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Abstract:  Although highly desirable, accurate prediction of the effective thermal 

conductivity of random open-cell porous foam materials has remained to be a challenging 

problem. Aimed at the most thorny obstacles, we have developed in this paper a random 

generation-growth method to reproduce the microstructures of open-cell foam materials via 

computer algorithm, and then solve the energy transport equations through the complex 

structure by using a high-efficiency lattice Boltzmann method. The effective thermal 

conductivities of open-cell foam materials are thus numerically calculated. The 

comparisons between the predictions and existing experimental data lead to the following 

conclusions. First the predicted thermal conductivity caused by pure thermal conduction is 

lower than the experimental data when the thermal conductivity is relatively low, and the 

radiation heat transfer is non-negligible during the thermal transport in the materials. After 

adjusting for radiation effect, the numerical predictions agree rather well with the 

experimental data for high porosity cases. However as the material porosity decreases, the 

radiation influence is diminishing, xxx In general the effective thermal conductivity of 

open-cell foam materials is much higher than that of granular materials of the same 

components due to the enhanced heat transfer by the inner netlike morphology of the foam 

materials. 
 

 

Keywords: effective thermal conductivity; open-cell foams; random structure; mesoscopic modeling; 
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1. Introduction 

An ever increasing interest has been focused on heat and mass transfer processes in porous 

media due to their growing importance in functional material design, thermal managements of 

microsystems, and even in bio-medical engineering [1-5].  Among them the high-porosity foam 

materials are novel industrial materials with low density and unique transport properties, different 

from those of conventional porous media, which bring them to special and important applications 

[6,7]. For examples, the metal and ceramic foams have been used in design of aircraft wing 

structure in the aerospace industry, in catalytic surfaces for chemical reactions, as the core structure 

for high strength panels, and the containment matrix and burn rate enhancer for solid propellants 

[7,8]. More recently, the metal foams have been considered as potential candidates for heat sinks 

and compact heat exchangers due to their relatively high thermal transport capability yet with a low 

density, as opposed to the polymeric foams that have been used as the efficient thermal insulation 

materials because of the poor thermal transport performance [9-12]. All these applications require 

accurate evaluations of the effective thermal transport properties of such porous foam materials. 

Several models have been proposed for modeling and predicting the effective thermal 

conductivity of open-cell porous foam materials, which have been summarized and reviewed in 

some excellent publications [7,13-15]. Dul’nev used a cubic frame to represent the open-cell 

structure so as to develop an analytical model [16,17]. Calmidi and Mahajan [18] presented a 

one-dimensional thermal conduction model by considering the porous structure as a 

two-dimensional array of hexagonal cells, where the contribution of lump at the intersection was 

taken into account by varying the shape of an artificial blob of metal at the intersection [19]. 

Boomsma and Poulikakos [20] proposed a one-dimensional heat conduction model based on a 

three-dimensional tetrakaidecahedronal frame description of the structure. Another interesting 

geometric model is to represent the foam structure by considering a homogeneous dispersion of 

spherical voids in a solid matrix; several researchers have used this model for a fully numerical 

prediction of the effective thermal conductivities of foam materials [22,23]. Most recently 

Schmierer and Razani have developed a new geometric model with spherical nodes and then 

numerically calculated the effective thermal conductivities of open-cell porous media [21]. 

Given the efforts and advances on the topic, the problem is still far away from a perfect 

solution. First, almost all the existing models are based on idealized periodic arrays with regular 

geometries where the stochastic characteristics are ignored so that generally none of them work well 

over wide porosity range. Second, most the analytical models involve parameters whose values 

have to be determined empirically by ad hoc experiments. Third, for the existing numerical models, 

both the geometry complexity and the conjugate heat transfer boundary conditions in case of such 

porous media require extremely fine grid, often causing prohibitively high computation cost and 

thus limiting the computed domain into a small special region. 

In this contribution, we introduce a random generation-growth method to reproduce the 

microstructures of open-cell foam materials by computer algorithms as we did for granular and 

fibrous materials [24-26], and then to solve the energy transport equations through complex 

structure using a high-efficiency lattice Boltzmann method. The calculated effective thermal 

conductivities of the open-cell foam materials will be compared with various experimental data and 

other theoretical solutions, and the thermal characteristics of such materials will then be 

investigated. 

2. Numerical methods 

The numerical methods used in this work include a random generation-growth algorithm for 

reproducing the microstructures of open-cell foam materials and a lattice Boltzmann algorithm for 

solving the energy transport equations through the structures. 



2.1 Random generation-growth method for netlike structures 

As mentioned before, the existing models are all based on periodic arrays with regular 

geometries, such as hexagon and tetrakaidecahedron. In such models, the stochastic natures of the 

porous materials were obliterated and attentions were focused only on the shapes and contributions 

of the intersection nodes to the effective thermal conductivities of the systems [18-23]. Here we 

propose a random generation-growth method to reproduce the microstructures of open-cell foam 

materials with the intersection nodes forming naturally depending on the growth conditions. 

 

 
Fig. 1  Netlike microstructure of an open-cell foam material 

Consider the two-phase netlike structure of an open-cell foam material shown in Fig. 1. We 

assume the nodes are uniformly distributed in the material. Each node is connected with N 

neighboring nodes by fibers (or link lines). Following the spirit of our random generation-growth 

methods for granular and fibrous materials, the generation process for such netlike structures is 

described as follows.  

(1) randomly locate the nodes based on a distribution probability, 
d

c , which is defined as the 

probability of a point to become a node of the net. Each point on the grids will be assigned one 

random number uniformly distributed within (0,1), the points whose assigned numbers are smaller 

than the given 
d

c  will become the nodes of the net. The value of 
d

c  is thus strongly related to the 

node number density and therefore influences the porosity of the material; 

 
Fig. 2  Sketch illumination of searching target nodes 

(2) search N target nodes to link to each of the neighboring nodes. The searching process is 

moving outward from an original node O as sketched in Fig. 2. We circle around the node O and 

each node falling into the circle will be a potential target such as the four nodes in the figure 



including node A. Another random number assignment will be performed among the circuled nodes 

and only those whose assigned random number is greater than a target probability, 
t

t , will be 

accepted as the target nodes of the original node. The target probability is set to eliminate those xx 

and thus is determined based on the structure expected. Repeat such searching process until each 

node has N target nodes respectively; 

(3) grow fibers (or link lines) from each original node to its target nodes. The growths are again 

based on a random rule so that the links do not necessarily appear straight; 

(4) widen each fiber if necessary and stop growth if the fiber diameter ( d ) reaches the 

specified value, or the porosity attains the given level ε . 

 
Fig. 3 Flow chart of the generation method 

     
(a) 

d
c =0.003 and ε =0.1028                  (b) 

d
c =0.03 and ε =0.2627 

Fig. 4 Generated 2D microstructures using different parameters 

The generation process can also be simply illuminated by the flow chart shown in Fig. 3. Thus 

the generated structures are controlled by five parameters (
d

c , N ,
t

t , d andε ). We fixed N =4, 

t
t =0.8 and d =1 in the work of this paper and then the porosity (the volume occupied by the links) 

was only a result of 
d

c . Fig. 4 demonstrates two examples of thus generated two-dimensional 

microstructures on 200×200 grids. The white area represents the voids (or gas) structure and the 



dark the solid link lines. The stochastic characteristics appear clearly and realistically from the 

structures. The intersection nodes are lean when the porosity is pretty low and grows much lump 

when the porosity is higher.  As this random generation-growth algorithm can be readily applied to 

three dimensional case, we use three-dimensional structures in our simulations below. 

2.2 Lattice Boltzmann method for governing equations 

To calculate the effective thermal conductivity of porous materials, we have to solve the energy 

equations for the temperature and heat flux fields. Consider a pure thermal conduction through a 

porous structure with the following assumptions: two phases only; no phase change and no 

convection; the radiation is ignored for now. When the contact thermal resistance is negligible, the 

energy equations under such assumptions for thermal conduction through the two-phase porous 

structures without heat sources are 
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with the continuity constrains at the inter-phase surfaces 
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where subscript s  represents the solid and v  the void, and int  the interfaces; T  is the 

temperature, ρ  the density, k  the thermal conductivity, and 
p

c  the specific heat capacity. Eqs 

(1)-(4) describe a classical case of the multiphase conjugate heat transfer problem [27]. At the 

two-phase interfaces, both the temperature and heat flux continuities have to be satisfied. As stated 

before, this interface constraint increases the computational costs tremendously when using the 

conventional numerical methods. Moreover, since there are huge numbers of such interfaces in 

many porous materials, this further pushes the computational cost into prohibition. 

Recently, the lattice Boltzmann method (LBM) has been developed to solve effectively the 

fluid-solid conjugate heat transfer [28], which is intrinsically a mesoscopic approach based on the 

evolution of statistical distribution on lattices [29,30]. Due to its easy implementation of multiple 

interparticle interactions and complex geometry boundary conditions [31-33], the LBM has gained 

several successes in predicting the effective thermal conductivities of conventional porous media 

[24-26]. We thus propose to adopt the highly efficient LBM approach, which is also 

auto-conservative [24-26]. Furthermore, because of the requirement of temperature and heat flux 

continuities at phase interfaces, the volume thermal capacities (
p

cρ ) at different phases have to be 

maintained as the same [27]; and the conjugate heat problem between different phases can thus be 

solved. Here we follow our previous work using the lattice Boltzmann algorithm for the fluid-solid 

conjugate heat transfer problem [28]. 

For the pure thermal conduction in porous materials governed by Eqs. (1)-(4), the temperature 

evolution equation for a three-dimensional fifteen-speed (D3Q15) LBM can be generally given as 

[25,28], 

   
gα r + eαδt

,t + δ
t( )− gα r,t( )= − 1

τ
gα r,t( )− gα

eq
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where  r  is the location vector,  t  the real time, 
 
δ

t
the time step,  g

eq
 the equilibrium 



distribution of the evolution variable gα  
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eα is the discrete velocity 
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and τ  the dimensionless relaxation time for each phase which is determined by the thermal 

conductivity of each phase, 
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Here we have to set ( )
p s

cρ  equal to ( )
p v

cρ  in the simulations to assure the continuity at the 

interfaces [27]; also  c  is the pseudo sound speed, defined as 
 
δ

x
δ

t
 where 

 
δ

x
 is the lattice 

constant (i.e., the grid size), whose value can take any positive numbers theoretically only to insure 

the values of τ  within (0.5, 2) [34]. 

The temperature and the heat flux can be then calculated respectively by [27,35] 
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For the isothermal boundary treatment, we follow the bounce-back rule of the non-equilibrium 

distribution proposed by Zou and He [36]. For the insulated boundary, a specula reflection treatment 

is implemented to avoid energy leak along the surfaces [24]. After the temperature field is solved, 

the effective thermal conductivity, 
 
k

eff
, can be determined: 

 

k
eff
=

L ⋅ q ⋅ dA∫
∆T dA∫

             (12) 

where  q  is the steady heat flux through the media cross section area  dA  between the 

temperature difference  ∆T  with a distance L . All of these parameters can be theoretically 

determined, and thus there are no empirical factors existed in the model. 

3. Results and discussion 

Since our lattice Boltzmann solver has been validated by several theoretical solutions and 

experimental data for granular porous media in our previous work [24,25], we are comparing our 

present numerical results for open-cell foam materials with the existing experimental data directly. 



In our simulations, the porous structures are generated on a 50×50×50 grid, and then the energy 

transport governing equations solved through the structures by the high-efficiency lattice Boltzmann 

method. As shown in Fig. 4, our generated porous structures show remarkable stochastic features, 

thus leading to fluctuations around an averaged result for each trail with given parameters. We have 

studied such numerical uncertainty and found that the fluctuation is strongly dependent on the grid 

number and slightly affected by the solid volume fraction. A larger grid number and higher solid 

volume fraction will lead to smaller fluctuations. However for the simulations in the present work, 

the fluctuations are roughly smaller than 5%. 

Fig. 5 shows the predicted effective thermal conductivities of reticulated vitreous carbon (RVC) 

foams with water or air as the fluid media, compared with the existing experimental data [19]. The 

component thermal conductivities used in the simulations are 
RVC

k =8.5 W/m K, 
water

k =0.615 

W/m K and 
air

k =0.026 W/m K [14,37]. The RVC-water predictions agree well with the 

experimental data while the RVC-air predictions are a little lower than the experimental results. We 

noticed that the ambient temperature was 25 ºC when performing the experimental measurements 

[19]. Therefore the underestimation of the effective thermal conductivity of RVC-air foams could 

result from the neglected thermal radiation. The effects of thermal radiation may become more 

significant when the overall effective thermal conductivity of media is relatively low. 

 
Fig. 5 Comparisons of effective thermal conductivities in RVC foams 

To verify our speculation, we have added the thermal radiation contribution to our calculation 

using the existing models for radiative heat transfer. Tao et al. [12] have proposed a simple 

relationship between the radiation contribution krd to the thermal conductivity and the temperature T 

for polyurethane (PU) foams as: 
316

3(42.038 121.55)
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s s

T
k

V

σ
ρ

=
+

          (13) 

where σ  is the Stefan-Boltzmann constant (5.67×10
-8

 W/m
2
K

4
), T  the mean temperature, 

s
ρ  

the solid density and 
s

V  the solid volume fraction. 

Fig. 6 shows the predictions of effective thermal conductivities of PU foams at 286 
o
K with and 

without the radiation modification, in comparison with experimental data [11,12]. The parameters 

used in the simulations are the thermal conductivity of PU solid 
PU

k =0.262 W/m K, the thermal 

conductivity of air at 286
 o
K and under a standard pressure ,air sp

k =0.0252 W/m K [37], the thermal 



conductivity of air at 286 
o
K and under a low pressure (nearly 2 Pa) ,air lp

k =5×10
-7

 W/m K, and the 

PU solid density 
s
ρ ≈ 800 kg/m

3
 [6]. After the radiation modification the effective thermal 

conductivities agree pretty well with the experimental data for PU foams under both a standard air 

pressure and a low air pressure as seen in Fig. 6. The results also show that the importance of 

radiation contribution decreases with an increasing solid volume fraction so that the two simulation 

results converge at high solid volume fraction; e.g., the radiation contribution accounts for almost 

6% when the solid volume fraction is over 10% for 286 
o
K and standard air pressure conditions, as 

indicated in Fig.6. 

 
Fig.  6 Comparisons of effective thermal conductivities against the solid volume fraction in 

polyurethane foams. The solid symbols are experimental data, the stars are predicted results before 

radiation modifications and the circles are predictions after modifications. 

 
Fig. 7 Comparisons of effective thermal conductivity versus the porosity in open-cell foams with 

s
k =100 W/m K, and 

v
k =1 W/m K. 

After comparisons with experimental data, our numerical results have also been compared with 

predictions from some theoretical and empirical models in Fig. 7. The component thermal 

properties are chosen as 
s

k =100 W/m K, and 
v

k =1 W/m K, and the porosity varies from 0.4 to 

0.92. The solid line and the dotted line are classical bounds of parallel and series models 



respectively [38]. The dash-dot line and the dashed line are the lower and upper bounds by Hashin 

and Shtrikman (HS) respectively [39,40]. The Maxwell model for spherical particle porous media 

gives the same predictions as the HS lower bounds [38]. The open circles are based on the 

reciprocity theorem [40], whose predictions agreed well with many granular materials. The solid 

circles are from the Hamilton-Crosser model for cylindrical particle porous media [41,42]. The 

comparisons indicate that the effective thermal conductivity of open-cell porous media is much 

higher than those of the granular porous media, i.e., the netlike microstructure enhances the thermal 

conduction in open-cell form materials. However the effective thermal conductivities are still within 

the lower and upper bounds of the Hashin and Shtrikman model. 

4. Conclusions 

A random generation-growth method has been developed to reproduce much more realistic 

microstructures of open-cell foam materials by computer algorithms. The energy transport equations 

through the complex structure are then solved using a high-efficiency lattice Boltzmann method. 

The effective thermal conductivities of open-cell foam materials are thus derived. The comparisons 

between the predictions and existing experimental data show that the radiation heat transfer is a 

non-negligible factor for thermal transports in high-porosity low-conductivity open-cell foam 

materials at low porosity range. After radiation modification, the numerical predictions of effective 

thermal conductivities agree well with the experimental data. The importance of the radiation 

contribution decreases however when the solid volume fraction increases. The effective thermal 

conductivity of open-cell foam materials is much higher than that of granular materials with the 

same components and at the same porosity. In other words, the inner netlike morphology of such 

foam materials actually enhances the heat transfer capacity of the materials. 
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