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We extend the calculation of dark matter direct detection rates via electronic transitions in general
dielectric crystal targets, combining state-of-the-art density functional theory calculations of electronic
band structures and wave functions near the band gap, with semianalytic approximations to include
additional states farther away from the band gap. We show, in particular, the importance of all-electron
reconstruction for recovering large momentum components of electronic wave functions, which, together
with the inclusion of additional states, has a significant impact on direct detection rates, especially for
heavy mediator models and atOð10 eVÞ and higher energy depositions. Applying our framework to silicon
and germanium (that have been established already as sensitive dark matter detectors), we find that our
extended calculations can appreciably change the detection prospects. Our calculational framework is
implemented in an open-source program EXCEED-DM (Extended Calculation of Electronic Excitations for
Direct detection of Dark Matter), to be released in an upcoming publication.

DOI: 10.1103/PhysRevD.104.095015

I. INTRODUCTION

Electronic excitations have been established as an alter-
native to nuclear recoils in direct detection of sub-GeV dark
matter (DM). Nuclear recoil searches lose sensitivity at
lower DM masses due to kinematic mismatch between the
DM and heavier nuclei, whereas electronic transitions can
potentially extract all of the DM kinetic energy during a
DM-electron scattering event by excitation across an
energy gap. Proposed targets, including noble gas atoms
with Oð10 eVÞ ionization energies [1–8], semiconductors
with OðeVÞ electronic band gaps [1–3,9–18], and super-
conductors and Dirac materials with OðmeVÞ band gaps
[19–25], extend the reach on DMmass well below the limit
of nuclear recoil. Experimental searches using dielectric
crystal targets are currently underway, specifically with Si
(DAMIC [26–28], SENSEI [29–32], SuperCDMS [33–39])
and Ge (EDELWEISS [40–42], as well as SuperCDMS)
which have been predicted to have excellent sensitivity
down to OðMeVÞ DM masses based on their OðeVÞ band
gaps.
Reliable theoretical predictions of target-specific tran-

sition rates are important not only for current experiments,

but also for planning the next generation of detectors.
Compared to the DM-induced electron ionization rate in
noble gases like xenon [1–8], calculations for the DM-
electron scattering rate in a crystal are more complicated.
Ionization rates for noble gases can be calculated by
considering each noble gas atom as an individual target,
where the calculation simplifies to finding the ionization
rate from an isolated atom, for which the wave functions
and energy levels are well tabulated [43]. However, for
crystal targets the atoms are not isolated and more involved
techniques are required to obtain an accurate characteri-
zation of DM-electron interactions in a many-body system.
There have been a variety of approaches taken to

compute the DM-electron scattering rate in crystals. One
of the first attempts, Ref. [2], computed the rate with
semianalytic approximations for the initial and final state
wave functions, and used the density of states to incorpo-
rate the electronic band structure. Later, Ref. [3] continued
in this direction and used improved semianalytic approx-
imations for the initial state wave functions. Meanwhile, a
fully numerical approach was advanced in Refs. [1,10,11]
where density functional theory (DFT) was employed to
calculate the valence and conduction electronic band
structures and wave functions. The latter approach, as
implemented in the QEdark program and embedded in the
Quantum ESPRESSO package [44–46], has become the stan-
dard for first-principles calculations of DM detection rates.
Recently, in Refs. [15,16] we used a similar DFT approach
as implemented in our own program for a study of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 095015 (2021)
Editors' Suggestion

2470-0010=2021=104(9)=095015(22) 095015-1 Published by the American Physical Society

https://orcid.org/0000-0002-3117-3188
https://orcid.org/0000-0003-1371-4988
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.095015&domain=pdf&date_stamp=2021-11-17
https://doi.org/10.1103/PhysRevD.104.095015
https://doi.org/10.1103/PhysRevD.104.095015
https://doi.org/10.1103/PhysRevD.104.095015
https://doi.org/10.1103/PhysRevD.104.095015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


DM-electron scattering in a variety of target materials.
More recently there has been work utilizing the relation
between the dielectric function and the spin-independent
scattering rate [47–49], which also properly incorporates
screening effects.
The goal of this work is to further extend the DM-

electron scattering calculation in several key aspects, and
present state-of-the-art predictions for Si and Ge detectors
using a combination of DFT and semianalytic methods.
As we will elaborate on shortly, the time- and resource-
consuming nature of DFT calculations presents an intrinsic
difficulty that has limited the scope of previous work in this
direction to a restricted region of phase space; typically
only bands within a few tens of eV above and below the
band gap were included and electronic wave functions were
cut off at a finite momentum. We overcome this difficulty
by implementing all-electron (AE) reconstruction (whose
importance was previously emphasized in Ref. [50]) to
recover higher momentum components of DFT-computed
wave functions, and by extending the calculation to bands
farther away from the band gap using semianalytic approx-
imations along the lines of Refs. [2,3]. As we will see, the
new contributions computed here have a significant impact
on detection prospects in cases where higher energy and/or
momentum regions of phase space dominate the rate,
including scattering via a heavy mediator, and experiments
with Oð10 eVÞ or higher energy thresholds. We also stress
that in contrast to the recent work emphasizing the relation
between spin-independent DM-electron scattering rates and
the dielectric function [47–49], our calculation can be
straightforwardly extended to DM models beyond the
standard spin-independent coupling. Furthermore, we do

not make assumptions about isotropy for the majority of
our calculation, and our framework is capable of treating
anisotropic targets which exhibit smoking-gun daily modu-
lation signatures [15,23,24] (see also Refs. [51,52] for
discussions of daily modulation for phonon excitations).
Our calculation is implemented in an open-source pro-

gram EXCEED-DM (EXtended Calculation of Electronic
Excitations for Direct detection of Dark Matter), to be
released in an upcoming publication. Currently a beta
version of the program is available here [53]. We also
make available our DFT-computed wave functions [54] and
the output of EXCEED-DM [55] for Si and Ge.

A. Overview of the calculation and key results

Before delving into the technical details, let us give a
brief overview of the calculation and highlight some key
results. We divide the electronic states in a (pure) crystal
into four categories: core, valence, conduction and free, as
illustrated in Fig. 1 for Si and Ge and discussed in more
detail in Sec. II. At zero temperature, electrons occupy
states up to the Fermi energy, defined as the maximum of
the valence bands and denoted by E ¼ 0. The band gap Eg,
i.e., the energy gap between the occupied valence bands
and unoccupied conduction bands, is typically OðeVÞ for
semiconductors, e.g., 1.11 eV for Si and 0.67 eV for Ge;
this sets a lower limit on the energy deposition needed for
an electron transition to happen.
The electronic states near the band gap deviate signifi-

cantly from atomic orbitals and need to be computed
numerically. We apply DFT methods (including AE
reconstruction) for this calculation, and refer to the DFT-
computed states as valence and conduction. Specifically,

FIG. 1. Schematic representation of electronic states in Si (left) and Ge (right), divided into core, valence (“val”), conduction (“cond”)
and free. Shaded regions indicate the range of energies for each type of electronic states. In a scattering process, electrons transition
from either core or valence states, below the Fermi surface at E ¼ 0, to conduction or free states above the band gap Eg. As outlined in
Sec. I A and explained in detail in Sec. II, we compute the valence and conduction states numerically using DFT (including all-electron
reconstruction), model the core states semianalytically with RHF wave functions, and treat the free states as plane waves.
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for both Si and Ge, we take the first four bands below the
gap to be valence, which span an energy range of −12 eV
to 0 and −14 eV to 0, respectively, and take bands above
the gap up to Edft ¼ 60 eV to be conduction.
With more computing power we can in principle include

more states, both below and above the band gap, in the DFT
calculation. However, since the states far from the band gap
can be modeled semianalytically with reasonable accuracy,
computing them with DFT is inefficient. Below the valence
bands, electrons are tightly bound to the atomic nuclei. We
model them using semianalytic atomic wave functions and
refer to them as core states. These include the 1s, 2s, 2p
states in Si and 1s, 2s, 2p, 3s, 3p, 3d states in Ge (the 3d
states in Ge are sometimes referred to as semicore, and we
will compare the DFT and semianalytic treatment of them
in Secs. II B and III C). Finally, above Edft ¼ 60 eV, we
model the states as free electrons as they are less perturbed
by the crystal environment.
With the electronic states modeled this way, we compute

the rate for valence to conduction (v → c), valence to free
(v → f), core to conduction (c → c) and core to free
(c → f) transitions induced by DM scattering, as discussed
in detail in Sec. III. The total rate is the sum of all four
contributions. We then use our calculation to update the
projected reach of direct detection experiments in Sec. IV,
and compare our results with previous literature.
Figure 2 gives a glimpse of some of our key results. Here

we consider the case ofDMscatteringvia a heavymediator in
a Ge target. The impact of core (3d) to conduction con-
tributions is clearly visible from both the differential rate (left
panel, for mχ ¼ 1 GeV) and the projected reach (right
panel). They dominate the total rate for mχ ≳ 10 MeV,
and, as we can see from the right panel of Fig. 2, lead to
significantly more optimistic reach compared to previous
DFT calculations implemented in QEdark [10,11]; this is

especially true for higher detector thresholds (corresponding
to higher Q values). Note that while Refs. [10,11] included
the 3d states in their DFT calculation, their contributions
were significantly underestimated due to the absence of AE
reconstruction. The importance of AE reconstruction is also
seen from thevalence to conductiondifferential rate in the left
panel of Fig. 2, where our calculation predicts a much higher
rate at ω≳ 15 eV compared to the QEdark calculation in
Ref. [11]. Meanwhile, accounting for in-medium screening
(see Sec. III E) we find, consistentwithRef. [48], a lower rate
at energy depositions just above the band gap, and as a result,
weaker reach at low mχ, compared to Refs. [10,11]. On the
other hand, our modeling of the core (3d) states is similar to
the semianalytic approach of Ref. [3], and indeed we find
very similar reach at large mχ ; however, the approach of
Ref. [3] overestimates the rate at smaller mχ due to reduced
accuracy in the modeling of the valence and conduction
states. We reserve a more detailed comparison with the
literature for Sec. IVA.

II. ELECTRONIC STATES

To compute the DM-electron scattering rate one must
understand the electronic states of the target. In targets with
a periodic potential, Bloch’s theorem states that the energy
eigenstates can be indexed by a momentum, k, which lies
within the first Brillouin zone (1BZ). These Bloch states,
ψ i;k, where i represents additional quantum numbers, are
eigenstates of the discrete translation operator such that
ψ i;kðxþ rÞ ¼ eik·rψ i;kðxÞ, which means the electronic
wave functions can be written as

ψ i;kðxÞ ¼
1ffiffiffiffi
V

p eik·xui;kðxÞ; ð2:1Þ

FIG. 2. Selection of results from Sec. IV, for DM-electron scattering via a heavy mediator in a Ge target. Left: contribution from each
of the four transition types, valence to conduction (v → c), valence to free (v → f), core to conduction (c → c), and core to free (c → f)
to the scattering rate binned in energy deposition (with Δω ¼ 1 eV) for a 1 GeV DM at a given reference cross section σ̄e ¼ 10−40 cm2.
Right: 95% C.L. projected limit (3 events) on σ̄e assuming 1 kg-year exposure, for energy thresholds corresponding to 1 and 5 electron-
hole pairs. We compare our results with QEdark calculations in Refs. [10,11] and the semianalytic model of Lee et al. [3]; see text for
details.

EXTENDED CALCULATION OF DARK MATTER-ELECTRON … PHYS. REV. D 104, 095015 (2021)

095015-3



where ui;kðxþ rÞ ¼ ui;kðxÞ and V is the target volume.
For every k there exists a tower of eigenstates (labeled by i)
of the target Hamiltonian which constitutes the complete
set of states in the target. Unfortunately this complete set is
not known for a general material and therefore a combi-
nation of approximations must be used to calculate them.
As discussed in Sec. I A and illustrated in Fig. 1, we divide
the states into core, valence, conduction and free, and use a
combination of numerical calculations and semianalytic
modeling. In this section, we expand on the treatment of
each type of electronic states.
We first discuss the DFT calculation for valence and

conduction states in Sec. II A, and then move on to explain
the semianalytic treatment of core states in Sec. II B. Our
main results are contained in Fig. 3 where we compare the
average magnitude of electronic wave functions, binned in
momentum [see Eq. (2.7)], computed with and without AE
reconstruction, discussed further in Sec. II A 1, and, for the
highest energy core states (2p in Si and 3d in Ge), those
computed using the core approximation discussed in
Sec. II B. We find that the AE reconstruction includes a
significant contribution from wave functions at large

momentum as expected, and that for the core states, the
semianalytic approach reproduces the large momentum
components of these AE reconstructed DFT wave func-
tions. Lastly we will discuss the analytic treatment of the
free states in Sec. II C.

A. DFT wave functions and band structures

In principle, DFT provides an exact solution to the many-
electron Schrödinger equation by the Hohenberg-Kohn
theorems that treat all properties of a quantum many-body
system as unique functionals of theground state density. They
further show that the exact ground state density and energy
can be found by minimizing the total energy of the system
[56,57]. This becomes tractable by the Kohn-Sham (KS)
equations that reduce the many-body problem to noninteract-
ing electrons moving in an effective potential, Veff ,

�
p2

2me
þ Veff − ϵi

�
ψ i ¼ 0; Veff ¼ Vext þ VH þ Vxc;

ð2:2Þ

FIG. 3. Comparison of the Bloch wave function magnitudes, defined in Eq. (2.7), computed with DFT with (red, “AE”) and without
(blue, “no AE”) AE reconstruction, and the semianalytic core approximation of Eq. (2.9) (green, “core”). Shaded bands indicate the
maximum and minimum values across all the bands belonging to the state type indicated in the upper right corner of each panel. AE
reconstruction, discussed in Sec. II A 1, recovers the large momentum behavior of the electronic wave functions. Core electronic states,
such as those shown in the right panels and discussed in Sec. II B, can be well modeled semianalytically with atomic wave functions, as
seen by the good agreement between the “core” and “AE” curves. When applicable, the semianalytic parametrization is advantageous
since the electronic wave functions are then known to arbitrarily large momentum.
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where ϵi is the orbital energy of the KS orbital ψ i [58]. The
external potential Vext and Hartree potential VH, are known,
while the exchange-correlation (xc) potential Vxc, which
contains the many-body interactions, must be approximated.
Herein lies the deviation from the exact solution, and although
various formulations of xc-energy functionals have been
successful, the choice of xc-functional will affect the pre-
dicted electronic states and hence calculated transition rates.
For Si, we use PBE [59], a type of generalized gradient
approximation (GGA) xc-functional which is one of the most
popular and low-cost choices. Local and semilocal based xc-
functionals, such as PBE, suffer from a self-interaction error
and band gap underestimation, which we modify with a
“scissor correction” where the bands are shifted to match the
experimentally determined values of band gap. For Ge, this
underestimation results in zero band gap with PBE, therefore
we instead use a hybrid functional, which mixes a para-
meterized amount of exact exchange into the xc-functional,
correcting band gaps and bandwidths by error cancellation at
the cost of increased computation time. We use the range-
separated hybrid functional HSE06 [60,61], which applies a
screened Coulomb potential to correct the long-range behav-
ior of the xc-potential, giving high accuracy at a midlevel
computational cost. Our computed band structures for Si and
Ge are shown in Fig. 4.
The periodic Bloch wave functions, ui;kðxÞ, Eq. (2.1),

for band i and Bloch wave vector k are computed by
finding the Fourier coefficients, ũi;k;G (which satisfy the
normalization condition,

P
G jũi;k;Gj2 ¼ 1):

ui;kðxÞ ¼
X
G

ũi;k;GeiG·x: ð2:3Þ

The number of reciprocal lattice vectors G kept in the sum
is conventionally set by an energy cutoff, Ecut, such that
jkþGj2 < 2meEcut. These Bloch wave function coeffi-
cients ũi;k;G for both Si and Ge are computed with the
projector augmented wave (PAW) method [62,63] within

VASP [64–67] up to Ecut ¼ 1 keV on a 10 × 10 × 10
uniform k mesh over the 1BZ. We then include AE
reconstruction effects up to a higher energy cutoff,
EAE ¼ 2 keV, which recovers higher momentum compo-
nents of the wave functions up to jkþGj2 < 2meEAE, as
discussed in more detail in Sec. II A 1. The Bloch wave
function coefficients, ũi;k;G, for Si and Ge used for this
work can be found here [54].
A final consideration of using DFTwave functions is that

DFT is fundamentally a ground state method, and the KS
conduction band states are only approximations to excited
states. Excited state methodologies are much more com-
putationally expensive than ground state KS-DFT.
Furthermore, since excited state quasiparticles, such as
excitons, have been argued to have a negligible effect on
the calculation of DM scattering rates [11], they are
neglected in our calculations.

1. All-electron reconstruction

There are many different approaches to find the eigen-
states of Eq. (2.2). The PAW method [62] is one such
standard approach. The main idea of the PAW method is to
split up the calculation of the eigenstates: near the ionic
centers the wave functions resemble the eigenstates of an
isolated atom, while further away they can be computed
numerically with a pseudopotential. This greatly simplifies
the numeric calculation since the focus is then on large
distance (small momentum), and the small distance (high
momentum) pieces can be self-consistently reintroduced
after the main part of the DFT calculation. The large
distance components of the wave function are known as
“pseudo wave functions” (PS wave functions) and the total
wave functions are known as the “all-electron wave
functions” (AE wave functions), indicating that all of the
wave function components are included. We will now
give a brief overview of how the AE wave functions can
be reconstructed from the PS wave functions, computed

FIG. 4. Calculated band structures of Si (left) using a PBE xc-functional within DFT and Ge (right) using a hybrid functional HSE06.
The band gaps have been scissor corrected to their measured values near zero temperature, 1.11 eV and 0.67 eV for Si and Ge,
respectively. The Fermi level is set to 0 eV in both panels.
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with PAW-based DFT codes, and refer the reader to
Refs. [62,63,68,69] for more detailed information.1

The AE wave functions, jΨAEi are built from two
components. Near the ionic core, or inside an “augmenta-
tion sphere,” jΨAEi is expanded in a set of basis functions,
jϕAE

j i, which are simply taken to be the wave functions of
an isolated atom,

jΨAEi ¼
X
j

cjjϕAE
j i: ð2:4Þ

Outside of the augmentation sphere, jΨAEi ¼ jΨPSi. Near
the ionic core the PS wave functions jΨPSi are expanded in
a set of basis functions jϕPS

j i that are computationally more
convenient than the jϕAE

j i. Therefore,

jΨAEi ¼ jΨPSi −
X
j

c0jjϕPS
j i þ

X
j

cjjϕAE
j i; ð2:5Þ

which simply replaces the components in jΨPSi within
the augmentation sphere with the AE wave function.
To find the c coefficients we insert an identity,
1 ¼ P

j jϕAE
j ihpAE

j j ¼ P
j jϕPS

j ihpPS
j j, where jpAE=PS

j i are
projector functions, defined to satisfy this identity within
the augmentation sphere. Therefore, cj ¼ hpAE

j jΨAEi,
c0j ¼ hpPS

j jΨPSi. The last ingredient to compute jΨAEi
from jΨPSi is to require that jϕAE

j i is related to jϕPS
j i via

a transformation, jϕAEi ¼ T jϕPSi. This implies that all
the PS states are related to AE states by this transforma-
tion T , such that cj ¼ c0j and the AE reconstruction can be
written as

jΨAEi ¼ jΨPSi þ
X
j

ðjϕAE
j i − jϕPS

j iÞhpPS
j jΨPSi: ð2:6Þ

In practice, we implement the AE reconstruction with
pawpyseed [69], and the plane wave expansion cutoff of
jΨAEi, EAE, can be increased from the initial Ecut. We
use EAE ¼ 2 keV.
To visualize the effect of AE reconstruction, we plot in

Fig. 3 the average magnitude of the Bloch wave functions,
binned in q,

hjũij2iðq;ΔqÞ≡ 1

Nq

X
k

X
G

jũi;k;Gj2θðqþ Δq − jkþGjÞ

× θðjkþGj − qÞ; ð2:7Þ
where ũi;k;G are the Fourier components of the Bloch wave
functions, defined in Eq. (2.3). Each bin in momentum

space extends from q to qþ Δq with Δq ¼ 1 keV, and Nq

is a normalization factor equal to the number of points in a
bin, Nq ¼

P
k

P
G θðqþ Δq − jkþGjÞθðjkþGj − qÞ.

We see that AE reconstruction recovers the high momen-
tum components, which as we will see can significantly
affect the DM-induced transition rate for processes which
favor large momentum transfers (such as processes medi-
ated by heavy particles), or processes limited to larger ω
(e.g., higher experimental thresholds where large q proc-
esses are the only kinematically allowed transitions).
Previous DFT calculations of DM-induced electron tran-
sition rates, with the exceptions of Refs. [15,16,50], used
only the pseudo wave functions, jΨPSi as opposed to the
AE wave functions, jΨAEi, and have therefore underesti-
mated detection rates in several cases.

B. Atomic wave functions

If one could reconstruct the AE wave functions arbi-
trarily deep into the band structure, and to arbitrarily high
momentum, one could calculate an accurate representation
of the complete set of electronic states with a DFT
calculation. In practice, however, this is neither feasible
nor necessary. States deep in the band structure are more
isolated from the influence of the crystal environment,
and so an isolated atomic approximation becomes valid.
We refer to these inner, tightly bound electrons as core
electrons. In Si, we will show that the 2p states and below
can be treated as core, while in Ge, the 3d states and below
can, as alluded to in Fig. 1. The purpose of this subsection
is to expand on the atomic approximation for core electrons
and discuss its accuracy.
More precisely, the initial states of a transition should be

taken as a linear combination of isolated atomic wave
functions that is in Bloch form (known as Wannier states):

ψκnlm;kðxÞ ¼
1ffiffiffiffi
N

p
X
r

eik·ðrþxκÞψ atom
κnlmðx − r − xκÞ; ð2:8Þ

where κ labels the atom in the primitive cell, n, l, m are the
standard atomic quantum numbers, xκ is the equilibrium
position of the κth atom,

P
r sums over all primitive cells in

the lattice, and N is the total number of cells. In contrast to
the valence and conduction states discussed in the previous
subsection, the core states are labeled by ðκnlmÞ rather than
band index i. The corresponding periodic (dimensionless) u
functions can be easily obtained via Eq. (2.1):

uκnlm;kðxÞ ¼
ffiffiffiffi
Ω

p X
r

e−ik·ðx−r−xκÞψ atom
κnlmðx− r− xκÞ; ð2:9Þ

where Ω ¼ V=N is the primitive cell volume.
In general, the atomic wave functions ψ atom

κnlm are not
known analytically, but are expanded in a basis of well-
motivated analytic functions. The basis coefficients are then
fit by solving the isolated atomic Hamiltonian, giving a

1It is possible to calculate all electronic eigenstates, including
the core, self-consistently by other more complex methods such
as the full-potential linearized augmented plane wave (FP-
LAPW) method or the relaxed-core PAW (RC-PAW) method.
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semianalytic expression for ψ atom
κnlm. We use a basis of

Slater type orbital (STO) wave functions whose radial
component is

RSTOðr;Z; nÞ ¼ a−3=20

ð2ZÞnþ1
2ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
�
r
a0

�
n−1

e−Zr=a0 ; ð2:10Þ

where a0 ¼ 0.53 Å ¼ ð3.7 keVÞ−1 is the Bohr radius, and
Z is an effective charge of the ionic potential. Including the
angular part, the atomic wave functions are then

ψ atom
κnlmðxÞ ¼

X
j

Cjln;κRSTOðx;Zjl;κ; njl;κÞYm
l ðx̂Þ; ð2:11Þ

where Cjln;κ; Zjl;κ; njl;κ are tabulated in Ref. [43], and
Ym
l ðx̂Þ are the spherical harmonics with the Condon-

Shortley phase convention [70].
To assess the accuracy of the atomic wave function

approximation, we temporarily push the DFT calculation
beyond its default regime (valence and conduction), to the
highest core states—2p states in Si and 3d states in Ge,
where it is still computationally feasible—and compare the
numerical wave functions to the semianalytic ones dis-
cussed above. The results, in terms of the average magni-
tude of Bloch wave functions defined in Eq. (2.7), are
shown in the right panels of Fig. 3.2 We see that the atomic
approximation accurately reproduces the numerical wave
functions up to the momentum cutoff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEAE

p
≃ 50 keV

for EAE ¼ 2 keV. These plots also show the limitation of
DFT calculations. While AE reconstruction recovers
higher-momentum components of electronic wave func-
tions, it is not feasible to expand the plane wave basis set to
arbitrarily high cutoff. However, having verified the atomic
approximation for the highest core states, we can use it for
all core states with confidence, allowing us to more easily
include the high momentum components beyond the DFT
cutoff.

C. Plane wave approximation

With the inclusion of the semianalytic core states, all of the
states below the band gap have been modeled. States above
the band gap can also be computed with DFT methods, as
described in Sec. II A. Similar to valence bands, there are
practical limitations to how many conduction bands can be
included. To remedy this in the simplest way possible, we
model states far above the band gap as plane waves,

ψG;kðxÞ ¼
1ffiffiffiffi
V

p eiðkþGÞ·x; EG;k ¼ jkþGj2
2me

; ð2:12Þ

whereG is a reciprocal lattice vector, and plays the role of a
band index. (To understand this, simply note that every
momentum can be decomposed into a k vector inside the
1BZ and a reciprocal lattice vector. Integrating over the
momentum of plane wave states amounts to a k integral
within the 1BZ and aG sum.) From Eq. (2.1) we see that the
corresponding periodic u functions are simply

uG;kðxÞ ¼ eiG·x: ð2:13Þ
The plane wave approximation is often used in atomic
ionization rate calculations, with the inclusion of a Fermi
factor, FðνÞ,

FðνÞ ¼ ν

1 − e−ν
; νðZeff ; EÞ ¼ 2πZeff

αmeffiffiffiffiffiffiffiffiffiffiffiffi
2meE

p ; ð2:14Þ

where E is the final state electron energy, and Zeff is an
effective charge parameter, which enhances the transition
rate at low E to account for the long range behavior of the
Coulomb potential. See Refs. [1–3,6] for more details. In
atomic ionization calculations one usually takes Zeff to be
related to the binding energy of the initial state, EB,

Zeff ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB

13.6 eV

r
; ð2:15Þ

where n is the principal quantum number. Since the rate is
proportional to the Fermi factor, Zeff ¼ 1 is seen as the
conservative choice. Later in Secs. III B and III D we
quantify how much of an effect this has on the transition
rate. This uncertainty is only important for very high
experimental thresholds, and generally we find that Zeff ¼
1 leads to a smoother match (within an Oð1Þ factor) to
conduction band contributions from DFT calculations.

III. ELECTRONIC TRANSITION RATES

We now present the DM-induced electron transition rate
calculation. We begin with a general discussion and then in
Secs. III A-III D consider the four different transition types
in turn: valence to conduction (v → c), valence to free
(v → f), core to conduction (c → c) and core to free
(c → f). Finally, in Sec. III E we discuss the treatment of
in-medium screening.
The general derivation has been discussed previously

(see, e.g., Refs. [2,5,10,15,50]), and we repeat it here for
completeness and clarity, as a variety of conventions have
been used. Beginning with Fermi’s golden rule, the
transition rate between electronic states ji; si and jf; s0i
due to scattering with an incoming nonrelativistic DM
particle, χ, with mass mχ , velocity v, and spin σ is given by

Γi;s;σ→f;s0;σ0 ðvÞ ¼ 2πV
Z

d3q
ð2πÞ3 jhp

0; σ0; f; s0jδĤjp; σ; i; sij2

× δðEf;s0 − Ei;s − ωqÞ; ð3:1Þ

2The flatness of band structures offers a complementary check
of the validity of the atomic approximation. We have verified that
the DFT computed energy eigenvalues indeed have a small
variance for the highest core states, as expected.
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where jp; σ; i; si ¼ jp; σi ⊗ ji; si, q is the momentum
deposited onto the target, p ¼ mχv, p0 ¼ p − q, δĤ is
the interaction Hamiltonian, V is total volume of the target,
and ωq is the energy deposition:

ωq ¼ 1

2
mχv2 −

ðmχv − qÞ2
2mχ

¼ q · v −
q2

2mχ
: ð3:2Þ

We assume that all quantum states are unit normalized.
Modulo in-medium screening effects, discussed below
in Sec. III E, we can write Eq. (3.1) in terms of the
standard QFT matrix element, defined with plane
wave incoming and outgoing states, by inserting 1 ¼
V
P

s

R
d3k
ð2πÞ3 jk; sihk; sj and using

hp0; σ0;k0; s0jδĤjp; σ;k; si≡ ð2πÞ3
V2

Mσ0s0σsðp0;k0;p;kÞ
4memχ

δð3Þðp0 þ k0 − p − kÞ: ð3:3Þ

We find

Γi;s;σ→f;s0;σ0 ðvÞ ¼
2π

16Vm2
em2

χ

Z
d3q
ð2πÞ3 δðEf;s0 − Ei;s − ωqÞ

����
Z

d3k
ð2πÞ3 Mσ0s0σsðp − q;kþ q;p;kÞψ̃�

fðkþ qÞψ̃ iðkÞ
����
2

; ð3:4Þ

where ψ̃ iðkÞ ¼
ffiffiffiffi
V

p hkjii.
We will limit our analysis to matrix elements which only depend on q, and assume that the electron energy levels are also

spin independent, which allows the spin sums to be easily computed:

Γ̄i→f ≡ 1

2

X
σ;σ0

X
s;s0

Γi;s;σ→f;s0;σ0 ¼
4π

16Vm2
em2

χ

Z
d3q
ð2πÞ3 jMðqÞj2jfi→fj2δðEf − Ei − ωqÞ; ð3:5Þ

fi→f ≡
Z

d3k
ð2πÞ3 ψ̃

�
fðkþ qÞψ̃ iðkÞ ¼

Z
d3xeiq·xψ�

fðxÞψ iðxÞ; ð3:6Þ

where jMj2 is the spin averaged matrix element squared
and we have defined a crystal form factor fi→f, written in
terms of both momentum and position space representa-
tions of the wave functions.
The transition rate per target mass, Ri→f, is then given by

Ri→f ¼ 1

ρT

ρχ
mχ

Z
d3vfχðvÞΓ̄i→f; ð3:7Þ

where ρT is the target density, ρχ ¼ 0.4 GeV=cm3 is the
local DM density, and fχ is taken to be a boosted Maxwell-
Boltzmann distribution. The total rate, R, is then simply the
sum over all possible transitions from initial to final states.
Since the only v dependence in Eq. (3.7) comes from
the energy conserving delta function, we perform the v
integral first and define gðq;ωÞ ¼ 2π

R
d3vfχðvÞδðω−ωqÞ.

This integral can be evaluated analytically (see, e.g.,
Refs. [15,23,52]):

gðq;ωÞ ¼ 2π2v20
N0

1

q
ðe−v2−=v20 − e−v

2
esc=v20Þ; ð3:8Þ

v− ¼ min

�
1

q

����ωþ q2

2mχ
þ q · ve

����; vesc
�
; ð3:9Þ

where ω ¼ Ef − Ei is the deposited energy, and N0 is a
normalization factor such that

R
d3vfχðvÞ ¼ 1. We take the

DM velocity distribution parameters to be v0 ¼ 230 km=s,
vesc ¼ 600 km=s, and ve ¼ 240 km=s. The total rate then
becomes

R ¼ 2

16Vm2
em3

χ

ρχ
ρT

X
i;f

Z
d3q
ð2πÞ3 jMðqÞj2 gðq;ωÞjfi→fðqÞj2:

ð3:10Þ

Herewe focus on simple DMmodels, such as the kinetically
mixed dark photon or leptophilic scalar mediator models.
In these models MðqÞ can be factorized as MðqÞ ¼
Mðq0ÞFmedðq0=qÞðfe=f0eÞ, where Fmedðq0=qÞ ¼ 1 for a
heavy mediator and Fmedðq0=qÞ ¼ ðq0=qÞ2 for a light
mediator, and fe=f0e is a screening factor discussed in more
detail in Sec. III E. As in previous works, we choose the
reference momentum transfer to be q0 ¼ αme. We can then
finally write the rate in terms of a reference cross section,

σ̄e ¼
μ2χe

16πm2
χm2

e
jMðq0Þj2; ð3:11Þ

and find
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R¼ 2πσ̄e
Vμ2χemχ

ρχ
ρT

X
i;f

Z
d3q
ð2πÞ3

�
fe
f0e

�
2

F 2
med gðq;ωÞjfi→fðqÞj2:

ð3:12Þ
Another useful quantity is the binned rate (the rate for energy
deposition between ω and ωþ Δω), ΔRω, defined as

ΔRω ¼ 2πσ̄e
Vμ2χemχ

ρχ
ρT

X
i;f

θðωþΔω−Ef þEiÞθðω−Ef þEiÞ

×
Z

d3q
ð2πÞ3

�
fe
f0e

�
2

F 2
med gðq;ωÞjfi→fðqÞj2: ð3:13Þ

A. Valence to conduction

We begin with valence to conduction band transitions.
The initial (final) states are indexed by band number, iðfÞ,
and Bloch momentum, kiðkfÞ inside the 1BZ. The wave
functions in Eq. (2.1) can be substituted into the crystal
form factor in Eq. (3.6),

fi;ki→f;kf
¼ 1

V

Z
d3xeiðki−kfþqÞ·xu�f;kf

ðxÞui;ki
ðxÞ

¼
X
G

δq;kf−kiþG
1

Ω

Z
cell

d3 xeiG·x u�f;kf
ðxÞui;ki

ðxÞ;

ð3:14Þ
where the integral is over the primitive cell with volume Ω,
and we have used the identity

P
r e

iq·r ¼ N
P

G δq;G. The
total rate in Eq. (3.12) is then

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρT

XNv

i¼1

XNc

f¼1

Z
1BZ

d3ki
ð2πÞ3

d3kf
ð2πÞ3

×
X
G

�
fe
f0e

�
2

F 2
med gðq;ωÞ

×

���� 1Ω
Z
cell

d3 x eiG·x u�f;kf
ðxÞui;ki

ðxÞ
����
2

; ð3:15Þ

where q ¼ kf − ki þG, NvðcÞ is the number of valence
(conduction) bands. This is identical to the rate for-
mulas derived in [10,15,16] but written in terms of the
periodic Bloch functions, ui;kðxÞ, instead of their Fourier
transformed components, ũi;k;G, similar to Ref. [50].
Numerically the position space form is superior since
the integral over the primitive cell can be computed by
fast Fourier transform. This reduces the computational
complexity from OðN2

GÞ to OðNG log NGÞ, where NG is
the number of G points, i.e., the number of Fourier
components in the expansion of ũi;k in Eq. (2.3).
In Fig. 5 we show the scattering rate from valence to

conduction transitions binned in energy deposition, defined
in Eq. (3.13), for a 1 GeV DM. The main difference

between the calculation performed here and in previous
works is the effect of the AE reconstruction, as discussed in
Sec. II A 1. For the case of DM with a heavy mediator, the
rate, even with experimental thresholds as low as ∼10 eV,
is significantly enhanced relative to previous work. The AE
reconstruction plays less of a role in the light mediator
case since the transition rate is dominated by small
momentum transfers. However, at high thresholds, where
only larger momentum components can contribute, the AE
reconstruction can still significantly boost the scattering
rate by fully including the contributions neglected in the
pseudo wave functions.
Since most earlier works computing DM-electron scat-

tering include only valence to conduction transitions, it is
useful to understand for which DM masses these are the
only kinematically allowed transitions. If ω < Eg − Ecore

max,
where Ecore

max is the maximum energy of the core states, then
the core states cannot contribute; if ω < Edft the free states
are not available. Therefore if ω < minfEdft; Eg − Ecore

maxg
only the valence to conduction transitions are allowed,
which can be related to a DM mass via ωmaxðmχÞ <
minfEdft; Eg − Ecore

maxg, where

ωmaxðmχÞ ¼
1

2
mχv2max ¼ 3.9 eV

�
mχ

MeV

��
vmax

840 km=s

�
2

;

ð3:16Þ
with vmax ¼ ve þ vesc, the maximum incoming DM
velocity. For Si (Ge), Ecore

max ¼ −116 eV (−28 eV), this
corresponds to

mχ <

�
15.2 MeV ðSiÞ;
7.8 MeV ðGeÞ: ð3:17Þ

Requiring that ωmax > Eg, where Eg is the band gap, sets a
lower bound on the minimum detectable mass, mmin

χ ,

mmin
χ ¼ 2Eg

v2max
¼ 0.25 MeV

�
Eg

eV

��
840 km=s

vmax

�
2

: ð3:18Þ

For Si (Ge), with a band gap of 1.11 (0.67) eV, mmin
χ is 0.28

(0.17) MeV. Lastly, we remark that for DM interactions
characterized by higher-dimensional operators (not consid-
ered in this work), the scattering rate scales with higher
powers of q and therefore is even more sensitive to AE
reconstruction (and also c → c contributions discussed
below in Sec. III C), which must be included in the analysis.

B. Valence to free

For valence to free transitions the initial states are
identical to those from Sec. III A, labeled by band number
i and Bloch momentum, ki. The final state wave functions
are simple plane waves given by Eq. (2.12), labeled by a
momentum kf in the 1BZ with the bands labeled by G.
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We can therefore directly substitute Eq. (2.13) into
Eq. (3.14) derived in the previous subsection, and obtain
the crystal form factor:

fi;ki→Gf;kf
¼

X
G

δq;kf−kiþG
1

Ω

Z
cell

d3 x eiðG−GfÞ·xui;ki
ðxÞ

¼
X
G

δq;kf−kiþG ũi;ki;Gf−G; ð3:19Þ

where ũi;ki;G are the Fourier components of the Bloch wave
functions defined in Eq. (2.3). Incorporating the Fermi
factor correction discussed in Sec. II C, we find the rate in
Eq. (3.12) is given by

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρT

XNv

i¼1

X
Gf

Z
1BZ

d3ki
ð2πÞ3

d3kf
ð2πÞ3 Fðνi;ki

Þ

×
X
G

�
fe
f0e

�
2

F 2
med gðq;ωÞjũi;ki;Gf−Gj2; ð3:20Þ

where

ω≡ jkf þGfj2
2me

− Ei;ki
; νi;ki

¼ νðZi;ki
eff ;ωþ Ei;ki

Þ:

ð3:21Þ

With a change of variables, G0 ¼ Gf −G and defining
k0 ≡ kf þGf (and then dropping the prime for simplicity),
the rate becomes

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρT

XNv

i¼1

Z
1BZ

d3ki
ð2πÞ3 Fðνi;ki

Þ
X
G

jũi;ki;Gj2

×
Z

d3k
ð2πÞ3

�
fe
f0e

�
2

F 2
med gðq;ωÞ: ð3:22Þ

where q ¼ k − ki −G.
In Fig. 6 we compare the binned rate from the valence

to conduction (v → c) calculation in the previous sub-
section to the valence to free (v → f) one performed
here, again for a 1 GeV DM. We see that for large ω,
where the v → c calculation is limited by the number
of conduction bands included, the v → f calculation
extrapolates the results to higher ω as expected. There
is some uncertainty due to the choice of the effective
charge parameters, which is why the results are shown
in bands. The lower edge corresponds to the conservative
choice of Zi;ki

eff ¼ 1 for all i;ki, and the upper edge
corresponds to the value set by the binding energy,
Eq. (2.15) with EB ¼ −Ei;ki

. We find that the

FIG. 5. DM-electron scattering rate from valence to conduction bands binned in energy deposition (with Δω ¼ 1 eV) for 1 GeV DM,
light (top row) and heavy (bottom row) mediators, assuming σ̄e ¼ 10−40 cm2, computed with vs without AE reconstruction. Valence
states included are the first four bands below the band gap, and conduction states included are all bands up to Edft ¼ 60 eV.
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conservative choice Zi;ki
eff ¼ 1 is a better match to the

edge for the v → c calculation, and will use this in our
final projections in Sec. IV. Note that as the threshold
increases, the effect of v → f transitions becomes more
important, and for a heavy mediator non-negligible
constraints can be placed even with Oð100Þ eV energy
thresholds.

C. Core to conduction

We now turn to core to conduction transitions. The
initial core states are indexed by κ, the atom in the
primitive cell, the usual atomic quantum numbers, n, l,
m, and the Bloch momentum, ki. The final states are the
DFT computed conduction states. The crystal form factor
is simply obtained from Eq. (3.14) by substituting
ui;ki

→ uκnlm;ki
:

fκnlm;ki→f;kf

¼
X
G

δq;kf−kiþG
1

Ω

Z
cell

d3 x eiG·x u�f;kf
ðxÞuκnlm;ki

ðxÞ;

ð3:23Þ

The total scattering rate is then

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρT

XNa

κ¼1

XNκ
p

n¼1

Xn−1
l¼0

Xl

m¼−l

XNc

f¼1

Z
1BZ

d3ki
ð2πÞ3

d3kf
ð2πÞ3

×
X
G

�
fe
f0e

�
2

F 2
med gðq;ωÞ

×

���� 1Ω
Z
cell

d3 x eiG·xu�fkf
ðxÞ uκnlmki

ðxÞ
����
2

; ð3:24Þ

where Na is the number of atoms in the primitive cell, Nκ
p

is the largest principal quantum number for atom κ, and
ω ¼ Ef;kf

− Eκnl. The core wave functions uκnlm;ki
ðxÞ are

given by Eq. (2.9), and involves a sum over primitive
cells. Since the integral in Eq. (3.23) is just over one
primitive cell, only the atoms in this and neighboring
cells can have a significant contribution. In other words,
the sum over r converges very quickly due to the
localized nature of atomic wave functions. We therefore
restrict r to be summed over only the 3 × 3 × 3 near-
est cells.
The contribution of core to conduction (c → c) tran-

sitions to the binned rate, for mχ ¼ 1 GeV, can be seen in

FIG. 6. DM-electron scattering rate from valence to conduction (v → c) bands and from valence bands to free states (v → f) binned in
energy deposition (with Δω ¼ 1 eV) for 1 GeV DM, light (top row) and heavy (bottom row) mediators, assuming σ̄e ¼ 10−40 cm2. The
upper edge of the shaded region corresponds to using Zeff from Eq. (2.15), while the bottom edge corresponds to Zeff ¼ 1.
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Fig. 7. In most cases the v → c transitions are dominant
compared to the c → c, but there are two main scenarios
where this is not true. First, when the experimental thresh-
old is raised; this excludes the v → c transitions and causes
the c → c contribution to be dominant. For example,
consider a Si detector and a DM model with a heavy

mediator (bottom left panel of Fig. 7). If the experimental
threshold is ∼50 eV the c → c contribution from the 2p
states in Si gives the dominant contribution. Second, for a
Ge target, and a DM model with a heavy mediator, the 3d
states dominate the rate even at the lowest experimental
threshold. To understand this in more detail we present

FIG. 7. DM-electron scattering rate from core states to conduction bands binned in energy deposition (with Δω ¼ 5 eV) for 1 GeV
DM, light (top row) and heavy (bottom row) mediators, assuming σ̄e ¼ 10−40 cm2. The core states are labelled by the corresponding
atomic orbitals, and the conduction states up to Edft ¼ 60 eV are included. For comparison we also show the v → c contribution (after
AE reconstruction) from Fig. 5 in gray.

FIG. 8. Contribution to the DM-electron scattering rate binned in energy deposition (with Δω ¼ 1 eV) from 3d electrons to
conduction bands in Ge, for 1 GeV DM, light (left) and heavy (right) mediators, assuming σ̄e ¼ 10−40 cm2. The three curves in each
panel are computed using DFT with and without AE reconstruction, and using the semianalytic core wave functions.
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Fig. 8 which compares the binned rate taking different
modeling approaches for the 3d states in Ge. We see that the
large momentum components of the wave function, recov-
ered only after AE reconstruction in the DFT calculation,
dominate the rate, which explains why previous works have
underestimated the importance of 3d electrons. Meanwhile,
we see explicitly at the scattering rate level that the
semianalytic approach accurately reproduces the DFT
calculation at low ω, and extends the latter beyond its

cutoff at high ω, consistent with the observation at the wave
function level in Fig. 3.

D. Core to free

The last transition type we consider involves a core
electron initial state and a free electron final state. The
crystal form factor is most easily obtained by substituting
Eqs. (2.8) and (2.12) into its definition, Eq. (3.6):

fκnlm;ki→Gf;kf
¼ 1ffiffiffiffiffiffiffi

NV
p

X
r

eiki·ðrþxκÞ
Z

d3 x eiðq−kf−GfÞ·xψ atom
κnlmðx − r − xκÞ

¼ 1ffiffiffiffiffiffiffi
NV

p eiðkiþq−kf−GfÞ·xκ
X
r

eiðq−kfþkiÞ·r
Z

d3 x eiðq−kf−GfÞ·xψ atom
κnlmðxÞ

¼ 1ffiffiffiffi
Ω

p eiðkiþq−kf−GfÞ·xκ
X
G

δq−kfþki;G ψ̃ atom
κnlmð−ki þG −GfÞ; ð3:25Þ

where the Fourier transform of the RHF Slater type orbital (STO) core wave functions, given in Eq. (2.10), are known
analytically [71]:

ψ̃STOðq;Z; n; l; mÞ ¼
Z

d3xeiq·xRSTOðx;Z; nÞYm
l ðx̂Þ≡ χSTOðq;Z; n; lÞYm

l ðq̂Þ; ð3:26Þ

χSTOðq;Z; nÞ ¼ 4πNðn − lÞ!ð2ZÞn
�
ia0q
Z

�
l Xbðn−lÞ=2c

s¼0

ωnl
s

ðða0qÞ2 þ Z2Þn−sþ1
; ð3:27Þ

ωnl
s ¼ ð−4Z2Þ−s ðn − sÞ!

s!ðn − l − 2sÞ! : ð3:28Þ

The direct detection rate is then

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρTΩ

XNa

κ¼1

XNκ
p

n¼1

Xn−1
l¼0

Xl

m¼−l

Z
1BZ

d3ki
ð2πÞ3

d3kf
ð2πÞ3

×
X
Gf

X
G

FðνκnlÞ
�
fe
f0e

�
2

F 2
med gðq;ωÞjψ̃ atom

κnlmð−ki þG −GfÞj2; ð3:29Þ

where q ¼ kf − ki þG, and νκnl ¼ νðZκnl
eff ;ωþ EκnlÞ. We can now shift the Gf variable, G0 ≡Gf −G and define k ¼

ki þG0 and k0 ¼ kf þG. Therefore, q ¼ k0 − k and

R ¼ 2πσ̄e
μ2χemχ

ρχ
ρTΩ

XNa

κ¼1

XNκ
p

n¼1

Xn−1
l¼0

Xl

m¼−l

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3 FðνκnlÞ
�
fe
f0e

�
2

F 2
med gðq;ωÞjψ̃ atom

κnlmðkÞj2; ð3:30Þ

which is the closest expression to the vacuum matrix
element, with just the inclusion of the core wave functions
acting as a form factor.
In Fig. 9, we compare the binned rate from the core to

conduction (c → c) calculation to the core to free (c → f)
calculation and see a reasonable extrapolation to higher ω.

As with the transition region between v → c and v → f
shown in Fig. 6, we find Zeff ¼ 1 gives a better match
between c → c and c → f. While the total number of
electrons from these transitions is expected to be much less
than lower energy transitions, this is the best available
calculation for thresholds up to the kinematic limit of ωmax.
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E. In-medium screening

DM-electron interactions mediated by a dark photon
or scalar are screened due to the in-medium mixing
between the mediator and the photon. The relevance of
screening has been recently emphasized in Ref. [48].
The screening factor, fe=f0e, is related to the longi-
tudinal dielectric, fe=f0e ¼ ðq̂ · ϵ · q̂Þ−1, where ϵ is the
dielectric tensor. It can be computed from in-medium
loop diagrams or extracted from optical data. Here
we model the dielectric of Si and Ge following
Ref. [72]:

ϵðq;ωÞ ¼ 1þ
�

1

ϵ0 − 1
þ α

�
q
qTF

�
2

þ q4

4m2
eω

2
p
−
�
ω

ωp

�
2
	−1

;

ð3:31Þ

and ϵij ¼ ϵðq;ωÞδij. Here, ϵ0 ≡ ϵð0; 0Þ is the static
dielectric, α is a fitting parameter, qTF is the
Thomas-Fermi momentum, and ωp is the plasma
frequency. The parameters used for Si and Ge are
listed in Table I, and we plot the dielectric as a
function of q, ω in Fig. 10.

Naively one might expect that the effect of the dielectric
is to screen the rate by anOð100Þ factor due to the fact that
the static dielectric, ϵ0, is Oð10Þ. However, this is only the
value of the dielectric function at q ¼ ω ¼ 0, while as
q → ∞ and ω → ∞ the dielectric approaches unity.
Therefore, the effect of the dielectric crucially depends
on the region of the kinematic phase space being probed.
For a given energy deposition, ω, the momentum transfer
is limited to q≳ ω=v where v ∼ 10−3 is the DM velocity.
Therefore, the absolute minimum momentum transfer is
qmin ∼ Eg=v ∼OðkeVÞ, for OðeVÞ band gap targets. This
is parametrically the same size as the Thomas-Fermi
momentum qTF, so the dielectric is expected to slightly
deviate from one, which causes only an Oð1Þ shift to the
scattering rate, as seen in Fig. 11.

FIG. 9. DM-electron scattering rate from core states to conduction bands (c → c) and to free states (c → f) binned in energy
deposition (with Δω ¼ 10 eV) for 1 GeV DM, light (top row) and heavy (bottom row) mediators, assuming σ̄e ¼ 10−40 cm2. As in the
v → f calculation in Fig. 6, the upper edge of the shaded bands corresponds to Zeff from Eq. (2.15), and the lower edge corresponds
to Zeff ¼ 1.

TABLE I. Parameters used in the model of dielectric function,
Eq. (3.31), of Si and Ge from Ref. [72], which accounts for in-
medium screening effects on the transition rate.

Target ϵ0 α ωp [eV] qTF [keV]

Si 11.3 1.563 16.6 4.13
Ge 14 1.563 15.2 3.99
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IV. PROJECTED SENSITIVITY

We now compile the results from the previous sections to
compute the projected sensitivity. We also compare the
relative importance of each transition type, and discuss
differences between our results and previous calculations in

the literature. When there are large differences, it is
typically because of the inclusion of AE reconstruction
and core states in the calculation. Since AE reconstruction
and core states contribute predominantly at higher momen-
tum transfer and energy deposition, we will find the largest

FIG. 10. Dielectric function ϵðq;ωÞ, given by Eq. (3.31) with the parameters in Table I, of Si (left) and Ge (right) used to incorporate
screening effects. The solid line indicates the edge of the kinematically accessible region ω≲ qv. The dashed line is the band gap of the
target. While the static dielectric can beOð10Þ, in the kinematically allowed region ϵðq;ωÞ is anOð1Þ number, leading to anOð1Þ effect
on the scattering rates when the latter are dominated by small q, ω transitions.

FIG. 11. Effect of screening on the binned rate (top row, for 1 GeV DM) and total rate (bottom row, as a function of mχ) from v → c
transitions for DM models with a light (red) and heavy (blue) mediator. The unscreened rate Rno scr is obtained with ϵ ¼ 1, and the
screened rate Rscr is obtained with the model of the dielectric function given in Eq. (3.31).
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differences typically occur for a massive mediator and
higher detector threshold, where the effects in some cases
can be more than an order of magnitude (especially for Ge).
For the case of a massless mediator and lower detection
threshold, the differences with previous literature are much
smaller and mostly due to the inclusion of in-medium
effects.
In Fig. 12 we show the contribution to the binned rate

from each of the four transition types, for a 1 GeV DM. We
see that valence to conduction (v → c) has a higher peak
than the other three transition types, except for the Ge,
heavy mediator case, where core to conduction (c → c) has
the highest peak. For comparison, Refs. [10,11] compute
the valence to conduction rates with DFT, including also
the 3d states in Ge, but without AE reconstruction. As
expected, we find a lower rate at the lowest energy
depositions due to the inclusion of in-medium screening,
and a much higher rate at high ω due to AE reconstruction
and inclusion of core states.
The impact of these observations on the reach depends on

the energy threshold. Assuming charge readout (e.g., via a
CCD), the relevant quantity is the number of electron-hole

pairs, Q, produced in an event. For an energy deposition ω,
this is given by

Q ¼ 1þ


ω − Eg

ε

�
; ð4:1Þ

where the values for ε are 3.6 eVand 2.9 eV for Si and Ge
respectively. In Fig. 13, we show the total rate as a function
of the DM mass, for Q ≥ 1, 5, 10. The threshold only
affects the v → c rate, as the other three transition types
involve energy depositions corresponding to Q > 10, and
are therefore always fully included. We see that for Q ≥ 1,
the valence to conduction (v → c) contribution dominates
the total rate with the exception of the Ge, heavy mediator
scenario, where core to conduction (c → c) is dominant
for mχ ≳ 30 MeV. Higher thresholds significantly cut out
v → c contributions in all cases, and render c → c more
important for Ge, even in the light mediator scenario.
For Si, on the other hand, the total rate is still dominated
by v → c because the core states are much deeper and
contribute a lower rate. We also see that v → f and c → f
contributions are subdominant in all cases.

FIG. 12. DM-electron scattering rate binned in energy deposition (withΔω ¼ 1 eV) for 1 GeV DM, light (top row) and heavy (bottom
row) mediators, from all four transition types: valence to conduction (v → c), valence to free (v → f), core to conduction (c → c), and
core to free (c → f). We assume σ̄e ¼ 10−40 cm2, and take Zeff ¼ 1 for all effective charges in the Fermi factor. Note that the c → c and
c → f transitions involve semianalytic treatment of 2p (3d) states and below in Si (Ge), which has been validated with DFT calculations
including AE reconstruction; see Fig. 3. We also overlay the binned rate from Ref. [11] which computed the v → c contribution using
QEdark (treating 3d states in Ge as valence, without including AE reconstruction effects).
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Finally, we present the projected reach on the
DM-electron reference cross section σ̄e in Figs. 14 and
15, for Q ≥ 1 and Q ≥ 10, respectively. Our new calcu-
lation yields several important differences compared to the
previous literature, and we discuss them in detail in the
following subsection.

A. Comparison with previous results

We begin by comparing to our previous work, Ref. [16],
shown in brown in Fig. 14. We previously restricted our
analysis to the light mediator scenario, and Q ≥ 1, which
is relatively unaffected by AE reconstruction effects since
the rate is peaked at small energy/momentum transfers, as
seen in Fig. 5. The main reason the reach here is weaker is
the inclusion of in-medium screening discussed in
Sec. III E.
Next we compare to Ref. [10], shown in red in Figs. 14

and 15. Those results were computed solely from valence
to conduction (v → c) transitions. The largest discrep-
ancy is in the high mχ regime scattering off a Ge target
via a heavy mediator. This is due to high momentum

contributions to the 3d wave functions in Ge. Ref. [10]
computed the 3d states with DFT without AE
reconstruction, which as we saw in Fig. 3 is crucial for
recovering the dominant part of the 3d wave functions at
high momentum. As discussed in Sec. II B, our modeling
of 3d electrons in Ge as core states reproduces their DFT-
computed wave functions up to the AE reconstruction
cutoff, and provides a robust parametrization of higher
momentum components. Since the valence states in Ge
also contribute an appreciable amount, the Q ≥ 1 results
in Fig. 14 only differ by about an order of magnitude.
However, the difference is more stark when going to
higher Q thresholds in Fig. 15, which essentially isolates
the 3d electrons’ contribution. In the low mass regime the
difference is less significant, and primarily due to the
inclusion of screening effects. Another difference that is
important here is sampling of the 1BZ. Reference [10]
used a uniform 6 × 6 × 6 mesh with extra 27 points
chosen by hand close to the center of the 1BZ, whereas
here (as well as in Ref. [16]) we use a uniform 10 × 10 ×
10 grid. While checking convergence we found our
(unscreened) results using a 6 × 6 × 6 uniform mesh were

FIG. 13. DM-electron scattering rate as a function of the DMmass, for light (top row) and heavy (bottom row) mediators, from all four
transition types: valence to conduction (v → c), valence to free (v → f), core to conduction (c → c), and core to free (c → f). We
assume σ̄e ¼ 10−40 cm2, take Zeff ¼ 1 for all effective charges in the Fermi factor, and show results for several thresholdQ values which
significantly impact the v → c contribution.
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a closer match to Ref. [10]; generally, increasing the
number of k points reduces the rate toward convergence,
i.e., R10×10×10 < R9×9×9 < R8×8×8. This can be seen more
directly in the difference between the brown and red lines
in the light mediator scenario (as both are computed
without screening), and it affects Ge more than Si, as is
expected due to the smaller band gap and greater dis-
persions of nearby bands requiring denser k point sam-
pling for convergence.
Ref. [3] also computed DM-electron scattering rates in

semiconductors, focusing on Ge. The approach taken in
that paper was to semianalytically model the Ge wave
functions with the core wave functions (with the same set
of RHF STO wave function coefficients tabulated in
Ref. [43]) and treat the final states as free with a Fermi
factor, analogous to the core to free calculation performed
here. As we can see from Fig. 14, while for most of the
mass range and mediators the estimates are too optimistic
due to incorrect modeling of the valence and conduction
states, in the high mass region with a heavy mediator
(bottom-right panel), where 3d states dominate, their
estimates are in good agreement with ours presented here,
as expected.

Finally, we discuss the comparison with the most recent
work, Ref. [48], which was limited to valence to conduction
transitions. To show the effect of screening, we show their
projected reach with (purple) and without (green) screening
in Fig. 14. Again the largest discrepancy is in the heavy
mediator scenario with a Ge target, primarily due to the
neglect of the 3d states in Ref. [48]. When these are not
important, i.e., the low mass regime or a light mediator, we
generally find good agreement, with our reach being a bit
stronger. Notably this does not seemdue to amismodel of the
dielectric, since the effect of screening relative to our pre-
vious results, Ref. [16], is consistentwith their result.We also
find that screening has a smaller effect at high masses in the
heavy mediator scenario for Si. These small differences are
harder to disentangle since they could be due to: (1) different
xc-functionals used (PBE and HSE vs TB09); (2) local field
effects which are only partially included here since we
assume the screening factor is isotropic; (3) the plane wave
expansion parameter, Ecut, taken to be 500 eV without AE
reconstruction in Ref. [48], vs 1 keV, AE corrected to 2 keV
taken here; (4) DM velocity distribution parameters, studied
in detail in Refs. [73,74], for which Ref. [48] assumed vesc ¼
500 km=s as opposed to vesc ¼ 600 km=s chosen here;

FIG. 14. 95% C.L. exclusion reach (3 events) assuming 1 kg-year exposure, Q ≥ 1, for light (top row) and heavy (bottom row)
mediators. The results shown are from this work, Griffin et al. [16], Essig et al. [10], Lee et al. [3], and Knapen et al. [48] (with and
without screening). See Sec. IVA for detailed comparison.
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and (5) Ref. [48] took a directionally averaged dielectric,
whereas herewe only assume isotropy in the screening factor
but not the matrix element itself.

V. CONCLUSIONS

Dark matter-electron scattering in dielectric crystal
targets, especially semiconductors like Si and Ge, are at
the forefront of DM direct detection experiments. It is
therefore imperative to have accurate theoretical predic-
tions for the excitation rates. In this work, we extended the
scattering rate calculation in several key aspects. Much of
the focus of previous calculations has been on transitions
from valence to conduction bands just across the band gap,
which will be accessible to near-future experiments.
We performed state-of-the-art DFT calculations for these
states, and highlighted the importance of all-electron
reconstruction which has been neglected in most previous
works. Along with this, we extended the transition rate
calculation by explicitly including the contributions from
core electrons and additional states more than 60 eV above
the band gap using analytic approximations.
We updated the projected reach with our new calculation

and found important differences compared to previous

results. In particular, we found that in the heavy mediator
scenario, 3d electrons in Ge give a dominant contribution to
the detection rate for DM heavier than about 30 MeV.
Relative to previous works the increased importance of the
3d electrons is due to more accurate modelling of the high
momentum components of their electronic wave functions,
as seen in Fig. 3. Intuitively, the more accurate model here
stems from a more accurate model of the short distance
potential (a pseudo-potential versus the all-electron recon-
structed potential, discussed in Sec. II A 1) which domi-
nantly affects the high momentum components of the wave
functions. Also, the rate can be significantly higher than
predicted previously for higher experimental thresholds.
This is exciting because new DM parameter space will be
within reach even before detectors reach the single electron
ionization threshold.
We also release a beta version of EXCEED-DM (available

here [53]) that implements our DM-electron scattering
calculation for general crystal targets, and make the
electronic wave function data for Si and Ge [54], as well
as the EXCEED-DM output [55], publicly available so our
present analysis can be reproduced. We have previously
used EXCEED-DM for a target comparison study [16], and
to study the daily modulation signals that can arise in

FIG. 15. 95% C.L. exclusion reach (3 events) assuming 1 kg-year exposure, Q ≥ 10, for light (top row) and heavy (bottom row)
mediators. The results shown are from this work and Essig et al. [10]. See Sec. IVA for detailed comparison.
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anisotropic materials [15]. The generality of EXCEED-DM
means that potential applications are vast. It can be used to
compute detection rates for other target materials (assuming
DFT calculations of valence and conduction states are
available), and can also be adapted to include additional
DM interactions such as in an effective field theory
framework similar to the study of atomic ionizations in
Ref. [5] (see Ref. [75] for a recent effort in this direction).
For momentum-suppressed effective operators, a full cal-
culation in our framework is even more important, as the
effects of all-electron reconstruction and core states (over-
looked in Ref. [75]) are generally amplified. Moreover, the
differential information that can be obtained from our
program facilitates further studies including realistic back-
grounds. Details of EXCEED-DM and additional example
calculations will be presented in an upcoming publication.
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