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Abstract

Computational Analysis of Molecular Recognition:

Molecular Dynamics and Free Energy Calculations

by

Kevin Masukawa

Therapeutics, whether antibodies, proteins, Small molecules, or nucleic acids, rely

on recognizing their targets with high affinity and selectivity in order to be effective.

This ability to discriminate one species from another is central in drug design and its

various mechanisms have yet to be fully understood. Researchers are now looking into

computational methods to gain an increased understanding of the processes involved in

molecular recognition.

While there exists a vast array of approaches, this work focuses primarily on a

rigorous, generalizable method in Structure-based drug design, namely molecular

dynamics and MMPBSA. This method enables detailed descriptions of receptor-ligand

complexes at the atomic level, providing a quantitative insight into the molecular

mechanisms of interaction.

Chapter 2 begins our investigation into molecular recognition and describes work

predicting charge states of essential residues in a nucleic acid system. This study

successfully predicted pKa shifts of residues in the intricate 50S ribosome active site and

provided support for a proposed mechanism of peptidyl transfer. Chapter 3 furthers our

comprehension of molecular association through energetic studies on a carbohydrate

protein complex. Successful estimates of the free energies of binding and successive
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decomposition of the binding determinants offered a detailed analysis of recognition and

further enhanced our understanding of the importance of water molecules in association

eVentS.

Chapter 4 describes work investigating drug design from an alternative point of

view. Instead of considering the receptor topology directly, we examined the databases

that are commonly screened. In particular, we explored the development of a method that

characterizes a small molecule database.

In addition to steric and chemical complementarity, protein motion also guides

recognition. In our fifth chapter, we investigated the commonly used computational

method to simulate motion, molecular dynamics. Using a high-resolution crystal

Structure, we followed atomic forces from an MD simulation which yielded characteristic

frequencies for our protein in various simulation environments. To further analyze these

methods, we also quantitated the atomic forces on particular atoms. We saw that

instantaneous forces were chaotic and that, in general, the complexity of the simulation

environment has a negligible effect on molecular motion.
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Chapter 1: Introduction

by

Kevin M. Masukawa

Department of Pharmaceutical Chemistry

Chemistry and Chemical Biology Program

University of California, San Francisco

600–16"Street, Box 2240

San Francisco, CA 94143-2240



Computers in Drug Design. With the recent completion of sequencing the

human genome, science entered a new era of research, providing researchers with vast

amounts of information”. This significant achievement greatly increased our ability to

understand debilitating diseases at the molecular level by providing a platform for the

identification of genes and pathways that cause them. To date, in addition to the human

genome, numerous other eukaryotic organisms have now been sequenced and the

identification of essential genes that can serve as therapeutic targets has begun”.

Probing the biological significance and the subsequent inhibition of these potential

biological targets with small compounds is nontrivial and poses one of the next grand

challenges in molecular and structural biology. To complement the vast amounts of

structural information that will be available, researchers are now in need of

complementary tools that aid in the transition of information from essential genes and

targets to small molecule inhibitors. Ultimately, having the ability to sift through this

information in an efficient yet meaningful manner enables the development of new

therapeutics that satisfy unmet medical needs and are superior to existing treatments.

In this new era of research, computational methods have come to the forefront due

to their ability to analyze data in short periods of time. With recent applications to

biological problems, researchers have realized that computers provide a platform to

rapidly yield information on how two highly specific molecular species recognize each

other. In addition to understanding how computers can be used in biomedical research,

an increase in computing power and better understanding of the properties that govern

molecular recognition has helped make computers a common tool on the desktop of

researchers today. Drug discovery is a long and expensive process; the reliable and rapid



identification of novel lead compounds can greatly speed up or enhance our ability to get

new therapeutics to the general public.

Structure-based drug design, or rational drug design, is predicated on the ability of

theorists to predict binding properties of systems based on known three-dimensional

structures. There exists numerous factors required for the success of a compound to

become a therapeutic, namely strong affinity, a good toxicity profile, and the ability to

get to the site of action. In early drug design efforts, high affinity and selectivity are of

utmost importance; the methods in structure-based drug design presented throughout this

thesis are directly used to optimize them. Already the industry has seen successes in

compounds developed through the use of structure-based design. Some of these include

Viracept, a modulator of HIV protease; Tamiflu and Relenza, anti-influenza compounds;

Capoten, for hypertension’. In all those instances, computers were used to estimate and

elucidate molecular recognition for the development of novel therapeutics.

Molecular recognition. Molecular association of two species can be classified as

a covalent or non-covalent process. Covalent interactions involve the transfer of

electrons from one species to another; therefore, theoretical studies of these events

require quantum mechanics calculations and are limited to small systems. Non-covalent

interactions are governed by the chemical and structural complementarity of two

molecular species through space; the techniques used to estimate their interactions being

much more amenable to large protein systems. While multi-body non-covalent

interactions can be complex, simple two body non-covalent interactions can be described

as below":

-------

- - - -
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KenR., + L., e-> RL, (1)

K. -k, -4. (2)
[R][L]

AG = -RTIn K, EAH –TAS (3)

Equation 1 expresses the complex, RL, in equilibrium with a free receptor, R, that has one

binding site for a small compound or protein, L. The association constant in equation 2,

Ka, describes the strength of the interaction. The commonly used dissociation constant,

K■ , is shown as the reciprocal of Ka. A smaller Ka value represents a tighter binding

complex. Due to its dependence on association constants and therefore description of

molecular association, free energy, AG, shown in equation 3 is the most important

thermodynamic quantity to computational chemists.

At the atomic level, the association between two partners (e.g. a ligand and its

target) is highly complex with numerous intricate interactions affecting the free energy.

These intra- and inter-molecular recognition elements are dependent on chemical and

Steric complementarity, molecular motion, and charge States of important residues

involved in binding (pKas). As will be discussed further below, the estimation of

conformational and binding free energies for a large Solvated protein system remains

nontrivial, and the computational methods used to estimate it vary in their complexity.

Structure-Based Design. Over the years, structure-based design has looked to

quantitate the elements in equation 3, namely AH and AS. As a result, numerous methods

have been developed that estimate these properties, taking into consideration chemical

and structural complementarity of the partners'. Some of the more advanced techniquesp y p Cl

combining scoring functions with sampling methods to obtain configurations of the



system around which to score. Scoring functions calculate the energy of the system

based on the spatial relationship of the atoms to each other. These scoring functions

make use of a molecular mechanics force field that is parameterized against experimental

()or high level computational data”. A typical additive energy function will treat the

system in a pairwise manner:

Fou –
X K, (r–r.)” + (4)

Bonds

X K, (0–0.) +
Angles

X. *[. +cos(n(■ ) – y)] +
Dihedrals

The potential energy of the system Eional is a function of all the coordinates within the

system. The function above represents the bonds stretching and bond bending

harmonically. The torsional potential is represented as a fourier series. Nonbonded

interactions are treated with a 6-12 potential describing the van der Waals forces, and the

electrostatic terms are treated using coulombs law. For protein systems, the number of

pairwise interactions can reach into the millions of interactions that need to be evaluated,

further emphasizing the need for computers in this arena.

Entropic contributions, AS, to the free energy are broken into solvent and solute

components. Solvent entropy is usually represented as a function of the amount of
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surface area buried upon binding (hydrophobic effect) and is tied into the enthalpic

contributions”. Solute entropic contributions to binding are significantly more difficult

to estimate and require time consuming computational techniques”.

Various packages will score systems with variations on the energy function

above, but will try to capture the same type of interactions, with the more elaborate

methods taking into account desolvation penalties and solute entropy estimates. Some

techniques used in structure-based design include: DOCK", Linear Interaction Energy

(LIE)”, Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA)", Free

Energy Perturbation (FEP)", pharmacophore models”, and other methods with less
- - . . . . 19.20rigorous scoring functions” . Ultimately, all these methods yield a theoretical binding

energy for a system, but with varying levels of accuracy and speed.

Pharmacophore models, usually implemented in cases where structural

information is sparse or unreliable, perform a three-dimensional substructure search to

find molecules that satisfy certain chemical and spatial requirements, that are predicted to

have an effect on the biological activity of a target. Pharmacophore models can be

developed using information from the receptor or from information centered around a

known inhibitor”. While databases of compounds can be screened rapidly with

pharmacophore models, these models inherently lack the structural information that has

helped define success in structure-based design and are only useful in initial hit

identification and are limited in lead optimization capabilities.

Today, numerous research groups have followed in the success of early DOCK

versions and developed similar algorithms for structure-based design”. Much like the

initial version, these structure-based docking methods have the capability to screen

--
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hundred of thousands of compounds in a matter of days. Virtual screens of libraries are

possible due to the stripped down versions of scoring functions, which generally just

contain the nonbonded components, allowing the rapid estimation of binding free

energies. Of course, this speed is provided with a trade offin accuracy.

Linear response or linear interaction energy methods use a regression type

analysis to fit coefficients in front of the commonly used nonbonded terms, electrostatics

and van der Waals, to describe association. While these method have shown to be

predictive for a system with a fair amount of experimental data”, by the nature of its

parameterization, it remains non-generalizable to diverse systems.

One of the more robust molecular mechanics techniques available today is free

energy perturbation (FEP) or thermodynamic integration (TI). FEP methods are often

used to predict changes in binding energy due to small changes in structure. It is based

on a statistical approach for sampling and utilizes a thermodynamic cycle to calculate

free energies. While free energy perturbation yields results that are extremely accurate,

they are currently too time consuming for practical use in drug design “.

A recent method in structure-based drug design that will be discussed in detail

and used in this body of work is Molecular Mechanics Poisson-Boltzmann Surface Area

(MMPBSA)". MMPBSA, developed in 1998 by Peter Kollman and David Case, utilizes

a combination of a high level scoring function with molecular dynamics (MD) to obtain

an average estimate of the free energy of a system. MMPBSA allows a rapid, reliable,

and accurate estimate of the free energy while maintaining its ability to be generalizable

to a wide range of biological problems. Unlike many of its counterparts in structure

based design, MMPBSA incorporates molecular motion to obtain an average energy

º------
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around a set of configurations for a system and also uses molecular motion as another

means to further understand binding mechanisms. Free energies obtained using

MMPBSA account for desolvation penalties by using a continuum solvent approach in

addition to its gas phase molecular mechanics energies. Using equation 5, MMPBSA

calculates the free energy of binding by taking energy differences between the reactants

in the system and the product (i.e. complex).

– (AGAG and F AG + AGºn ) (5 )Complex Receptor

As will be discussed in detail in chapter 3, neuraminidase studies utilizing MD and

MMPBSA were able to shed light on the necessary recognition elements for a tight

binding complex. In addition to the work contained in this thesis, much success in the

past has been achieved using this method to estimate conformational energies of

29-31
biomolecules and to estimate free energies of binding for Small molecules to protein

or nucleic acid targets”.

Our first study begins an investigation into one of the numerous factors that

influence recognition, molecular pKa's. Pka’s yield information on the tendency for a

residue to be charged or uncharged and because electrostatics plays such a big role in

binding, it is important that the research community look into our abilities to properly

represent them.

The material outlined in chapter 2 of this thesis examines pKa changes within the

active site of the recently solved ribosome crystal structure” in attempts to understand

peptidyl transfer at the atomic level. Active site residues commonly rely on altering pKa

-
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values of their functionalities prior to binding substrates or performing catalysis. Having

the ability to predict pKa shifts in active sites would allow a better representation of

active site conformations of targets and increase the chances of identifying potent lead

compounds. Due to the high charge density, predicting pKa shifts of an intricate nucleic

acid system is a challenge and presents one of the major hurdles in computational

biology. Our investigation inside the ribosome active site was able to successfully

uncover which of the proposed nucleotide sites experienced the largest pKa shift,

suggesting its role in peptidyl transfer.

In chapter 3 we complement and improve current understandings of receptor

ligand interactions, particularly in carbohydrate binding proteins. Of the three major

classes of biopolymers, namely proteins, nucleic acids, and carbohydrates, carbohydrates

have been the least studied. In the past, the lack of carbohydrate research has been

associated with multiple factors, such as synthetic difficulties, low binding affinities, and

the ease in which they are degraded by the body. Today, a better understanding of the

role of carbohydrates in disease states, along with recent advances in synthetic methods

has spawned a new interest in carbohydrate research”. We investigated the necessary

binding determinants needed to establish a strong carbohydrate-protein interaction, thus

helping to overcome one of the barriers to drug development in this field. An in-depth

Study involving neuraminidase-inhibitor complexes was used to increase our knowledge

of carbohydrate binding proteins and aid in uncovering the molecular basis for their

recognition events.

Solvated systems remain of most interest in structural biology because they best

mimic real life processes. Water interactions with itself as well as with proteins and
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ligands remain an area yet to be fully explored in structural biology. While much success

has been achieved mimicking water's intrinsic properties"", limited studies have been

performed that attempt to answer its role in molecular recognition. Carbohydrates are

amphipathic by nature, consisting of hydrophobic and hydrophilic functionalities,

therefore interactions with molecular waters is apparent. The role water plays in

molecular recognition can be significant and should not be neglected. Our neuraminidase

study addresses this issue common in many receptor-ligand complexes, and shed light on

the important role water and conformational flexibility play in mediating interactions.

Sampling. In addition to electrostatic and steric complementarity, motion plays

an integral role in how molecules recognize each other. Protein dynamics can lead to

altering of an active site to accommodate ligands or even altering of a protein interface to

modulate interactions with other proteins. Molecular dynamics is commonly employed

throughout studies in this thesis to sample conformations of a system. Molecular

dynamics utilizes the pairwise potential function in equation 4 and simulates the

movement of each atom based on Newton’s equations of motion. As we will illustrate in

the work contained in this thesis, motion of small molecules and their receptors plays a

large part in determining what they recognize and the strength of that interaction.

Structure-based drug design methods, particularly MMPBSA, are highly

dependent on three-dimensional structures and are limited by our ability to accurately

simulate movements. X-ray and NMR yield a single atomic structural from an ensemble

of accessible structures, this single structure is time averaged and yields no information

regarding the frequencies of motion. The fifth chapter of this thesis begins our

investigation into the development of a method that further characterizes protein motion

10





and the forces associated with molecular mechanics force fields. All-atom molecular

dynamics is used to study a high-resolution crystal structure of alpha lytic protease ".

Use of the high-resolution structures provides a starting point that is mostly empirical and

not processed too heavily by refinement. This fairly “untouched” system enables us to

follow forces with the least amount of theoretical error due to system setup. General

force behavior, consisting of magnitudes and direction, during a simulation is tracked and

characterized for atoms in various environments.

2D Database Searching. In the absence of information about the structure of a

receptor, drug design efforts focus on identifying ligands within a large database that are

two-dimensionally chemically and structurally similar to known inhibitors in hopes that

they will have similar biological activity. In chapter 4 we begin an examination into

methods that characterize large databases of small molecules. The work in this chapter

addresses drug design from the point of view of looking at the information contained in

the databases as opposed to the structures of the targets. Databases of compounds

contain hundreds of thousands of various potential hits. To help mine this information

we implement a hyper-sphere model that was originally developed for protein folding

studies" and attempt to characterize databases to yield the significance of a hit from a

virtual screen. This work lays the groundwork for future advances in database

characterization.

11
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Abstract:

We present theoretical pKa calculations on a conserved adenosine, 2486 (2451

E. Coli. numbering), located inside the 50S ribosome active site. Recent biochemical and

structural evidence suggests this adenosine is involved in peptidyl transfer'. PKa

calculations were used to evaluate the effect the electrostatic environment created by the

ribosome active site has on this adenosine’s pKa. Despite calculated intrinsic proton

affinities showing that the N1 position on adenosine is more basic than the N3 position,

pKa calculations in the ribosome active site showed that the N3 pHa shift is sufficient to

not only overcome this differential, but to also make it the most likely candidate for

proton addition, in accord with recent biochemical results. We also present evidence that

suggests that this shift is not due to a particular hydrogen bond with G2102 (2067 E.Coli.

numbering) and not due solely to the phosphodiester backbone of the ribosome. These

calculations imply that the ribosome uses its three-dimensional organization of bases and

Sugars in the immediate vicinity to generate an electrostatic environment to cause this

large pKa shift instead of this pKa shift being due to a specific hydrogen bond network or

backbone charge. The theoretical work presented here lends support to A2486 playing a

role in peptidyl transfer and to the notion that the high pKa shift seen in the ribosome

Stems from the N3 site on A2486 instead of the N1 site.
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Introduction:

Proteins, essential for all living organism, vary significantly in structure and

function despite being composed of a combination of the same 20 amino acids. The

integrity of each protein is vital to maintain the intricate interactions it has with substrates

within the cell. For that reason, the tightly regulated cellular machinery that is involved

in protein synthesis must maintain a high level of fidelity and efficiency in order for the

cell to function properly and survive. Protein synthesis, which involves a chemical step

leading to the formation of a peptide bond, utilizes a complex network of cofactors to

turn messenger RNA (mRNA) into polypeptides. Of the numerous cellular components

involved in protein synthesis, the ribosome is integral because it contains the catalytic

functionality.

The ribosome, acting as a scaffold, mediates interactions between tPNA, mRNA,

elongation factors, and GTP, to catalyze the peptidyl transfer of one amino acid to a

growing polypeptide chain”. Biochemical evidence Suggests an acid-base, Serving a

role analogous to histidines in serine proteases, deprotonates incoming amino-acyl tRNA

fragments in order to facilitate nucleophilic attack on the growing peptide chain (Figure

1)”.

Recently, the atomic structure of the Haloarcula Marismortui 50S subunit was

solved to 24A resolution". With the elucidation of the 50S subunit structure showing

that the ribosome catalytic core is comprised purely of RNA, researchers now agree that

the ribosome is a ribozyme and that a nucleotide likely serves as the catalytic acid-base".

In order for a residue to serve this role, its pKa must be near physiological values.

Adenosine and cytidine have intrinsic pKa values far from neutrality, yet are the only two
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RNA nucleotides that have titratable sites remotely capable of participating in acid-base

catalysis”. Therefore, in order for the ribosome to use nucleotides to catalyze peptidyl

transfer, it must utilize its local environment to help perturb pKa values to neutrality.

Biochemical and structural studies on the 50S ribosome have revealed that a

conserved adenosine, 2486, in domain 5 experiences an unusually large pKa shift and is

also well positioned to abstract a proton from incoming trNA fragments (Figure 2)”.

This aberrant pKa shift on A2486 (A2451 E. coli numbering) has been measured to be

7.6 + 0.2 in E.coli by observing reverse transcriptase disruption through adenosine

methylation over a pH range using dimethylsulphate (DMS)”. Questions regarding which

site on adenosine is the most basic arise because while N3 is best positioned to act as a

base, DMS is more reactive to the N1 site". Thus, despite this evidence, there remains a

discussion of whether adenosine 2486 is the catalytic nucleotide and if it is, which of its

two titratable sites, N1 or N3, is acting as the catalytic base to initiate the transfer (Figure

3)'. To address this ambiguity, we report theoretical pKa calculations using the current

50S atomic structure to provide further evidence for adenosine 2486 being the recipient

of the high pKa shift and go further to show that N3 on this adenosine, and not N1, is the

preferred protonation site (Figure 3).
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Figure 1. Proposed mechanism of peptidyl transfer within the context of

the ribosome.
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Figure 2. Ribosome active site showing suggested active site residues.

Adenosine 2486 is highlighted in Green. Puromycin, a known peptidyl

transfer inhibitor is also shown.
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Figure 3: protonation sites on adenosine available for base catalysis.
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Computational Methods:

Calculation of Proton Affinities. Due to the lack of experimental data on the

individual pKas of N1 and N3 on adenosine, we initially performed quantum mechanical

proton affinity calculations using 9-methyladenine to help establish the relative intrinsic

energy differences between the two sites. Calculations were performed using Gaussian

98". Hartree Fock (HF) with a 6-31G* basis set and second-order perturbation theory

(MP2) with a cc-tzvp basis set, were both performed in gas phase and then in solution

with the polarizable continuum model (PCM)” in Gaussian%”. The use of the increased

level of theory with a larger basis set was to show the adequacy of the HF/6-31G* basis

set for further calculations. For each set of calculations, protonated and unprotonated,

geometry optimizations and subsequent single point calculations with zero point energy

corrections were performed using the same level of theory and basis set.

Determination of pKas. Upon establishment of the relative intrinsic proton

affinity differences, pKa calculations were devised so that the pKa shift on adenosine

2486 induced by the electrostatic potential of the ribosome could determine which site,

N1 or N3, is the most likely candidate for proton addition within the ribosome. This

Work involved studying the single protonation state of adenosine at one of the ring

nitrogens. PKa values were obtained using the cycle illustrated in figure 4 and further

described by equation 1*.

AG(NI)
50S-Aden 1–H -> 50S-Aden 1 + H

AG(N3)
50S-Aden3-H -> 50S-Aden3 + H

AGowo - AGows) = AAG
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AAG = 2.3RT(pKa) (1)

Free energies from the adenosine in solution and in the ribosome were calculated to

determine the effect the ribosome has on the electrostatic potential felt by the adenosine.

Bases that pKa values would be calculated for were represented using the same charge

and conformation inside the ribosome and outside in solution. The pKa values obtained

for N1 and N3 on adenosine 2486 were then compared to other adenosines in the vicinity

to establish that 2486 experiences an anomalous pKa shift. To prevent any undesired

edge effects when comparing other adenosines, individual 15A truncations were done for

each adenosine being studied, 2485, 2488, and 2486, all of which are in the vicinity of the

transition state analog puromycin".

In order to make this study tractable, a 15A residue based sphere centered on

A2486 was created from the newly determined bacterial Haloarcula Marismortui 50S

crystal structure". The introduced sphere was a residue-based truncation (Figure 5).

Due to the nature of the truncation, fragments of RNA not connected in a chain were not

capped at the 5’ and 3’ ends. This was done in order to mimic the effects of those

particular residues not being at the end of a chain, therefore all nucleic acids, whether at

chain ends or connected at the 3’ or 5’ ends had the same partial charge distribution.

Protons were added to the ribosome crystal structure coordinates using Sybyl. Both the

sheer magnitude of the structure and the lack of structural data for protein atoms within

the ribonucleoprotein structure, contributed to necessitating truncation of the system.

Additional studies utilizing a larger portion of the ribosome beyond 15 angstroms proved

to have little effect on our calculated results (Data not shown).
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Figure 4. Thermodynamic cycle used to calculate pKa shifts. Top of

equation represents adenosine protonation is solution and bottom

represents protonation in the context of the ribosome.
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Figure 5. Cross section of ribosome active site showing 15A sphere

around A2486. For clarity, shown here is a zoomed in view showing only

a portion of the 15A sphere. Cutoff was residue based. Catalytic residues

are shown in green.
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Charges were derived for the protonated adenosine using Gaussian 98 software.

Geometry optimized structures and electrostatic potentials of the atoms of adenosine

were generated using HF/6-31G". A RESP" fitting to the electrostatic potential was then

performed to generate charges. This scheme was used for both N1 and N3 protonated

adenosines. Unprotonated adenosine charges were obtained from a database of charges

present in the Cornell et al. force field”.

Linearized Poisson-Boltzmann calculations were used to determine the energies

of the adenosine inside and outside of the ribosome. The Delphi software package was

used to solve the Poisson-Boltzmann equation to compare the energetics of ionization

among states”. Use of non-linear iterations had a negligible effect on our calculations.

Delphi calculations were performed using 150mM salt, an interior dielectric of 2, outer of

dielectric of 80, and grid spacing of 0.5 angstrom. Alternative grid spacing of 1.0 and

0.25 were also seen to also have little effect on the results of these calculations (data not

shown).

Results and Discussion:

Proton affinity calculations provide information into the amount of energy

released when a proton is added to the system. It is computed as the energy difference

for the species with an additional proton versus the energy of the system without". Table

1 reveals the intrinsic proton affinity differences found on adenine. Of adenine's two

protonation sites, N1 and N3, we determined that N1 is the first site to get protonated, in

accord with biochemical data”. It has been known that adenosine titrates at 3.5 due to N1

protonation, while that of N3 has been roughly estimated to be 2 units lower'. Our proton

—
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affinity calculations in gas and in solution using the HF/6-31 G*, as well as the higher

MP2, level of theory were able to further establish that the N3 position had a lower

proton affinity by 2 kcal/mol versus N1 (Table 1), and that N7 was lower than both (data

not shown). The lower proton affinity of 2 kcal/mol of N3 correlates to a pKa that is 1.5

units lower, thus roughly giving N3 an intrinsic pKa of 2.0. Being able to estimate the

intrinsic pKa difference from proton affinity calculations, N3 has to encounter a pKa shift

of at least 5 units higher in order for it to serve a similar role of histidines in serine

proteases.

Table 1: Proton affinity values in kcal/mol for 9-methyladenine in gas phase and

in solution. Values shown are relative to N1 sites. A larger value translates to a

lower affinity for proton addition to that site. Calculations show that intrinsically

N1 is the favored protonation site over N3 on adenine.

HF/6-31G* MP2/cc-pvtz
Gas phase N1 0.0 0.0

N3 2.0 2.4

PCM N1 0.0 0.0
N3 1.8 1.5

Despite intrinsic proton affinity differences between N1 and N3 shown in table 1,

our pKa calculations suggest that N3 on A2486 experiences a large enough pKa shift in

the ribosome, making it the most likely candidate for proton addition. PKa calculations

on adenosine 2486 showed that in the ribosome the N1 site experienced a weaker upward

pKa shift than compared to N3. N3 experienced a pKa shift that, not only overcomes the

intrinsic difference we saw via the proton affinity calculations, but also makes it a better

29



base for catalysis. The relative pKa shifts of nearby bases 2485 and 2488 are not to the

same degree that A2486 experiences (Table 2). This unusually large pKa seen on A2486

is consistent with biochemical results” and supports the notion of it being the catalytic

acid-base necessary for peptidyl transfer.

Recent mutagenic and biochemical studies have put into question the role and

importance of this conserved adenosine in peptidyl transfer”. While in vivo studies

have shown that mutations at A2486 produce a dominant lethal phenotype, Muth et.al.

saw that in vitro, mutations to this conserved adenosine did not abolish catalytic activity.

Recent studies have also hypothesized that the pKa shift seen in the ribosome active site

is due to a pH dependent conformational change'. As seen from those studies, caution

must be taken in assigning A2486 as the catalytic nucleotide in peptidyl transfer and

deducing catalytic activity from the current conformation. The pKa values presented

here are inferred from the current co-crystal structure of the 50S ribosome with

puromycin and show that there exists an unusual electrostatic environment surrounding

the N3 of this A2486. If the current crystal structure represents an active conformation,

then our results suggest that this adenosine experiences an aberrant pKa shift making it a

likely candidate for base catalysis or providing it the means to stabilize oxyanion

formation during transition state structure development.

It has been suggested that a specific hydrogen bond network is responsible for this

pKa shift on A2486'. Mutagenic data has shown that G2482 (2447 E.Coli numbering) is

not essential for pKa perturbation of A2486”. This network includes Guanosine 2102

(2067 E.Coli numbering), which is within hydrogen bond distance to A2486:N1 in both

apo forms and co-crystal structures with peptidyl transferase inhibitors". Because of
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G2102’s close proximity to N1 on A2486, there is a question of how much of an effect its

electrostatic potential has on the pKa of A2486. PKa shift calculations on A2486 without

G2102 present showed that there still exhibited a substantial pKa shift of 5.5 units of N3

over N1 and suggests that the possible hydrogen bond to A2486:N1 by G2102 is not the

sole reason for this anomalous pKa. This provides further evidence that this pKa shift is

not due entirely to a specific hydrogen bond network with nearby bases.

Table 2: Relative pKa shifts of adenosine N3 relative to N1. A large value refers

to N3 getting shifted more than N1 inside the ribosome. The larger the shift, the

better N3 becomes for acid-base catalysis. Data obtained from FDPB calculations

using Delphi as described in computational methods.

Adenosine Relative pKa shift
2486 7.3
2485 -0.5
2488 2.8

We further investigated whether the negatively charged phosphate backbone was

the main contributor to this pKa shift differential. According to our calculations, the

backbone phosphates alone did not differentiate A2486 from other bases (data not

shown), only when the entire charge distribution of the ribosome was included, was a

larger pKa shift on A2486 observed.
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Conclusions:

In Summary, proton affinity calculations have provided evidence that the intrinsic

pKa of adenosine is due to the N1 site, and that N3 has a pKa roughly 1.5 units lower.

Our preliminary pKa work on the adenosine then was able to establish that the

electrostatic environment of the ribosome alters the N3 pKa on adenosine 2486 more than

N1, thus providing evidence that proton abstraction to initiate catalysis originates from

the N3 site and not the N1 site. Due to the necessity to truncate the large system,

absolute pKa values of individual nucleic acids remains difficult to interpret, but relative

pKa shifts can readily be inferred from the data.

Herein we have provided further evidence toward adenosine 2486 being a

catalytic residue necessary for peptidyl transfer. In addition to showing that adenosine

2486 serves a role in peptidyl transfer, this work helps to clarify which nitrogen on the

adenosine is the most likely site for proton addition. Ideally, conformational effects

would aid in the interpretation of pKa values. Further work including molecular

dynamics or Monte Carlo simulation methods is necessary to obtain an ensemble of

structures to average pKa values. These additional studies that will look to support the

findings in this paper can only be done when further structure work regarding proteins in

the ribosome can be established.

The recent atomic structure of the Haloarcula Marismortui ribosome allows

further mechanistic studies of ribosome function as well as establishes a starting point for

structure-based drug design. With an improved understanding of how these prokaryotic

ribosomes function, researchers can begin to further target these as ways to inhibit

bacterial growth. Ultimately, by adding insight into the nature and mechanism of



bacterial protein synthesis, allows for the generation of better human therapeutics in the

fight against microbial resistance to current antibiotics.
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Abstract:

Development of the new generation of therapeutics against the influenza viral coat

protein neuraminidase is a response to the continuing threat of influenza epidemics. A

variety of structurally similar compounds have been reported that vary greatly in their

ability to inhibit neuraminidase, a critical enzyme that cleaves sialic acid and promotes

virion release. To determine how neuraminidase exhibits this wide range of affinities

with structurally similar compounds, molecular dynamics (MD) simulations, coupled

with free energy calculations, were used to determine the binding components of a series

of neuraminidase inhibitors. Using four co-crystal structures of neuraminidase-inhibitor

complexes, we examined the structural and energetic components of ligand potency and

selectivity. An in-depth energetic analysis, including internal energy, entropy, and non

bonded interactions, reveals that potency of ligand binding is governed by non-polar

contacts. Electrostatic components generally oppose binding, although two of the best

inhibitors use electrostatic interactions to orient the ligand. This investigation suggests

that the enhanced selectivity and potency of the better ligands may arise from an

improved positioning of their ligand atoms in the active site due to polar and hydrophobic

functionalities. Simulations that included crystal water molecules in the active site

indicate that the more potent ligands make less use of water-mediated interactions.
Tºz/
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Introduction:

The viral disease Influenza afflicts millions of individuals each year. Current

therapeutics, including both vaccines and drugs, have curtailed the deaths once associated

with the virus, but despite these advances in treatment, the threat of resistance from

antigenic shifts or drifts provokes the need for new treatment modalities. The influenza

virus uses a pair of carbohydrate binding proteins, hemagglutinin and neuraminidase, to

initiate viral fusion and subsequent budding of new virions from the infected cell.” Both

of these glycoproteins are present on the surface of the influenza virus and are essential

for virion propagation. Hemagglutinin recognizes target cells via sialic acid binding sites

and then promotes viral fusion.” Neuraminidase cleaves terminal sialic acid moieties of

virus progeny to promote the release and subsequent spreading of new virus particles."

Both glycoproteins have been suggested as therapeutic targets to prevent the spread of the

influenza virus in the host.” Unlike hemagglutinin, neuraminidase has enzymatic

constraints that reduce the frequency of resistant strains. To date, more success has been

achieved designing compounds against neuraminidase than hemagglutinin.” Due to its

role in the life cycle of the influenza virus, and its potential to prevent the spread of

infection, neuraminidase is an appealing target.

Neuraminidase exhibits a high degree of selectivity among structurally similar

compounds. Despite binding its natural ligand, sialic acid, with only millimolar

affinity,” designed inhibitors of neuraminidase bind with a much higher affinity,

sometimes reaching the low nanomolar range.” Figure 1 shows four inhibitors of

neuraminidase exhibiting a broad range of binding affinities; the difference between the

best binding ligand, Tamiflu, and the worst binding ligand, sialic acid, is over 12
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kcal/mol. Currently, crystal structures of neuraminidase with these four inhibitors bound

are available. Upon looking at these structures, their different recognition elements are

not apparent; all four inhibitors bind in the same pocket and interact with the same set of

residues. In order to exploit further the binding properties of neuraminidase for inhibitor

design, a detailed analysis of how neuraminidase recognizes these structurally similar

ligands with such large variation in binding affinity needs to be performed. In the past,

the lack of structural data has forced researchers to use reduced representations of the

neuraminidase binding site in attempts to elucidate the foundation of this binding affinity

differential. These theoretical efforts, using pharmacophore” or protein structure-based

models” used simplified scoring functions that neglected the contributions from

internal conformational strain, entropy, or water interactions to the binding free energy.

Considering the dynamic and amphipathic nature of carbohydrates, these missed

contributions might be significant. Given the availability of four high-resolution X-ray

co-crystal structures of neuraminidase with bound inhibitor, we decided to use advanced

methods to quantify these interactions.
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Figure 1. Neuraminidase ligands studied in this investigation. Experimental

values given as IC50’s, except for sialic acid.” Sialic Acid =6.1mM,

DANA=10puM, Relenza=0.3–2.3nM, Tamiflu=0.01-2.2nM.

Here we report a detailed analysis of neuraminidase-inhibitor interactions using

the computational technique developed in its current form in the Case and Kollman

laboratories known as Molecular Mechanic Poisson-Boltzmann Surface Area

(MM/PBSA). This method, like others,” utilizes a combination of molecular dynamics

simulations and free energy calculations to predict free energy of a system based on its

conformation. MM/PBSA has had great success explaining receptor-ligand interactions

at the atomic level.” Molecular dynamics permits probing structural questions beyond

what is possible from direct observation of the static crystal structure model alone. In
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this study, molecular dynamics and MM/PBSA calculations were performed on a series

of Sialic acid analogs bound to neuraminidase (Figure 1). The purpose of this

investigation is to determine which thermodynamic quantities drive complexation and

how these contributions differ among different ligands. The information gained from this

analysis could lead to the discovery of new inhibitors with improved binding properties.

Using this computational technique we also investigate the role structural waters play in

mediating these interactions.

Computational Methodology

Abbreviations. DANA, 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en);

MM/PBSA, Molecular Mechanics Poisson-Boltzmann Surface Area; Relenza, 2,4-

dideoxy-2,3-didehydro-4-guanidino sialic acid (zanamivir); Tamiflu, ethyl-4-acetamido

5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate (oseltamivir)"

System Setup. Atomic coordinates for all co-crystal complexes were obtained from the

Protein Data Bank (PDB). Raw crystal structures were modified for dynamics using the

LEAP module in Assisted Model Building with Energy Refinement (AMBER 6.0).”

Four different crystal structures of neuraminidase bound to different inhibitors were used

as starting structures in this study. The inhibitors were sialic acid (1MWE*), DANA

(1F8B"), Relenza (1NNC"), and Tamiflu (2OWK”). All structures are co-crystal

*Note Tamiflu is the ethylester of ethyl 4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-
carboxylate, our study focuses on the active form of Tamiflu, the carboxylate, interacting with
neuraminidase.
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complexes of the avian influenza virus A, subtype N9 at pH 7.0. In the LEAP module of

AMBER, protons were added to the system. In accord with crystallographic conditions

of the complexes, all ionizable side chains were configured in their characteristic ionized

states at pH 7.0. All histidines were singly protonated at the delta nitrogen. The binding

site of neuraminidase has been seen to accommodate crystal waters when binding

different ligands. Active site structural waters present in the crystal structure were not

removed from the coordinate file if they lie between the ligand and protein. This

treatment was justified by observing that solvent exposed waters diffuse into bulk solvent

on our simulation time scale while buried waters do not. No restraints were placed on the

crystallographic water molecules during the simulations. Sequestered water molecules

were free to move, but did not diffuse out of the pocket over the length of the simulation.

Directionality of the hydrogen bonds was random during the initial setup but was allowed

to optimize during the equilibration. Structures were then Solvated with a water cap

(TIP3P)” out to 30 Angstroms from the inhibitor while maintaining crystal water

positions. The dielectric constant in all simulations was set to 1 because explicit water

molecules were added. To test the structural effects of these crystal water molecules,

simulations were also performed with no water molecules within the protein-ligand

interface. In those cases, all crystal waters were removed before the addition of cap

water molecules, which were themselves excluded from being between the protein and

ligand.

Atomic partial charges for the four ligands were derived for this study using the

RESP method.” To obtain minimized geometries for electrostatic potential calculations,

ligand geometries were first optimized with Gaussian.98 using the Hartree-Fock (HF)/6-
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31G" level of theory.” Single-point calculations with Gaussian% were then performed to

obtain the electrostatic potential around each compound using the same basis set and

level of theory as in the optimization step. Fitting charges to the electrostatic potential

was then performed with RESP. Sialic acid and DANA were both given a formal charge

of -1 while Relenza and Tamiflu had 0. Equivalent atoms were given equal partial

charges. Amino acid charges came from the RESP derived AMBER94 database.

Simulations. Molecular dynamics (MD) produces a time trajectory of the

system by solving Newton’s equations of motion for each atom. All MD simulations

were performed using the SANDER module in the AMBER 6.0 suite of programs. An

all-atom representation of the system was used employing the Cornell et al.” force field

to assign parameters for the standard amino acids. A “belly” region of 17A was defined

around the ligand. During the simulations these “belly” atoms, which are less than 17 A

from the ligand, were allowed to move, while all atoms beyond 17A were held rigid.

Structures were first allowed to relax under steepest decent minimization for 10 cycles,

followed by a conjugant gradient minimization for 4990 cycles. Upon minimization, the

water cap was equilibrated for 10 picoseconds (ps) to allow cavities in the protein to

become solvated. The entire Belly region was then equilibrated for 100ps with the

system gradually warmed to 300K over the initial 50ps. Production MD was performed

for a nanosecond (ns) with a 2fs time step and the SHAKE algorithm” holding all bond

lengths fixed. During the simulation, non-bonded cutoffs were set to 12A, the

temperature was maintained at 300K.

Due to the flexible nature of some of the ligands, it is incorrect to assume that the

ligand conformations are the same in the bound state versus free in solution. The solution
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conformations of the ligands were determined with separate simulations. Initial ligand

conformations were taken directly from the co-crystal structures with neuraminidase.

The ligands were then minimized and equilibrated using the same number of cycles used

to optimize the complexes. Upon equilibration, ligands were simulated for 1 ns at 300K

in a box with 8.0A of water surrounding each ligand. The conformations generated from

this set of simulations were used to calculate energies associated with ligands free in

solution.

Conformational Analysis of Sialic Acid. The conformational space inherent to

carbohydrates is large, and theoretical studies on carbohydrates have been rare. Thus, a

necessary first step is to establish that the available force fields are adequate to evaluate

and discern distinct conformers of flexible carbohydrate rings. To ensure proper

modeling, we continued parameterization and validation of the Cornell et.al. force field

for monosaccharide-protein systems by comparing theoretical molecular mechanics and

ab initio energy differences for sialic acid boat to chair conformations (Figure 2). Ab

initio calculations of the boat/chair conformational states for a derivatized sialic acid, one

of the more flexible neuraminidase binding compounds, yielded an energy difference of

6.8 kcal/mol favoring the chair conformation. A molecular mechanics score using the

AMBER potential energy function yielded an energy difference of 8.9 kcal/mol for these

two conformers. This discrepancy exists mainly because parameters for the C-C-O-C

torsion were derived in the past from work on acyclic ether compounds. After

optimization of torsional parameters specifically for this system, this initial energy

difference between quantum and molecular mechanics energies was minimized to 0.86
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kcal/mol. Figure 3 shows the analytical fit of our new torsion parameters to the actual

sampled in our torsion drive simulation.

Boat

Chair

Figure 2 : Sialic Acid boat/chair conformations
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Along with energy differences between boat/chair conformations we also were

interested in being able to properly sample both conformations in solution with an

appropriate distribution of the two forms. Initial MD studies on sialic acid for 150ps

show that this carbohydrate exhibits proper behavior in solution using our newly

developed parameters (Figure 4). Starting from a twist-boat conformation, sialic acid

over the course of the simulation switches to the chair conformer, which is the most

stable energy conformation, consistent with ab initio results. Nonetheless, these

preliminary simulations provide early evidence that the force field developed by Cornell

et al.” with additional glucose parameters from Woods et al. will be able to mimic

carbohydrate tendencies in solution. All ligands in this study containing a pyranose ring,

sialic acid, DANA, relenza, were subject to the same parameters discussed above.

MD of Sialic Acid in solution

1.80

1.60

1.40 -

1.20 +

1.00 Chair conformation#
0.80 -

0.60 -

0.40

Twist-boat
0.20

0.00

O 20 40 60 80 100 120 140 160

time (ps)

Figure 4: All-atom RMSD over 150ps referenced to minimized structure. Sialic

acid starting conformation is twist-boat taken from the co-crystal structure with

neuraminidase.
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Energetic Analysis. Utilizing the trajectory generated by molecular dynamics,

free energy calculations were performed using a Molecular Mechanics/ Poisson

Boltzmann Surface Area (MM/PBSA) scoring function to determine binding affinities as

well as component energy contributions. Free energies of binding were determined by

calculating internal energy changes upon binding using the AMBER program with the

Cornell et.al. force field coupled with a continuum solvent model to evaluate free

energies of Solvation. An estimate of the absolute free energy of binding, AGang, is

obtained by taking the difference of the complex energy minus the separate reactants’

energies.

AG and –
Go”.

-

(G receptor + Gen. ) (1)

The average free energy of the complex, receptor, or ligand used in the above equation is

composed of the molecular mechanic, solvation, and entropic energies of the system over

the trajectory and is represented by the following equation.

G = Ew I Gº - TS (2)

Evy - Epona +E anal. + Epneum +Evow + EE. (3)

E ºn, is the molecular mechanical energy obtained from bonded and non-bonded

interactions within the system. Gºon represents the electrostatic and non-polar freesolv
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energy of solvation and TS is the solute entropic contribution to the system at

temperature T(Kelvin). All energies represented in the above equations are averaged

over the course of the molecular dynamics trajectories.

The continuum model for the free energy of solvation uses a finite-difference

Poisson-Boltzmann approach to calculate the electrostatic energy, coupled with a surface

area dependent term for the non-polar contribution to solvation. Ultimately, the

molecular dynamics trajectory is split into “snapshots”, stripped of all non-crystal water

molecules, and evaluated individually using this scoring scheme. In the energetic

analysis, crystallographic waters were considered as an extension of the protein. Using

Snapshots from an extended simulation to generate binding energies will allow us not

only to sample the flexibility of the binding site, but also to obtain a more reliable free

energy estimate of binding than compared to a single Snapshot calculation.

Entropic contributions to binding were determined using a normal mode

approximation.” The change in solute entropy upon association was estimated by

calculating normal mode frequencies using the NMODE module within AMBER6.0. For

each complex five snapshots from the MD trajectories were taken at 100ps intervals and a

region defined by a 17A sphere from the inhibitor was used for the entropy analysis.

Each snapshot was minimized using a distant-dependent dielectric, 4r, before normal

mode analysis. Solvent entropies of the system are implicitly included in the non-polar

and polar solvation free energy terms.

The binding free energy was calculated by taking the difference in MM/PBSA

energy for the ligand-protein complex and uncomplexed reactants. From the 1 ns

simulations, snapshots were collected every 10ps. Ligated and apo protein conformations
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were obtained from the simulations of the complex, while the unbound ligand

conformations were obtained from a separate trajectory, as described above. MM/PBSA

scores for each of these snapshots were averaged to obtain a free energy of association.

The molecular mechanic (MM) energy was obtained using the Cornell et.al. force field as

implemented in AMBER with no cutoffs. The Poisson-Boltzmann solvation energy was

calculated with the DELPHI program" using a grid spacing of 0.5A, 80% fill of the grid

box, and an exterior dielectric of 80. While the exact value of the interior dielectric

constant remains to be unequivocally established, a recent MM/PBSA study in protein

structure prediction showed an improved correlation with experiment when the protein

interior was modeled with a dielectric of 4 versus 1." This result coupled with the solvent

accessibility of the neuraminidase active site and the calculations of Jedrezjas et al.”

support the use of an interior dielectric constant of 4 for our study. Non-polar

contributions to solvation were estimated as a function of the solvent-accessible surface

area (SASA). The solvent-accessible surface area is calculated using the MSMS

program” and the non-polar contribution to the free energy of binding is given by

AGº" = y(SASA)+b (4)solv

SASA is the solvent-accessible surface area and Y and b are constants. The values for Y

and b were derived experimentally from the transfer of small hydrocarbons by Sitkoff

et al.” and are 0.00542 kcal/mol A and 0.92 kcal/mol, respectively.

Computational Alanine-Scanning. From the wild-type trajectory, Snapshots

were generated every 10ps for alanine-scanning. Mutations to alanine were performed

52



ºf ,

(J.J.



only on selected residues in the active site. Alanine mutations were generated by

truncation of residues after the C3 and adding a hydrogen in the same direction as the CY.

Partial charges for the mutated residue were then changed to those of alanine. None of

the residues mutated in this study were glycines.

Results and Discussion

Energetic Analysis. Using a combined MD/MMPBSA approach, our calculations show

an excellent correlation with experimental results (Table 1). Table 1 shows the binding

free energy components averaged over the MD trajectory for each co-crystal complex.

Along with discriminating the worst ligand, our calculations also agree with the

experimental finding that Tamiflu is the best binding ligand. All ligands are correctly

rank-ordered and the magnitudes of the AGs are in good agreement with experiment.

If we examine the contributions to binding across the ligand series, there is an increase in

the van der Waals contribution as the interaction becomes more favorable. This appears

to explain the affinity progression because while all other non-bonded binding

components remain relatively constant across the series, the tightly bound ligands have

added non-polar packing in the active site. The better binding Tamiflu and Relenza gain

over 6 kcal/mol more van der Waals energy over their less potent counterparts, DANA

and sialic acid. Interestingly, the presence of the large ether moiety in Tamiflu does not

increase its overall van der Waals interaction energy compared to that of Relenza. As

will be discussed below, our simulations with crystal waters suggest that the ether moiety

may facilitate better positioning of Tamiflu in the active site. The importance of non

polar interactions in targeting neuraminidase was also identified in previous
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Investigations. 10, 12.4 Further analysis of the binding components reveals that while the

van der Waals and non-polar solvation energies drive binding for all four ligands, sterics

alone do not completely explain the affinity differential.

We also find that the overall electrostatic component to binding either provides no

thermodynamic benefit or even opposes association despite the large number of polar

groups in the active site. Of the four compounds studied, the only ligand that has a

favorable electrostatic component to binding is Relenza (AEel. = -0.26kcal/mol). It

appears that Relenza gains this electrostatic energy by having a large positive

guanidinium group that interacts favorably with E227 at the bottom of the active site.

Favorable internal electrostatic energy is gained as one proceeds from a hydroxyl

(DANA) off the C4 position to an ammonium (Tamiflu), and guanidinium group

(Relenza). However, the inclusion of desolvation effects leads to a net loss of binding

except for Relenza. The importance of including desolvation penalties when calculating

binding affinities to this receptor is reinforced by work done by Smith et.al. who reported

that the addition of charge to various DANA analogs was deleterious to binding.” For

example, it costs more for DANA in electrostatic energy to bind to neuraminidase than

sialic acid, 3.31 kcal/mol versus 0.49 kcal/mol (Table 1). This is most likely due to

DANA’s lack of flexibility that precludes optimal charge complementarity in the active

site to offset desolvation penalties, as evident by DANA’s coulombic interaction energy

being less than that for sialic acid, -35.15 versus -44.91 (Table 1). Where others have
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Table 1. Average Energy Contributions (kcal/mol) to the Free Energy of Binding for

Neuraminidase and the Set of Four Ligands."

Contribution Tamiflu Relenza DANA Sialic Acid

AE internal" -6.07 (0.51) 1.90 (0.68) -5.36 (0.53) 5.16 (0.48)
AE VDW" -29.16 (0.48) -29.99 (0.51) –23.13 (0.56) -23.32 (0.47)
AE elect, internal" -4449 (0.52) -58.49 (0.39) -35.15 (0.53) -44.91(0.28)
AG elect,solvº 46.81 (0.42) 58.22 (0.27) 38.46 (0.39) 45.4(0.21)
AG nonpolar, solv’ -4.46 (0.01) –4.65 (0.01) -4.12 (0.01) -4.13 (0.01)
AE Elec, int-HSolvº 2.31 (0.17) -0.26 (0.22) 3.31 (0.24) 0.49 (0.21)
-TAS" 21.6 (1.35) 19.6 (1.56) 22.4 (1.64) 20.11 (1.47)
AG bind -15.78 (1.49) -13.4 (1.63) -6.90 (1.70) -1.69 (1.58)

bind experiment -15.2 to -12.0 -13.2 to -11.9 –6.91 -3.06

* Obtained from trajectories that included crystal waters. Errors are given as Standard Errors of the Mean.
"Internal contributions from bond, angle, and dihedral terms
* Non-bonded van der Waals
"Non-bonded electrostatics
* Non-polar and electrostatic components to solvation
‘Electrostatic components to solvation
*Total electrostatic change upon binding
l Entropic contributions to binding
'Total change of free energy in binding
'Reference 8,16. Experimental data given as ICsos for all ligands except sialic acid. For direct comparison
to calculated affinities, conversion to AG estimated by AG=-RTIn ICso.
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* our worknoted the importance of a positively charged group off the C4 position.”

suggests that the benefit from adding these groups might not be solely from electrostatic

interactions. The fact that Tamiflu is the most potent binder, despite Relenza having

more favorable non-bonded interactions, suggests that internal strain energy is also an

important factor in increased affinity and selectivity, as shown below.

Energetic Analysis of Free Ligands. Our studies of the free ligands in separate

trajectories provide an estimate for the local adaptation energy upon complex formation.

Along with internal changes in van der Waals, coulombic, and solvation energy, free

ligand trajectories enable an estimation of the ligand Strain upon binding. Ligand strain is

defined as the difference in bond, angle, and dihedral terms between the conformation in

the bound state and the conformation free in solution. Sialic acid contains a pyranose

ring, which due to its flexible nature can populate many conformations in solution that

vary greatly in energy. In the neuraminidase-sialic acid co-crystal structure, sialic acid is

bound in a boat/twist-boat conformation, which is higher in energy than its chair form.

Upon binding, the internal energy associated with the conformational change in the

pyranose ring of Sialic acid is calculated to cost roughly 5.0 kcal/mol in binding free

energy. This penalty is much larger than compared to the other three inhibitors. The

unfavorable Strain energy upon binding is a major component of why sialic acid has a

lower affinity for neuraminidase than DANA; the difference experimentally is roughly

2.5 kcal/mol for the pyranose ring only." With the inclusion of the double bond in the

pyranose ring, DANA does not experience a large conformational strain increase upon

binding compared to its conformation in the free unbound form. Disregarding energetic

terms associated with the ligands free in solution, both DANA and sialic acid have
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similar calculated interaction energies, –26.95 and –27.17 kcal/mol, respectively (data not

shown).

Just as DANA and sialic acid have strain energies to discern the two interactions,

the same type of thermodynamic component also differentiates Tamiflu and Relenza.

Tamiflu has a reduction in strain energy of −6.07 kcal/mol upon binding where Relenza

pays 1.90 kcal/mol upon association. A further investigation reveals that much of the

costs in internal energy is due to Relenza straining the acetyl group conformation upon

binding. Tamiflu and the other two weaker binders do not experience a large strain on

the acetyl group like Relenza does (Table 2). As will be discussed further, the strain on

Relenza can be attributed to its dependence on waters for positioning in the active site.

Table 2. Internal Strain Energy Change (kcal/mol) of Ligands Upon Binding
Neuraminidase.

Acetyl group Central ring
Sialic Acid 0.12 1.69
DANA -0.66 –2.57
Relenza 4.59 –0.84
Tamiflu –0.81 -1.85

Negative changes in strain energy upon complex formation are a result of the

ligand binding in a conformation that is more favorable in the protein than outside. One

explanation is that the enzyme site is preorganized to favor the bound geometry.

Alternatively, Tamiflu’s ammonium group may contribute to its strained geometry in

Solution. The high charge density maintains a close interatomic distance to the carbonyl
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of the acetyl group in solution. Upon binding this distance is increased by 0.2A on the

average, lowering the strain on the ligand. Relenza, with the larger positively charged

guanidinium group, does not induce a strained conformation in solution. Once bound,

this guanidinium group shifts to charge complement E227, reducing the distance between

the guanidinium and acetyl group adding strain on the ligand. DANA which also

experiences a negative strain energy upon binding, undergoes a similar conformational

strain reduction to Tamiflu. Interestingly, sialic acid encounters the same type of shift in

distance, but perhaps its flexible ring prevents a large strain from being incurred in

solution. As mentioned above, sialic acid's overall unfavorable binding strain is mainly

contributed from the large ring flip induced upon binding. Due to the charged nature and

large number of hydrogen bond donors and acceptors of these ligands, strained

conformations in solution are not unexpected.

Given the large dimensionality of conformational space available to each ligand, a

true estimate for the adaptation energy requires a higher sampling technique. The

energetic contributions from the free ligand conformations generated through MD

simulations are most likely overestimates of the underlying adaptation energy. Although

local, inclusion of this ligand conformational energy using MD simulations allows an

estimate for the adaptation energy each ligand experiences upon binding, regardless of

the exact molecular mechanism. Clearly, these ligands in solution must be treated as an

average over an ensemble of the conformations.

Role of Crystal Water Molecules. Carbohydrate binding proteins commonly

use water molecules to mediate their interactions with ligands; the role these waters play

has yet to be fully elucidated.” In each of the four co-crystal structures, at least three
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crystallographic water molecules are seen trapped between neuraminidase and its

inhibitor. To investigate their role in these recognition events, we performed a series of

simulations with and without these crystal waters present in both the MD simulations and

post-processing. By performing a set of simulations without water molecules between

the protein and ligand, we can isolate structural perturbations in the active site that are

directly related to the absence of these waters. This investigation revealed that with three

of the four ligands, crystal waters are necessary to stabilize the ligand orientation in the

active site (Figure 5). The RMSD plots of the ligand positions during MD simulations

with and without crystal waters suggest that the weaker binders are more dependent on

waters to mediate their interactions than the best binder, Tamiflu (Figure 5). In both

sialic acid and DANA, the central ring shifts position in the absence of crystal waters,

which alters the placement of some functional groups relative to their positions when

crystal waters are included.

Relenza also experiences a minor displacement with crystal waters removed

by undergoing a different type of movement compared to sialic acid or DANA. Upon

inspection, it is apparent that much of the displacement of Relenza arises from the

glycerol group shifting to compensate for water not being present (Figure 6). The

guanidinium group, on the other hand, is situated deep in the active site and

occupies the same space irrespective of water molecules being present or absent.

Thus, Relenza appears to partially overcome crystal water dependence by having the

positively charged guanidinium group anchor the entire ligand in the active site.

Comparing the bound ligand conformations between simulations performed with

and without crystal waters, an added strain of 1.02, 1.04, and 2.94 kcal/mol on the

acetyl group, central pyranose ring, and glycerol group, respectively was seen when

59



including crystal waters. This conformational strain is necessary to establish

favorable contacts with the protein. When simulations of Relenza were performed

without crystal waters, the non-bonded van der Waals and electrostatic interaction

energies are not as favorable (data not shown). The better binding Tamiflu rectifies

this problem by not having a large conformational dependence on crystal water

molecules, thus preventing a large unfavorable internal energy change upon

binding.

Tamiflu, unlike the other ligands, samples the same binding position regardless of

crystal water molecules after about 400ps of simulation. The ammonium and ether

groups of Tamiflu act as anchors to secure the ligand in the active site reducing its

dependence on water (Figure 7). While Relenza’s glycerol group shifts significantly,

Tamiflu’s additional ether group lends stronger packing of Tamiflu into the active site.

Our results suggest that Tamiflu’s functional groups improve binding by orienting the

ligand to take advantage of contacts within the active site and more importantly help to

avoid the added internal strain upon binding. It appears that a low-energy conformation

of Tamiflu complements the active site better than the highly strained conformation of

Relenza.

Recognizing that the free energy of association is a combination of many terms,

the loss in electrostatic energy by having charged groups is more than compensated for

by gains in other molecular mechanic terms. This is evident by the fact that Relenza and

Tamiflu, which both have an additional positively charged group, have negligible or

slightly positive electrostatic terms that oppose binding, yet are the two best binders.

Work by Chervenak and Toone has shown that the binding of carbohydrates in aqueous
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Figure 5. All atom RMSD plots of ligand positions as compared to the initial

minimized crystal structures. From top to bottom, (A)sialic acid, (B)DANA,

(C)Relenza, (D) Tamiflu. Dashed lines are simulation without crystal waters and

solid lines are from simulations that included crystal waters.
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Figure 6. Co. Overlay of snapshots from Relenza MD trajectory taken with and

without crystal waters. White is conformation obtained from simulation with

crystal waters, and grey is from simulation without crystal waters. Both snapshots

are taken from 550ps into the simulation.
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Figure 7. Co. Overlay of snapshots from Tamiflu MD trajectory taken with and

without crystal waters. White is conformation obtained from simulation with

crystal waters, and grey is from simulation without crystal waters. Both snapshots

are taken from 550ps into the simulation.
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solutions results in an entropic gain through the displacement of solvent from the bindin

pocket.” Despite those results, many authors agree that the role of water in protein-ligan

binding is complex and necessitates further discussion.” Our work presente

here suggests that water molecules in the neuraminidase active site serve an equall

important role of positioning ligand atoms.

Alanine-Scanning. In order to investigate other factors besides interna

intramolecular interactions that may help confer specificity, computational alanine

scanning” was employed to probe which residues make a significant intermolecula

contribution to the differential in binding. Figure 8 shows our results for alanin

mutations made to nine residues in contact with the inhibitors. Negative energeti

changes (AGwi-AGala) represent an unfavorable substitution. As expected, we see that i

general, mutations of active site residues are highly unfavorable with all four inhibitor:

However, three residues in the active site are predicted to contribute differentially i

binding to these ligands.

Alanine mutations to E119, D151, and E277 show the largest variance in fre

energy of binding suggesting that they play a role in substrate selectivity. As seen from

Figure 8, while E119 contributes only slightly to binding sialic acid and DANA, Tamifl

and Relenza are able to form much more favorable interactions. Mutagenic studies hav

supported the notion of E119 playing a role in substrate selectivity, where inserting a

alanine at this position has shown a 1.17 kcal/mol reduction in binding to DANA whil

experiencing a 3.84 kcal/mol loss in affinity to Relenza”(Table 3). This is in accord wit

our calculations that show an E119A mutant only alters DANA binding by 0.83 kcal/mo

compared to wildtype, while Relenza’s affinity is weakened by 5.0 kcal/mol (Figure 8.
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Our calculations further suggest that this differential is due to the positive electrostatic

potential of the extra functional groups on Tamiflu and Relenza acting as an anchor for

the negative E119 buried in the active site pocket. Sialic acid and DANA do not have the

extra positive charge off the C4 position. In similar fashion, D151 also helps to confer

specificity by establishing stronger interactions with the better binding ligands. The data

shows that D151 is not used in binding sialic acid or the structurally similar DANA, but

can be exploited with the more potent inhibitors. Ghate found that the K for DANA to

an D149E (B/Lee/40 numbering) mutant versus wild-type is of the same magnitude,

35uM and 53uM, respectively.” A deeper investigation into the energetic components

reveals that the gain in free energy from D151 is from an increased coulombic energy

associated with the positively charged groups on Tamiflu and Relenza interacting with

the negative electrostatic potential of the aspartic acid. While there remains a slight

electrostatic penalty when binding Relenza, it is still lower than DANA or sialic acid.

E277 contributes almost 4 kcal/mol more free energy when binding Tamiflu or Relenza

than it does with the other ligands. This glutamate is located on the floor of the binding

pocket not in the vicinity of the C4 substituents off the central ring. One possible

explanation for the increased interaction, despite being distant from the ammonium or

guanidinium groups, could be that the added charge on Tamiflu and Relenza helps to

provide their other functional groups better contacts with this residue.

- S
º &
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Table 3. Experimental Resistance Inhibition Data for an E119A Mutant.

ICso (fold)"
Neu type DANA Relenza

Wildtype A/Minnesota/80 | |
E119A A/Minnesota/80 7 600

AAGE119A -1.17 kcal/mol -3.84 kcal/mol

* Reference 54.

Although this study suggests El 19, D151, and E277 help confer specificity, th

are other residues that are important for establishing potent interactions with all

ligands. R118, R224, and R292 contribute equally to all four ligands, provic

significant free energy to these complexation events. The participation of R118

R292, both of which surround the common carboxylate moiety on the ligands

expected. R224 is positioned between the acetyl and glycerol functional groups of

ligands and provides electrostatic and van der Waals free energy to the comple:

Conversely, Y406 provides a marginal free energy gain upon binding for all four ligal

This residue is implicated to be essential for activity of neuraminidase becaus

phenylalanine mutation at this position shows no activity in fluorescence assays.”

agreement, results from this study suggest that Y406 may play more of a kinetic

substrate positioning role in catalysis as opposed to a thermodynamic role in bind

This result implies that despite its necessity, targeting Y406 in attempts to incre

affinity of potential drug candidates may be futile.

As mentioned earlier, our studies suggested that the tighter binding of Tam

and Relenza is explained by stronger van der Waals interactions. From the individ
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non-polar contributions listed in Figure 8B, it is difficult to discern which set of resi

is responsible for this large van der Waals increase. While E276, which is below

ether moiety, appears to take advantage of the increased non-polar character of Tam

no set of residues explains the over 6 kcal/mol van der Waals interaction en

difference between strong and weak ligands. E276 experiences a reorganization C

side chain upon binding Tamiflu. Through our alanine-scanning, it appears that

rotation allows neuraminidase more van der Waals interactions with Tamiflu compar

the other three ligands that do not induce a rotation of E276. The fact that this rotati

already present in our starting structures suggests that we have captured some of

energetics associated with E276's rotation, but note that without complete samplin

the free receptor, a true quantitative explanation for the energetic effects of E276 rota

is difficult to draw. As evident in figure 8, the dispersed nature of van der Waals con

Suggests that targeting a specific hydrophobic residue or pocket to gain selectivity ma

difficult. In contrast, while electrostatics, as a whole, fails to Segregate ligands, alar

scanning has shown that individual interactions from residues may be differentiated

as a result can be further targeted to give rise to differences in binding energy (Fi

8C). Alanine-scanning of the neuraminidase active site with the four ligands

uncovered that the main residues contributing to selectivity upon binding are E

D151, and E277, and suggests that additional mutations at either D151 or E277 w

mitigate binding of Tamiflu or Relenza.
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Conclusions

We used molecular dynamics simulations in conjunction with free energy

calculations to analyze the binding specificity of the neuraminidase active site to a series

of inhibitors and also examined the dynamic nature of ligand binding. MM/PBSA

analysis correctly rank-ordered binding affinities and segregated the different energetic

components among all four co-crystal complexes permitting a detailed hypothesis on the

structural determinants of binding. The calculations suggest that neuraminidase

inhibitors take advantage of increased van der Waals interactions to bind the active site

better and that overall electrostatic components provide no direct thermodynamic

advantage, or even oppose complexation, despite a highly polar active site. Alanine

scanning suggests that while electrostatic effects do not contribute to strengthening the

affinity nor helping to discriminate strong binders from weak binders, it still plays a vital

role in substrate specificity and can be targeted further for drug design. Potency is

suggested to be enhanced by the increased charge of the better binding ligands helping to

establish and secure scaffold orientations in the active site so that other interactions can

be maximized. This point was further supported through simulations with and without

crystal water molecules in the active site, that showed that the lack of extra charged or

hydrophobic groups caused a larger dependence on water for Scaffold positioning in the

active site. Recently, others have also noted the importance of a consistent scaffold

binding mode for compounds that target neuraminidase." Although electrostatics as a

whole provides no net gain to binding, alanine-scanning revealed that an energy
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differential was present when considering interactions of each ligand with individual

charged residues.

This study exemplifies and stresses the importance of considering crystal water

molecules in a recognition process. Tamiflu’s high affinity is largely explained by its

direct binding-site complementarity without the need for mediating water molecules, in

contrast to its weaker binding counterparts. Given that many other carbohydrate-binding

protein crystal structures have been solved with crystallographic waters present, inclusion

of these waters is both feasible and necessary for understanding the interactions in order

to develop potent inhibitors.

While this study was able to suggest ways neuraminidase recognizes a series of

inhibitors, the power of this technique is its use as an analytical tool and cannot be used

in a predictive manner without the implementation of higher sampling techniques.

Higher sampling techniques would afford the broader search of the energy landscape and

a closer estimate to the energy of each binding partner. The location of water molecules

remains an issue in computational biology and hinders predictive studies of

neuraminidase recognition.
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AMBER Sialic Acid DANA RELENZA TAMIFLU

atom atom type charge type charge type charge type charge
l CT -0.253 12 CT -0.3 1833 CT -0.36963 CT -0.20521

2 HC 0.06765 HC 0.08863 HC 0.12225 HC 0.06445

3 HC 0.06765 HC 0.08863 HC 0.12225 HC 0.06445

4 HC 0.06765 HC 0.08863 HC 0.12225 HC 0.06445

5 C 0.73315 C 0.71079 C 0.62663 C 0.74367

6 O -0.63246 O -0.6.306 O -0.60843 O -0.6.2742

7 N -0.60946 N -0.5599 N -0.50502 N -0.68 184

8 H 0.31186 H 0.31646 H 0.32574 H 0.36644

9 CT 0.04986 CT -0.01.309 CT 0.1131 CT 0.03689

10 H1 0.13491 H] 0.15287 H] 0.13643 H1 0.18504
11 CT 0.2002 CT 0.44969 CT 0.07542 CT 0.01438
12 H1 0.13554 H] 0.04349 H] 0.15024 HP 0.1144

13 CT –0.10803 CM -0.483.33 CM -0.4035 CT 0.01076

14 HC 0.07547 HA 0.1688.1 HA (). 18313 HC 0.05347

15 HC 0.07547 HC 0.05347

16 CT 0.18686 CM 0.08705 CM 0.11663 CM –0.09 128

17 OH -0.64919

18 HO 0.41434

19 C 0.79383 C 0.84614 C 0.78287 C 0.80611

20 O -0.767 O -0.77246 O -0.72391 O –0.75597

21 O -0.767 O -0.77246 O –0.72391 O –0.75597

22 OS -0.3 1529 OS –0.22994 OS -0. 19604 CM –0.270.17

23 CT -0.0178 CT –0.055 | 1 CT 0.0021 CT 0.05423

24 H1 0.12558 H] 0.08879 H1 0.11829 H1 0.10053

25 CT 0.0909 CT 0.21925 CT 0.1083 OS –0.32214

26 OH -0.592.16 OH –0.71642 OH –0.7452 CT 0.03809

27 HO 0.3749 | HO 0.44939 HO 0.48246 H1 0.04956

28 H1 0.12848 H] 0.05331 H1 0.06974 CT -0.07787

29 CT 0.15077 CT 0.36366 CT 0.15276 HC 0.04897

30 H1 0.00556 H1 -0.00755 H1 0.03091 HC 0.04897

31 OH -0.66892 OH -0.68101 OH -0.64323 CT –0.06435

32 HO 0.42549 HO 0.42682 HO 0.42228 HC 0.034.13

33 CT 0.2588 CT 0.15133 CT 0.2321 HC 0.03413

34 H1 0.04714 H1 0.00998 H1 0.0214 HC 0.03413

35 H1 0.04714 H1 0.00998 H] 0.0214 CT –0.07787

36 OH –0.73941 OH -0.68853 OH -0.66875 HC 0.04897

37 HO 0.43982 HO 0.42162 HO 0.42071 HC 0.04897

38 CT –0.06435

39 HC 0.03413

40 HC 0.03413

41 HC 0.034.13

42 OH –0.71405 OH –0.74358 N2 -0.39742 N3 –0.29807

43 HO 0.42485 HO 0.43692 H 0.31581 H 0.2943

44 CA 0.77445 H 0.2943

45 N2 –0.91 105 H 0.2943

46 H 0.43938

47 H 0.43938

48 N2 –0.91 105

49 H 0.43938

: 82 H 0.43938 HA 0.1885
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additional force field parameters

MASS

BOND

ANGLE

OH – CT - C 50.0 109.50
OS – CT - OH 50.0 109.50
CM - CT - OH 60.0 109.5
OS - CM - C 80.0 125.00
CM - CT - N2 50.0 123.20

DIHEDRAL
CT-CT-OS-CT 1 0.065 -10.0 –3.

CT-CT-OS-CT 1 1.750 -10.0 –2
CT-CT-OS-CT 1 3.0 135.0 1
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Abstract:

Chemical “similarity” is a topic of considerable interest to pharmaceutical

chemists in their effort to understand the size and complexity of the universe of chemical

compounds. As a result, methods to help characterize public or proprietary databases of

Small molecules are pressing. We present a novel method for estimating the significance

of intermolecular differences (similarities) using a cumulative probability density

function motivated by a hyper-sphere model. In addition to estimating chemical

similarity significance, our formulation of the problem facilitates extracting the intrinsic

number of chemical descriptors, effective at a given similarity value, from many strongly

inter-correlated molecular descriptors. We find that small molecule chemical space, as

represented by a diverse set of compounds from the Available Chemicals Directory

(ACD) is composed of ~11-24 orthogonal dimensions in the limit of high similarity. On

average, about 10" - 10" of chemical space is at least 0.85 similar (by the Tanimoto

measure) to any given compound, while only 10° - 10” lies within a 0.95 similarity

radius. We discuss our chemical space model in the context of quantifying the relevance

of activity neighborhood behavior and validating chemical descriptor sets.
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Introduction:

Over the past decade, the use of virtual screening has risen dramatically. Virtual

screening, or in-silico screening, encompasses numerous techniques in computational

biology, but all are based on identifying compounds from a large database that fit a

model. In the context of the work in this chapter, screening is defined as the pairwise

comparison of thousands of compounds in attempts to identify molecules exhibiting

similar biological activity. Virtual high-throughput screening (HTS) enables a large

number of compounds to be evaluated in a matter of days. Whether it is to seed an initial

drug discovery effort with a lead compound, expand a set of starting compounds for

increasing synthetic options, improving affinity, or evading intellectual property

constraints, virtual screening is viewed as an invaluable tool. Virtual screening provides

information about the underlying chemical and geometrical makeup of a compound via

two dimensional descriptors and compares it to a known active compound. The

“neighborhood principle”, which states that structurally similar compounds have similar

biological activity', motivates computational screening based on chemical similarity to an

existing lead compound. The measure of chemical similarity involves two steps. First, a

chemical descriptor set must be chosen. There are several, including atom-connectivity

based fingerprints and substructure keys”. Second, given two compounds appropriately

Projected into a descriptor space, a similarity measure must be chosen. Again, there are

several." including the Tanimoto coefficient and Euclidean distance.

More important than the raw scores from similarity analysis is the significance of

the scores. This paper directly addresses that question. We do so by the standard approach

of mapping a similarity score to the probability of two random compounds having an

equivalent or better (more similar) score. The cumulative distribution function, which

86



can be constructed from a set of random compounds with calculated (dis)similarities,

expresses this expectation probability. At least two complications require consideration.

First, the high-similarity distribution is most interesting, however random compounds

may not sample chemical space sufficiently fine to define this region of the distribution.

Hence, assumptions must be introduced concerning distribution behavior in order to

model and thus extrapolate the distribution function. To approach this issue, we use a

hyper-sphere motivated Statistical description that we previously applied to protein

conformational space.” The second significant obstacle is constructing an appropriate

random compound set. From the perspective of molecular design, we are most interested

in properties of potential (i.e. synthesizable) Small molecules as opposed to existing (i.e.

purchasable) compounds. By this reasoning, we pose the question: If all 10° to 10"

potential small, drug-like compounds" could be enumerated, would a small random subset

(e.g. <10%) have a chemical-property distribution similar to current compound databases?

Our intuition tells us that real compound databases are significantly more clustered than

this idealized random compound set, owing to historical biases; namely, existing

compounds form the synthetic building blocks for new compounds. For our calculations,

we work around this second obstacle to generating an appropriate cumulative distribution

function by using a diverse set of compounds from the Available Chemical Directory

(ACD)'.

Validating a chemical descriptor set is generally performed by testing its ability to

judge compounds with known similar biological activity as structurally similar with a

low false positive rate. In principle, performance statistics could be extracted directly

from data sets with known activities. In practice, probing narrow definitions of activity

(e.g. strong binding affinity) may require seeding a database with known active
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compounds (i.e. strong binding inhibitors) which were developed by a directed

optimization process which imparts an unknown amount of information. Thus, these

seeded data points confound any statistical interpretations because the true-positive rate

has no general meaning. Our work recognizes that the significance of similarities

between known-active compounds can be determined directly by using an externally

derived distribution function.

In this paper, we present a novel method for assessing the significance of chemical

similarity values by considering the radial distribution of compounds in chemical space,

where chemical space is defined by the compound set considered, the chemical descriptor

set, and the distance metric used. For a diverse compound set, we extrapolate the

distribution to high, unobserved similarity values, providing any similarity value a

corresponding expectation value. Further, similarity values calculated with different

descriptor sets can be discussed directly with respect to expectation. Ultimately, the

information imparted from this analysis can help to evaluate which chemical descriptor

sets best segregate known active compounds from random compounds.

Computational Methods:

Chemical descriptors

We use the Daylight fingerprints, which are based on the two-dimensional atom

Connectivity molecular representation and describe atom connectivity patterns.” The bit

String length, l, limits the number of patterns that can be encoded. These molecular

descriptors characterize a compound in a binary fashion with a value of 1 given to

indicate the presence of some feature and 0 in its absence. The effect of the bit-string

length on the apparent dimensionality is explored in this study by varying the descriptor
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set from 128 through 2048 bits. Daylight fingerprints can be "folded" such that

individual bits correspond to multiple patterns, but this is not done here.

Chemical similarity and difference measures

We investigate the behavior of several distance functions commonly used in the

chemical diversity literature," using the formulae for dichotomous variables as

appropriate:

The normalized Hamming distance:

Dº" = [a + b – 2c1/1 (1)

The normalized Euclidean distance:

dºm =[(a + b – 2c)/1]” (2)

The Soergel distance (which is equivalent to the complement of the Tanimoto

coefficient):

D.” = 1–c/[a + b –c (3)

The complement of the Dice coefficient:

Dº." = 1–2c/[a +b) (4)

The complement of the Cosine coefficient:

Dº"
F 1 – c /[abl” (5)

For two bit-strings, A and B, a is the number of 'on' (value 1) bits in A, b is the

number of 'on' bits in B, c is the number of 'on' bits common to both A and B, and l is the
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number of descriptors (the bit-string length). For the commonly used Tanimoto

coefficient, a value of 1 indicates maximum similarity.

Compound set

We generated a diverse set of compounds from the 1998 release of the ACD by

the following method: (1) Randomize the order of the compounds. (2) Generate

fingerprints (l=128) for the database. (3) Relative to the first compound, remove all

compounds below on the list less than 35 bits different (i.e. D" = 35/128). (4)

Repeat on all remaining compounds to the end of the list. This diversification of the

ACD reduced the 222,258 compounds to a set of 1199 compounds. The mean molecular

weight of the diverse set, 340.7 g/mol, is only slightly larger than for the entire ACD

(337.5 g/mol).

Distribution function properties

From the fingerprints for a set of N compounds we calculate all pair-wise

chemical differences by a given distance function. A cumulative distribution function,

v(r), is calculated from this distance distribution. We define v(r) as the probability that a

randomly chosen compound, A, lies within a distance r from a second randomly chosen

Compound, B. The variable, r, is the distance by the chosen distance measure. The model

is outlined in terms of distance, which can often be trivially transformed to similarity (e.g.

Tanimoto similarity = 1 – D*). We calculate v(r) by considering all pairs of the N

compounds, indexed by i,j:
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vº-º-º: Sº (6)N(N-1)/2 +,+", "i =l j = i+1

If we assume the compounds have a random distribution in a Euclidean behaved

space, then in the limit of small distances, v(r) approaches the function for the volume of

a hyper-dimensional sphere,

v(r) = C(rh) (7)

where C is the content of an n-dimensional sphere of unit radius.” The compounds, being

points in a descriptor Space, act as surrogates for volume.

Equating the logarithms of both sides:

log(v) = (n)log(r) + log(C) (8)

In a plot of log(r) vs. log(v(r)) the slope of the curve is the "apparent

dimensionality" as a function of r, n(r). This method has been used to analyze the

"conformational space" of an ensemble of randomly folded 36-mer polyalanine chains,

where n(r) was extrapolated to r-0 and found to be close in value to the number of true

mechanical degrees of freedom of the system’.

Test Case

We test how well our method in conjunction with various distance metrics reports

the dimensionality of delimited spaces represented by bit-strings. The spaces considered
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are five dimensional and fifteen dimensional hyper-cubes with unit edge lengths. To

simulate a diverse library, points are distributed throughout the hyper-cubes with a

uniformly random distribution. To generate an m-dimensional point in an m-dimensional

hyper-cube, m random numbers on [0,1] are chosen. Points are converted to bit-strings

by representing each dimension by 100 bits, where the fraction of 'on' bits is taken from

the corresponding random number. For example, if the first dimension value is 0.5923...,

then the first 59 bits are '1' followed by 41 '0' bits. For m equal to five and fifteen, this is

repeated five and fifteen times to give 500 and 1500 bit-length strings, respectively. This

is repeated until we calculate a total of 40,000 points for each value of m. The v(r) and

n(r) functions are constructed from these bit-string sets by calculating all pair-wise

distances among the bit-strings. Using this tractable space, we compare the behavior of

several distance functions. For comparison we calculate v(r) and n(r) on the original

point distribution in the five and fifteen dimensional boxes, using the Euclidean distance

for continuous variables,

(9)
dº." Euclidean -

{X (x,
-

*ib )? |º } / m"?
i–l

- - - - - - 1/2 -where i indexes the dimensions and the box-diagonal distance, m ", normalizes the

distances to the range [0,1].

92





Results:

Test Case Results

Figure 1 gives the v(r) distribution functions, both on an absolute scale (Figure

1a,d) and a logarithmic scale (Figure 1b,e), for the five dimensional box and 15

dimensional box. The curves differ depending on the distance metric used, which simply

reflects different properties of the metrics. The n(r) functions (Figure 1c,f), in contrast,

are expected to depend on the box dimensionality, m. With the exception of the

dichotomous Euclidean distance measure, n(r) converges on the number of dimensions,

m, with more complete convergence for the five dimensional case compared to fifteen

dimensions. This is expected and illustrates the larger sampling space of higher

dimensional spaces. The drop in apparent dimensionality, n(r), with increasing r reflects

box boundaries constraining growth in v(r). Interestingly, the dichotomous Euclidean

distance is the least well-behaved distance metric by our criterion of reporting (the

known) cube dimensionality correctly.

Diverse ACD results

Our test case shows that n(r), using most of the distance measures, accurately

estimates the underlying dimensionality of the data at r=0. While any distance measure

would be suitable, with the exception of dichotomous Euclidean distance, our points can

be made with only a couple measures and so we use the normalized Hamming distance

and Tanimoto similarity (Soergel distance) for the remainder of the text. º
*-

s

s
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Comparing descriptor sets: Daylight bit-string length dependence

v(r) and n(r) were calculated for the diverse ACD set using Daylight fingerprints

of bit string lengths from 128 to 2048. While for all bit-string lengths, each bit is used

(i.e. both on and off populated) across the compound set, the bit-strings become more

sparse at large l (Table 1). As a result, the mean Hamming distance decreases with

increasing land the v(r) and n(r) curves shift to lower r for larger l (Figure 2a and 2b).

The most interesting apparent dimensionality value is at r=0, given our

assumption that n(0) reports the underlying dimensionality of chemical space, as seen in

figure 1c.f. For our diverse ACD, estimating this value requires an extrapolation of n(r)

to r-0. No best functional form is immediately obvious to us for describing n(r) (Figure

2b-c). We give results for two functions. First, we arbitrarily use a linear fit to n(r) over

n(r)-0.1 and interpret the y-intercept (n,2n) as the chemical space dimensionality of the

compound set (Table 1). Our second functional fitting is motivated by observing that n as

a function of v(r), n(v(r)), (Figure 2c) shows less dependence on bit-string length, l.

Except for l-128, n(v(r)) appears to be converging on a number between 10 and 20. We

fit the n(v(r)) plots to a functional form with two free parameters, no and h:

n(v(r)) = no■ 1–h”) (10)

This function approaches no as v(r) (and therefore r) goes to zero. We report the no

parameter for this functional form fitting in Table 1, providing a second estimate for n(0)

for each bit-string length. While the bit-string length, l, varies over more than an order of

magnitude, the n(0) estimates show less variation, and are surprisingly anti-correlated

with l. Excluding the l=128 results, all n(0) estimates lie in the range 11-19.

º*º
-
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Figure 1: v■ r) (a-b; d-e) and n(r) (c.f) for 40,000 points distributed uniformly

random in a 5 dimensional box (a-c) and a 15 dimensional box (d-f). The dashed

line plots v(r) and n(r) for continuous Euclidean distances calculated on points

represented by 5 and 15 length vectors of random floating point real numbers on

[0,1]. v(r) and n(r) are also constructed using points represented by 500 and 1500

length bit-strings (see text), using the dichotomous forms of the distance

functions: Hamming (square), Euclidean (diamond), Soergel (up-triangle), Dice

complement (circle), and Cosine complement (down-triangle). (a) and (d) give

the v(r) functions on an absolute scale, while (b) and (e) report the same data on a
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logarithmic scale from which the n(r) functions in (c) and (f) were calculated.

n(r) functions were calculated from their respective v(r) functions starting at v(r) =

10-7 in order to reduce noise from low sampling.

Table 1: Estimates of n(0) for Varying Bit-String Lengths and Function

Extrapolations.

Bits (1) Informative bits" (a)" nº ■ n(r)| | nº ■ y■ r)]"
128 128 70.6 27.8 16.6

256 256 85.7 18.9 13.3

512 512 95.1 14.1 13.0

1024 1024 100.0 12.1 11.7

2048 2048 102.5 11.2 11.3

"Informative bits are those which are both on and off across the compound set.
"The mean number of on-bits for a compound, averaged across the compound set.

The y-intercept, nym, for linear fits to n(r).
The value of the free parameter no in the two parameter fit to n(v(r)) (see text).
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The steep rise in the apparent dimensionality, n(r), for l–128 at small r (rs().3) may be an

artifact of the diversity filtering, which was performed in the l=128 space, and simply

indicate an edge effect in the distance distribution. Because, by construction, no pair of

compounds is closer than D” =35/128, v(r) rises drastically at this distance resulting

in a larger apparent dimensionality. The smaller jump in n(r) at small r for the longer bit

String lengths suggests that this edge artifact softens upon calculating new molecular

descriptors using larger bit-strings.

Extrapolating v(r)

From the perspective of lead optimization in drug discovery, the behavior of the

distribution function, v(r), is most interesting in the high similarity regime. Because of

the high-dimensional nature of chemical space, only relatively large inter-chemical

distances will be observed among compounds randomly sampled from chemical space.

This limits the numerical coverage of v(r) to the large r regime. We extrapolate v(r) to

Small r based on extrapolations of n(r), since n(r) appears to exhibit some trend (Figures

2b-c) and because the reasonable value for n(0) is limited by its physical interpretation -

the number of ways to permute an average compound.

While n(r) exhibits some trend, its exact functional form is not immediately

obvious. We explore four different extrapolations of n(r) (Figure 3a) in the l=512

fingerprint space and give the corresponding v(r) extrapolations (Figure 3b).

Extrapolation #1 is a linear fit to r versus n(r) (Figure 2b), n(r)=–37.81r + 14.14.

r ~

&
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Figure 2: v(r) (a), n(r) (b), and n(v(r)) (c) are plotted for the 1199 compound

diverse subset of the ACD using Daylight fingerprints for l equal to 128 (circle),

256 (square), 512 (diamond), 1024 (up-triangle), and 2048 (left-triangle). n(r) (b),

and n(v(r)) (c) were calculated over v(r) > 5×10° in order to reduce noise. (c) also

plots the equation n(v(r)) = no■ t-h”), where no = 13.3 and h = 2.32, which is

fit to n(v(r)) for l =256 (dashed line, square).
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Extrapolation #2 is a quadratic fit to r versus n(r) over 0.092 < r < 0.221, n(r) = 317.2r” –

152.3r + 23.87. Extrapolations #3 and #4 are fits to n(v(r)) (Figure 2c). Extrapolation #3

is as summarized in Table 1, n(v(r)) = 13.03(1–1.836”). Extrapolation #4 is a linear

fit to log(v(r)) versus n(v(r)) over 8.8×10’s v(r) < 0.068, n(v(r)) = -2.271og(v(r)) +3.82.

Given n(r) [or n(v(r))], v(r) is extrapolated from r = 0.094, v(r) = 1.22×10", by a simple

Euler-type extrapolation (Figure 3b). Specifically, n(r) [or n(v(r))] defines the slope for

extending v(r) to v(r—Ar) in a log(r), log(v(r)) plot. Here Ar-0.0001 base-10 logarithmic

units. Testing smaller Ar values indicates convergence in the extrapolation (data not

shown). With the exception of Extrapolation #4, the extrapolations behave somewhat

similarly, n(0) for Extrapolations #1-3 are 14.1, 23.9, and 13.0, respectively.

Extrapolation #4 is not defined at r = 0 and its n(1/512) value (~572) already exceeds the

nominal dimensionality of the bit-string. Therefore, Extrapolation #4's behavior at Small

r appears unreasonable.

For comparison we construct v(r) and n(r) for the 512 bit-string space using the

Soergel distance (Figure 4). The more widely used Tanimoto similarity measure (equal to

1 – D*) defines the x-axis in Figure 4 for convenience. In contrast to behavior with

the Hamming distance, n(r) for the Soergel distance appears to plateau at ~18 with a

Spurious jump to larger values at the smallest r (Figure 4a). We use both the plateau

value (18) and the largest observed n(r) value (24) for extrapolating v(r) (Figure 4b).

Using these models for n(r), the probability of obtaining a Tanimoto similarity score of

0.85 or better is 10" - 10". A similarity of 0.95 corresponds to an expectation orders of

magnitude smaller at 10* - 10°.

99



Discussion and Conclusion:

As drug discovery becomes increasingly dominated by chemical libraries and

databases, interpreting results of chemical classification schemes will prove more

important. This analysis on the distribution properties of random compounds raises

several issues in this respect. We will focus on how to assess the validity of our results,

what the general implications for medicinal chemistry might be, and the utility of the

methods for the field of drug design.

Judging the reasonableness of our results requires careful consideration. The most

limiting link in this type of analysis is construction of an appropriate and representative

chemical library that captures the wealth of degrees of freedom available to the clever

medicinal chemist. A rules-based scheme for generating random compounds may yield a

huge potential chemical library”, however any rule set limits an enumeration scheme to a

very small fraction of chemical space unless the rule set is complete. “Drug space”

biases" also require consideration, however even million-fold reductions in chemical

space do not change the numbers here significantly.

The dimensionality values of chemical space, as reported by n(0), give one handle

on validity. Martin et al" show how principal components analysis and multidimensional

Scaling can reduce thousands of chemical descriptors to 16-20 dimensions which capture

most of the chemical variance in combinatorial libraries. Our dimensionality values of

11-24 are in rough agreement and illustrate the strong correlation within a large descriptor

º .=
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Figure 3: (a) Curve fittings to numerically derived n(r). (#1) (circle) Linear fit to

r versus n(r), (#2) (square) hyperbolic fit to r versus n(r), (#3) (diamond)

exponential fit to log(v(r)) versus n(v(r)), (#4) (triangle) linear fit to log(v(r))

versus n(v(r)) [see text for fitting details]. Solid line represents observed n(r). (b)

Euler extrapolations of v(r) using the slope functions #1-4 (notation same as in

(a)). Solid line represents observed v(r). All plots begin at r = 1/512 (= 0.00195).
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Set. Although a direct extension of dimensionality by our model, the expectation values

calculated here are inherently more difficult to evaluate because of the extreme numbers

involved. Common sense might deem the expectation values quite small. For example,

only one in 10” compounds may lie within a 0.95 Tanimoto radius about an arbitrary

compound (Figure 4), far outside the resolution of in vitro high-throughput screening and

even computational screening. However, given a low estimate for chemical space of

10°. approximately 10” compounds should meet this criterion. From this perspective, an

expectation of 10° is quite large in absolute terms.

The challenge in creating molecular descriptors useful for drug-design is to

include enough information capacity to segregate active compounds from inactive

compounds for many disease targets. However, for any given target, the chemical

variables relevant to drug activity may be an even smaller number than the 11-24

dimensions reported here.” Including information from irrelevant dimensions in

calculating molecular distances effectively adds random noise that disperses a chemical

neighborhood of true-active compounds. The noise-driven dispersal of active compounds

would increase v(ractive) where ractive is the distance between pairs of active compounds.

Thus, the distribution function, v(r), provides a direct method for validating any chemical

descriptor Set provided that v(r) has been constructed using the descriptor set and a

intermolecular distances among sets of actives have been calculated with the same

descriptor set. The distance measure is another variable that can likewise be evaluated.

Our formulation of the problem points to broader implications for drug design.

From information theory, we know that log2(W) bits are required to decode W distinct

—
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OutCOmeS 13. If we make the approximation that 1/v(r) gives the number of distinct

chemical neighborhoods of resolution r, we can evaluate the information required to

sample any particular neighborhood. Decreasing the distance-threshold defines ever more

exclusive chemical neighborhoods. Specifically, taking the negative base-2 logarithm

converts the effective sampling resolution, v(r), to the information measure of bits. To

enter the 0.85 Tanimoto similarity radius about an arbitrary compound requires -56 bits

of information (i.e. -log2(10"), while 93 bits are required for the 0.95 radius. Using

high-throughput screening of a million-compound library to choose a single best

compound provides a maximum of log2(10"), equal to ~20, bits of information. Analysis

of all the screening data can yield significantly more information per compound,

especially with well-designed “informative” libraries". In order to frame properly these

numbers requires an estimate of the probability of a random compound being a drug (or

high affinity ligand) for a particular drug-target/disease. If the information requirements

of designing a drug can be estimated, the limits of any method at a step along the pathway

can be better established.

-
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Abstract:

As researchers continue structural studies on biological macromolecules, it is

becoming clear that motion/dynamics is playing a sizeable role in molecular recognition.

Slight changes in a protein’s active site or protein surface can have profound effects on

the binding landscape for a substrate. In this preliminary study, we utilized all-atom

simulations of a high-resolution crystal structure to understand and quantitate molecular

motion. We studied this system in environments of varying complexity; vacuum, a single

solvated asymmetric unit, and an asymmetric unit in the context of the unit cell. In

addition, we explored the nature of atomic forces that direct molecular motion in all these

environments. Our studies showed that in all instances, forces fluctuated greatly,

equating to roughly 50% of a force’s magnitude. We also saw that nonbonded forces,

while providing the means for low frequency motion, contributed very little to an atom’s

total force magnitude, roughly 10-15%. Explicit solvent simulations provided mean

solvent collision times and mean forces of impact, 0.003fs' and 2.26 kcal/mol A,

respectively.

Frequency analysis by Fourier transformation of force autocorrelations illustrated

that molecular motion is not greatly affected with increasing system complexity.

Solvated protein taken out of the context of the unit cell did not see a significant

liberation of molecular motion despite the density of the system being less. Interestingly

enough, we also saw that proteins in vacuum simulations also experienced similar

frequencies of motion to our two more dense environments.
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Introduction:

For years, structural biologists have acknowledged that molecular recognition is

highly governed by shape complementarity of a substrate to its target, evolving a lock

and key paradigm ". With advancements in biology and chemistry, structural biologists

have now begun to investigate the role motion has in molecular recognition *. As with

the advancements in biochemical techniques, increased computing power and efficiency

has enabled computational investigations of the dynamic properties of these once static

“locks” to become more tractable. Many experimental techniques provide structures that

are time averaged; computational investigations, on the other hand, have the ability to

give investigators structural information of a system as a function of time. It seems

timely to build on the advances in experimental and computational methods to develop

computational tools that further extend our understanding of protein motion at the atomic

level.

Large scale motion facilitates or even governs binding of proteins to others, while

motion in a protein’s active site can aid in small molecule recognition. The dynamic

behavior of a system can be classified into two types, harmonic and anharmonic.

Harmonic forces dominate the local changes seen in a macromolecule with motions

contributed mainly from high frequency bond stretching and angle bending. The

anharmonic motions, on the other hand, are comprised of low frequency collective

motions (<300cm") contributed by nonbonded and dihedral components. These low

frequency motions dominate the large structural changes and transitions seen in

biological macromolecules. Since many of the structural changes that alter a recognition
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site or the activity of an enzyme are large changes, it is the anharmonic motions that

remain of most interest.

To date, mainly two theoretical techniques have been utilized to obtain the low

frequency motions of macromolecules, normal mode and principal component analysis”.

Normal modes account for the vibrational contributions to the internal energy at a given

temperature. They correspond to the collective motions of the atoms in a system that can

be excited *. By nature, normal mode analysis neglects solvent effects and assumes that

the energy surface is quadratic (harmonic) within the well that is being sampled. As

systems become more complex and malleable, this harmonic approximation breaks down.

Principal component analysis (PCA) is one way to capture this low frequency

anharmonic motion, but does so with a reduction of data”. Therefore, extraction of the

harmonic and anharmonic frequencies of protein motion remains nontrivial.

Herein, we evaluate the use of molecular dynamics (MD) as a method to uncover

the low frequency motions for macromolecules without a reduction in data that previous

techniques may rely on. Molecular dynamics, unlike normal modes, has the ability to

sample conformational space accessible to both harmonic and anharmonic motions.

Previous studies have shown that for simple small systems, normal modes and those

taken directly from MD simulations are well correlated ", but as the motions get more

complex, normal mode approximations begin to breakdown ". We look to extend our

abilities of following low frequency modes by using molecular dynamics of

macromolecules, Sampling over longer time periods to capture anharmonic modes not

normally accessible to normal mode analysis. This method allows for conformations of
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the system to be characterized while maintaining a full atomistic representation of the

system, including solvent effects.

In this study, we initially use a simplified test case to analyze the ability of

molecular dynamics to properly capture the frequencies of motion in a simulation. We

then apply this approach to a protein crystallized to ultra-high resolution, alpha lytic

protease (alP)", and investigate the effects the crystalline environment has on collective

motion. Given the large number of biomolecular simulations that start from a structure

that was obtained in a crystalline environment, yet simulated in solution, it is important to

understand the degree of motion liberation as one moves from a crystalline to non

crystalline surrounding. Alpha lytic protease is a 198 residue protein and because of its

evolution to be structurally stable under harsh environments, it has been a model to study

protein folding”. This protein was chosen due to the large amount of structural detail

available. The 0.83 Angstrom structure allows the greatest opportunity for a seamless

transition from an experimental to a computational study by reducing the chances for

setup/equilibration artifacts that may unnaturally affect motion. In this work we aim to

uncover the environmental effects on protein collective motion, therefore, we also

examined the frictional effects provided by the solvent by performing simulations in

vacuum and comparing back to explicit solvent frequencies. Along with generating an

understanding of protein collective motion, this study will provide insight into the force

magnitudes within complex and simplified systems, thus yielding information on the

general force behavior in various environments.
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Computational Methods:

Simulation setup. All simulations were carried out using SANDER within the AMBER

software package.” SANDER takes the derivative of the pairwise effective potential

energy function shown in equation 1 to obtain forces on each atom to simulate molecular

motion.

V(r)= X K (-r) + XK,( –0.) + X. ºt-º-o-º-º-º: (1)
12 6

Bonds Angles Dihedrals i-j R; R. &R,

Parameters for equation 1 were obtained from Cornell etal". All simulations were

performed with the SHAKE algorithm '' and TIP3 waters ". In order to track atomic

forces, SANDER was modified to output the forces on each atom prior to each new

integration step. A detailed description of each term in the above equation can be found

in various references".

Alpha lytic protease. For this computational study, the 0.83 angstrom resolution crystal

structure of alP was used as the initial structure". The crystal structure was of space

group P3221, with one molecule per asymmetric unit. Six copies of the alpha lytic

protease were included in the simulation to reproduce the unit cell (Figure 1). Each copy

was translated and rotated by their symmetry elements to the central OLP using the

modeling package ‘O’. Hydrogen atoms not included in the experimentally determined

structure were added using the LEAP module within AMBER. All experimental

glycerols, sulphates, and crystallographic waters were maintained during the setup.

Glycerol charges and parameters were obtained using PARM99 and gaff ”. Areas not

containing crystallographic waters were filled in with TIP3P waters. Consistent with
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experiment, a trigonal box was constructed encompassing the unit cell so that the

simulation could be performed using PME”.

Figure 1. Trigonal unit cell containing six alpha lytic protease proteins. Ribbon

diagrams show olP and blue represents molecular waters.

The entire system was first minimized for 2000 steps. After minimization, all the

waters were allowed to equilibrate for 10ps, initial velocities were assigned from a

Boltzmann distribution. After water equilibration, the entire system was heated in NVT

to 300K over 70ps. The system was then simulated in NPT for over 150ps to equilibrate

the density before production MD. Upon reaching a stable density in NPT, the system

was then equilibrated in the NVE ensemble to ensure the most natural trajectory (100pS).

The NVE ensemble was simulated for 700ps after the equilibration for production MD.

The 700ps simulation was split into equal 100ps segments and used in the analysis.

Forces were only recorded for atoms of the central alpha lytic protease in the unit cell.
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As opposed to the unit cell, simulations of a single asymmetric unit (ASU) of the

alpha lytic protease in a box of water were also performed. A single alpha lytic protease

was surrounded by a 10A buffer of TIP3P waters in all directions. Similar equilibration

procedures used for the unit cell calculation were repeated for the single alP in a box of

water prior to collecting data in production MD. 700ps of production MD was run.

Vacuum simulations of the alP were performed to examine the effects of solvent

on molecular motion. Vacuum calculations only involved 1 ASU of the QLP. The

Vacuum system was minimized for 2000 steps then heated to 300K. The system was

then allowed to equilibrate for another 150ps before collecting data in production MD

(600ps).

Bonded carbons. Because we had little prior experience in examining forces in a

solvated environment, we designed a simplified system consisting of two carbon atoms

without hydrogens bonded together. Simulating just two bonded carbons required

defining a new atom type. For this system, a modified atom type was generated using the

same parameters for a carbon-carbon bond in the parm29 force field. Creating a new

atom type enabled a simplified system that contained just two bonded atoms and not eight

as for a saturated ethane. The two carbons were surrounded by 10A of TIP3 water

molecules. This system was initially minimized for 1000 steps, then heated in NVT for

45ps to 300K. It was then allowed to equilibrate in NPT for 50ps before production MD

was performed in NVE for 500ps. This system was also averaged in a similar fashion to

the proteins. The 500ps data was split into 10 X 50ps segments for analysis.
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Force Analysis. SANDER was modified to output atomic forces in their x,y,z

components for each MD step. Force vectors were outputted from the trajectory for all

atoms over the course of the simulation. Instantaneous force magnitudes were

determined for a particular atom, or in the protein case for a group of atoms, using the

following equation:

Where f. f. and f. are the x, y, and z components of the force vector, respectively. To

take advantage of the pairwise additivity of the force field given in equation 1, individual

contributions to the entire force on an atom were separated out. This enabled force

contributions from bond terms, angle terms, dihedral terms, and non-bonded forces to be

isolated and characterized.

Time series analyses were performed on the discrete force vectors obtained over

time from the simulations. Autocorrelation calculations yield the correlation between

forces in successive steps of a trajectory as a time lag increases. They are used to detect

non-randomness in the data and are obtained by the following equation:

e,0)-X 4.4%
H (f(0), f(0))

The normalized autocorrelation coefficient cº■ t) calculates the dot product of each force

vector to yield the degree of similarity between forces. The force on a particular atom at
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a given time is represented as f(t) and N represents the total number of atoms. Increasing

lag times (t) were sampled until t = % total sampling time. The averaged dot products for

a specific log time were then used to calculate the autocorrelation value. An

autocorrelation value of 1 represents complete conservation of the force between

successive steps, while a value of 0 represents no correlation for a force from a previous

step. An autocorrelation value of -1 represents a force vector equal in magnitude, but

opposite in direction from the reference vector.

To uncover the frequencies of motion, Fourier transformations (FT) were

performed to yield a spectral density describing the proton motion. The autocorrelation

of the force data from the simulations yielded plots that were highly convoluted with a

linear combination of many periodic functions. Fourier transforms can deconvolute this

signal and yield discrete bands for the frequencies underlying the long autocorrelation

times. The Origin scientific graphing and analysis software was used to compute Fourier

transformations of the autocorrelation data”. Origin utilizes the following equation to

perform a discrete Fourier transform:

N–1 —f 27/..n k
F(x)=X f(n)e^*" F, -º

n=0

N is the number of data points, Fn is the amplitude of the waves, and k is equal to the

frequency. The spectrum yields the occurrence of a motion at a given frequency over the

course of the trajectory. If the frequency of a motion is purely oscillatory and

uninterrupted, a Fourier transform of that signal would be an infinitely narrow line. As

the motion becomes more chaotic, but an underlying frequency remains, the FT gets
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broadened out. Spectral plots were averaged using a 41 point Savitzy-Golay Smoothing

within the Origin software, as shown in figure 2.

FT Two carbons (from MD)
Ave 10X 50ps, 500ps sim

0.0012 -, -r-■ -r-, -: H-H-I-T-I-

r oo::
–41 points-G Smoothing of FFT1_r.

-0.0010
ooid "

0.0008

0.0006 l

0.0004

-

0.0002–

ooooo [-------→
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Frequency (fs')

Figure 2. Spectral density of the Fourier transform obtained from solvated MD

of two bonded carbons in a box of water. Inset shows the higher frequency

discrete peak describing the carbon-carbon bond stretching. Frequencies below

0.02■ s' are interactions of solvent with the carbon system. The 500ps simulation

was split into 10 X 50ps runs. Force autocorrelations were then calculated for

each run and an averaged force autocorrelation plot was Fourier transformed. 41

point Savitzy-Golay averaging shown in red.
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Results/Discussion:

Molecular dynamics simulations and analysis were performed for each of the

following systems; two carbons in a box of water, OLP in vacuum, O.LP in the unit cell,

and a single solvated a DP. Over the data collection windows, figure 3 shows that the

energy of most of the systems are well equilibrated. The exception is the potential energy

of the unit cell simulation which appears to drift slowly to a lower energy suggesting that

it may not be as well equilibrated the others. If this drift to a lower free energy is

accompanied by a significant conformational change in the protein structure, our FT

analysis should be able to observe it. Over the course of each trajectory, atomic forces

were extracted and monitored. Initially, force magnitudes were investigated for their

behavior in different environments. Time series analysis and subsequent Fourier analysis

were then performed to uncover the frequencies of motion.

Force magnitudes. Molecular dynamics simulations were performed on two

main Systems, a bonded atom system and the protein, a LP, in varying environments.

Raw forces for each atom were outputted at equal time intervals during the MD

simulations. For the bonded atom system, forces on one of the carbon atoms were

tracked over the course of the simulation, 1.fs timesteps and data collected every 2fs. The

protein simulations used 1 fs timesteps and force data was collected every 4fs. Sensitivity

of the results to varying timesteps and data collection windows was explored with the

bonded carbon system. Altering either parameter had no effect on the qualitative

autocorrelation or Fourier transform spectra (data not shown).
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Figure 3. Potential Energy RMSD over the course of the production MD

simulations. Top – two carbon simulation, Second – ASU in vacuum, Third –

Asymmetric unit alP, Bottom – alP in unit cell.

For direct comparison with simplified systems, forces on a single carbon atom in

the protein were monitored. Valines were chosen due to their simplicity and side chain

resemblance to the bonded atom system. In particular, atom 787 of valine 58 and atom

310 of valine 23 were monitored. These particular residues were chosen so that analyses

pertaining to the effects of the immediate environment can be made. As illustrated in

figure 4, valine 58 has its side chain exposed to solvent, while valine 23 is buried in the

protein.
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Figure 4. Ribbon diagram of the asymmetric unit of olP. Green residues are the

valines followed for the magnitudes study. Val 58 atom 787 CG1 is solvent

exposed, Val 23 atom 310 CG1 is buried.

In general, we observe that the mean atomic forces increase as more interactions

are considered. Mean forces on the carbon of the two carbon system are 10.47 kcal/mol

A, while forces on the carbon in the protein increases to roughly three times that. Total

mean force for each atom studied is the same regardless of the location in the protein or

type of simulation environment. As we will discuss in more detail, a discrepancy

becomes apparent as we examine only the nonbonded components.
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Breakdown of the force field components allowed a further investigation into the

magnitudes of forces contributed by each force field term. Bond, angle, dihedral,

nonbonded van der Waals, and electrostatic terms were isolated within each system.

Broken down into its contributing components, table 1 shows the summation of forces on

carbon atoms in various simulation environments. It is apparent that forces from the

bonded terms make up roughly 85-90% of the force magnitude, while the nonbonded

components provide very little. Of the bonded terms, it appears that the angle terms

contribute the most, roughly 70% of the interaction (Table 1). Surprisingly, the dihedrals

have very small contributions to the entire force magnitudes, less than 1% of the total

force. Bonded terms generally have the highest values due to their ability to visit the

high energy walls of the potential, while nonbonded terms do not. Despite their large

force magnitudes, the protein experiences these bonded terms in an average Sense leading

to harmonic motion. As mentioned earlier, this harmonic motion results in stationary

movements that do not alter conformation.

In contrast to the bonded terms, nonbonded components to the force are designed

to prevent contact, thus their interactions remain small. On average, the nonbonded

components make up about 10-15% of the total force interaction acting on an atom.

These nonbonded terms, while small, contribute the most to the large low frequency

motions of proteins (<300cm").
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Table 1. Force Magnitude Breakdown.

of specific force components are given.

Forces remaining on atom after removal

Parenthesis give standard deviations.

Force tracked for valine 58 atom 787 CG1 (exterior), and valine 23 atom 310

CG1 (interior).

C1 CILP Val 58 dLP Val 23 UC Val 58 UC Val 23

No Bonds with Hydrogen 10.472 (4.9) 29.41 (13.49) 29.60 (13.54) 29.78 (13.52) 29.40 (13.35)

No Bonds N/A 24.29 (10.19) 24.27 (10.25) 24.57 (10.35) 24.07 (10.13)

No Bonds/Angles N/A 2.93 (1.56) 4.76 (2.02) 2.83 (1.46) 4.93 (2.09)

No Bonds/Angles/Dihedrals 2.257 (2.1) 2.77 (1.51) 4.72 (1.96) 2.67 (140) 4.78 (1.98)

Vac Val 58 Vac Val 23

No Bonds with Hydrogen

No Bonds

No Bonds/Angles

No Bonds/Angles/Dihedrals

30.73 (13.92)

25.21 (10.56)

4.97 (2.68)

4.82 (2.09)

31.38 (14.50)

25.46 (10.85)

4.12 (1.99)

4.02 (1.90)

As further illustrated in table 1, the nonbonded interactions depend on the

immediate surrounding environment. Comparison of the forces on atom CG1 of valine

58 to the forces on atom valine 23, we see that forces in the interior of the protein are

almost twice as high compared to residues primarily subjected to solvent interactions.

This increase in force with the complexity of its surrounding is seen in both the QLP in a

box of water and the OLP in the unit cell. Vacuum simulations of the alP show slightly

different behavior. Oddly, the forces on the exposed valine CG1 are larger than those on

its counterpart in the interior. Performing the simulation in vacuum makes the system

º
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void of molecular waters and prevents proper screening of nearby residues. This lack of

solvent increases the interactions between neighboring residues and becomes apparent in

the higher than expected forces on valine 58. Upon closer visual inspection, valine 58,

which is solvent exposed has a neighboring arginine 57 that could explain the large

nonbonded force component in vacuum. Valine 58 also has another arginine, residue 64,

that is in the vicinity. In a solvated system it is feasible that the electrostatic potential

from these two residues would be screened by solvent, but because vacuum simulations

are void of this effect, these two arginines may have a larger effect leading to an

artificially high force on the valine we studied.

A system of two bonded carbons in a box of water, which represents a simplified

system, was used to isolate the water contributions to the forces. Forces from the

nonbonded components represent the intermolecular interactions of one of the carbon

atoms in the system with the surrounding solvent. This system enabled an estimation of

the mean force of solvent collision, particularly TIP3P, and yielded an estimate for the

frequency of solvent interactions with the solute, which will be discussed further below.

Vacuum simulations of the bonded atom system saw a disappearance of nonbonded

forces, providing further evidence that the solvent is represented by these interactions

(data not shown). Additional simulations were also performed at varying temperatures.

Altering the temperature of each system should result in the nonbonded interaction

frequencies (i.e. waters) being shifted and the bonded frequencies remaining the same.

As shown in figure 5, we indeed see a shift lower in frequency of this initial peak as the

temperature decreases from 300K to 150K to 50K. It becomes apparent that these peaks

vary completely with the square root of the temperature of the system. The fact that this
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peak correlates with changes in temperature provides further support that the peak we are

looking at in this frequency range is attributable to solvent interactions. No noticeable

shift occurred for the high frequency bonded term.

TWO carbons Simulations
300K, 150K, 25K

0.0010----|-- I

H — 300K
0.0008– — 150K

-

— 25K

i
- -

0.000 0.002 0.004 0.006 0.008 0.010

Frequency (fs')

Figure 5. Bonded two carbon simulations at varying temperatures, 300K, 150K,

25K. Sensitivity to temperature provides support that frequencies in this range

are composed of nonbonded intermolecular interactions.

Investigation of the force magnitudes demonstrates that the waters collide with

very little force, on average 2.26 kcal/mol A (Table 1). As we see with the protein, the

finding that the nonbonded components contribute very little to the overall interaction is

indicative of all nonbonded interactions, not just free floating waters. Upon further

investigation in the protein system, we uncover that the protein atoms are influenced
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more by their neighboring residues than they are by solvent. Vacuum simulations show

that the exterior valine maintains a large nonbonded force component despite no solvent

being present. The notion of Solute atoms having a large effect on nonbonded forces is

Supported by that fact that force magnitudes generally increase as you bury the residue

inside the protein, mentioned above. Subsequent simulations of the alP in solvated

environments show a slight increase in the force acting on this valine, but it is apparent

that the solvent adds minimal interaction.

Upon looking at the atomic force behavior, we observe that the instantaneous

forces can be extremely sensitive to atomic position. As evident by the large variance in

magnitude distributions, recorded forces from Snapshot to snapshot were markedly

different despite the systems being well equilibrated (Figure 6). The distribution in

forces span a 5 kcal/mol A window in the simplified system, while the protein atoms

experience a 15 kcal/mol A force magnitude spread (Table 1). These large magnitudes in

force fluctuations are apparent in essentially all simulation environments and on various

locations within the same simulation (exterior vs. interior). This finding provides

evidence that the force fluctuations are inherent in the force field and simulation method,

not necessarily dependent on the complexity of the environment (i.e. solvent or large self

interacting protein). In all instances, the width of the force distribution remains roughly

half of the mean force on that atom (Figure 6). Force fluctuations for the simplified two

carbon System consist of approximately the same percentage of the total mean force as

those seen in the complex unit cell system. The same can be seen when comparing

vacuum simulations to those with solvent (Table 1).
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Autocorrelation analysis. Interested in the time dependent behavior, we

performed an autocorrelation analysis utilizing the force vectors at each time step. As

before, the pairwise additivity of the force field components allowed a breakdown of each

autocorrelation function into separable force field components. To uncover atomic

behavior, analysis was performed for atoms within the olP, atom CG1 on valine 58 and

atom CG1 on valine 23. As we see from plot 7 and 8, the autocorrelation values of the

forces over the trajectory were highly oscillatory with rather long relaxation times. The

long relaxation times suggest that the forces remain highly correlated throughout the

simulation, but upon further investigation, we see that this high degree of correlation is

mainly due to the harmonic bonded terms. Decomposition of force field terms from the

autocorrelations reveals that, unlike the high oscillatory terms, the nonbonded terms have

a rather quick relaxation time (Figure 7 and 8). Notice that an offset is seen for the

nonbonded spectra. Ideally, the autocorrelation would be centered around zero. This is

mainly due to the simulation data being calculated for an all interacting system (i.e.

bond/angles/dihedrals/nonbonded components were all evaluated). Although we only

follow forces from specific components (i.e. nonbonded terms), the coordinates of the

system were influenced by all the interactions and remain correlated to some extent.

Similar behavior was seen for other atoms on various residues throughout the protein

(data not shown).

Dephasing times are found to be longer in vacuum as opposed to simulations with

explicit solvent. Atom 787 on the exterior experiences a longer dephasing time compared

to its counterpart in the solvated ASU or unit cell simulations (Figure 7). This

information lends support to the notion that interactions on the surface of the protein are

127



more chaotic when you add solvent or are in the context of a unit cell. Interestingly,

notice that the autocorrelation plots look similar for the exposed valine in both the ASU

and unit cell conditions. This would lead one to believe that the surface of the protein

looks the same whether in a crystalline or fully solvated environment. That finding is

further supported by comparing force magnitudes on the surface and observing that there

is no difference for the ASU or unit cell simulations (Table 1). As expected for an atom

in the interior, relaxation times look very similar in all simulation conditions.

To capture the force behavior for an entire protein, force autocorrelations were

performed for the entire alP in multiple environments. Resultant vectors were summed

for all atoms on the central ASU, 1-2755. Forces for atoms contained in this segment

were summed up and treated as a whole when doing the autocorrelation analysis. These

autocorrelation values were then used for a Fourier analysis to uncover the frequencies of

motion. As expected, the autocorrelation data from the protein is highly complex and

meaningful interpretation without deconvolution remains difficult.
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Figure 7. Autocorrelation analysis of valine 58 atom 787 CG1 (exterior). Top –

vacuum simulation; Middle – ASU; Bottom – unit cell simulation. Left column

represents autocorrelations with all force field terms present. Right column shows

autocorrelation of nonbonded terms only.
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Figure 8. Autocorrelation analysis of valine 23 atom 310 CG1 (interior). Top –

vacuum simulation; Middle – ASU; Bottom – unit cell simulation. Left column

represents autocorrelations with all force field terms present. Right column shows

autocorrelation of nonbonded terms only.
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Fourier analysis. To uncover the frequencies underlying the simulation data,

Fourier analyses were performed to yield spectral density for each system. Fourier plots

describe the motion of the system in terms of amplitudes and frequencies. All protein

plots are shown in figure 9, with only the frequencies that yield large motions plotted

(<0.02 fºº"). In this range, frequencies are broad due to the complexity of the

interactions. Determination of frequencies of motion from protein autocorrelation data

that was obtained without bonded terms resulted in retention of the low frequency protein

fingerprints revealing that the low frequency modes (<0.02 fºl) correspond to those

contributed from the nonbonded components in the force field (van der Waals and

electrostatics).

To better understand solvent-solute interactions, we initially set forth to obtain an

estimate for the mean collision time a molecule experiences in a simulation with TIP3P

waters. Utilizing the simulations of the solvated bonded carbon system, we see that the

water collisions are disperse with a mean collision time of 0.003 fºº (Figure 1). Vacuum

simulations of the simplified bonded carbons saw a loss of peaks in this low frequency

region Supporting the notion that frequencies of the solvent are captured in this low

frequency space. This solvent peak is also observed in solvated protein simulations, as

evident by a leading low frequency edge within this same low frequency space (Figure

9).

In order to separate the solvent contributions from the low frequency protein

motions, a protein vacuum simulation was performed. It is apparent that the majority of

frequencies below 0.003fs' are mainly due to solvent collisions and that frequencies
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contributed from protein motion are mainly in the 0.003-0.012 region of frequency space

(Figure 9).

Using this method, we next explored the effects various simulation environments

have on protein motion. To estimate the effects of solvent friction on protein dynamics,

comparisons of the frequencies of motion for a LP in the vacuum to motions for a

solvated ASU were performed. We observed that the presence of solvent only slightly

alters the potential energy surface of our oDP. Figure 9 illustrates in vacuum, motions are

more pronounced. Peaks are a little more apparent suggesting that motion is not as

chaotic as in the solvated ASU. This less interrupted motion is attributed to the lack of

solvent collisions that would lead to more stochastic movement. Overall, while we do

see this slight artifact from the inclusion of solvent, our studies suggest that the solvent

has little effect on the overall shape of the spectrum. Frequencies and amplitudes are not

altered significantly.

Similar to studies of the olP in the vacuum versus solvated ASU, to study the

effects of crystal packing, the crystalline environment protein was compared to an ASU

protein simulated in a box of water. As seen in figure 9, simulations in the crystalline

environment are very similar, showing roughly the same amount of conformational

freedom in either environment despite the density of the system being less than that in the

unit cell, 1.03 and 1.17, respectively. As apparent by the similar fingerprints in the low

frequency space for the unit cell and ASU calculations, friction due to crystal packing

does not seem to have an effect on the low frequency motions. The result is not

surprising given the low temperature factors seen in this protein.".

&

-

-

->
º
º

-

-

132



|

!

are 41

Vacuum versus ASU Simulation

0.001.4 –

- — Vacuum
0.0012– — ASU

0.0010 –

0.0008 —

0.0006–

0.0004–

0.0002–

0.0000–H–H–T-T—T-T—T--T—T-T——
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Frequency (fs')

Unit Cell versus ASU Simulations

0.0014 l
: — Unit Cell

0.0012 ASU

0.0010–
|

0.0008–

0.0006 |
|

0.0004

0.0002

0.0000+---—t---—t---—
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Frequency (fs')

Figure 9. Spectral density of O.LP in various environments. Data obtained from

averages over multiple MD runs as described in the computational setup. Plots

point Savitky-Golay. Top - Vacuum (red) versus ASU (blue). Bottom –

Unit cell (red) versus ASU (blue).
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In addition, when the atomic forces for each residue over the course of the unit cell

trajectory were mapped onto the alpha carbons of the alP (Figure 10), a uniform

distribution of forces is observed suggesting that the force field does not put undue strain

on particular secondary elements that would lead to movement. Similar studies with the

ASU resulted in an equivalent distribution as the unit cell (Data not shown). Further

providing evidence is the fact that force magnitudes for valine 787 exposed to the surface

in the olP and in the alP in the unit cell experienced extremely similar force

environments, 2.77 versus 2.67 kcal/mol A, respectfully.

Conclusion:

Computational studies generally rely on experimentally determined structures as

starting points for analysis. Current experimental techniques, such as X-ray

crystallography and NMR, elucidate structures of biological macromolecules and capture

the system in a time-averaged state. While these techniques yield a detailed view of the

system, they are unable to provide a time dependent measure of the frequency of protein

motion.

We utilized all-atom molecular dynamics simulations to uncover general force

behavior in simple and complex systems. Our observation of the force magnitudes

showed that the nonbonded components to the force tended to be much lower in

magnitude than compared to their bonded counterparts. Further investigations into

nonbonded interactions revealed solvent interactions provided a small contribution to the

force magnitudes on each atom exposed to solvent compared to nonbonded interactions
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Figure 10. Averaged forces during the unit cell trajectory projected onto the C

alpha for each residue. OLP exhibits a uniform distribution of forces throughout the

protein

from the protein; suggesting that the intermolecular forces within the protein had more of

an influence than intermolecular forces with solvent. Evident in all systems, force

behavior studies also showed that forces experienced large amplitudes with high degrees

of fluctuation suggesting that this behavior is inherent in the force field.

We compared forces for a protein simulated in various environments and

investigated each's role in affecting protein motion. To investigate the dampening of
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dynamic motions in a protein due to solvent effects or crystal packing, alpha lytic

protease was simulated in multiple environments. Altering the environment around alpha

lytic protease presented very similar spectra. Crystalline simulations versus ASU

simulations in periodic boundary conditions showed that the low frequency motions are

not librated or hindered with the change in environment. This shows that

underestimating the dampening of motion is not an issue in explicit solvent simulations

of an asymmetric unit. In vacuum, the low frequencies motions are slightly more

pronounced due to a lack of solvent bombardment. In general, vacuum simulations

maintained a spectrum similar to its solvated counterparts.

The development of a generalizable method to extract frequencies of motion from

an all-atom simulation would be valuable to investigate protein movement in response to

changes in the local environment. The results presented here demonstrate the use of

extracting forces based on MD simulations to capture low frequency motions for an ultra

high resolution crystal structure of alpha lytic protease. Looking at the forces directly has

the advantage of allowing the removal of certain forces in the post-processing, as

opposed to seeing all movement with atomic RMSDs. Removal of the high frequency

contributions to the forces yielded collision times and low frequency motions

characteristic of large proteins.

In conclusion, the use of molecular dynamics has proven to be a reliable method

to extract low frequency motions from macromolecules and this study hopes to provide

the groundwork for further studies of this nature. While our preliminary survey has

provided some interesting insights, much ore work needs to be done before a quantitative

picture of molecular motion can be drawn. In the future, this type of analysis can be
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useful in attempting to understand how biological macromolecules use motion to

facilitate function and recognition. The generality of this method allows investigation of

motion that is not restricted to large proteins. This method could also be used to help

differentiate small molecules that bind to proteins. Changes in the low and high

frequencies of motion of small molecules upon binding could allow researchers to gain a

better understanding of the strain induced via induced fitting of small molecules to

protein active sites.
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The overarching goal of this body of work has been to obtain a firmer grasp on

the determinants of molecular association. We utilized molecular dynamics and a high

level scoring function to perform a detailed analysis on a variety of biological problems.

Due to the complexity of interactions, there are numerous aspects that must be considered

when describing molecular recognition. We approach many of these in this thesis,

including charge states, individual thermodynamic components, dynamics, and the role of

water molecules.

Chapter 2 began our study into molecular recognition with an analysis of pKa

shifts in the 50S ribosome active site. Being able to estimate pKa values is nontrivial and

in a complex nucleic acid system, it becomes even more daunting. Work in this chapter

was able to identify a particular site on a nucleotide that is significantly perturbed and

provided evidence for it being involved in catalysis. In Chapters 3, we analyzed our

ability to successfully estimate free energies of binding for a carbohydrate-protein system

and drew inferences from the data that deepened our understanding of selectivity within

this system. Both chapters 2 and 3 pressed our abilities to model biological systems by

approaching issues that had yet been fully addressed by the broader scientific community.

These early chapters exhibited the power of computational methods, extending our

knowledge of molecular recognition.

In Chapter 4, we explored an alternative technique in drug design. We considered

the databases that researchers commonly use to screen for novel compounds and

developed a model to characterize the information in it. Using a hyper-sphere model

previously used to characterize protein conformational space, we illustrated this model’s
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potential to also characterize a small molecule database. Ultimately, this method would

be useful to evaluate the significance of the chemical similarity between a top scoring

compound from an HTS screen and the rest of the database.

Finally, chapter 5 involved an exploration of a common method used to simulate

motion, molecular dynamics. Molecular dynamics provides sampling of a system to

capture a detailed description of the system as it steps through time. Due to the time

dependent nature of the information, this technique provides a platform to consider

frequencies of motion. All-atom simulations of a high-resolution crystal structure were

used to estimate the frequencies of motion in a complex protein system. We observed

that instantaneous atomic forces varied widely regardless of the complexity of the

simulation environment or your location within the protein. In addition, molecular

dynamics studies showed that, in general, the frequencies of motion are unaffected when

the protein is allowed to move in different environments (i.e. vacuum, fully solvated, and

unit cell).

Despite much success being achieved over the years, computational structural

biology is faced with a multitude of challenges as the field continues to progress”.

While many will agree that free energy perturbation or thermodynamic integration

techniques are extremely accurate, their capabilities in a broad class of problems are

limited and thus not amenable to many problems in drug design. As a result, researchers

have turned to less rigorous techniques for drug design, but problems facing these

methods are more pronounced. The two main challenges that hindered current methods

in Structure-based design are errors in scoring and inadequate sampling.
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The amount of conformational space available to biomolecules is vast and current

all-atom techniques can sample only a limited subsection of this area due to the rugged

terrain of the energy landscape and limits in computing power. Advances in Sampling

techniques such as torsion angle molecular dynamics', Monte Carlo", or parallel

tempering', help to overcome these barriers or smooth the potential surface, but many

obstacles remain, particularly in the parameterization of the variables used in these

techniques. Improved sampling techniques will enable a more thorough search of the

energy landscape, thus estimates of binding free energies will better match global minima

rather than those in local minima.

As shortcomings in sampling limit our ability to generate true estimates of

binding free energies, scoring functions are also being evolved to better accurately

quantify association events. Scoring functions are the bridge between experimentally

derived binding affinities and computational estimates; therefore they are at the forefront

of scrutiny. Scoring functions are very complex and sensitivity to the parameters it is fed

remains high. To further complicate scoring function issues, choosing interior dielectric

constants which to model solvent behavior as well as appropriate charge models is crucial

and an industry standard has yet to be unequivocally established. As researchers continue

studies like those contained in this thesis, our understanding of molecular recognition

deepens, and inevitably better scoring functions will evolved.

Both, sampling and scoring, have profound effects on the quantitative estimate of

binding free energy for a study and remain at the center of discussion among many in the

field". More efficient computers and a better understanding of recognition at the atomic
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level will help to optimize current scoring functions and help push forward the next

generation techniques.
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