
UC San Diego
Technical Reports

Title
Automated Refinement Checking of CSP Programs

Permalink
https://escholarship.org/uc/item/39z2z6cd

Authors
Kundu, Sudipta
Lerner, Sorin
Gupta, Rajesh

Publication Date
2007-01-30
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39z2z6cd
https://escholarship.org
http://www.cdlib.org/


Automated Refinement Checking of CSP

Programs

Sudipta Kundu Sorin Lerner Rajesh Gupta

University of California, San Diego

January 2007

Abstract

Communicating Sequential Processes (CSP) is a calculus for describ-
ing concurrent systems as a collection of processes communicating over
channels. Checking that one CSP program is a refinement of another
has many applications, including type-checking concurrent systems, and
refinement-based synthesis and optimization of hardware circuits. In this
paper, we describe a new approach to automatic refinement checking of
CSP programs that uses insights from translation validation, automated
theorem proving, and relational approaches to reasoning about programs.
Unlike previous approaches to CSP refinement, our technique can handle
infinite state spaces in a fully automated manner. We have implemented
our refinement checking technique and have applied it to a variety of
refinements. We present the details of our algorithm and experimental
results. As an example, we were able to automatically check an infinite
state space buffer refinement that cannot be checked by current state of
the art tools such as FDR. We were also able to check the data part of an
industrial case study on the EP2 system.

1 Introduction

Communicating Sequential Processes [18] (CSP) is a calculus for describing
concurrent systems as a set of processes that communicate synchronously over
explicitly named channels. A common question that comes up in dealing with
CSP programs is whether one CSP program is a refinement of another. Broadly
speaking, refinements are useful because they provide guarantees about the two
programs that are in the refinement relation. Many notions of refinement exist,
for example trace refinement, failures refinement, or failures/divergence refine-
ment [33]. Each kind of refinement provides its own guarantees. For example,
trace refinement preserves safety properties, failures refinement also preserves
liveness properties and deadlock freedom, and failures/divergence refinement
also preserves livelock freedom [33].

Refinement checking of CSP programs has many applications. As one ex-
ample, Allen and Garlen have shown how CSP programs can be used as types

1



to describe the interfaces of software components [3]. The refinement relation
becomes a sub-typing relation, and refinement checking can then be used to de-
termine if two components, whose interfaces are specified using CSP programs,
are compatible.

Another important application of refinement checking appears in the context
of refinement-based software or hardware design. The engineer starts with a
high-level description of the design, usually called a specification, which is then
continually refined into more and more concrete implementations. Checking
correctness of these refinement steps has many benefits, including finding bugs
in the refinements, while at the same time guaranteeing that properties checked
at higher-levels in the design are preserved through the refinement process,
without having to recheck them at lower levels. For example, if one checks that
a given specification satisfies a safety property, and that an implementation is a
correct trace refinement of the specification, then the implementation will also
satisfy the safety property.

Among the many applications of refinement checking, the one that originally
motivated our work is its use in hardware systems, which are often designed us-
ing a refinement-based approach. In particular, our broad goal is to develop
tools and techniques for automated correctness checking of refinements in the
context of hardware design. The hardware designs in question involve a large
amount of concurrency, and they are usually specified using various program-
ming languages and/or algebraic formalisms, including CSP [18], SystemC [16],
Verilog [28] and VHDL [30]. As a first step in this direction, we have concen-
trated on CSP, and on the most common notion of refinement used in hardware,
namely trace subset refinement: a CSP program P2 is a trace refinement of an-
other program P1 iff the set of possible execution traces of P2 is a subset of the
possible traces of P1. The program P1 is typically called the specification, and
the program P2 is called the implementation.

Refinement checking of CSP programs is an area that has been widely ex-
plored. However, as we will explain in further detail throughout the rest of the
paper, previous work on CSP refinement falls into two broad categories. First,
there has been research on techniques that require human assistance. This
work ranges from completely manual proof techniques, such as Josephs’s work
on relational approaches to CSP refinement checking [20], to semi-automated
techniques where humans must provide hints to guide a theorem prover in check-
ing refinements [13, 35, 19, 23, 24, 25]. Second, there has been work on fully
automated techniques to CSP refinement checking [2, 10], the state of the art
being embodied in the FDR tool [2]. These techniques essentially perform an ex-
haustive state space exploration, which places onerous restrictions on the kinds
of infinite state spaces they can handle. In particular, they can only handle one
kind of infinite state space, namely those arising from data-independent pro-
grams. Such programs must treat the data they process as black boxes, and the
only operation they can do on data is to copy it. Although there has been work
on making the finite state spaces that automated techniques can handle larger
and larger [6, 11, 31, 34], there has been little work on automatically handling
refinement checking of two concurrent programs whose state spaces are truly

2



infinite.
In this paper we present a new trace refinement checking algorithm for CSP

programs. Our algorithm uses a simulation relation approach to proving refine-
ment. In particular, we automatically establish a simulation relation that states
what points in the specification program are related to what points in the im-
plementation program. This simulation relation guarantees that for each trace
in the implementation, a related and equivalent trace exists in the specification.
Our algorithm consists of two components. The first component is given a sim-
ulation relation, and checks that this relation satisfies the properties required
for it to be a correct refinement simulation relation. The second component
automatically infers a simulation relation just from the specification and the
implementation programs. Once the simulation relation is inferred, it can then
be checked for correctness using the checking algorithm.

Unlike previous approaches, our approach can automatically check the re-
finement of infinite state space CSP programs that are not data-independent.
This means that we can handle CSP programs that manipulate, inspect, and
branch on data ranging over truly infinite domains, for example the set of all
integers or all reals. In order to achieve this additional checking power, our al-
gorithm draws insights and techniques from various areas, including translation
validation [32, 26], theorem proving [12], and relational approaches to reason-
ing about programs [20, 22]. As a result, the contribution of our paper can be
seen in different lights. One way to characterize our contribution is that we
have automated a previously known, but completely manual technique, namely
Josephs’s relational approach to proving CSP refinements [20]. Another way to
characterize our contribution is that we have incorporated an automated theo-
rem proving component to FDR’s search technique [2] in order to handle infinite
state spaces that are not data-independent. Yet another way to characterize our
contribution is that we have generalized translation validation [32, 26], an au-
tomated technique for checking that two sequential programs are equivalent, to
account for concurrency and for trace containment checking.

To evaluate our approach, we implemented our CSP refinement checking
algorithm using Simplify [12], the theorem prover used by ESC/Java [14]. We
then used our implementation to check the correctness of a variety of refine-
ments, including parts of an industrial case study of the EP2 system [1], and an
infinite state space communication buffer refinement that cannot be checked by
state of the art automated tools such as FDR.

The remainder of the paper is organized as follows. Section 2 presents an
overview of our approach, and shows how our algorithm works on a simple
example. Sections 3 and 4 then provide the full details of our algorithm. In
particular, Section 3 covers the checking algorithm, which verifies that a given
simulation relation is a correct refinement checking relation. Section 4 then
presents our inference algorithm, which automatically infers a simulation rela-
tion from a specification program and an implementation program. Section 5
describes our experimental results, Section 6 describes related work, and finally
Section 7 presents our conclusions and plans for future work.

3



CSP ::= (decl PID = P )∗
P ::= PID | v := E | P ;P | P || P | P ||| P |

e→ P | b→ P [+] b→ P | P ⊓ P | P � P |
P \ {c, . . . , c}

e ::= c ? v | c ! v
E ::= side-effect free expressions
b ::= side-effect free boolean expressions

PID ::= process identifiers
c ::= channel identifiers
v ::= variable identifiers

Figure 1: CSP grammar

2 Overview

This section presents an overview of our approach. We start out in Section 2.1 by
describing the salient features of CSP required for understanding the examples
in this paper, and the representation of CSP programs we will use throughout
the rest of the paper. In Section 2.2 we introduce a CSP refinement example
that will serve to illustrate our technique. Section 2.3 describes a variety of
previous approach and why they don’t handle our running example in a fully
automated manner. Finally Section 2.4 describes our approach and how it works
on our running example.

2.1 CSP

The grammar from Figure 1 describes the fragment of CSP we will use to il-
lustrate our approach. A CSP program is a set of (possibly mutually recur-
sive) process definitions. The simple cases for a process include the following:
a reference to a process by name (PID); an assignment statement (v := E);
a sequencing of two processes (P ;P ); a parallel composition of two processes
(P || P ); and a parallel interleave of two processes (P ||| P ), which is similar
to parallel composition, except that the parallel processes cannot communicate.

We now describe some of the more subtle cases. The event prefixing process
e → P is a process that performs some event e and then proceeds with P . An
event e can either be reading a value from a channel c into a variable v (c?v),
or writing a variable v to a channel c (c!v). Reads and writes are synchronous.

The case statement b1 → P1 [+] b2 → P2 executes P1 or P2 based on which
of the two boolean conditions b1 or b2 is true. If both are true, the choice is made
non-deterministically. If neither is true, the statement can’t make progress.

The non-deterministic choice process P1 ⊓ P2 executes either P1 or P2 non-
deterministically.

The external choice process P1�P2 executes either P1 or P2 depending on
what events the surrounding environment is willing to engage in. For example

4



i := 100

[+]

i%2==0 i%2!=0

d ! ic ! i

e ? i

| |

c ? x d ? x

s:=x+1s:=x/2

e ! s

P1 P2

e ? i e ! s

Figure 2: Example CFG representation of a CSP program

(c1?v → P1)�(c2?v → P2) will execute the left or right side of the � operator
depending on what channel (c1 or c2) first has a value. If both channels have
a value, then the choice is made non-deterministically. The external choice
operator resembles the select system call in Unix and Linux systems.

The channel hiding process P \ {c1, . . . , cn} acts like P but hides all the
events that occur on channels c1, . . . , cn. Channels that are not hidden are
externally visible, and these are the channels that we preserve the behavior of
when checking refinement.

Parallel processes in our version of CSP (and Hoare’s original version too)
can only communicate through messages on channels. Although there are no
explicit shared variables, these can easily be simulated using a process that
stores the value of the shared variable, and that services reads and writes to the
variable using messages.

As an example, here is a simple CSP program:

decl P = (i := 100;P1)||P2

decl P1 =(i%2 == 0 → c!i → e?i → P1)[+]
(i%2 != 0 → d!i → e?i → P1)

decl P2 =(c?x → s := x/2; e!s → P2) �

(d?x → s := x + 1; e!s → P2)

Figure 2 displays this CSP program using our internal Control Flow Graph
(CFG) representation after tail recursion elimination has been performed. The
example consists of two processes running in parallel. Process P1 continually
outputs i on either channel c or d depending on whether i is even or not. Process
P2 waits until a value is available on channel c or d. Depending on which channel

5



P2 ends up reading, P2 either divides the value it just read by 2 or adds 1 to it,
and then outputs the resulting value on channel e. Process P1 reads this value
from channel e, stores it in i, and then goes back to the beginning of its loop.
The cumulative effect of these two processes is that each time around the loop
in P1, if i is even it is divided by 2, and if it is odd, it is incremented by 1.

2.2 Refinement Example

We now present a simple refinement example that we will use to illustrate our
approach. This example replaces two distinct communication links with a shared
multiplexed communication link. The specification for this example is shown
using our internal CFG representation in Figure 3(a). We omit the details of
the actual CSP code, because the CFG representation is complete, and we be-
lieve the CSP code only makes the example harder to follow. The specification
states that two parallel processes are continually reading values from two input
channels, respectively called left1 and left2. Each process outputs the value 4∗v
for each input value v that is read from an input channel. The output values
are written to two distinct channels, respectively called right1 and right2. Fig-
ure 4(a) shows a process communication diagram for this specification, where
each box represents a process, and the arrows between processes represent com-
munication channels. In this example, the two processes link1 and link2 represent
communication links, for example a wire in a network, or some path in a cir-
cuit. In refinement based hardware development, the designer often starts with
such a high-level description of a communication link, refining the details of the
implementation later on.

In our example, we will refine the two communication links in two ways: (1)
the two links will be collapsed into a single shared communication link with
multiplexing; and (2) instead of multiplying the communicated value by 4 at
once, the communicated value will first be multiplied by 2 on the sender side
of the link, and then multiplied again by 2 on the receiver side of the link,
producing the required “times 4” effect.

The easiest way to understand the structure of the implementation is to
look at its process communication diagram first, which is shown in Figure 4(b).
The two communication links from the specification have been collapsed into a
single link that consists of two processes (msg sender and msg receiver, where msg
stands for message). These two processes communicate over a channel called
msg. At the sender end of this communication link, the values from the original
left1 and left2 channels are sent to the msg sender process, which performs the
multiplexing required to send all the values on a single link. At the receiver
end of the communication link, the msg receiver process demultiplexes incoming
values to deliver them to the appropriate channel, either right1 or right2. One
additional subtlety of this example is that, in order for the refinement to be
correct, an additional link needs to be added for sending acknowledgments back
to the sender, so that a new value isn’t read from left1 or left2 until the current
value has been written out. Otherwise, the implementation will be able to
buffer up to three values (one value on each of the sm1, msg and rm1 channels),

6



sm2?y

z := y*2

sm1?x

z:=x*2

msg!1 msg!2

msg!zmsg!z

j==2

ra2!1

j==1

ra1!1

[+]

ack?j

| | |

sa2?_

ack!2

sa1?_

ack!1

i==2

rm2!p

i==1

rm1!p

[+]

msg?i

p:=q*2

| | |

msg?q

| | |

sm2!b

ra2?_

left1?a

sm1!a

ra1?_

left2?b

| | |

right2!r

sa2!1

rm1?s

right1!s

sa1!1

rm2?r

| |

left
link1

left
link2

msg
sender

ack
receiver

msg
receiver

ack
sender

right
link1

right
link2

| |

z:=b*4

right2!z

left1?a

w:=a*4

right1!w

left2?b

link1 link2

(b) Implementation(a) Specification

Figure 3: CFGs for the specification and implementation of our running example

left
link1

left1

left
link2

left2

msg
sender

ack
receiver

msg
receiver

ack
sender

right
link1

right1

right
link2

right2

msg

ack

sm1

sm
2

ra2

ra1

rm1

sa
1

sa2

rm
2

shared communication
link for messages

shared communication
link for acks

link1
left1 right1

link2
left2 right2

communication link 2

communication link 1

(b) Implementation(a) Specification

Figure 4: Process communication diagram for the specification and implemen-
tation of our running example

Name Line type Condition

A

B

Spec.a == Impl.a

Spec.w == Impl.s

Figure 5: Sample entries from the simulation relation

7



whereas the specification could not have read any additional values until the
current value was written out.

The CFG representation for this implementation is shown in Figure 3(b).
The two processes left link1 and left link2 read values from their respective in-
put channels, and send them to the msg sender process via the sm1 and sm2
channels (sm stands for “send message”). Before going on to the next value,
left link1 and left link2 wait for an acknowledgment on the ra1 or ra2 channels
(ra stands for “receive acknowledgment”). The value read from these “receive
acknowledgment” channels is not used, and so we use an “ ” for the variable
being read.

The msg sender process contains a loop with an external choice operator �

at the top of the loop. The external choice operator in CSP chooses between
two paths based on the surrounding environment. The immediate successors of
the external choice node are used to determine which path to follow. In our
case, the two successor nodes are sm1?x and sm2?y, which means the following:
if only the sm1 channel has a message on it, then the sm1?x path is chosen; if
only the sm2 channel has a message on it, then the sm2?x path is chosen; if
both channels have messages, the choice is made non-deterministically; and if
none of the channels have messages, the process waits until a message arrives
on either sm1 or sm2. After a choice is made between which channel to get a
value from, the msg sender process sends two messages on the msg channel: first
it sends the value multiplied by 2, and then it sends an identifier stating which
of the two communication links the current value belongs to.

On the receiver side, the msg receiver process performs the required demul-
tiplexing of values from the msg channel. In particular, msg receiver continually
reads two values from the msg channel, and depending on the second value, it
sends the first value, multiplied by 2, to either rm1 or rm2 (rm stands for receive
message). To complete the forward communication path, the right link1 and
right link2 processes read the values from rm1 or rm2 and place them on right1
and right2 respectively.

Once a value has been sent across the communication link, an acknowledg-
ment token (in this case the value 1) is sent back to the sender in a similar
fashion. Acknowledgments are sent from the right link1 and right link2 processes
to an ack sender process, which sends acknowledgments for both communication
links on a single ack channel. The ack receiver process then decodes the stream
of values from this single ack channel to produce an acknowledgment token for
either the left link1 or the left link2 process.

2.3 Approaches to refinement checking

Our goal is to check that for any trace in the implementation, there is an equiv-
alent trace in the specification. One approach for checking trace refinement,
used in FDR [2], is to perform an exhaustive search of the implementation-
specification combined state space. Although in its pure form this approach
only works for finite state systems, there is one way in which it can be extended
to infinite systems. In particular, if an infinite state system treats all the data it

8



manipulates as black boxes, then one can use skolemization and simply check the
refinement for one possible value. Such systems are called data-independent, and
FDR can check the refinement of these systems using the skolemization trick,
even if they are infinite.

Unfortunately, our refinement example from Section 2.2 is not finite, because
we do not specify the bit-width of integers (in particular, we want the refinement
to work for any integer size). Nor are the processes data-independent, since
both the specification and the implementation are “inspecting” the integers
when multiplying them. Indeed, it would not at all be safe to simply check the
refinement for any one particular value, since, if we happen to pick 0, and the
implementation erroneously sets the output to 2 times the input (instead of 4
times), we would not detect the error. FDR cannot check the refinement of such
infinite data-dependent CSP systems (which we shall henceforth call IddCSP
systems), except by restricting them to a finite subset first, for example by
picking a bit-width for the integers, and then doing an exhaustive search. Not
only would such an approach not prove the refinement for any bit-width, but
furthermore, despite many techniques that have been developed for checking
larger and larger finite state spaces [6, 11, 31, 34], the state space can still grow
to a point where automation is impossible. For example, we tried checking the
refinement from Section 2.2 in FDR using 32-bit integers as values, and the
tool had to be stopped because it ran out of memory after several hours (Our
algorithm, in contrast, is able to check this example for any sized integers, not
just 32-bit integers, in less than 2 minutes).

An approach that seems much better suited for IddCSP systems is the re-
lational approach of Josephs [20]. Relational approaches are a common tool
for reasoning about programs, and they are used in a variety of contexts, in-
cluding model checking [21, 7], translation validation [32, 26], and reasoning
about optimizations once and for all [22, 5]. Josephs presents a relational ap-
proach for refinement checking of CSP programs. Intuitively, the idea is to
show that there exists a relation R that matches a given program state in the
implementation with the corresponding state in the specification. The relation
R ⊆ S tate1×S tate2 operates over the program states S tate1 of the specification
and the program states S tate2 of the implementation. If S tart1 is the set of
start states of the specification, S tart2 is the set of start states of the imple-
mentation, and σ →e σ′ denotes state σ stepping to state σ′ with observable
events e, then the following conditions summarize Josephs requirements for a
correct refinement:

∀σ2 ∈ S tart2 . ∃σ1 ∈ S tart1 . R(σ1, σ2)
∀σ1 ∈ S tate1, σ2 ∈ S tate2, σ

′
2
∈ S tate2 .

σ2 →e σ′
2
∧R(σ1, σ2) ⇒

∃σ′
1
∈ S tate1 . σ1 →e σ′

1
∧R(σ′

1
, σ′

2
)

These conditions respectively state that (1) for each starting state in the im-
plementation, there must be a related state in the specification; and (2) if the
specification and the implementation are in a pair of related states, and the
implementation can proceed to produce observable events e, then the specifica-

9



tion must also be able to proceed, producing the same events e, and the two
resulting states must be related. The above conditions are the base case and
the inductive case of a proof by induction showing that the implementation is
a trace refinement of the specification.

Although Josephs’s approach can handle IddCSP systems, automating his
approach turns out to be difficult for two reasons. First, the patterns of quan-
tifiers that appear in the above conditions confuse the heuristics of state of the
art theorem provers such as Simplify [12], and as a result, it seems unlikely that
a theorem prover could prove the above conditions directly, without any hu-
man assistance. Second, to use Josephs’s relational approach, one has to come
up with a candidate relation to begin with, something that Josephs does not
address in his work.

More generally, there has been little work on checking trace refinement (and
other refinements too) of two truly infinite CSP systems in a completely auto-
matic way. Various tools have been developed for reasoning about such CSP
systems [13, 35, 19], using a variety of theorem provers [27, 29]. But all these
tools are interactive in nature, and they require some sort of human assistance,
usually in the form of a proof script that states which theorem proving tactics
should be applied to perform the proof.

Although not directly in the context of CSP, there has been work on check-
ing refinement of concurrent systems, for example in the context of the MAGIC
tool [8]. However, our approach is different from MAGIC’s counter-example
driven approach, and it is also considerably simpler. We show that our seem-
ingly simple approach, which was inspired by Necula’s work on translation val-
idation [26], in fact works well in practice.

2.4 Our approach

Our technique for refinement checking builds on Josephs’s relational approach
by overcoming the difficulties of automation with a simple division-of-labor ap-
proach. In particular, we handle infinite state spaces by splitting the state space
into two parts: the control flow state, which is finite, and the dataflow state,
which may be infinite. The exploration of the control flow state is done using
a specialized algorithm that traverses our internal CFG representation of CSP
programs. Along paths discovered by the control flow exploration, the dataflow
state is explored using an automated theorem prover. Although this way of
splitting the state space has previously been used in reasoning about a given
sequential program [15, 17, 4, 14], a given concurrent program [9], or a pair of
sequential programs [32, 26], its use in reasoning about the refinement of two
infinite state space concurrent programs is novel.

Our approach consists of two parts, which theoretically are independent,
but for practical reasons, we have made one part subsume the other. The first
part is a checking algorithm that, given a relation, determines whether or not it
satisfies the properties required for it to be a valid refinement-checking relation.
The second part is an inference algorithm that infers a relation given two CSP
programs, one of which is a specification, and one of which is an implementation.

10



To check that one CSP program is a refinement of another, one therefore runs the
inference algorithm to infer a relation, and then one uses the checking algorithm
to verify that the resulting relation is indeed a refinement-checking relation.
However, because the inference algorithm does a similar kind of exploration as
the checking algorithm, this leads to a lot of duplicate work. To address this
issue, we have made the inference algorithm also perform checking, with only
a small amount of additional work. This avoids having the checking algorithm
duplicate the exploration work done by the inference algorithm. The checking
algorithm is nonetheless useful by itself, in case our inference algorithm is not
capable of finding an appropriate relation, and a human wants to provide the
relation by hand.

2.4.1 Simulation Relation

The goal of the simulation relation in our approach is to guarantee that the spec-
ification and the implementation interact in the same way with any surrounding
environment that they would be placed in.

The simulation relation in our algorithm consists of a set of entries of the
form (p1, p2, φ), where p1 and p2 are program points in the specification and
implementation respectively, and φ is a boolean formula over variables of the
specification and implementation. The pair (p1, p2) captures how the control
state of the specification is related to the control state of the implementation,
whereas φ captures how the data is related. As an example, Figure 3 pictorially
shows two simulation relation entries. We use lines to represent the control
component of entries in the simulation relation by connecting all the nodes in
the CFG that belong to the entry being represented (the actual program point
that belongs to the entry is the program point right before the node). The data
component of these two entries are given in Figure 5.

The first entry in Figure 3, shown with a dashed line and labeled A in
Figure 5, shows the specification just as it finishes reading a value from the
left1 channel. The corresponding control state of the implementation has the
left link1 process in the same state, just as it finishes reading from the left1
channel. The msg sender process in the implementation at this point has already
chosen the sm1?x branch of its external choice � operator, since the left link1
process is about to execute a write to the sm1 channel. All other processes in
the implementation are at the top of their loops. For this entry, the relevant
data invariant is Spec.a == Impl .a, which states that the value of a in the
specification is equal to the value of a in the implementation. This is because
both the specification and the implementation have stored in a the same value
from the surrounding environment. As Section 2.4.2 will explain in further
detail, our algorithm models the environment as a set of separate processes that
are running in parallel with the specification and the implementation. For now
we elide these additional processes for clarity of exposition.

The next entry in the simulation relation is shown in Figure 3 with a dotted
line and is labeled B in Figure 5. In running from A to B, the specification
executes w := a*4, while the implementation goes through the following steps:

11



(1) left link1 sends the value a over sm1; (2) msg sender reads this value into
z, then sends z*2 over msg, and finally returns to the top of its loop; (3) msg
receiver reads this z*2 value from msg and sends twice that (in essence z*4) on
rm1; (4) right1 reads this z*4 value into s and gets ready to write it to right1;
(5) all other processes in the implementation don’t step.

The relevant invariant at B is Spec.w == Impl .s. Indeed, if we combine
the invariant from A (which is Spec.a == Impl .a), with the fact that the spec-
ification executes w := a*4, and the fact that the cumulative effect of the im-
plementation is to set s to the value a*4, we get that Spec.w == Impl .s holds
at B. Furthermore, at B the specification is about to write w to the right1
channel and the implementation is about to write s to the same channel. The
invariant Spec.w == Impl .s at B therefore implies that the specification and
the implementation will produce the same value on the externally visible right1
channel.

Execution from B can reach back to A, establishing the invariant Spec.a ==
Impl .a, since by the time execution reaches A again, both the specification and
the implementation would have read the next value from the environment (the
details of how our algorithm establishes that the two next values read from the
environment processes are equal is explained in Section 2.4.3).

The A and B entries in the simulation relation represent two loops that
run in synchrony, one loop being in the specification and the other being in the
implementation. The invariants at A and B can be seen as loop invariants across
the specification and the implementation, which guarantee that the two loops
produce the same effect on the surrounding environment. The control part of
the A and B entries guarantee that the two loops are in fact synchronized.

The A–B synchronized loops are only one of many loop pairs in this example.
Nominally, one has to have at least one entry in the simulation that “cuts
through” every loop pair, in the same way that there must be at least one
invariant through each loop when reasoning about a single sequential program.
Because there can be many possible paths through a loop, writing simulation
relations by hand is tedious, time consuming and error prone, which points to
the need for generating simulation relations automatically, not just checking
them.

2.4.2 Checking Algorithm

Given a simulation relation, our checking algorithm checks each entry in the
relation individually. For each entry (p1, p2, φ), it finds all other entries that
are reachable from (p1, p2), without going through any intermediary entries.
For each such entry (p′

1
, p′

2
, ψ), we check using a theorem prover that if (1) φ

holds at p1 and p2, (2) the specification executes from p1 to p′
1

and (3) the
implementation executes from p2 to p′

2
, then ψ will hold at p′

1
and p′

2
.

In our example, the traces in the implementation and the specification from
A to B are as follows (where communication events have been transformed into
assignments and the original communication events are in brackets):

12



Spec.a == Impl .a
Specification Implementation

x := a (sm1!a ↔ sm1?x)
z := x * 2
q := z (msg!z ↔ msg?q)

w := a * 4 i := 1 (msg!1 ↔ msg?i)
p := q * 2
[+]
i == 1
s := p (rm1!p ↔ rm1?s)

Spec.w == Impl .s

Our algorithm asks a theorem prover to show that if Spec.a == Impl .a holds
before the two traces, then Spec.w == Impl .s holds after the traces.

If there were multiple paths from A to B, our algorithm checks all of them.
Furthermore, although we don’t show it here, there are multiple next relation
entries that are reachable from A, and our algorithm checks all of them.

2.4.3 Inference Algorithm

Our inference algorithm works in two steps. First it does a forward pass over
the specification and implementation to find externally visible events that need
to be matched in the specification and the implementation for the refinement
to be correct. In the example from Figure 3, our algorithm finds that there are
two input events and two output events that must be matched (the specification
events left1?a, left2?b, right1!w and right2!z should match, respectively, with the
implementation events left1?a, left2?b, right1!s and right2!r).

This forward pass also finds the local conditions that must hold for these
events to match. For events that output to externally visible channels, the local
condition states that the written values in the specification and the implementa-
tion must be the same. For example, the local condition for events right1!w and
right1!s would be Spec.w == Impl .s, and for the events right2!z and right2!r, it
would be Spec.z == Impl .r.

For events that read from externally visible channels, the local condition
states that the specification and the implementation are reading from the same
point in the conceptual stream of input values. To achieve this, we use an au-
tomatically generated environment process that models each externally visible
input channel c as an array values of input values, with an index variable i stat-
ing which value in the array should be read next. This environment process
runs an infinite loop that continually outputs values[i] to c and increments i.
Assuming that i and j are the index variables from the environment processes
that model an externally visible channel c in the specification and the imple-
mentation, respectively, then the local condition for matching events c?a (in the
specification) and c?b (in the implementation) would then be Spec.i == Impl .j.
The equality between the index variables implies that the values being read are
the same, and since this fact is always true, we directly add it to the generated
local condition, producing Spec.i == Impl .j ∧ Spec.a == Impl .b.

13



Once the first pass of our algorithm has found all matching events, and has
seeded all matching events with local conditions, the second pass or our algo-
rithm propagates these local conditions backward through the specification and
implementation in parallel, using weakest preconditions. The final conditions
computed by this weakest-precondition propagation make up the simulation re-
lation. Because of loops, we must iterate to a fixed point, and although in
general this procedure may not terminate, in practice it can quickly find the
required simulation relation.

We use weakest preconditions to infer the simulation relation rather than
strongest postconditions because the weakest precondition approach is more
goal directed: we start with the seed conditions we want to hold, and then only
compute the conditions required to establish these seeds. In contrast, doing
strongest postconditions in the forward direction would compute everything
that is derivable at a given program point, which would cause our algorithm
to often compute facts that are not relevant, and as a result diverge. To see
the difference, consider for example a specification and an implementation that
both have loops incrementing a variable i and outputting each value of i on
an externally visible channel. The strongest post-condition approach on this
example would basically be tantamount to running the program, and would not
terminate. On the other hand, the weakest precondition approach, if seeded
with Spec.i == Impl .i (since those are the values sent on the externally visible
channel) would appropriately find out that the invariant is Spec.i == Impl .i.
Our work in fact confirms Necula’s finding in his translation validation work [26]
that a weakest precondition approach to inferring simulation relations works well
in practice.

3 Checking Algorithm

In this section, we present the details of our algorithm for verifying that a
simulation relation is a correct refinement checking relation. The algorithm is
shown in Figure 6. We assume that the specification and the implementation
programs are global, and so the only parameter to CheckRelation is the relation
to be checked. The CheckRelation procedure verifies each entry in the simu-
lation relation individually by calling the Explore function. Each entry in the
simulation relation is a triple (p1, p2, φ), where p1 ∈ GPP and p2 ∈ GPP are
generalized program points in the specification and implementation respectively.
A generalized program point represents the control state of a CSP program. It
can either be a node identifier, indicating that the given node is about to ex-
ecute, or it can be a pair of two generalized program points, representing the
state of two processes running in parallel.

The Explore function uses a “control step” relation →⊆ Trace × GPP that
identifies how our CSP programs transfer control flow. A trace t ∈ Trace is
a sequence of generalized program points p ∈ GPP , not necessarily starting
from the beginning of the program. We say that t → p iff the next generalized
program point that is reached by trace t is p. For t ∈ Trace and p ∈ GPP ,

14



1. procedure CheckRelation(R : VerificationRelation)
2. for each (p1, p2, φ) ∈ R do

3. if ¬Explore([p1], [p2], φ,R) then

4. Error(“Trace in Impl not found in Spec”)
5. let (Seeds , ) := ComputeSeeds()
6. CheckImplication(R,Seeds)

7. function Explore(t1 : Trace, t2 : Trace, φ : Formula,
8. R : VerificationRelation) : Boolean
9. for each p2 such that t2 → p2 do

10. let found := false
11. for each p1 such that t1 → p1 do

12. if ¬IsInfeasible(t1 :: p1, t2 :: p2, φ) then

13. if ∃i > 0 . t1[i] = p1 ∧ t2[i] = p2 then

14. Warning(“Loop with no relation entry”)
15. elseif ∃ψ . (p1, p2, ψ) ∈ R then

16. found := true
17. PreImpliesPost(φ, t1 :: p1, t2 :: p2, ψ)
18. else

19. if Explore(t1 :: p1, t2 :: p2, φ,R) then

20. found := true
21. if ¬found then

22. return false
23. return true

24. procedure PreImpliesPost(φ : Formula, t1 : Trace,
25. t2 : Trace, ψ : Formula)
26. let ψ′ := wp(t1,wp(t2, ψ))
27. if ATP(φ⇒ ψ′) 6= Valid then

28. Error(“Cannot verify relation entry”)

Figure 6: Algorithm for checking a simulation relation

15



we also use t :: p for the trace t with p appended to it, and [p] for the trace of
length 1 that only contains p.

The Explore function starts with two traces, t1 in the specification and t2 in
the implementation. It returns true if for all traces t ′

2
that are extensions of t2

(that is to say t ′
2

is t2 with some additional points at the end of it), there exists a
trace t ′

1
that is an extension of t1 such that t ′

1
and t ′

2
end at a simulation relation

entry, and there are no loops in t ′
1

and/or t ′
2
. This check intuitively makes sure

that for all traces in the implementation, there is a trace in the specification.
For each possible successor program point p2 in the implementation, the

algorithm iterates through each successor program point p1 in the specification
to find some p1 that leads to a simulation relation. In doing this search, infeasible
paths are pruned out on line 12 (the details of the IsInfeasible function will be
given when we cover the inference algorithm in Section 4). Furthermore, if
a loop is found in the traces (lines 13-14), then a warning message is printed.
Strictly speaking it is not an error to find a loop that has no cutting relation – it
just means that the algorithm will have to find another path in the specification
that accounts for the current path in the implementation, and if no such path
is found, the error will occur on line 4.

If an entry in the simulation relation is found with condition ψ (lines 15-
17), then we use the PreImpliesPost procedure to check that the condition φ at
the beginning of the traces implies ψ at the end. The PreImpliesPost proce-
dure computes the weakest precondition ψ′ of ψ with respect to the two traces
(line 26), and then asks a theorem prover to show φ⇒ ψ′ (line 27). We perform
the weakest precondition computation on one trace and then the other. When
computing the weakest precondition with respect to one trace, we treat all vari-
ables from the other trace as constants. The two traces operate over different
variables because our internal representation qualifies each variable reference
with the program it belongs to, either Spec or Impl . As a result, the order in
which we process the two traces does not matter. The wp computation itself is
standard, except for the handling of communication events, which are simulated
as assignments.

Going back to the Explore function, if no simulation entry is found (lines 19-
20), we recursively call explore on the new traces. If the recursive call returns
true, we’ve met our obligation, and we can set the current found variable to true.
If for a given p2, there was no p1 found, then Explore returns false (lines 21-22),
otherwise it returns true (line 23).

There are additional optimizations we perform that are not explicitly shown
in the algorithm from Figure 6. When exploring the control state (both in the
checking and in the inference algorithm), we perform a simple partial order
reduction [31] that is very effective in reducing the size of the control state
space: if two communication events happen in parallel, but they do not depend
on each other, and they do not involve externally visible channels, then we only
consider one ordering of the two events.

The last step in the CheckRelation function is to make sure that the sim-
ulation relation R in fact implies the conditions required to preserve visible
events. This is done by first using the ComputeSeeds function to compute a

16



29. function InferRelation() : VerificationRelation
30. let (Seeds ,Traces) := ComputeSeeds()
31. return PropagateSeeds(Seeds ,Traces)

Figure 7: Inference algorithm

relation Seeds that states which events in the specification and the implemen-
tation must match, and what conditions must hold at those matching points.
The ComputeSeeds function is used for performing inference aswell, and it will
be explained in detail in Section 4.1 (ComputeSeeds returns a pair, and here we
do not use the second element of the pair). We then call the CheckImplication
function (not shown here) to check using a theorem prover that each entry in
Seeds has a corresponding entry in R that implies it.

4 Inference Algorithm

Our inference algorithm, shown in Figure 7, runs in two steps. Here again, the
specification and implementation programs are assumed to be global, and so
the InferRelation function takes no arguments and returns a simulation relation.
The InferRelation function first performs a forward pass using the ComputeSeeds
function (line 30) to find the points in the specification and the implementation
that match, and the seed conditions that must hold at those points. At the
same time ComputeSeeds finds the traces between points of interests in the
specification and the implementation. Using the computed seeds and traces,
InferRelation then performs a backward pass using the PropagateSeeds function
(line 31) to propagate the seed conditions throughout the two programs. The
resulting propagated conditions constitutes the simulation relation.

The ComputeSeeds and PropagateSeeds functions are shown in Figures 8
and 10 respectively, and we explain each in turn.

4.1 Computing Seeds

The ComputeSeeds function performs a forward pass over the specification and
implementation programs in synchrony to find externally visible events that
must match. The algorithm maintains the following information:

• A map Seeds (lines 34-35) from generalized program point pairs (one program
point in the specification and one in the implementation) to formulas. This
map keeps track of discovered seeds.

• A set Traces (line 36) of discovered traces.

• A worklist (line 37) of generalized program point pairs.

• A map M (lines 38-39) from generalized program point pairs to a boolean
formula approximating the set of the states that can appear at those program
points. These formulas will be computed using strongest postconditions from

17



32. function ComputeSeeds() :
33. ((GPP × GPP ) → Formula) × set [Trace]
34. let Seeds := new map of type GPP × GPP → Formula
35. which returns MissingFormula for uninitialized entries
36. let Traces := ∅
37. let worklist := new worklist of GPP × GPP
38. let M := new map of type GPP × GPP → Formula
39. which returns false for uninitialized entries
40. let C := new map of type GPP × GPP → Ints
41. which returns 0 for uninitialized entries
42. M(ι1, ι2) := true
43. worklist .Add(ι1, ι2)
44. while worklist not empty do

45. let (p1, p2) := worklist .Remove
46. let φ := M(p1, p2)
47. let T1 := FindEvents([p1])
48. let T2 := FindEvents([p2])
49. for each t2 ∈ T2 do

50. let found := false
51. for each t1 ∈ T1 do

52. if ¬IsInfeasible(t1, t2, φ) then

53. if Channel(Event(t1)) 6=
54. Channel(Event(t2)) then

55. Error(“Channels don’t match”)
56. found := true
57. Traces := Traces ∪ {t1, t2}
58. let lp1 := LastGPP(t1)
59. let lp2 := LastGPP(t2)
60. Seeds(lp1, lp2) :=
61. CreateSeed(Event(t1),Event(t2))
62. let ψ := sp(t1, sp(t2, φ))
63. let δ := M(lp1, lp2)
64. if ATP(ψ ⇒ δ) 6= Valid then

65. let c := C(lp1, lp2)
66. if c ≥ limit then

67. M(lp1, lp2) := true
68. else

69. C(lp1, lp2) := c+ 1
70. M(lp1, lp2) := ψ ∨ δ
71. worklist .Add(lp1, lp2)
72. if ¬found then

73. Error(“Trace in Impl not found in Spec”)
74. return (Seeds ,Traces)

Figure 8: Algorithm for computing seeds

18



75. function IsInfeasible(t1 : Trace, t2 : Trace,
76. φ : Formula) : Boolean
77. let ψ1 := sp(t1, φ)
78. let ψ2 := sp(t2, φ)
79. return ATP(¬(ψ1 ∧ ψ2)) = Valid

80. function FindEvents(t : Trace) : set [Trace]
81. if VisibleEventOccurs(t) then

82. return {t}
83. else

84. return
⋃

t′∈{t::p|t→p}

FindEvents(t′)

Figure 9: Auxiliary functions

the beginning of the specification and implementation programs, and will be
used to find branch correlations between the implementation and the specifi-
cation. The value returned by M for uninitialized entries is false , the most
optimistic information.

• A map C (lines 40-41) from generalized program point pairs to an integer
describing how many times each pair has been analyzed. Because propagat-
ing strongest postconditions through loops may lead to an infinite chain of
formulas at the loop entry, each weaker than the previous, we analyze each
program point pair at most limit times, where limit is a global parameter to
our algorithm. After the limit is reached for a program point pair, its entry
in M is set to true, the most conservative information, which guarantees that
it will never be analyzed again.

The ComputeSeeds algorithm starts by setting the value of M at the initial
program points of the specification (ι1) and the implementation (ι2) to true,
and adds (ι1, ι2) to the worklist. While the worklist is not empty, a generalized
program pair (p1, p2) is removed from the worklist. Using an auxiliary function
FindEvents (see Figure 9), we find the set of all traces T1 that start at p1 and
end at a communication event that is externally visible, and similarly for T2 (A
communication event is externally visible if it occurs on a channel that is not
hidden). For each t1 ∈ T1, and t2 ∈ T2, we check whether or not it is in fact
feasible for the specification to follow t1 and the implementation to follow t2.
The trace combination is infeasible if the strongest postconditions ψ1 and ψ2

of the two traces are inconsistent, which can be checked by asking a theorem
prover to show ¬(ψ1 ∧ ψ2). This takes care of pruning within a single CSP
program, but also across the specification and implementation.

Once we’ve identified that the two traces t1 and t2 may be a feasible combi-
nation, we check that the events occurring at the end of these two traces are on
the same channel (lines 53-55). If they are not, then we have found an externally
visible event that occurs in the implementation but not in the specification, and

19



we flag this as an error. If the events at the end of t1 and t2 occur on the
same channel, then we augment the Traces set with t1 and t2, and then we
set the seed condition for the end points of the traces. The seed condition is
computed by the CreateSeed function, not shown here. This function takes two
communication events that involve an externally visible channel ext. Assuming
the two events are (ext!a ↔ ext?b) and (ext!c ↔ ext?d), the CreateSeed func-
tion first checks if the communication involves reading from an automatically
generated environment process, in other words if the ext!a and ext!c instruc-
tions belong to some environment processes. If so, then the generated seed is
Spec.i == Impl .j ∧ Spec.b == Impl .d, where i and j are the index variables for
the automatically generated environment processes in the specification and im-
plementation respectively (see Section 2.4.3 for a description of index variables
for environment processes). If the communication does not involve reading from
an environment process, then the seed is Spec.a == Impl .c.

The rest of the loop (lines 62-71) computes the postcondition of the two
traces t1 and t2, and appropriately weakens the formula that approximates the
run time state at the end of the two traces.

4.2 Propagating Seeds

The PropagateSeeds algorithm propagates the previously computed seed condi-
tions backward through the specification and implementation programs. The
algorithm maintains a map M from generalized program points to the currently
computed formulas. When a fixed point is reached, the map M is the simulation
relation that is returned.

The algorithm starts by initializing M with the seeds, and adding the seeded
program points to a worklist (lines 91-94). While the worklist is not empty, the
algorithm removes a generalized program point pair (p1, p2) from the list, and
reads into ψ the currently computed formula for that pair. For all traces t1 and
t2 that were found in the previous forward pass (the ComputeSeeds pass), and
that end at p1 and p2, the algorithm computes the weakest precondition of ψ
with respect to the two traces (lines 98-101). The algorithm then appropriately
strengthens the formula stored at the beginning of the two traces using the
computed weakest precondition (lines 102-108). In particular, if the formula δ
stored at the beginning of the two traces does not imply the newly computed
weakest precondition, then the weakest precondition is added as a conjunct to
δ.

The approach of deriving seeds in a forward pass, and then propagating the
seeds in a backward pass using weakest preconditions was inspired by Necula’s
translation validation work [26] for checking the equivalence of two sequential
programs. The intuition behind why such a simple approach works well in
practice is that the control flow of the specification and the implementation are
often similar, and the relation required to show equivalence are usually simple,
involving only linear equalities of variables.

20



85. function PropagateSeeds(
86. Seeds : (GPP × GPP) → Formula,
87. Traces : set [Trace]) : VerificationRelation
88. let M := new map of type GPP × GPP → Formula
89. which returns true for uninitialized entries
90. let worklist := new worklist of GPP × GPP
91. for each (p1, p2) such that Seeds(p1, p2) 6=
92. MissingFormula do

93. M(p1, p2) := Seeds(p1, p2)
94. worklist .Add(p1, p2)
95. while worklist not empty do

96. let (p1, p2) := worklist .Remove
97. let ψ := M(p1, p2)
98. let T1 := set of traces in Traces that end at p1

99. let T2 := set of traces in Traces that end at p2

100. for each t1 ∈ T1, t2 ∈ T2 do

101. let φ := wp(t1,wp(t2, ψ))
102. let fp1 := FirstGPP(t1)
103. let fp2 := FirstGPP(t2)
104. let δ := M(fp1, fp2)
105. if ATP(δ ⇒ φ) 6= Valid then

106. if (fp1, fp2) = (ι1, ι2) then

107. Error(“Start Condition not strong enough”)
108. M(fp1, fp2) := δ ∧ φ
109. worklist .Add(fp1, fp2)
110. return M

Figure 10: Algorithm for propagating seeds

21



time time
Description P T I (PO) (no PO)

min:sec min:sec
1. Simple buffer 7 7 29 00:00 00:00
2. Simple vending machine 2 2 20 00:00 00:00
3. Cyclic scheduler 11 6 65 00:49 01:01
4. Student tracking system 11 3 63 00:01 00:01
5. 1 comm link 13 11 54 00:01 00:01
6. 2 parallel comm links 22 18 105 00:04 01:28
7. 3 parallel comm links 27 25 144 00:21 514:52
8. 4 parallel comm links 32 32 186 01:11 DNT
9. 5 parallel comm links 37 39 228 02:32 DNT
10. 6 parallel comm links 42 46 270 08:29 DNT
11. 7 parallel comm links 47 53 312 37:28 DNT
12. SystemC refinement 8 8 39 00:00 00:00
13. EP2 system 7 3 173 01:47 01:51

Table 1: Refinement examples checked using our tool (P stands for “Number
of Process Description”, T stands for “Number of parallel Threads”, I stands
for “Number of Instructions”, PO stands for “partial order reduction”, DNT
stands for “did not terminate”)

5 Evaluation

To evaluate our algorithm we implemented it using the Simplify theorem
prover [12]. We then wrote a variety of CSP refinements, and checked them
for correctness automatically. The refinements that we checked are shown in
Table 1, along with the number of processes for each example, the number of
parallel threads, the number of instructions, the time required to check each ex-
ample using partial order reduction (PO), and the time required without partial
order reduction (no PO). The first 11 refinements were inspired from examples
that come with the FDR tool [2]. The 6th example in this list, named “2 paral-
lel comm links” is the example presented in Section 2.2. We also implemented
generalizations of these 11 FDR examples to make them data-dependent and op-
erate over infinite domains. We were able to check these generalized refinements
that FDR would not be able to check.

The 12th refinement in the list is a hardware refinement example taken
from a SystemC book [16]. This example models the refinement of an abstract
FIFO communication channel to an implementation that uses a standard FIFO
hardware channel, along with logic to make the hardware channel correctly
implement the abstract communication channel.

In the 13th refinement from Table 1, we checked part of the EP2 system [1],
which is a new industrial standard for electronic payments. We followed the
implementation of the data part of the EP2 system found in a recent TACAS 05

22



paper on CSP-Prover [19]. The EP2 system states how various components,
including service centers, credit card holders, and terminals, interact.

In all of the above examples, since trace subset refinement preserves safety
properties, we can conclude that the implementation has all the safety properties
of the specification.

We also have a large test suite of incorrect refinements that we run our tool
on, to make sure that our tool indeed detects these as incorrect refinements.

Aside from providing refinement guarantees, our tool was also useful in find-
ing subtle bugs in our original implementation of some refinements. For exam-
ple, in the refinement presented in Section 2.2, we originally did not implement
an acknowledgment link, which made the refinement incorrect. In this same
refinement, we also mistakenly used parallel composition || instead of external
choice � in msg sender. Our tool found these mistakes, and we were able to
rectify them.

6 Related Work

As mentioned in the introduction, there has been a long line of work on reason-
ing about refinement of CSP programs. Our relational checking algorithm was
inspired by Josephs’s approach [20] for proving refinements. However, Josephs
proved refinements by hand, whereas our tool is fully automated. Our searching
algorithm through the control state of the program is similar to FDR’s searching
technique [2], which exhaustively explores the state space. However, as men-
tioned previously, our tool can handle infinite state spaces that do not trivially
reduce using skolemization to finite state spaces.

Various interactive theorem provers have been extended with the ability to
reason about CSP programs. As one example, Dutertre and Schneider [13] rea-
soned about communication protocols expressed as CSP programs using the
PVS theorem prover [27]. As another example, Tej and Wolff [35] have used
the Isabelle theorem prover [29] to encode the semantics of CSP programs. Is-
abelle has also been used by Isobe and Roggenbach to develop a tool called
CSP-Prover [19] for proving properties of CSP programs. All these uses of
interactive theorem provers follow a common high-level approach: the seman-
tics of CSP is usually encoded using the native logic of the interactive theorem
prover, and then a set of tactics are defined for reasoning about this semantics.
Users of the system can then write proof scripts that use these tactics, along with
built-in tactics from the theorem prover, to prove properties about particular
CSP programs. Our approach does not have the same level of formal underpin-
nings as these interactive theorem proving approaches. However, our approach
is fully automated, whereas these interactive theorem proving approaches all
require some amount of human intervention.

Our inference algorithm was inspired by Necula’s translation validation
work [26], and bears similarities with Necula’s algorithm for inferring simula-
tion relations that prove equivalence of sequential programs. Necula’s algorithm
collects a set of constraints in a forward scan of the two programs, and then

23



solves these constraints using a specialized solver and expression simplifier. Un-
like Necula’s approach, our algorithm is expressed in terms of calls to a general
theorem prover, rather than using specialized solvers and simplifiers. Our algo-
rithm is also more modular, in the sense that the theorem proving part of the
algorithm has been modularized into a component with a very simple interface
(it takes a formula and returns Valid or Invalid).

7 Conclusion and future work

We have presented an automated algorithm for checking trace refinement of CSP
programs, and have shown that it works on a variety of examples. The work
presented here is only the first step in a broader research plan whose goal is to
check the refinement of SystemC [16] programs. SystemC is a description lan-
guage often used for the specification and refinement-based design of hardware
systems. It is based on C++ and provides mechanisms for expressing concur-
rent communicating processes. To deal with the concurrency aspect of SystemC
programs, we plan to investigate techniques for scaling our current algorithm
beyond the small examples we have tried so far. To deal with the C++ aspect
of SystemC, we plan to investigate ways of adapting techniques from translation
validation of C programs [26] to the SystemC setting. Thus, our hope is that by
combining our techniques with techniques from translation validation, we will
be able to automatically check refinements of SystemC programs.

References

[1] EP2. www.eftpos2000.ch.

[2] Failures-divergence refinement: FDR2 user manual. Formal Systems (Eu-
rope) Ltd., Oxford, England, June 2005.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, July
1997.

[4] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic pred-
icate abstraction of C programs. In Proceedings PLDI 2001, June 2001.

[5] Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL 2004, January 2004.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proceedings of LICS
1990, 1990.

[7] Doran Bustan and Orna Grumberg. Simulation based minimization. In
David A. McAllester, editor, CADE 2000, volume 1831 of LNCS, pages
255–270. Springer Verlag, 2000.

24



[8] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent
software verification with states, events and deadlocks. Formal Aspects of
Computing Journal, 17(4):461–483, December 2005.

[9] S. Chaki, J. Ouaknine, K. Yorav, and E. Clarke. Automated compositional
abstraction refinement for concurrent C programs: A two-level approach.
In Proceedings of SoftMC, volume 89 of ENTCS, 2003.

[10] Edmund M. Clarke, Orna Grumberg, and David E. Long. Verification
tools for finite-state concurrent systems. In A Decade of Concurrency,
Reflections and Perspectives, volume 803 of LNCS. Springer Verlag, 1994.

[11] C.N. Ip and D.L. Dill. Better verification through symmetry. In D. Agnew,
L. Claesen, and R. Camposano, editors, Computer Hardware Description
Languages and their Applications, pages 87–100, Ottawa, Canada, 1993.
Elsevier Science Publishers B.V., Amsterdam, Netherland.

[12] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Journal of the Association for Computing Machinery,
52(3):365–473, May 2005.

[13] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to ver-
ify authentication protocols. In TPHOL 97, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1997.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI 2002, June 2002.

[15] Susanne Graf and Hassen Saidi. Construction of abstract state graphs of
infinite systems with PVS. In CAV 97, June 1997.

[16] T. Grötker. System Design with SystemC. Kluwer Academic Publishers,
2002.

[17] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In POPL 2002, January 2002.

[18] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Inter-
national, 1985.

[19] Yoshinao Isobe and Markus Roggenbach. A generic theorem prover of CSP
refinement. In TACAS ’05, volume 1503 of Lecture Notes in Computer
Science (LNCS), pages 103–123. Springer-Verlag, April 2005.

[20] Mark B. Josephs. A state-based approach to communicating processes.
Distributed Computing, 3(1):9–18, March 1988.

[21] Moshe Y. Vardi Kathi Fisler. Bisimulation and model checking. In Proceed-
ings of the 10th Conference on Correct Hardware Design and Verification
Methods, Bad Herrenalb Germany CA, September 1999.

25



[22] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen.
Proving correctness of compiler optimizations by temporal logic. In POPL
2002, January 2002.

[23] K. L. McMillan. A compositional rule for hardware design. In CAV 97,
1997.

[24] K. L. McMillan. Verification of an implementation of tomasulos algorithm
by compositional model checking. In CAV 98, 1998.

[25] K. L. McMillan. A methodology for hardware verification using composi-
tional model checking. Sci. Comput. Program., 37(1-3):279–309, 2000.

[26] George C. Necula. Translation validation for an optimizing compiler. In
PLDI 2000, June 2000.

[27] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. In CADE 92. Springer-Verlag, 1992.

[28] Samir Palnitkar. Verilog HDL. Prentice Hall PTR, 2003.

[29] L. C. Paulson. Isabelle: A generic theorem prover, volume 828 of Lecure
Notes in Computer Science. Springer Verlag, 1994.

[30] Volnei A. Pedroni. Circuit Design with VHDL. MIT Press, 2004.

[31] D. Peled. Ten years of partial order reduction. In CAV 98, June 1998.

[32] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS
’98, volume 1384 of Lecture Notes in Computer Science, pages 151–166,
1998.

[33] A. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[34] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood. Hierarchical compression for model-
checking CSP or how to check 1020 dining philosophers for deadlock. In
TACAS ’95, 1995.

[35] H. Tej and B.Wolff. A corrected failure-divergence model for CSP in Is-
abelle/HOL. In FME 97, 1997.

26




