uromodulin; distal convoluted tubules stained for 

Calbindin only; and collecting tubules expressed AQP2 and E-Cadherin with occasional 

Calbindin-positive cells. These findings provide quantitative information on normal kidney 

ontogeny in rhesus monkeys and further support the importance of this model for human kidney 

development.
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Disruption of normal kidney development is a major cause of renal disease and accounts for 

nearly one-third of all childhood kidney-related illnesses (NIH, 2000). While animal models 

have elucidated important molecular and cellular events associated with congenital 

obstructive nephropathy and renal dysplasia (Chevalier et al., 2010), underlying causes 
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remain largely unknown, and few long-term therapeutic options are available. Of the 

pediatric patients undergoing kidney dialysis in 2011, 26.8% resulted from renal dysplasia 

or obstructive renal disease (NAPRTCS, 2011), and the number of pediatric patients with 

end-stage renal disease due to congenital kidney abnormalities has increased nearly 12% in 

the last 10 years (US Renal Data System, 2010). Although dialysis and kidney 

transplantation provides short-term solutions for children with kidney disease, the 

development of cellular therapies holds promise for longer term treatments.

Animal models are crucial to explore regenerative strategies for all age groups, and these 

models require a detailed understanding of kidney development in order to effectively 

identify potential new methods for kidney repair. Rhesus monkeys are an important 

translational model as this species has a close phylogenetic relationship and similar kidney 

ontogeny when compared with humans (Lee et al., 2001; Tarantal et al., 2001; Matsell and 

Tarantal, 2002; Batchelder et al., 2009, 2010; Leapley et al., 2009). The fetal rhesus monkey 

model of obstructive renal dysplasia recapitulates the molecular and cellular pathology 

observed in humans and provides a unique and essential model for studies of regenerative 

therapies (Tarantal et al., 2001, 2012; Matsell et al., 2002). In addition to studies of 

pathogenesis (Tarantal et al., 2001; Matsell et al., 2002; Butt et al., 2007; Hiatt et al., 2010) 

key studies with the monkey model include the evaluation of the temporal and spatial 

expression of key renal developmental markers (Batchelder et al., 2010), new methods to 

differentiate human embryonic stem cells toward renal precursors (Batchelder et al., 2009), 

the growth and culture of renal cortical cells (Leapley et al., 2009), the assessment of 

methods to radiolabel and image in vivo transplanted renal precursors (Tarantal et al., 2012), 

and the development of natural kidney scaffolds for renal tissue engineering (Nakayama et 

al., 2010, 2011). A unique challenge in the development of engineered constructs is the need 

to consider basic organization of tissue (morphology, protein expression) in an age-related 

and functional context. Future advances in this field are dependent on a thorough knowledge 

of the developmental morphology of the kidney in the chosen model species, quantitative 

parameters for assessment, and establishment of functional markers that can be used to 

analyze cells or tissue engineered constructs. In this study, stereology and 

immunohistochemistry were used to further characterize normal renal ontogeny in the rhesus 

monkey, and to establish baseline parameters of kidney growth, glomerular content, and the 

onset of tubular functional protein expression including Aquaporin-1 (AQP1), a proximal 

tubule water channel; Uromodulin, an ascending Loop of Henle marker also known as 

Tamm-Horsfall glycoprotein; AQP2, a collecting duct water channel; Calbindin, a calcium 

binding protein; as well as E-cadherin, a distal tubule and collecting duct cell adhesion 

protein.

Materials and Methods

Animals

All animal procedures were performed according to the requirements of the Animal Welfare 

Act and protocols were approved before implementation by the Institutional Animal Care 

and Use Committee at the University of California, Davis. Adult female rhesus monkeys 

(Macaca mulatta) with a history of prior pregnancies (N = 23) were bred and identified as 
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pregnant using established sonographic methods (Tarantal, 2005). Length of gestation in the 

rhesus monkey is 165 ± 10 days (Tarantal and Gargosky, 1995), with pregnancy divided into 

trimesters by 55-day increments (0–55 days = first trimester, 56–110 days = second 

trimester, 111–165 days = third trimester). Primate Center standard operating procedures 

were followed for all activities related to animal care including diet and housing. Fetal 

growth was monitored by ultrasound during gestation and findings compared to normative 

growth charts (Tarantal, 2005). Tissues were collected following hysterotomy during the 

first trimester (50 ± 2 days gestation), second trimester (80 ± 2 and 100 ± 2 days gestation), 

and third trimester (120 ± 2 and 150 ± 2 days gestation) using established methods (Tarantal 

et al., 2001). Kidneys from postnatal animals (3 months, N = 3) were also collected 

according to standard protocols for immunohistochemical comparison (Nakayama et al., 

2010). Measurements collected at the time of tissue harvest included body weight, kidney 

weight, and kidney length and width (Table 1).

Tissue Processing and Sectioning

Kidneys were collected and measured then placed in 4% paraformaldehyde immediately 

postcollection for 4 hr at 4°C, then embedded in 4% Agar (Fisher Scientific, Waltham, MA) 

in appropriately sized round isector molds using a custom design (Fig. 1). The round isector 

molds were then embedded in rectangular molds in paraffin to ensure isotropic uniform 

random orientation (Nyengaard and Gundersen, 1992). Paraffin blocks were exhaustively 

sectioned at 5–8 μm and a minimum of 10 sets of serial sections were collected to guarantee 

adequate point counts for reproducible and accurate data collection. To ensure uniform 

sampling, a random start was selected for the first set of serial sections collected, and then 

all following sets of serial sections were selected at fixed intervals to guarantee consistent 

thickness between sampled sections. In this manner, 10–15 groups of 25 serial sections were 

collected at consistent intervals across the kidneys. Sections were also stained with 

hematoxylin and eosin (H&E) using standard protocols, and assessed by unbiased 

stereological methods. An estimate of the total number of glomeruli was also obtained by 

the stereological fractionator-physical disector approach of Pakkenberg and Gundersen 

(1988). Briefly, the number of glomeruli was determined by the product of the glomerular 

count and the reciprocal of the sampling fraction at each fractionation step.

Stereology

Selected sections were scanned using an Olympus VS110 Virtual Microscopy System to 

create digital images at 1×, 10×, and 40× magnification. The Computer Assisted 

Stereological Toolbox (C.A.S.T.) software (Olympus America, Melville, NY) was used to 

apply point-counting grids or to select and align reference and look-up frames to assist with 

unbiased counting. The Cavalieri method was used to estimate total kidney and cortical 

volumes (Gundersen and Jensen, 1987). Briefly, a point grid at 1× magnification was used to 

obtain a count of all grid points overlying the cortex and the kidney for estimation of total 

volumes. The reference volume was estimated from the product of the thickness (distance 

from one counted section to the next), the area/point in the counting grid, and the sum of all 

points overlying the area of interest (cortex). Unbiased counting frames were applied to 

serial sections obtained by a physical disector (Pakkenberg and Gundersen, 1988) to 

estimate the numerical density of glomeruli in the cortex. Glomeruli present in the look-up 
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frame, but not the reference frame, were marked and counted (Sterio, 1984). The directional 

counting rule of the physical disector was applied to increase efficiency of the procedure by 

enabling reversal of the look-up and reference frames for an additional count (Howard and 

Reed, 2005). Multiplication of the numerical density of glomeruli in the cortex by the 

volume of the cortex provided an estimate of the total number of glomeruli.

Histology and Immunohistochemistry

Sections were prepared for immunohistochemical staining by deparaffinization followed by 

rehydration in graded ethanol according to established protocols (Lee et al., 2001; Tarantal 

et al., 2001; Batchelder et al., 2009). Heat-induced antigen retrieval was accomplished with 

0.01 M citrate buffer (pH 6.0, Life Technologies, Grand Island, NY). Primary antibodies 

used included AQP1 (clone H-55, 1:500 dilution, Santa Cruz Biotechnology, Santa Cruz, 

CA), AQP2 (clone C-17, 1:100 dilution, Santa Cruz Biotechnology), Uromodulin 

(polyclonal, 1:100 dilution, Sigma-Aldrich, St Louis, MO), Calbindin (clone D28K, 1:100, 

EMD Millipore, Billerica, MA), and E-Cadherin (clone NCH-38, 1:100, Dako, Glostrup, 

Denmark). Slides were mounted with ProLong Gold antifade reagent with 4′6-diamidino-2-

phenylindole (DAPI) (Life Technologies) before coverslip placement.

Statistical Analysis

Results are presented as mean ± standard error of the mean (SEM). Paired t tests and 

analysis of variance were used to determine statistical significance (P < 0.05).

Results

Morphology

Stereologic and morphologic methods were utilized to quantitate kidney development in the 

rhesus monkey as a basis for studies of cellular regeneration and tissue engineering. All 

tissues were evaluated morphologically by H&E staining, with no abnormalities confirmed. 

Representative photomicrographs of the developing kidney in the late first trimester (50 ± 2 

days gestation), early second trimester (80 ± 2 days gestation), late second trimester (100 ± 

2 days gestation), early third trimester (120 ± 2 days gestation), and near term (150 ± 2 days 

gestation) are shown in Fig. 1. Mean kidney weights, lengths, and widths are shown in Table 

1. Fetal weight increased nearly 100-fold from the late first trimester (5.27 ± 1.01 g) to the 

third trimester (505.25 ± 26.11 g) while individual kidney weight increased more than 200-

fold (0.02 ± 0.01 g vs. 1.58 ± 0.13 g). No significant differences between the measures and 

weights of the right and left kidneys were detected (data not shown). The ratio of individual 

kidney weight to fetal body weight increased from the late first trimester (2.86 ± 0.82) to a 

maximum in the second trimester (4.01 ± 0.07) (P < 0.0005) with a decrease at term (3.11 ± 

0.20).

Stereology

Fetal kidneys were collected utilizing an isotropic approach in order to preserve precious 

tissues in such a manner as to allow stereological analysis of various structures including 

glomeruli and tubules. The Cavalieri method (to estimate total kidney and cortex volume) 

and the physical disector approach (to estimate glomerular density) were combined to 
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estimate total number of glomeruli (Fig. 2A). Exhaustive sectioning and tabulation of 

counted sections provided a means to compare the isector counting approach with the ‘gold 

standard’ stereological approach (physical disector-fractionator) (Pakkenberg and 

Gundersen, 1988) for counting the number of homogeneous structures. The estimated 

number of glomeruli per kidney across gestation was similar and highly correlated 

(correlation coefficient = 0.99) between both stereological approaches. The number of 

glomeruli per kidney increased more than 28-fold from the late first trimester (1.1 × 103) to 

the early second trimester (3.2 × 104) (P < 0.001), then increased 24.1fold by the early third 

trimester (1.3 × 105) (P < 0.01). In the third trimester, the number of glomeruli increased an 

additional 2.5-fold with an estimate of 3.5 × 105 glomeruli per kidney near term. From the 

first trimester to the early second trimester, the mean number of glomeruli per gram fetal 

body weight increased nearly three-fold suggesting rapid formation of glomeruli (Fig. 2B). 

In contrast, the number of glomeruli relative to fetal body weight was relatively unchanged 

for the remainder of gestation (mean 1.1 × 103 glomeruli/g fetal body weight). A linear trend 

(R2 = 0.90) was observed between the number of glomeruli and kidney weight indicating a 

proportional increase in the number of glomeruli with kidney growth (Fig. 2C).

Immunohistochemistry

In order to assess the temporal and spatial expression patterns of key tubule proteins across 

ontogeny, immunohistochemistry was performed. The proximal tubule water channel AQP1 

was not observed in the nephrogenic zone but was expressed in some, but not all, developing 

tubules in the late first trimester (Fig. 3). From the second trimester onward, AQP1 was 

observed in the proximal convoluted tubules, proximal straight tubules, and descending 

Loop of Henle. The ureteric bud and surrounding condensed mesenchyme were noted with 

dim expression of the vasopressin-responsive water channel AQP2 in the late first trimester 

(Fig. 4). Beginning in the second trimester, bright AQP2 expression was noted in structures 

consistent with the ascending Loop of Henle and the collecting ducts. Some cells of the 

parietal epithelium of Bowman's capsule expressed AQP2 by the late third trimester. 

Calbindin, a calcium binding protein, was strongly expressed in the central ureteric bud 

stalks but diminished where bud tips were surrounded by condensed mesenchyme from the 

late first trimester through the early second trimester (Fig. 5). By the late second trimester, 

Calbindin expression was noted in all cells of the distal convoluted tubules and some, but 

not all, cells of the collecting ducts, and this finding continued throughout the third 

trimester.

For positive identification of the ascending Loop of Henle, dual staining of AQP2 with the 

Tamm-Horsfall glycoprotein marker Uromodulin was performed (Fig. 6). Some developing 

tubule-like structures were positive for both markers in the late first trimester. In the second 

trimester and thereafter, only structures consistent with ascending Loop of Henle 

morphology expressed both AQP2 and Uromodulin. Dual staining of Calbindin with the 

epithelial marker, E-Cadherin, or with AQP2 was assessed for further identification of 

developing renal tubular structures. The ureteric bud expressed Calbindin and E-Cadherin 

but not AQP2. Of the markers tested, only AQP1 was expressed in proximal tubules and the 

descending Loop of Henle (Fig. 3). The ascending Loop of Henle was positive for AQP2 

(Fig. 4), Calbindin (Fig. 5), and Uromodulin (Fig. 6) with distal convoluted tubules staining 
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for Calbindin only (Fig. 6), and collecting tubules expressing E-Cadherin (Fig. 6) and AQP2 

(Fig. 4) with occasional Calbindin-positive cells (Fig. 6). The parietal epithelium of 

Bowman's capsule modestly expressed AQP1 and AQP2.

Discussion

Development of the definitive fetal kidney (metanephros) is a highly orchestrated process 

between the ureteric bud and the metanephric blastema involving reciprocal interactions as 

the branching ureteric epithelium induces differentiation of the metanephric mesenchyme 

which, in turn, stimulates further branching of the ureteric epithelium (Saxen, 1987). As 

kidney development proceeds, the induced mesenchyme forms renal vesicles with further 

differentiation leading to comma-and S-shaped bodies. Additional steps in glomerular and 

tubular differentiation results in formation of various tubular segments of the mature 

nephron and specialized glomerular cell populations. While these morphological events have 

been described and the role of specific markers such as Pax2 (Dressler and Douglass, 1992) 

and WT1 (Pritchard-Jones et al., 1990) identified, quantitative data for objective assessment 

of normal kidney ontogeny remains limited. Our studies have previously shown that kidney 

development in the rhesus monkey follows a pattern similar to human kidney development 

with active nephrogenesis evident from the late first through mid-third trimester (Batchelder 

et al., 2010). The data presented here establish additional quantitative standards for normal 

kidney development in this species, further support the value of this model for studies 

focused on human renal disease, and provides a useful baseline for future studies to address 

repair.

Stereological methods provide a reliable, precise, and efficient method for quantifying 

kidney structures (Nyengaard, 1999; Bertram, 2001; Cullen-McEwen et al., 2012a,b). 

Although the sectioning process is extensive, counting of structures and calculations of 

volumes, surface areas, and lengths can be efficiently performed when stereological methods 

are used, and without assumptions that may not be valid regarding the shape of structures 

such as glomeruli. To apply these methods correctly, considerable effort must be directed to 

ensure unbiased random sampling in three dimensions and to minimize the influence of 

technical issues such as those that may occur from tissue shrinkage during the preservation 

or sectioning processes (Bertram et al., 2000). The use of the isector molds in these studies 

assured unbiased random sampling, an essential component for estimation of parameters 

such as volume and length (e.g., tubules), with no assumptions regarding size, shape, or 

location of the glomeruli. The number of glomeruli estimated with the isector approach was 

remarkably similar to the number of glomeruli estimated by the physical disector-

fractionator approach that is considered the stereological ‘gold-standard’. These studies 

establish the validity of the isector counting approach utilized especially when samples are 

precious and additional analyses requiring the isector method may be desired. These 

techniques permit accurate quantification of morphological changes and the evaluation of 

relationships between structures with organ and whole body weight.

Studies of fetal kidney development utilizing stereological methods in animal models 

include rats (Bertram et al., 2000; Cullen-McEwen et al., 2011), sheep (Bains, 1996), and 

baboons (Gubhaju et al., 2009). Estimation of glomerular number in adult African green 
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monkeys has been reported to be 1.27 × 105 (Skov et al., 1999) and 1.13 × 105 (Skov et al., 

2001) glomeruli per kidney; juxtamedullary glomeruli were noted to increase in volume 

when compared with cortical glomeruli. The number of glomeruli estimated in adult African 

green monkeys was approximately three-fold less than the number of glomeruli estimated in 

fetal rhesus monkeys in this study, which likely reflects differences in age groups. Others 

have reported a decline in the number of glomeruli with age in adult humans (Nyengaard 

and Bendtsen, 1992; Rule et al., 2010; Hoy et al., 2011). It is important to note that rodents 

complete nephrogenesis postnatally, which differs when compared to human and nonhuman 

primates where nephrogenesis is completed before birth. The number of glomeruli present at 

the end of nephrogenesis in normal rats (Bertram et al., 1992; Cullen-McEwen et al., 2011) 

and mice (Basgen et al., 2006; David et al., 2010) are considerably less than reported in 

large animal models such as pigs (Lødrup et al., 2008), sheep (Wintour et al., 2003), 

baboons (Gubhaju et al., 2009), humans (Nyengaard and Bendtsen, 1992; Hoy et al., 2003; 

Keller et al., 2003; White et al., 2007; McNamara et al., 2010), and monkeys as shown in 

Skov et al. (1999, 2001) and in the studies described herein (see Table 2).

The developing rhesus monkey kidney was further characterized through 

immunohistochemical assessment of expression patterns of several proteins crucial to the 

water balance function of the kidney. A majority of absorption of water from the glomerular 

filtrate occurs via osmosis through the water channel AQP1 (Agre et al., 1993) located in 

proximal tubule epithelium in rodents and humans (Maunsbach et al., 1997; Bedford et al., 

2003), and localized similarly in monkeys as shown in these studies. While AQP1 is 

essential for passive water reabsorption in the proximal nephron, AQP2 is the vasopressin-

responsive water channel in the distal nephron responsible for tight control of plasma 

volume and an essential protein for concentration of urine (Christensen et al., 2003; Rojek et 

al., 2006). Previous studies localized AQP2 to connecting tubules and collecting duct cells 

in mice (Nelson et al., 1998), rats (Fushimi et al., 1993; Nielsen et al., 1993), and humans 

(Sasaki et al., 1994), a pattern also confirmed in rhesus monkeys. Expression of these key 

proteins in the fetal kidney was previously noted to differ in humans when compared with 

rodents, as AQP1 and AQP2 were not evident until the mid-third trimester in these species 

(Yamamoto et al., 1997) but were observed as early as the late first trimester in humans 

(Devuyst et al., 1996) and rhesus monkeys as noted. Other studies have reported a unique 

and potential regenerative role for cells of the parietal epithelium (Ronconi et al., 2009) 

which, in these studies, were found to stain with tubular markers AQP1 and AQP2 in the 

late third trimester, suggesting further exploration of the role of the parietal epithelial cells in 

tubular repair is warranted.

Potential therapies for congenital obstructive renal disease will likely involve repair with 

tissue-engineered constructs (Nakayama et al., 2010, 2011, 2013). When applied prenatally 

(Tarantal et al., 2012) such strategies may effectively allow for organ growth and 

development in synchronization with the growing patient, and further underscores the 

importance of animal models that can best simulate human development. The normative 

range of values established for the temporal and spatial appearance of renal functional 

markers in the fetal and infant kidney provides important benchmarks by which to assess 

disease models, cellular therapeutics, and regenerative strategies for repair.
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In summary, results of this study establish quantitative parameters of kidney growth, 

glomerular content, and the onset of tubular functional proteins in rhesus monkeys, and 

further establish similarities with human kidney development. These studies provide 

important information for enhancing our understanding of kidney ontogeny and the crucial 

developmental milestones for future translational studies focused on organ repair in the 

monkey model of obstructive renal disease.
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Fig. 1. 
Kidney development in fetal rhesus monkeys. (A) Kidneys (k) were embedded in a round 

isector mold in agar (a) followed by re-embedding in rectangular paraffin molds to ensure 

isotropic random orientation. Representative photomicrographs of developing monkey 

kidneys in the late first trimester (B), early (C) and late (D) second trimester, and early (E) 

and late (F) third trimester. Images (10×) stained with H&E are oriented with the cortex to 

the upper left and the medulla to the lower right. CD, collecting duct; CB, comma or C-

shaped body; g, glomerulus; PT, proximal tubule; RP, renal papilla; RV, renal vesicle; SB, 

S-shaped body; UB, ureteric bud.
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Fig. 2. 
Relationship between glomerular number, kidney weight, body weight, and gestational age. 

(A) Glomerular counts were determined by two stereological methods: isector (blue bars) 

and physical disector/fractionator (red bars) with no significant differences noted between 

methods. The number of glomeruli per kidney increased with advancing gestational age (*P 

< 0.001). (B) The number of glomeruli per gram of kidney remained unchanged across the 

second and third trimesters. (C) A linear relationship was shown between the number of 

glomeruli and kidney weight.
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Fig. 3. 
Aquaporin-1 (AQP1) expression in developing monkey kidneys. (A) AQP1 was not 

observed in the nephrogenic zone (NZ) but was expressed in some, but not all, developing 

tubules in late first trimester. (B–D) From the second trimester onward, AQP1 was observed 

in structures within the proximal convoluted tubule (PCT), proximal straight tubule (PST), 

descending Loop of Henle (dLOH), and occasionally in some cells of the parietal epithelium 

of Bowman's capsule (arrows). DT, distal tubule; g, glomerulus; PT, proximal tubule; UB, 

ureteric bud. Scale bar= 100 μm.
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Fig. 4. 
AQP2 expression in developing monkey kidneys. (A) Ureteric bud (UB) and surrounding 

condensed mesenchyme (CM) were noted with dim expression in the late first trimester. (B–
D) Beginning early in the second trimester, bright AQP2 expression was noted in structures 

consistent with the ascending Loop of Henle and the collecting ducts (CD). (E) Some cells 

of the parietal epithelium of Bowman's capsule expressed AQP2 by the late third trimester 

(arrows). CB, C-shaped body; CCD, cortical collecting duct; g, glomerulus; mCNT, 

medullary connecting tubule. Scale bar =100 μm.
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Fig. 5. 
Calbindin expression in developing monkey kidneys. (A and B) Expression was observed in 

central ureteric bud (UB) stalks but reduced where bud tips were surrounded by condensed 

mesenchyme (CM). (C and D) In the late second trimester, expression was noted in all cells 

of the distal convoluted tubules (DCT) and some, but not all, cells of the collecting ducts 

(CD). g, glomerulus. Scale bar = 100 μm.
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Fig. 6. 
Expression of Uromodulin (UMOD), AQP2, Calbindin, and E-Cadherin in developing 

monkey kidneys. Boxes denoted with dashed lines in upper images (A, C, E, G, I, K) 

represent areas magnified in lower image (B, D, F, H, J, L). Nuclei visualized with DAPI 

(blue). (A and B) Some developing tubule structures were positive for both UMOD and 

AQP2 in the late first trimester. (C–F) In the second trimester and thereafter, only the 

ascending LOH (aLOH) expressed both AQP2 and UMOD. (G–J) The ureteric bud (UB) 

expressed Calbindin (CALB) and E-Cadherin (ECAD) with a loss of expression in the 

differentiating bud tips and renal vesicles (RV). (K–L) CALB was expressed in distal 

tubules (DT) and coexpressed with ECAD in some cells of the collecting ducts (CD) in the 

medullary rays. Scale bar = 100 μm.
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Table 2
Comparison between species and age group for glomerular number and kidney to body 
weight (BW) ratio

Species Age group # Glomeruli/kidney Kidney weight/BW ratio

Rata Term 0.5 × 104 –

Sheepb,c Term 3.0–5.6 × 105 2.8

Monkey Term 3.4 × 105 3.1

Baboond Midthird trimester 0.3 × 106 3.9

Pige Juvenile 2.1 × 106 –

Mousef,g Adult 1.2 × 104 –

Rata,h Adult 3.2 × 104 –

Sheepi Adult 4.0 × 105 1.2

Monkeyj,k Adult 1.1–1.3 × 105 1.8–2.0

Humanl-p Adult 0.6–1.4 × 106 2.0–2.2

a
Cullen-McEwen et al. (2011).

b
Bains et al. (1996).

c
Mitchell et al. (2004).

d
Gubhaju et al. (2009).

e
Lødrup et al. (2008).

f
Basgen et al. (2006).

g
David et al. (2010).

h
Bertram et al. (1992).

i
Wintour et al. (2003).

j
Skov et al. (1999).

k
Skov et al. (2001).

l
Nyengaard and Bendtsen (1992).

m
Hoy et al. (2003).

n
Keller et al. (2003).

o
White et al. (2007).

p
McNamara et al. (2010).
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