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Modeling strategies in Stroop with a general architecture of executive control

Tomasz Smoleń (bertrand@o2.pl)
Adam Chuderski (a.chuderski@emapa.pl)
Institute of Psychology, Jagiellonian University

al. Mickiewicza 3, 31-120 Krakow, Poland

Abstract

This paper presents a preliminary work on a new architecture 
of  executive  control  (DUCCA),  aimed  at  integration  and 
extension of  some leading approaches to executive  control. 
We present DUCCA assumptions and operation and use the 
architecture to simulate a few effects observed in Stroop-like 
task, a hallmark test of how control deals with interference. 
The focus of DUCCA is on how strategical  use of general 
executive  mechanisms  contributes  to  Stroop  effect.  We 
explain also what is usually neglected in Stroop modeling: the 
significant individual differences in task performance.

Introduction
Executive control is implemented via numerous brain me-
chanisms and on different levels of neuronal organization. 
However, a few general flexible control mechanisms, which 
are involved in most of situations that require control, were 
also proposed in control literature (Anderson, Fincham, Qui, 
& Stocco,  2008; Braver,  Gray & Burgess,  2007; Kane & 
Engle, 2003; Koechlin & Summerfield, 2007). The goal of 
this paper is to present a new model of executive control, 
called  Dual  Cognitive  Control  Architecture  (DUCCA), 
which  integrates  several  recent  theoretical  approaches  to 
control  and  extends  them  with  a  few  original  control 
mechanisms. The model explains crucial effects related to 
interference control in Stroop-like tasks with an appeal only 
to  general  mechanisms of  control,  while  abstracting  from 
specific (e.g., semantical or stimulus-related) ones.

The first general  function of control  regards using con-
textual, episodic, or goal information in order to change the 
probability distribution of alternative actions into a one that 
maximizes  their  task-relevance  (Anderson  et  al.,  2008; 
Koechlin & Summerfield, 2007). Such a function is imple-
mented in cognitive models of executive processing in two 
ways. In most of connectionist models, a network carrying 
out non-executive processing is supplemented with task (or 
goal) units, which modulate processing by propagating addi-
tional activation to nodes relevant to a respective task (e.g., 
Altmann & Davidson, 2001; Cohen, Dunbar & McClelland, 
1990; Verguts & Notebaert, 2008). The control in symbolic 
architectures is usually implemented as control signals, stor-
ed in a goal or working memory buffer, which are matched 
to  possible  actions  in  order  to  select  a  next  operation 
(Anderson et al.,  2008; Meyer  & Kieras,  1997). The first 
original  aspect  of  DUCCA is  that  it  integrates  these  two 
approaches into the unitary, general mechanism of top-down 
control,  which may either directly select  an action or just 
modulate a chance of its selection.

The second important function of executive control deals 
with regulation  of  its  strength,  as  maintaining control  for 

long periods of time is metabolically costly and often cogni-
tively inefficient. Early observations indicated that control is 
amplified after errors. However, results like Gratton effect 
(i.e., the interference cost in a flanker task is 20 ms smaller 
in  trials  following  incongruent  stimuli,  compared  to  ones 
following  congruent  stimuli;  Gratton,  Coles,  &  Donchin, 
1992),  usually observed even if errors  are rare,  suggested 
that control can be dynamically modulated on some other 
basis. Botvinick et  al.’s  (2001) conflict  monitoring theory 
states that specialized brain mechanism (anterior cingulate 
cortex;  ACC)  performs  online  computing  of  the  level  of 
conflict between alternative responses and it  increases  the 
strength  of  top-down control  as  such  a conflict  arises.  A 
more general idea is that ACC learns and reacts to a level of 
“risk” – conflict related error likelihood and its real-world 
consequences (Brown & Braver, 2007). Both cited models, 
however,  evaluate  only  response  representations  in 
performing need-for-control monitoring, while conflicts can 
also  be  found  between  covert  cognitive  processes,  which 
just influence next steps of cognition. Another new mecha-
nism implemented in DUCCA is such a conflict monitoring 
procedure, which evaluates conflicts in cognitive processing 
(e.g., between opposing goals), which need not lead directly 
to any response.

Finally, DUCCA is aimed at taking into account the indi-
vidual differences in control. Even healthy people differ in 
efficiency  of  control,  which  seem  to  be  correlated  with 
working memory capacity and fluid intelligence (Chuderski 
&  Nęcka,  2010).  Moreover,  humans  are  able  to  regulate 
their mode of control by switching between top-down, pro-
active  control  and bottom-up,  reactive  one  (Braver  et  al., 
2007). All these differences can be expressed as differences 
in  values  of  DUCCA  internal  control  parameters,  which 
yield qualitative changes in its simulated behaviour.

Overview of DUCCA

Cognitive operations
DUCCA is modeled as a hybrid production system. Coordi-
nation of the working of its modules is inspired by ACT-R 
architecture (Anderson et al., 2008). However, as the system 
is  focused  on  executive  functioning,  “ordinary”  cognitive 
operations have been very simplified. The system stores in-
formation received from the environment in a visual atten-
tion  module,  which  recognizes  25  (5×5)  locations  on  the 
computer screen and attends to one of them (via a focus of 
visual  attention)  at  a  time.  Model  can  read  symbols  and 
some of their features (e.g.,  colors) from the focus. Long-
term  declarative  knowledge  is  organized  as  a  semantic 
network, which consists of information chunks of defined 
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categories (which are also chunks). A chunk contains a few 
slots.  Each slot  can contain either an atomic symbol  or a 
reference to another chunk. One chunk can be retrieved at a 
time and placed in a retrieval buffer. Some information rele-
vant to the task is actively maintained in system’s focus of 
working memory (WM). The capacity of the focus is limited 
to a few (DUCCA’s parameter)  chunks.  Contents of WM 
focus constitute a  context of cognitive operations. Another 
structure is a goal module, which can do only one thing: it 
represents one chunk as a current goal of the system. Final-
ly,  a  simplified  motor  module  simulates  reactions.  Each 
response is registered and processed by a virtual key set.

Crucial for how DUCCA behaves is its procedural modu-
le,  consisting  of  production  rules,  their  utilities,  and  the 
mechanism for adapting utilities. Each rule is defined as a 
collection of conditions and a collection of actions. Condi-
tions are imposed on both foci and the retrieval buffer. For 
each rule (i), a utility value (Ui) is assigned, which is upda-
ted on the basis of feedback. The utility of i tends to the ex-
pected  value  of  feedback  received  after  the  action  i.  The 
higher U is, the more probable is the execution of a respect-
ive rule (see below).

DUCCA adapts the value of a recently executed rule in a 
reinforcement learning procedure, according to formula (1):

(1)

where Ui,t is a new value of utility of rule i, f is a feedback 
value (in range zero to one, where zero reflects “complete 
failure”  while  one  means  “full  success”),  and  Li is  the 
reliability of a recent value of utility (Ui,t-1), estimated as the 
number of trials in which reinforcement of rule  i has been 
applied.  The  rationale  for  equation  (1)  is  that  the  more 
reliable a utility is,  the less a current  feedback alters  this 
utility value. If a rule is new and Li equals to zero, then after 
the first execution of a rule its utility reflects exact value of 
a  feedback.  After  numerous  rule’s  executions,  its  utility 
becomes  very  reliable  and  feedback  can  change  it  mini-
mally. U values (in [0,1] range) reflect expected probability 
of reaching a goal if a rule is executed. In simple executive 
tasks, the reinforcement value f may be usually operationa-
lized as the extent to which a task instruction was fullfiled, 
as perceived by a subject or signaled by a task.

If the environment and a context unambigously determine 
an adequate action, then one rule will be matched and exe-
cuted in time inversely proportional to its utility. Execution 
of the rule  may:  change the goal  and/or contents of WM 
focus, redirect the focus of visual attention, add a chunk to 
the declarative memory, and send a motor command to the 
motor module. Then a next cycle of operation starts, until 
the goal is reached. However, if at least two alternative rules 
match (i.e., DUCCA detects a conflict related to rule selec-
tion), then executive control has to be involved in the choice 
of one rule from a set of matching ones (conflict set).

Control of cognitive operations
The first mechanism of executive control deals with evalu-
ation of the level of detected conflict C, which is calculated 
according to formula (2) based on nonlinear Luce’s ratio:

(2)

where j indexes all production rules in a conflict set, which 
yield different cognitive or behavioural consequences than a 
rule i of maximum utility in a conflict set, k indexes all rules 
in a conflict set, and  n is a noise parameter. Conflict mea-
sure is thus a proportion of utilities of matching rules which 
are  alternative  to  the  dominant  tendency  for  cognitive  or 
motor processing. Parameter n controls how nonlinear is the 
computation of C. Note that U’s instead of Us are used (the 
calculation of U’ is explained below).

The C value determines the strength of top-down control 
(Gt) exerted from the goal, according to formula (3):

(3)

where  Gt-1 denotes  the  strength  of  control  in  a  previous 
cycle,  E is an error value (meaning the probability that the 
system committed  an  error  in  a  previous  cycle),  g is  the 
maximum strength of control that DUCCA can exert, and a 
is a control adaptation parameter.  C and  E work in under-
additive  interaction.  Parameter  a can  vary  between  zero 
(DUCCA exerts fixed strength of control and ignores con-
flicts and errors) and one (system uses a proportion of its 
maximum  control  strength  relative  to  the  conflict  level). 
Theoretically  plausible  values  of  a lay  above  zero  and 
below one and they mean that  DUCCA adapts  control  to 
conflicts and errors, but it does so with some inertia.

The set of DUCCA’s rules and their utilities may be un-
derstood as a strategy, which maps a set of possible cogni-
tive operations onto a set of probabilities of executing these 
operations, in a given state of the environment and a given 
goal and context. Without executive control, a distribution 
of  these  probabilities  reflects  the  effects  of  learning  (via 
Us).  The  operation  of  control  consists  in  changing  this 
distribution into one independent on learning but dependent 
on how these actions are adequate to a current goal. Due to 
control,  an  agent  can  undertake  some  arbitrary  behavior, 
even if other well-learned behavioral patterns conflict with 
it. The second control mechanism operates thus as modifier 
of rules’ utilities, according to formula (4):

(4)

where  modified utility  U’i of  rule  i,  which  is  used  is  for 
conflict  evaluation  and  conflict  resolution  (see  below),  is 
decreased in a function of a current control strength (G) and 
a value of association Aij between rule i and current goal j. If 
either rule i is perfectly adequate to goal j (Aij equals one) or 
control strength  G is null, then  U’i equals  Ui.  In  all other 
cases Ui is decreased in a nonlinear function of G and Aij. If 
G is very high, the system just selects the rule closest to a 
goal.  Though  such  a  control  mechanism  can  be  judged 
inhibitory, our model is not committed to either an inhibi-
tory or activational nature of control. In terms of probabili-
ties, inhibition of one set of rules is conceptually indistin-
guishable from activation of an alternative set of rules.
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Finally, DUCCA uses modified utilities in order to  resol-
ve a conflict among rules present in a conflict set. Analo-
gously as in conflict evaluation formula,  nonlinear Luce’s 
ratio  is  exploited  in  formula  (5)  for  the  calculation  of  a 
probability Pi of rule i execution:

(5)

where  j denotes all rules in a conflict set, and  n is a noise 
parameter (the same as in formula [2]). When n is very high, 
the rule with maximum U’ always wins, while at n close to 
zero P equals to one divided by a number of rules in a con-
flict set. An important DUCCA’s assumption (opposite to 
ACT-R theory) is that conflict resolution consumes time re-
lative to the conflict level. Latency of conflict resolution is a 
multiplication of conflict value C and a scaling parameter s 
(i.e., Lat = s × C).

Executive  control  in  DUCCA stems  from a  dynamical 
interaction  of  external  stimulation  and  its  consequences 
(rules’ utilities and goal-rule associations) and two internal 
mechanisms strategically adapting to the pattern of cogniti-
ve processing (conflict evaluation plus control strength mo-
dification and utility learning).

Modeling of Stroop
Stroop-like tasks, which are widely used to examine opera-
tions of executive control (MacLeod, 1991), impose inter-
ference by presenting bivalent,  incongruent stimuli, which 
activate  two  cognitive  processes:  one  dominant  and  the 
other much weaker. The task is to complete the non-domi-
nant process. The well-known example is naming a color of 
a colored word that itself means an incongruent color. Inter-
ference effect, namely a positive difference between RTs for 
incongruent  stimuli  and  neutral  ones  (e.g.,  colored  letters 
X), reflects the unavoidable additional time needed for con-
trol  processes  to  override  interference  from  a  dominant 
process. At the same time, control processes are usually suc-
cessful, as error rates in Stroop-like tasks are low (2-10% on 
average). Often, a facilitation effect is also observed: people 
are  faster  for  congruent  stimuli  (e.g.,  when  word  and  its 
color match) than for neutral ones (MacLeod, 1991).

Some existing models
A seminal connectionist model (Cohen et al., 1990) repre-
sented  alternative  processing  pathways  as  interconnected 
nodes in a network. Nodes for non-dominant process were 
associated more weakly than those of the dominant one. For 
the non-dominant  pathway to  win, an additional  task-unit 
had  to  activate  that  pathway.  A  version  of  the  model 
supplemented with conflict  monitoring node (Botvinick et 
al., 2001), which controlled the amount of activation spread 
by the task-node in a function of conflict within a response 
layer, replicated above mentioned Gratton effect. It was also 
able to simulate an observed decrease in interference with 
increase in proportion of non-neutral (congruent plus incon-
gruent) stimuli as well as smaller than interference a facilita-
tion  effect  (Tzelgov,  Henik,  & Berger,  1992).  In  another 

model, Verguts and Notebaert (2008) implemented conflict-
modulated  Hebbian  learning  rule,  which  adapted  specific 
network  connections  involved  in  conflict  resolution.  The 
model was able to account for a decrease in interference for 
items  often  presented  in  incongruent  contexts,  in  compa-
rison to stimuli usually presented as congruent (i.e., for a so-
called item-specific proportion congruency effect).

However, connectionist models are often judged atheore-
tical  (e.g.,  Altmann & Davidson,  2001).  They represent  a 
modeled mechanism as just a several links between a few 
abstract nodes of no internal structure. A node for “redness” 
would be exactly the same as a node for “left  keypress”, 
even if they belong to different  categories  of phenomena. 
These models are not related to any cognitive theory (e.g., 
of language or memory) either. In consequence, models of 
tasks imposing different constraints (e.g., Stroop, flanker, or 
antisaccade tasks) may be described by the same network. 

Some other Stroop-like models do make assumptions on 
related cognitive processing and focus also on more specific 
aspects  of  Stroop  performance.  Altmann  and  Davidson 
(2001)  modeled  Stroop  interference  as  an  effect  of  the 
competition between syntactic properties of the words (lem-
mas) and embedded this linguistic mechanism in a broader 
cognitive architecture (i.e., ACT-R). The model was able to 
explain why the separation of incongruent aspects of stimu-
lus in time decreased interference. Lovett (2005), exploiting 
ACT-R’s idea of utility learning of production rules,  was 
able  to  explain  strategical  preferences  of  participants  in 
chosing  dominant  and  non-dominant  processes.  However, 
all these models would have difficulty in explaining inter-
ference  effects  in  Stroop  isomorphic  tasks,  which  do  not 
relate so much on linguistic properties (e.g., flankers task) 
or memory retrievals (e.g., Navon task).

Specific processes surely explain some part of a variance 
in  Stroop  interference,  but  the  general  executive  mecha-
nisms beyond specific processes may be responsible for the 
significant part of that variance. Our architecture is aimed to 
describe these mechanisms. However, it explains them with 
higher  theoretical  plausibility  than  most  of  connectionist 
models  do.  The  model  identifies  different  categories  of 
cognitive structures  (e.g.,  rules,  chunks,  goals)  and it  can 
ascribe  meaningful  contents  to  particular  representations. 
Moreover,  the  architecture  isolates  executive  aspects 
common to different tasks from task-specific characteristics. 
Finally, it can easily be extended with additional theoretical 
assumptions (e.g., ones concerning language or memory). 

DUCCA’s model of Stroop
We developed a model of a generalized Stroop-like task in 
order  to  account  for  a  variety  of  results,  observed  within 
different experimental conditions and numerous versions of 
Stroop tasks (i.e., we abstracted from task-specific aspects).

DUCCA was supplemented with task-specific  rules and 
chunks.  There are  three crucial  rules for  response choice: 
“trained”,  “target”,  and “others”.  The first  rule  leads  to a 
skilled action, which is not proper for a task instruction. For 
this rule, the maximum utility (Utrained = 1.0) was set, reflec-
ting that for adult participants such a rule had received mil-
lions of positive feedbacks. The second rule leads to instruc-
ted, but relatively poorly trained action. Its utility should be 
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much lower than Utrained but still significantly above 0 (here, 
Utarget = .6). “Others” represents all task-unrelevant possible 
processes,  including  ruminations  and  mental  slips,  and  it 
should have a utility close to 0 (here,  Uothers = .1), as rumi-
nations and slips rarely lead to positive feedbacks. 

The  model  contains  some  visual  and  memory  chunks. 
One important aspect of perceived stimuli is that each con-
gruent and incongruent stimulus is bivalent: one its aspect is 
matched  by  the  rule  “trained”,  while  the  other  aspect  is 
matched by the rule “target”. Rule “others” matches any sti-
mulus.  Memory chunks associate  stimuli  with proper  res-
ponses. We skip other details of chunks’ description.

Though the rule “target” has a low utility, it is fully asso-
ciated with the goal  (Atarget = 1.0).  The rule  “trained”  has 
goal association much lower than Atarget, but still significant-
ly above 0 (here,  Atrained = .2), as it is somehow related to 
what happens during the task (e.g., when congruent stimuli 
are  frequent,  it  may  be  beneficial  to  use  sometimes  the 
dominant rule).  Thus, in every congruent  and incongruent 
trial there is a competition between useful rule “trained” and 
goal-relevant  rule  “target”.  This  is  modulated  by  the 
strength of control (G): the stronger control is the higher is 
choice  probability  of  the  rule  “target”.  Though  the  rule 
“others” is not associated with the goal (Aothers = .01), it may 
sometimes be chosen,  depending on the amount of  noise. 
When  the  model  perceives  a  neutral  stimulus,  the  rule 
“trained” cannot be effectively applied and only the rules 
“target” and “others” fall into the conflict set.

Choosing a reaction means that either the rule “trained” or 
the rule “target” retrieves a chunk from the declarative me-
mory,  according to stimulus features  present  in the visual 
buffer.  Perceiving  a  feedback  is  applied  in  a  simplified 
form, as the information about correctness of the response is 
displayed on the screen and processed directly. 

Simulation results and discussion
The noise  was  set  to  relatively  low value  of  0.15,  as  all 
modeled  experiments  involved  young  and  healthy 
participants. Parameter  g equalled to 3.625 (i.e.,  the mean 
value between high- and low-WM groups, see last section). 
Value of  c was set to 0.6, reflecting relative sensitivity to 
conflicts. Two time scaling parameters for each simulation 
were  optimized  to  fit  observed  data.  As  these  data  come 
from differing tasks (a flanker task and two different ver-
sions of Stroop task) and experimental conditions, we did 
not try to fit data precisely, but we were looking for quali-
tative replication of the wide range of effects, instead.

Gratton effect The original Gratton et al.’s (1992) effect in 
flanker task is often replicated within Stroop paradigm (e.g., 
Kerns  et  al.,  2004).  However,  for  comparision with other 
models, we aimed to replicate the original effect (see Figure 
1, left panel). In the first simulation study, 5000 runs of the 
model were administered with 50/50 proportion of congrent 
vs.  incongruent  trials.  The ordering of trials  was random. 
The simulated Gratton effects is presented in Figure 1, right 
panel.  Though  the  model  generated  slightly  larger  inter-
ference effect, influence of previous trial was the same as in 
the  original  experiment.  The  Gratton  effect  in  DUCCA 
comes from the rise in conflict level (C) after incongruent 

trial. In a subsequent trial, C is higher than it would be if a 
previous trial was congruent. So, the control strength (G) is 
higher and it makes (via U’s) the firing of the rule “target” 
faster, leading to decrease in RT in incongruent trials. It also 
makes the execution of  the rule “trained”  slower.  As this 
rule may often be fired in congruent trials, it thus results in 
increased RT in these trials.

Figure 1: Left panel: data adapted from Gratton et al. (1992) 
on latency in congruent (C) and incongruent (I) trials as a 
function of a previous trial. Right panel: simulated data.

Practice on a non-dominant process The seminal study on 
a relation between the level of automaticity of a non-domi-
nant process  and Stroop interference was administered by 
MacLeod and Dunbar (1988). The participants were asked 
to name colors arbitrarily associated with shapes by an in-
struction (a task to be practiced). The shapes were colored. 
As expected, when color-to-name and actual color mismat-
ched, responses took longer when colors matched or a shape 
was non-colored. On some days, only practice trials (nam-
ing shapes) were applied. General result was that practice on 
non-dominant process deacresed (and after some enourmous 
number of practice trials  – even reversed)  an interference 
cost. Here, we replicated the effect of five days of training 
(about 2000 practice trials) on interference (see Figure 2). 

Figure 2: Left panel: data adapted from Experiment 3 by 
MacLeod and Dunbar (1988) on latency in congruent (C) 

and incongruent (I) trials as a function of practice on a non-
dominant task. Right panel: simulated data.
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In  this  simulation,  which  regarded  a  task  with  highly 
artificial  non-dominant  action,  we  used  a  lower  value  of 
Utarget equal to 0.1. The practice runs resulted in decrease in 
utility  of  the  rule  “trained”  (as  it  lead  to  errors  during 
practice)  and  in  increase  in  Utarget.  This  “automatization” 
effect was caused by model equation (1). The change in Us 
caused  the  decrease  in  an  interference  cost,  as  the  lower 
difference in utility between both rules increased a conflict 
value  C.  The  increased  conflict  engaged  more  efficient 
control  because of larger  value of  G.  Then, 480 test runs 
were carried to simulate the presented data.

Proportion  of  incongruent  stimuli,  facilitation,  and 
individual differences in Stroop performance Kane and 
Engle  (2003;  Experiment  4)  observed  decrease  in  Stroop 
interference as a result of decreasing proportion of congru-
ent simuli, when neutral stimuli were absent. Moreover, it 
appeared  that  this  proportion influenced  the  difference  in 
accuracy in incongruent trials between low- and high-work-
ing  memory  capacity  (WMC)  participants,  screened  with 
operation span task. When proportion was low (20% con-
gruent),  both  WMC groups  scored  around  six  percent  of 
errors, with no significant advantage of WMC-high group. 
When incongruent  trials  were rare (80% congruent),  error 
rate increased, but much more for WMC-low subjects (see 
Figure 3, left panel). Kane and Engle interpreted this as a 
result of more freqent slips of attention control of WMC-
low group. In 20% congruent sequence, stimuli exogenously 
kept the control focused on non-dominant process and the 
differences  in  quality  of  internal  control  did  not  matter 
much. When incongruent trials were rare, only internal cont-
rol  could  keep  focus  on non-dominant  process  and  weak 
control  of WMC-low group more often made it  loose the 
task goal and commit more errors on incongruent trials. 

Figure 3: Left panel: data adapted from Kane and Engle 
(2003) on error rate in incongruent trials as a function of 

proportion congruent and WMC. Right panel: relevant data 
simulated with high/low parameter g value.

Interestingly, WMC differences did not interact with the 
effect of congruent trials proportion on latency: interference 
effect  increased  with  increasing  proportion  of  congruent 
trails,  but  WMC-low  participants  presented  higher  effect 
than  WMC-high  ones  in  both  conditions  of  proportion 
congruent (see Figure 4, left panel). Kane and Engle obser-
ved also (Experiment 2) the differences in facilitation effect. 

Surprisingly,  WMC-low  persons  exhibited  a  larger  effect 
(72 ms) than WMC-high ones (41 ms). On congruent trials, 
WMC-low  participants  might  have  more  often  used  the 
dominant process to emit a response. Although use of this 
process did not cause errors in congruent trials, as both pro-
cesses lead to the same response, it could have speeded up 
WMC-low participants’ RTs comparing to RTs of WMC-
high ones (who probably avoided the dominant process).

Figure 4: Left panel: data adapted from Kane and Engle 
(2003) on interference effect a function of proportion 

congruent trials and WMC. Right panel: data simulated with 
high/low parameter g value.

The  complicated  pattern  of  results  presented  in  this 
subsection constitutes a tough test for any Stroop model. We 
simulated  those  data  using  either  36  congruent  and  144 
incongruent trials (20% congruent condition) or vice versa 
(80%  congruent  condition),  following  Kane  and  Engle’s 
procedure in Experiment 4. The value of  g parameter was 
set to lower value of  g = 3.5 in order to reflect WMC-low 
group or set to higher value of  g = 3.75, to reflect WMC-
high group. 4320 runs of the model yielded simulated data. 

All observed effects were qualitatively replicated.  As in 
Kane and Engle’s study, the effect of the proportion congru-
ent  was  observed  in  latencies  as  well  as  in  errors.  In  all 
conditions, increase in parameter g caused reasonably lower 
interference effects in latencies. However, the difference in 
g resulted  in  difference  in  accuracy  on incongruent  trials 
only when incongruent stimuli were rare. Simulated data are 
presented in right panels of Figures 3 and 4. In a simulation 
of Experiment 2, which differed slightly from Exp. 4, neut-
ral trials were included and the values of  g = 3 and  g = 4 
were  set  for  WMC-low and  WMC-high  groups,  respecti-
vely. The facilitation effect (68 ms) appeared much smaller 
than the interference effect (137 ms) and it fitted observed 
results.  Also,  WMC-low  group  scored  larger  facilitation 
effect (76 ms) than WMC-high persons (60 ms). 

Figure 5 presents the indices of strategical adaptation to 
different  (20%  vs  80%  congruent)  task  conditions.  The 
model adapted mean level of control, rising its average level 
from 80% congruent  to 20% congruent  condition. Due to 
utility  learning,  in  the more  difficult  condition the  model 
amplified a utility of non-dominant rule and lowered the one 
of dominant rule, what increased internal conflict and thus 
recruited  additional  control.  Such  a  strategical  adaptation 
was less efficient  when maximum strength of control was 
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limited (i.e., when g value was low), matching the results of 
WMC-low participants.

Figure 5: Internal dynamics of the model expressed as 
fluctuations in exerted control (G) and changes in utilities of 

the rules “trained” and “target” in two task conditions.

Two major quantitative deviations from data may be noti-
ced: much smaller effect of proportion of congruent stimuli 
on latency interference and  more errors committed by the 
model than by participants. These deviations probably result 
from the fact that our model captures only general aspects of 
control,  while  experimental  situation  involve  many  other 
general processes (e.g., expectations about the probability of 
events,  changes  in  speed-accuracy  trade-offs,  decreased 
vigilance, and so on) as well as some task specific proce-
sses, all influencing interference effects. However, as a hyb-
rid and general architecture, DUCCA can potentailly imple-
ment all these processes within more complex models.

Summary and conclusions
DUCCA, a  new general  architecture  of  executive  control 
was presented. It  was applied in order to simulate Stroop-
like task. We used only a few simple assumptions of how 
control  operates  and  still  were  able  to  replicate  most  of 
general  effects  observed  in  Stroop  paradigm:  asymetrical 
interference  and facilitation effects,  the Gratton effect,  an 
influence of practice on Stroop effect,  decrease in interfe-
rence as proportion of  congruent  trials  decreases,  and the 
complex pattern of individual differences related to WMC.

The presented work is on a preliminary stage. Taking into 
account  semantics  and  item-specific  effects  in  executive 
control,  linking  executive  mechanism  to  brain  structures, 
and explaining the common variance  in several  executive 
tasks and its role in complex cognition constitute the most 
important future directions of DUCCA development.
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