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Abstract

Semiparametric and Nonparametric Methods for Network Data
by
Eric James Auerbach
Doctor of Philosophy in Economics
University of California, Berkeley
Professor James Powell, Co-chair

Professor Bryan Graham, Co-chair

This dissertation studies two frameworks for incorporating network data into economic
modeling.

In the first chapter I consider the latent space framework of Holland and Leinhardt
(1981) in which the existence of a link between two agents depends on their position in a
latent space. I use this framework to estimate the parameters of a linear model in which
the regressors and errors covary with the agents latent positions. Neither the endogenous
relationship between the regressors and errors nor the distribution of network links are
restricted parametrically. Instead, the model is identified by variation in the regressors
unexplained by the agents latent positions. I first demonstrate that agents with similar
columns of the squared adjacency matrix, the ijth entry of which contains the number
of other agents linked to both agents ¢ and j, necessarily have a similar distribution of
network links. I then propose a semi parametric estimator based on matching pairs of
agents with similar columns of the squared adjacency matrix. I find sufficient conditions for
the estimator to be consistent and asymptotically normal, and provide a consistent estimator
for its asymptotic variance.

In the second chapter I consider the rooted network framework of Aldous and Steele
(2004). T use this framework to specify a nonparametric regression of a scalar outcome on
a sparse network. The main assumption is that the outcome depends predominately on
the configuration of agents and links nearby a distinguished agent. I first establish notion
of distance between such configurations and then use it to construct a nearest-neighbor
estimator of the regression function.

In the third chapter I revisit the latent space setting of the first chapter. I first specify
a semi parametric model of link formation in which the existence of a link between a pair
of agents depend on their positions in some latent space, an idiosyncratic error, and some
linear combination of observed link covariates. I then proposes an estimator for the infinite-
dimensional component of the model using a variation on the matching strategy outlined
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in the first chapter ands characterize the rate of convergence of the estimator using large-
deviation arguments.
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Chapter 1

Identification and Estimation of
Models with Endogenous Network
Formation

1.1 Introduction

In many social networks, linked agents make similar decisions. One explanation for this phe-
nomenon is peer effects, in which agents are influenced by or choose to imitate the behavior
of their peers. Another is latent homophily, in which linked agents have underlying char-
acteristics that generate correlated though otherwise unrelated behaviors. Distinguishing
between peer effects and latent homophily matters because the former often suggests that a
policy maker can efficiently influence mass behavior by manipulating only a small number of
key agents or links.! However, recent work has questioned not only the existence of network
peer effects, but the extent to which they can be identified in nonexperimental settings at
all.?

This chapter considers network peer effects as part of a broader study about the iden-
tification and estimation of models with endogenous network formation.? In this chapter, I
address two fundamental questions. First, when are models with endogenous networks iden-
tified? Second, how can data on network links be used to control for this sort of endogeneity
in estimation?

'Recent examples include Ballester, Calvé-Armengol, and Zenou (2006); Christakis and Fowler (2007);
Calvé-Armengol, Patacchini, and Zenou (2009); Banerjee, Chandrasekhar, Duflo, and Jackson (2013), and
Elliott, Golub, and Jackson (2014)

2For instance, Shalizi and Thomas (2011); Carrell, Sacerdote, and West (2013); Angrist (2014); Jackson
(2014), and Graham (2015)

3Endogeneity refers to models in which the regressors and errors are correlated. A network represents
a collection of pairs of agents that are distinguished in some economically meaningful way (ie, the pairs
are “linked,” “connected,” “friends,” etc.). Network endogeneity refers to models in which the correlation
between the regressors and errors is explained by latent factors that influence link formation in a network.
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I study these questions in the context of a linear model in which a correlation between
the regressors and errors is caused by an omitted vector of unobserved social characteris-
tics. I do not assume that the researcher has access to instrument or control variables for
the endogenous regressors. Instead, relevant features of the social characteristics are to be
inferred by how agents link in a network. To do this, I consider a nonparametric model of
link formation in which the probability that two agents link is some unknown function of
their social characteristics. The model admits a basic random utility interpretation and is
consistent with a number of network formation models from the literature, including Chan-
drasekhar and Jackson (2014); Graham (2014); Leung (2015); Ridder and Sheng (2015), and
Menzel (2015).

In recent work, Goldsmith-Pinkham and Imbens (2013); Hsich and Lee (2014); Johnsson
and Moon (2015), and Arduini, Patacchini, and Rainone (2015) all consider related models
with endogenous network formation. These chapters all impose strong parametric assump-
tions on the network formation model to identify and estimate the parameters of interest.
The performance of their estimators, however, depend on the accuracy of these assumptions
which may potentially fail to capture the full heterogeneity in linking behavior underlying
many real world networks.

The first contribution of this chapter is to provide identification conditions that do not
require parametric restrictions on the network model. The idea behind these conditions
is familiar: the model is identified if conditional on the distribution of network links, the
regressors and errors are uncorrelated and the distribution of the regressors is nondegenerate.
A key feature of this chapter is that it introduces new tools to formalize these conditions
and make them straightforward to apply in practice.

For instance, I demonstrate that the linear peer effects model of Bramoullé, Djebbari, and
Fortin (2009) is not generally identified when the network is endogenous. In particular, the
nondegeneracy condition is violated because the explanatory variable of interest (an agent’s
expected peers’ characteristics) is completely determined by the distribution of network links.
Similar non-identification results are found in the related grouped peer effects literature (for
instance, Manski (1993); Graham and Hahn (2005); Graham (2008)), and I discuss how
strategies from this literature might be used to restore identification in the network setting.

The second contribution of this chapter is to propose a new matching procedure to
estimate models with endogenous networks. Specifically, I propose matching pairs of agents
with similar columns of the squared adjacency matrix.* The idea follows from a new result
I derive in this setting that agents with similar columns of this matrix necessarily have a
similar distribution of network links. The logic is related to recent arguments from the link
prediction literature (for example Bickel, Chen, and Levina (2011); Zhang, Levina, and Zhu
(2015)), though to my knowledge the results of this chapter and its application to the study
of network endogeneity are original.

4The adjacency matrix of a network is a matrix with the number of rows and columns equal to the
number of agents that contains a 1 in the ijth entry if agents ¢ and j are linked and a 0 otherwise. The
squared adjacency matrix refers to the matrix square of the adjacency matrix and agent i’s column of the
squared adjacency matrix is the ¢th column of this matrix.
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The proposed estimator resembles other matching estimators from the literature (for
instance Powell (1987); Heckman, Ichimura, and Todd (1998); Abadie and Imbens (2006))
and is similarly straightforward to implement and interpret. However, its large sample
properties are nonstandard when compared to this literature for two reasons.

The first reason concerns the dimension of the matching variable. The above literature
makes asymptotic approximations that require the density function of the matching variable
to exist and be bounded away from zero. In this chapter, the matching variable is a column
vector of length equal to the sample size. Since the usual notion of a density function
does not exist in this setting, these asymptotic approximations are generally inapplicable. I
sidestep the issue by appealing to arguments from the functional nonparametrics literature
(for example, Ferraty and Vieu (2006); Hong and Linton (2016)) in which the density function
is replaced by the more general notion of a small ball probability. I then adapt tools from the
literature on dense graph limits (for instance, Lovasz (2012)) to characterize this probability
and find sufficient conditions for consistency and asymptotic normality. As is common in
the matching literature, the bias of my estimator is potentially large relative to its variance.
Accurate inference requires a bias correction and I propose a variation on the jackknife
technique proposed by Powell, Stock, and Stoker (1989).

The second reason this estimator is nonstandard is that even though the matching vari-
able is generated in the sense that its entries are sample averages with variances on the order
of the inverse of the sample size, this variation does not influence the asymptotic distribution
of the estimator. This result is unusual because it seemingly contradicts a developed liter-
ature on asymptotic variance formulas for semiparametric estimators (for instance Newey
(1994); Chen, Linton, and Van Keilegom (2003); Hahn and Ridder (2013)). The intuition
behind this result is that the average squared difference between two agents’ matching vari-
ables estimates a particular measure of network distance between the agents. Evaluating the
variance of my estimator does not require bounding the sampling variation of all of these
estimated distances, but only those that correspond to pairs of matched agents. Since the
estimated distances between matched agents is small by construction, their means and vari-
ances must also be small, and under certain regularity conditions the total variation is small
enough to be asymptotically negligible. As a result, the asymptotic variance of my estimator
does not have the usual correction term for a first stage estimation error.

The matching logic extends to various nonlinear and nonparametric settings, or to allow
for weghted, directed, bipartite, multiple, sampled, or higher-order networks. I explore some
of these extensions in an appendix to this chapter (though formal results are left to future
work). The method also has important limitations. The model and estimator generally
require the network to be dense (the number of links is proportional to the square of the
sample size) and that the network links are exchangeable (the distribution of network links
does not depend on how the agents are indexed). Some sparsity can be accomodated by
letting the link probabilities decrease with the sample size (as in Bickel and Chen (2009)),
and although the rate of convergence is likely to be affected, this may be unimportant if the
total number of agents is large. The assumption of conditional link independence can also
be weakened. For instance, it can be replaced with the conditional independence of some
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higher-order network event, such as the formation of cliques of a particular size, along the
lines proposed by Chandrasekhar and Jackson (2014).

The structure of this chapter is as follows. Section 2 introduces the model, identification
conditions, and proposed estimator. Section 3 contains the main results of the chapter. Sec-
tion 3.2 provides the main identification results and section 3.3 the main asymptotic results:
sufficient conditions for consistency and asymptotic normality. Section 4 provides simulation
evidence and Section 5 concludes. Proofs of the various lemmas and theorems are collected
in Appendix A and some extensions to the proposed model and estimator can be found in
Appendix B. Appendices C and D contain additional context for the results. Appendix C
illustrates the proposed matching strategy using three example parametric link distributions
from the literature. Appendix D provides details about a behavioral interpretation for the
model and estimator.

1.2 Model and Estimator

Model

Let {y;, z;}"; be an independent and identically distributed sequence of data for n agents
with y; € R,z; € R¥ for some positive integer k, and D be an n x n stochastic binary
adjacency matrix corresponding to an unlabelled, unweighted, and undirected random net-
work between the n agents. The joint distribution of {y;, z;}"; and D is determined by the
following semiparametric model

yi = i+ Mwi) + & (1.1)
Dij = 1{ni; < flwi, w;)}1{i # j} (1.2)

in which {w;}!; is an independent and identically distributed sequence of unobserved social
characteristics, A and f are unknown Lebesgue measurable functions with the latter symmet-
ric in its arguments, and {n;;}}';_; is a symmetric matrix of unobserved scalar disturbances
with independent and identically distributed upper diagonal entries that are mutually inde-
pendent of {z;, w;,e;}"_;. T suppose for the sake of exposition that E[e;|x;, w;] = 0, although
the main results of this chapter will be derived under a weaker uncorrelatedness assump-
tion. It is generally without loss to normalize the marginal distributions of w; and n;; to be
standard uniform.

In this model, endogeneity takes the form of a dependence between x; and the unobserved
error u; = A(w;) + &; through w;. Network formation is represented by (g) conditionally in-
dependent Bernoulli trials in which the probability that agents ¢ and j link is proportional to
f(w;, w;). Parametric examples of (1.2) in the network formation literature include Holland
and Leinhardt (1981); Duijn, Snijders, and Zijlstra (2004); Krivitsky, Handcock, Raftery,
and Hoff (2009); Dzemski (2014); Graham (2014) and Nadler (2016) (see section 3 of Gra-
ham (2015) for a review). Leung (2015); Ridder and Sheng (2015) and Menzel (2015) also
consider network formation games with strategic interactions that imply equation (1.2) as
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a reduced form distribution of links. More details about a behavioral interpretation for this
model can be found in Appendix D.

Example 1 (Network Peer Effects): Let y; be student GPA, z; be a vector of student
characteristics (age, grade, gender, etc.), and D;; = 1 if students ¢ and j are friends and 0
otherwise. One extension of the Manski (1993) linear-in-means peer effects model of
student achievement to the network setting is

D;; = ﬂ{m‘j < f(wi,wj)}ﬂ{i #J}

in which E[z;|D;; = 1, w;] denotes the mean characteristics and Ely;|D;; = 1, w;] the mean
GPA of agent i’s friends, conditional on agent ¢’s social characteristics w;. Bramoullé,
Djebbari, and Fortin (2009) consider a similar model in which the network is exogenous
(A(w;) = 0) and Goldsmith-Pinkham and Imbens (2013); Hsieh and Lee (2014); Johnsson
and Moon (2015), and Arduini, Patacchini, and Rainone (2015) consider related models
with additional parametric assumptions on \ or f.?

Example 2 (Information Diffusion) Banerjee, Chandrasekhar, Duflo, and Jackson
(2013) model household participation in a microfinance program in which information
about the program diffuses over a social network. The authors control for household-level
heterogeneity in program information by specifying and simulating a joint model of
information diffusion and program participation. Ignoring for now that their outcome is
binary,® I propose a semiparametric alternative

yi = ;3 + Ely;|Dij = 1, wilp + Mw;) + &
Dij = Wni; < flwi, wy) y1{i # j}

In this linear example, ¢ = 1, ..., n indexes households with program participants, y; is a
measure of the intensity of participation (for exmaple, the number of loans or the amount
of money borrowed), x; is a vector of observed household characteristics (caste, religion,
wealth, etc.), D;; = 1 if households ¢ and j have a social connection, and w; are
characteristics that influence social network formation. A(w;), the probability that
household i is informed about the program given their social characteristics, is a correction
term for selection into the program due to heterogeneous information.

°The use of the expected peer outcomes FE[y;|D;; = 1,w;] intead of their empirical couterparts
> j y;Dij/ > j D;; masks another endogeneity issue generated by having dependent variables on the right
hand side of the outcome equation. Bramoullé, Djebbari, and Fortin (2009) resolve this issue by using func-
tions of D and {z;};_; as instruments for 3, y;D;;/ >, D;;. Iignore the issue here because the simultaneity
issue is unrelated to the unobserved heterogeneity focus of this chapter.

6In future work I plan to demonstrate how the results of this chapter can be extended to certain nonlinear
and nonparametric models along the lines of Manski (1987) and Honoré and Powell (1997).
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Example 3 (Job Mobility): Schmutte (2014) studies a bipartite” labor market network
in which worker ¢+ and industry-occupation j are linked if worker ¢ works in
industry-occupation j at some point in time. He identifies several clusters of highly
connected workers and industry-occupations in the labor market network and uses the
clusters as proxy variables for unobserved worker and industry-occupation heterogeneity in
a linear model of labor market earnings. Using the network formation model of this
chapter to directly characterize the relationship between this unobserved heterogeneity and
the observed network clusters, I characterize his model as a model with an enodgneous
network along the lines of

log(yit) = wat B+ 0(P1(wi)) + Y (d2(wji))) + it
Dij = Wiy < fer(wi), p2(w;))}

in which y;; is the earnings of worker 7 in time period ¢, x;; are worker characteristics (age,
gender, race, etc.), j(i,t) indexes the industry-occupation of worker ¢ in period t, w; and
wj(iy) denote unobserved worker and industry-occupation characteristics (for instance,
ability or productivity), and ¢; and ¢o map worker and industry-occupation characteristics
to the network clusters.

Example 4 (Research Productivity): Ductor, Fafchamps, Goyal, and van der Leij
(2014) study a model of research productivity in which a researcher’s current publication
quality depends on past quality, researcher characteristics, and a vector of network
statistics derived from a coauthorship network (in which two researchers are linked if they
have previously been coauthors) including agent degree, eigenvector centrality, betweeness
centrality, etc. The authors experiment with several different models of productivity,
including various combinations of network statistics. I propose a semiparametric
alternative that treats the unknown combination of network statistics as unobserved
network heterogeneity

Yi = i + Mw;) + &
Di; = 1{n;; < f(w;, w;)}1{i # j}

in which w; might characterize the academic community of researcher i (for instance, a field
of study) and A\(w;) indexes heterogeneity in research productivity due to this community. A
key feature of this model is that the estimation of S does not depend on correctly identifying
the relevant features of the network that make up A(w;)

In many cases, the function A (or the functions ¢ and v in Example 3) is not a nuisance
parameter, but also an object of interest in the analysis. In future work I plan to demonstrate
how the tools of this chapter can be extended to estimate and conduct inference about
features of these parameters as well.

“In Appendix B I define a bipartite network and describe how one might extend the methods of this
chapter to the bipartite setting.
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Estimator

Estimation is complicated by the fact that the social charactersitics {w;}?_, are unobserved.
If the social characteristics were observed, (1.1) corresponds to the partially linear regression
of Engle, Granger, Rice, and Weiss (1986), and many tools exist to estimate 3 (for example,
Chamberlain (1986); Powell (1987); Newey (1988); Robinson (1988)). If the social character-
istics were unobserved but identified by the distribution of D, one can extend these methods
by replacing the social characteristics with empirical analogs as in Ahn and Powell (1993);
Ahn (1997), and Hahn and Ridder (2013). This particular approach is taken by Arduini,
Patacchini, and Rainone (2015) and Johnsson and Moon (2015).

However, in many empirical applications the social characteristics are neither observed
nor identified by the distribution of D. This chapter demonstrates that identifying, es-
timating, and conducting inference about [ is still possible without imposing parametric
restrictions on either f or A by matching pairs of agents with similar link distributions. The
result is motivated by two key insights.

One insight concerns the identification of £, which holds if two conditions are satisfied.
The first condition is that A(w;) depends on w; only through the schedule of linking proba-
bilities f(w;, ) : [0,1] — [0, 1]. The second is that there is excess variation in the distirbution
of z; that is not explained by f(w;,-). Formally, consider the pseudometric on the space of
social characteristics defined by

d0.0) = 10) ~ S0 = [ 07 - stomar)

Here, the linking function f(u, -) gives the probability that an agent with social characteristics
u links with agents of every other social characteristic in [0, 1], and d(u, v) is the integrated
squared difference in the linking functions of agents v and v. The identification conditions
are that f is identified if E[(z; —z;) (Mw;) — AMw;))|d(w;, w;) = 0] = 0 and E{(x; —x;) (x; —
x;)|d(w;, w;) = 0] is positive definite. These conditions are similar to the usual identification
conditions for linear models with unobserved heterogeneity in the panel data setting (see, for
example Wooldridge (2010) Chapter 10): it is the notion of the network distance measure d
used to partial out the endogenous variation that is different.

The logic behind the first identification condition is that d describes the totality of infor-
mation that the distribution of D contains about w;. That is, if d(w;, w;) = 0 then there is
no feature of the network that can distinguish between agents ¢ and j. They will have the
same probability of being connected in any particular configuration of links, and thus will
have the same distribution of degrees, eigenvector centralities, average peer characteristics,
and any other agent-level statistic of D. If E[(x; — x;) (Mw;) — Mw;))|d(w;, w;) = 0] # 0,
then matching agents with similar link distributions will not control for all of the unobserved
heterogeneity in (1.1), but under (1.2) there is no further information in the distribution of D
that can identify it. Additionally, when w; is identified by the distribution of D, d(w;, w;) = 0
implies |w; — w;| = 0, so that E[(x; — ;) (AMw;) — Mw;))|d(w;, w;) = 0] = 0 holds trivially.
As a consequence, this first identification condition is more general than those imposed by
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Goldsmith-Pinkham and Imbens (2013); Hsieh and Lee (2014); Johnsson and Moon (2015),
and Arduini, Patacchini, and Rainone (2015).

A sufficient condition for Ef(x; — ;) (Aw;) — AMw;))|d(w;, w;) = 0] = 0 is for A(w;) to
be continuous in d (ie, if {w’}?°; such that d(w;, w') — 0 then [A(w;) — A(w")| — 0). I
prefer the former condition because in some cases there is variation in A(w;) that is not
continuous in d but is uncorrelated with x; so that the first identification condition is still
valid. For instance, suppose the omitted function is an indicator for whether or not an agent
is linked to agent 1, or A(w;) = D;;. Then A(w;) is not continuous with respect to d, but
Diy1 = E[Dj|w;| + (Dia — E[Dji|w;]) in which the first summand is continuous with respect
to d and the second is uncorrelated with z;.

The logic behind the second identification condition is that matching agents with similar
link distributions only identifies (§ if there is excess variation in the distribution of x; not
explained by the linking function f(w;,-). Otherwise there is a dimension of the covariate
space such that all of the variation in y; can be explained by w; regardless of the magnitude
of 8. One example of this is when x; contains agent-level statistics of the adjacency matrix.
Another is the case of linear-in-means network peer effects. I discuss these cases in more
detail below.

The second insight is that the average squared difference in the ith and jth columns
of the squared adjacency matrix (D x D) can be used to bound d(w;,w;). The logic has
two steps. First, there exists another pseudometric § on [0,1]? such that d(w;, w;) can be
bounded in terms of 6(w;, w;). Second, é(w;, w;) can be consistently estimated by the root
average squared difference in the ith and jth columns of the squared adjacency matrix

1/2
n

Sy = ('S ((n ~ 213 DDy - Dm) (1.3)

t=1

Here, the codegree Y ", Dy;D;, gives the number of other agents that are linked to both
agents ¢ and t, {> " | DyD;s}, is the collection of codegrees between agent ¢ and the
other agents in the sample, and &j gives the root average squared difference in i’s and j’s
collection of codegrees. Similar relationships between configurations of network moments
and the distribution of links have also been exploited by Lovasz and Szegedy (2007, 2010);
Bickel, Chen, and Levina (2011); Lovéasz (2012), and Zhang, Levina, and Zhu (2015).

The two insights indicate that when the ith and jth columns of the squared adjacency
matrix are similar and the identification conditions for /3 hold then (y; —y;) and (z; — ;)5 +
(ei — €;) are approximately equal. This result is limited in the sense that it is insufficient to
estimate A by a series approximation as in Newey (1988) and Ai and Chen (2003) because
w; is not necessarily identified. However, one can recover § by matching pairs of agents with
d-similar social characteristics. This chapter demonstrates that under certain regularity
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conditions [ is consistently estimated by a pairwise difference estimator

(S S (1)) (5 S o-aro-nn (1))

(1.4)

in which K is a kernel density function and h, a bandwidth parameter depending on the
sample size.

The estimator has a form similar to established pairwise difference estimators from the
literature (in particular, Ahn and Powell (1993)). However, the large sample properties
of 5’ are not typical of this literature. For example, unless the researcher is willing to put
substantial structure on the unknown linking function f, the distribution of &j can be difficult
to characterize near 0, complicating the usual balancing of asymptotic bias and variance.
The problem is related to the small ball problem in the functional nonparametrics literature
(see for example Masry (2005); Ferraty and Vieu (2006); Hong and Linton (2016)) and can
severely amplify the usual curse of dimensionality. Of particular concern is the possibility
that the quantity of matches shrinks to zero quicker than the averages in (1.4) converge,
though in the proofs of this chapter I demonstrate how the structure of the network model
sufficiently mitigates this problem such that under certain regularity conditions the proposed
estimator is consistent and asymptotically normal.

Example 1 (Network Peer Effects) In the network peer effects model

yi = ;8 + Elz;|Di; = 1, ws)pr + Ely;|Dij = 1, wi]p2 + AMw;) + €5
Dij = Mmij < f(wi, w;)}1{i # j}
the parameters p; and py are not identified since Efx;|D;; = 1,w;] = E[z;D;j|w;]/E[D;;|w;]

is a fixed function of w; that is indistinguishable from A(w;). In particular, the model
violates the nondegeneracy identification condition since

Elz;|D;j = 1,w;] = /E[a:j\wj = w]f(wi,w)dw//f(wi,w dw
and d(w;, wy) = ||f(w;, ) = f(wy,-)||2 = 0 implies
E[(Blzj| Dij = 1, w)) = Bla;| Dy = 1, wy])” [d(w;, wi) = 0] = 0

It is helpful to contrast this result with that of Goldsmith-Pinkham and Imbens (2013),
who study the model

Dij = W{ny; < |wi — wj|m + Zigyp}1{i # 5}
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Their model is identified by two restrictions. The first is the functional form restriction on
the network heterogeneity A(w;) = w;ps. The second is the introduction of exogenous link
covariates Z;;, assumed to be independent of w; and w;.®

Example 2 (Information Diffusion) In the microfinance program participation model

yi = i3 + Ely;|Dij = 1, wilp + Mw;) + &
Di; = 1{n;; < f(ws,w;)}1{i # j}

the parameter p is not identified following previous arguments. The parameter 3 is
identified if two households with the same distribution of links have the same probability of
being informed about the program and a household’s covariates are not completely
determined by their distribution of links. For example, if households only link to other
households of the same religion or caste, then the second condition is violated. In contrast
to Banerjee, Chandrasekhar, Duflo, and Jackson (2013), the estimation of 5 does not
require many-networks asymptotics.

Example 3 (Job Mobility): In the labor market earnings model

log(yir) = B + 0(d1(w;)) + V(da(wjgin)) + €t
Dij = 1{ni; < f(d1(wi), pa(w;))}

[ is identified if agents in different network clusters have a different distribution of network
links and there is excess variation in the worker and industry-occupation covariates that
are not explained by the network links. The first is satisfied by construction since Schmutte
(2014) defines the clusters as functions of the network links. The second is satisfied if the
covariates have overlapping support across clusters.

Example 4 (Research Productivity): In the research productivity model

yi = i + Mw;) + &
Dy; = 1{n;; < f(w;, wy)}1{i # j}
[ is identified if there is excess variation in the covariates that is not explained by the

network links. This may not be satisfied if reasearchers only coauthor with other
researchers with similar publication histories.

8 It is also possible to incorporate link covariates into the framework of this chapter by replacing equation
(1.2) with D;; = 1{n;; < f(w;,w;, Z;;)}. In the appendix, I demonstrate how the estimator of this chapter
can be extended to models with link covariates by matching on conditional codegree vectors, although a
formal study of the asymptotic properties of such an estimator is left to future work.
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1.3 Main Results

Terminology and Notation

This section details additional constructions required for the lemmas, theorems and proofs.
I define agent i’s network type to be the projection of the link function f onto his social
characteristics: fy,(+) := f(w;,-) : [0,1] — [0,1]. In words, it is the collection of probabilities
that agent ¢ links to agents with each social characteristic in [0, 1]. T consider network types to
be elements of L?([0,1]), the usual inner product space of square integrable functions on the
unit interval. As suggested by the notation of the previous section, d(w;, w;) = || fuw, — fu, |2
is the L? metric on the space of network types.

I require two network theoretic constructions: (average) agent degrees and (average)
agent-pair codegrees. The degree of agent 7 is the fraction of other agents linked to agent ¢
in D, or (n—1)""37,_; Dyy. Under (1.2), that (n—1)"" 3", . Dit —a.s. [ fu,(7)d7 follows from
the usual strong law of large numbers. Similarly, for ¢ # j the codegree of agent pair (i, j)
is the fraction of other agents linked to both agent 7 and agent j, or (n —2)~* > izij DieDie
Again, under (1.2), (n —2)7' 30,  DitDji —as. [ fu(T) fu,(T)dT = (fu,, fuw; )2 - For
reference, I denote this codegree by p;; and its almost sure limit with p(w;, w;). I emphasize
that p(w;, w;) refers to the limiting codegree of two distinct agents with social characteristics
equal to w; and not to the limiting degree of agent i. That is p(w;, w;) == [ fu,(7)*dr =
|| fu |15 # ffwi(T)dT-

Notice that p also defines a link function, in which p(w;, w;) gives the probability that
agents ¢ and j have a link in common, as opposed to f(w;,w;), which gives the probability
that they are directly linked themselves. To distinguish p from f I refer to it as the codegree
link function (associated with f), and the function py,(-) := p(w;, ) : [0,1] — [0, 1] as agent
i’s codegree type. I also take codegree types to be elements of L*([0,1]). I refer to the
pseudometric on [0, 1] induced by L?-differences in codegree types with 4, so that

3(u0) = ) = (o.Ml = ( [ 0, = pto, 7)) v

_ (/ (/f(f,s) (f(u, S)_f(v’s))d«?)QdT) 1/2

for any pair of social characteristics u and v. Under (1.2), my Lemma 1 demonstrates that
the root average squared difference in the ith and jth columns of the squared adjacency
matrix (given by (1.3)) provides a uniformly consistent estimator for 6 (w;, w;).

I use two different conditional expectations defined over events on the network types.
Let Z; and Z;; be arbitrary random matrices indexed at the agent and agent-pair level
respectively. Then E[Zy| [|fuw, — fu,;||2 = 2] refers to the conditional expectation

lim B[Z;;| (wi, w;) € {(w,0) 2@ < [[fu = folla <z + R}
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and E [Z;|f.,, = f] refers to the conditional expectation
lim E [Z;| w; € {w : || fw — f]l2 < h}]
h—0

Though f,, is a random function, these conditional expectations implicitly refer to the
measure induced by the random variable w;. Conditional means with respect to the agent
codegree differences or types are defined in an analogous way.

Let u; = A w;) + €;. I use the functional \(f) to denote E[u;|f., = f] and v; for the
associated residual u; — A\(fy,). This allows me to rewrite equations (1.1) and (1.2) in a way
that emphasizes the identification and estimation strategy described in the previous section.

Yi = i + M fuw,) +vi (1.5)
Dij = 1{ny; < flw, w;y)}

Model Identification

This section gives conditions for agents with similar network types but different regressors
to identify f3.

Assumption 1: The random sequence {z;, v;, w;}; is independent and identically
distributed with entries mutually independent of {n;;}7.,_;, a symmetric random array
with independent and identically distributed entries above the diagonal. The variables w;
and 7;; have standard uniform marginals. The conditional distributions of {y;}! ; and D
are given by equations (1.5) and (1.6) respectively, for some Lebesgue-measurable and
symmetric link function f : [0,1]*> — [0, 1].

Assumption 1 is a restatement of the discussed model and is included primarily as a
reference. Since the marginal distributions of w; and 7,; are not seperately identified from f,
the assumption of standard uniform marginals is without loss of generality (see Bickel and
Chen (2009) for a discussion).

Assumption 2: The variables z; and u; both have finite sixth moments and
El(z; — ;) (wi — uj)| |[fw, = fu,;ll2 = 0] = 0.

The second part of Assumption 2 is satisfied if x; and u; are uncorrelated conditional on

Juwy-

Assumption 3: The conditional covariance matrix
Lo = E [(z; — ;) (xi — ;) | || fw; — fu,||2 = 0] is positive definite.

Assumption 3 states that there is some independent variation in each of the regressors
that is not explained by the network types. Section 2 explores cases when it is unrealistic, for
example when the regressors include functions of the adjacency matrix. The assumption can
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be weakened in cases when the researcher has some additional information about the network
formation process (for example, exogenous link covariates) or structure on the endogenous
covariation in equation (1.5).

Theorem 1: Suppose Assumptions 1-3 hold. Then 5 is the unique minimizer of
2
E [((yi —y5) — (@i = 2)b)" | || fu, = fu;|l2 = 0] over b € R,

Model Estimation

This section characterizes the large sample properties of ﬁ . The first part provides sufficient
conditions for consistency. The second part provides sufficient conditions for the limiting
distribution to be normal. Accurate inference may require a bias correction and the third
part demonstrates how a variation on the jackknife method proposed by Powell, Stock, and
Stoker (1989) can be used for this purpose. The fourth part provides a consistent estimator
for the asymptotic variance.

Consistency

Consistency of B requires an additional continuity condition on the conditional expectation
functions from Assumptions 2 and 3, and restrictions on the bandwidth sequence and kernel
density function.

Assumption 4: The conditional expectation functions satisfy
limp, o E[(#; — 2;)"(wi — ;)| || fw, = fu,l|l2 = h] = 0 and
limy, 0 E(z; — 25)" (2 — )| || fuw, = fu,ll2 = h] =T.

Assumption 4 is satisfied if Assumptions 2 and 3 hold and the conditional expectation
functionals E[z}u;|fs,] and E[z}z;| fs,] as defined in Section 3.1 are continuous with respect
to fu, in the L?-sense. This condition might not be satisfied if the network is sparse, because
fw, may be uniformly close to zero so that small variations in f,, correspond to large variation
in z; and u;. In the appendix, I discuss how the estimator can be altered to mitigate this
problem by allowing the magnitude of f to change with the sample size.

Assumption 5: The bandwidth sequence h,, — 0, n'~7h? — oo for some v > 0, and

M)] K is supported, bounded, and differentiable on

[0, 1], and strictly positive on [0, 1).

m‘n—>ooforrn:E[K<

The first two restrictions on the bandwidth sequence are standard. The third condition,
that nr, — oo is not. This condition is required to ensure that the number of matches
used to estimate B is increasing with n. If p, was a d-dimensional random vector with
compact support and a strictly positive density function, P(|[pw, — puw,|[2 < h,) would be on
the order of h%. The number of agent-pairs with similar codegree types would then be on
the order of nh?, which increases with n if the second bandwidth condition were changed to
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n'~7hd — oco. Since p,, is infinite dimensional, P(|[pw, — Pu,||2 < hy) cannot necessarily be
approximated by a polynomial of h,, of known order and so this third bandwidth condition
is required.

The conditions on the kernel density function K are satisfied by a type-II kernel density
function (examples include the Epanechnikov, Biweight, and Bartlett kernels). It is possible
to extend this proof to include the standard uniform kernel density function, although kernels
supported on all of R (for example the Gaussian kernel) may potentially cause problems in
this setting (see Hong and Linton (2016) for a discussion).

If the collection of network differences between agents {|| fu, — fuw,||2}i; were observed and
used to construct the matches in B , the arugments for consistency would be similar to those
of Ahn and Powell (1993), though with some alterations to accomodate the dimensionality of
fuw;- That the estimator is still consistent when || f,,, — fu,||2 is replaced by 5,~j follows from two
arguments. First, {0;;}:; converges uniformly to the codegree differences {||pu, — Pu, |2 }izs-
Second, agent-pairs with small codegree differences have small network differences. These
results are stated in Lemmas 1 and 2 respectively.

Lemma 1: Suppose Assumptions 1 and 5 hold. Then

max 3i~— w;, — Puws ‘zoas n~4h,
max |03 — [[Pw, = pul2 s )

in which v refers to the exponent from Assumption 5.

Lemma 1 demonstrates that the collection of (;‘) empirical codegree differences observed
by the researcher converges uniformly to their population analogs at a rate slightly slower
than n~'/2 (since h,, can be taken to be arbitrarily close to n~'/2 by taking v close to 0).
The proof involves repeated applications of Bernstein’s Inequality and the union bound over
the (g) distinct empirical codegrees that make up {&j}i#

Lemma 2: Suppose Assumption 1 holds. Then for every € > 0 there exists a § > 0 such
that with probability at least 1 — €2/4

||pwi _pijQ < 0 = ||fwz _fwj||2 <e

Lemma 2 is the main justification for the matching strategy of this chapter. The result is
somewhat unexpected since ||puw, = puw, |2 < || fuw; = fu,||2 is almost an immediate consequence
of Jensen’s inequality.” Nevertheless, pairs of agents with similar codegree types have similar
network types with high probability.

9 To see this, note |lpw, — pul3 = [ ([ Fts)(fwis) = f(w,s)ds) dt <
f(f (f(t,s) (f(wms)—f(wjas)))zds) dt < [(f(wi,s)— f(w;,$)’ds = ||fu, — fu,|3, where the first

inequality is due to Jensen and the second due to the fact that f is bounded between 0 and 1.
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The lemma is related to Theorem 13.27 of Lovdasz (2012), which demonstrates that ||p.,, —
Pw, |2 = 0 implies || fu, — fu,|[2 = 0 when f is continuous. The logic of his result is illustrated
below.

b= pufli=0 = | ( [ 79 (rlwns) - f(wj7s))ds)2df 0
— [ 7. (w1, = fwy, ) ds =0 for every 7
— [ Fw9) () = flus, ) ds =0 and [ Fluy,) (i) = s, ) ds =0
— [ (i) = Fluy, ) ds =0 = [lfu, = fu |} =0

Essentially, the result follows from the fact that if agents ¢ and j have identical codegree
types, then the difference in their network types (fu, — fu,) must be uncorrelated with
each other network type in the population, as indexed by 7. In particular, the difference is
uncorrelated with f,, and f,;, the network types of agents ¢ and j. However, this can only
be the case if the network types of i and j are perfectly correlated.

Lovéasz’s theorem demonstrates that agent-pairs with identical codegree types also have
identical network types. However, consistency of B requires a stronger result, that agent-pairs
with similar but not necessarily equivalent codegree types have similar network types. This
is the statement of Lemma 2. Unfortunately the above proof cannot simply be extended
by replacing each occurance of 0 with some function of a small € > 0, because the third
implication relies on [ f(7,s) (f(w;, s) — f(w;,s))ds = 0 for exactly all 7, which is not
guaranteed by the condition ||p,, — pu,||3 < € for any € > 0. Despite this, the proof of
Lemma 2 demonstrates that the two notions of distance are similar in enough places that
matching agents with similar codegree types is sufficient to partial out A(f,,) in equation
(1.5) and consistently estimate (3.

Theorem 2: Suppose Assumptions 1-5 hold. Then (B — 5) —p 0.

Theorem 2 is almost a direct consequence of Lemmas 1 and 2, several applications of the
continuous mapping theorem, and Lemma 3.1 from Powell, Stock, and Stoker (1989).

Asymptotic Normality

I provide two asymptotic normality results. The first result concerns the case when the
support of the agent linking function f,, is finite, so that P(||fu, — fu,|l2 = 0) = P(||pw, —
Puw,;ll2 = 0) > 0 and there exists an ¢ > 0 such that P(0 < ||fu, — fu,|l2 < €) = P(0 <
|[pw, = Pu, |2 < €) = 0.

Theorem 3: Suppose Assumptions 1-5 hold. Further suppose the support of f,, is finite.
Then

Vil (8= 8) —a N (0. 1)
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where Vs, = FEIQOFEI x s/n, Ty is as defined in Assumption 3, Iy is the k X k identity
matrix, and

s = P(|[pi — pill2 = 0. |[pi — pell2 = 0)/P(||p; — pj||2 = 0)?
Qo = E(zi — 2;) (xs — ) (us — uz)(wi — wr)| ||pi — pjll2 = 0, [|ps — prll2 = 0]

When the support of network types is finite, pairs of agents with similar codegree types
have identical network types with high probability, and so the proof of Theorem 3 follows
from Assumptions 1-5, Lemmas 1 and 2, and standard arguments. This theorem is included
for three reasons. First, it adds to a literature noting that the adverse effects of unobserved
heterogeneity can be mild when the support of this variation is finite (for example Hahn
and Moon (2010); Bonhomme and Manresa (2015)). Second, the assumption of discrete
heterogeneity is not uncommon in empirical work (for instance, Schmutte (2014); Bonhomme,
Lamadon, and Manresa (2015)). Third, it provides an easy to interpret condition such that
B is consistent and asymptotically normal at the y/n-rate.

The second result concerns the more general case when the support of f,, is not nec-
essarily finite. In this case, the proof of asymptotic normality requires additional structure
on f and the conditional expectations from Assumption 4, which is given in the following
Assumptions 6 and 7. Assumption 8 modifies the bandwidth sequence accordingly.

Assumption 6: There exists an integer K and a partition of [0, 1) into K equally spaced,
adjacent, and non-intersecting intervals UX , [z}, 2?) such that for any ¢t € {1, ..., K} and
almost every x,y € [z}, 2?) and s € [0,1], | f(z,s) — f(y, s)| < Cg|lx — y|*, for some Cs > 0

and a > 0.

Assumption 6 imposes that the space of social characteristics can be partitioned into K
segments such that on each partition segment the link function f is almost everywhere Holder
continuous of some order. The partition allows for discrete jumps of the link function as to
include discrete models such as the stochastic blockmodel (see Appendix C for a definition
and discussion) as a special case. The restriction that the partition is uniformly sized is
without loss, and the results can also be extended to let K,, — 0 slowly with n.1°

Assumption 7: The conditional expectation
El(z; — x5) (ug — wj)| || fu; — fu;ll2 = h] < C7h¢ for some C7, ¢ > 0 and all h in a
neighborhood to the right of 0.

Assumption 7 stengthens Assumption 4 so that the slope of the conditional expectaton
E[(x; — ;) (u; — uj)| || fu, — fu,|]2] is bounded by a fractional polynomial to the right of 0.

10This corresponds to a stochastic blockmodel with a growing number of blocks as in Wolfe and Olhede
(2013). A similar condition is used by Zhang, Levina, and Zhu (2015)
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Assumption 8: The bandwidth sequence h,, = Cy x n™" for p € (M%’ ﬁ) and some
Cs > 0. K(y/u) is supported, bounded, and twice differentiable on [0, 1], and strictly

positive on [0, 1).

The rate of convergence of the bandwidth sequence depends on the exponent from As-
sumption 6. When o = 1 this bandwidth choice is approximately on the order of magnitude
considered by Ahn and Powell (1993). The proof of Theorem 4 is simplified by requiring
the composition of K and /- to be twice differentiable at 0, and all of the kernel density
functions in the discussion of Assumption 5 satisfy this additional condition.

The second asymptotic normality proof uses Assumption 6 to strengthen Lemma 2 in
the following way.

Lemma 3: Suppose Assumptions 1 and 6 hold. Then for almost every (w;,w;) pair

_1 _a
1Pw; = Puyllz < (1 fur = fuylle < 32 G5 ([IPwy — Puyll2) ™
so long as |[pw, — Pu, |2 < V8Cs K™%, where Cg and « are the constants from Assumption 6.

Theorem 4: Suppose Assumptions 1-3 and 6-8 hold. Further suppose a x ¢ > 1/2. Then

~

Vi (8= Bn,) =a N (0, 1))

where V, ,, = T5'Q,I5" /n, Ty is as defined in Assumption 3, r,, is as defined in Assumption
5, and [ is the k£ x k identity matrix, and

Bu, =B+ ([To) ' E [(1’, — ;) (u; — uj) K <W)} / (2ry,)
Q,=FE [(%‘ — ;) (v — ) (ws — uy) (wi — ug) K (%) K (W)} /(r})

The statement of Theorem 4 warrants three remarks. First, the variance is not nece-
sarily on the order of the inverse of the sample size. This is because the variance of the

kernel 2 F [K <Hp;ﬂ> K <Hp;¢”2>} can potentially diverge with n. When this variance
converges to a limit, then (B — B, | is asymptotically normal with variance I'02qI'y X o/n

where o = lim,, o, 7,2 E [K (M) K (le;ﬂﬂ and €y is as defined in Theorem 3.

n n

Even when this variance diverges, Assumptions 6-8 and Lemma 3 ensure that the rate of
convergence for Vj ,, is on the order of at least n~1/2 and is close to n~! when « is close to 1. In
the appendix, I propose an adaptive bandwidth procedure that requires each agent to belong

to the same number of matches, which normalizes r,2E | K ”pi;ﬂ K ”pi;ﬂ)} = 1.

n

Though this choice of bandwdith potentially inflates the bias of the estimator relative to
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,5’ , simulation evidence suggests that this inflation is often small relative to the reduction in
variance.

Second, the estimator has an oracle property in the sense that the estimation error of &j
around (w;, w;) is asymptotically negligable, so that the researcher may conduct inference
as though the codegree differences between agents were known. The intuition in this case is
that conditional on (w;, w;), the asymptotic variance of \/5(5” — d(w;, w;)) is bounded from
above by d(w;,w;). Since the estimator is premised on d(w;, w;) being close to zero, it follows
that the variance of v/n(d;; — d(w;, w;)) converges in probability to 0. When o x ¢ > 1/2 this
rate of convergence is sufficiently fast to not impact the asymptotic variance of 3. This is
distinct from the results of Ahn and Powell (1993). Their approach would roughly correspond
to matching agents based on 6(w;,w;), where w; is a consistent estimator for w;. In their
case, the variation of w; around w; and w; around w; is completely unrelated to d(w;, w;),
and so this variation does inflate the asymptotic variance of their estimator.

Third, the asymptotic distribution B is not centered at 3, but at the pseudo-truth g, .
Though 3, converges to 3, the rate of convergence can be slow depending on the size of
a and (. This problem is common with matching estimators, although it is exacerbated
here by the relatively weak relationship between the codegree and network distances as

demonstrated by Lemma 3. In particular, Assumptions 6-8 and Lemma 3 only imply that
2

\Bh, — B = O, (n2<1+2a>2) which can imply a worst-case scenario bias on the order of n~1/36.

Bias Correction

Inferences about 3 based on the asymptotic distribution provided by Theorem 4 will only
be valid if V4_n1 /2 (Bh, — B) = 0,(1). Otherwise, accurate inference requires a bias correction.
The technique proposed in this chapter requires an additional smoothness condition

Assumption 9: The pseudo-truth function f;, satisfies 5, = Zle CihM? + 0 (h(L“)/(’) for
some positive integer L > (a/(20(1 4 2«v)), k-dimensional constants C4, Cy, ...,Cp, 6 > 0,
and h in a fixed open neighborhood to the right of 0.

Assumption 9 requires that the asymptotic bias from Theorem 4 is sufficiently smooth
with respect to the bandwidth choice.

I propose the following jackknife bias corrected estimator 3. For an arbitrary sequence
of distinct positive numbers {cy, ca, ..., c} with ¢; = 1, B, is defined to be

L

BL = Zachlhn (1.7)

=1
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in which /éclhn refers to the pairwise difference estimator (1.4) with the choice of bandwidth
¢ X hy, and the sequence{ay, as, ...ar} satisfies

1 1 ... 1 a 1

1 c§/9 ci/e as 0
X =

1 cL/e cé/e ar, 0

Theorem 5: Suppose Assumptions 1-3 and 6-9 hold, and L > (a/(20(1 4 2«v)). Then
Vin? (Br = B) =a N (0, 1)

where V5, = Zi:l Zi:l a, a, T Q1. 0o /n, To is as defined in Assumption 3, r,, is as
defined in Assumption 5, I is the k X k identity matrix, and

Quss = E |0 = ) o1 = o) = ) — )6 (22l ) g (T2l

n n

Variance Estimation

The asymptotic variances from Theorems 3-5 can be consistently estimated using the sample
analogs of I'g and €y, ,,;,. That is, let 4; = y; — Sz,

= () > ) () 1 (15200

=1 j=i+1
and an,hz ==
—2n—2 n—1 n A N N N
. NS . 1D — Dilla 1P — Prll2
( ) Y > (i) (@i —w) (Ui—uj)(ui—uk)K<h—j K="
i=1 j=i+1 k=j+1 ! 2
then

Theorem 6: Suppose Assumptions 1-5 hold. Then (f;jflhmhnf,ﬂ - nV4,n> —, 0 and
A A1
<Zl1 1 le 1 Cllhn Cllhn:CZthFClth - n‘/f):n) _>p 0

A corollary to Theorem 6 is that f,:nlflhmhn f;l also consistently estimates nVj,, under the
hypothesis of Theorem 3. These statistics can be used to build confidence intervals or test
hypotheses about 8 under the relevant assumptions in the usual way. Asymptotic theory has
little to say about the actual choices of bandwidths and constants used in the construction
of the estimators in this section. The setting potentially allows for choices based on cross
validation which I leave to future work.
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1.4 Simulations

This section presents simulation evidence for three types of network formation models: a
stochastic blockmodel, a beta model, and a homophily model. To simplify the exposition, a
detailed explanation of the models is deferred to Appendix C. For each of R simulations, I
draw a random sample of n observations {&;, &;,w;}, from a trivariate normal distribution
with mean 0 and covariance given by the identity matrix and a random symmetric matrix
{772-]-}2]-:1 with independent and identically distributed upper diagonal entries with standard
uniform marginals. For each of the following link functions f, the adjacency matrix D is
formed by D = 1{n;; < f (®(w;), P(w;))} where & is the cummulative distribution function
for the standard univariate normal distribution.
The first design draws D from a stochastic blockmodel where

1/3 ifu<1/3andv>1/3

1/3 if 1/3<u<2/3andv<2/3
filw,v) = 1/3 if u>2/3 and (v >2/3 or v <1/3)

0 otherwise

The linking function f; generates network types with finite support as in the hypothesis of
Theorem 3. For this model, I take A\(w;) = [3®(w;)], z; = &+ w;), and y; = Sa;+yA(w;)+€;.
The second and third designs draw D from the beta model and homophily model where

exp(u + v)

1+ exp(u +v) and fs(u,v) =1~ (u—v)?

fo(u,v) =

For these models, A(w;) = w;, ©; = & + AMw;) and y; = Br; + YA (w;) + €.

Let x and y to denote the stacked n-dimensional vector of observations {z;}!, and
{y;}1~, and Z; for the (n x 2) matrix {x;, \N(w;)}"_;. I use ¢; to denote a vector of network
statitics for agent 7 based on D containing agent degree n~! Z?Zl D;;, eigenvector central-
ity,!! and average peer covariates Z?Zl D;jx;/ 2?21 D;;. Zy denotes the stacked vector
{@i, citisy R

For each design, I evaluate the performance of six estimators. The benchmark is §; =
(Z!Z,)"Y(Z}y), the infeasible OLS regression of y on z and A(w;). B = (z'z)"(2y) is the
naive OLS regression of y on x. Bg = (Z575)"1(Z}y) is the OLS regression of y on z and
the vector of network controls c. B4 is the proposed pairwise difference estimator given in
(1.4) without bias correction, S35 is the bias corrected estimator (1.7), and fBs is the pairwise
difference estimator with an adaptive bandwidth but without bias correction (see Appendix
A for more detaﬂs) The pairwise difference estimators all use the Epanechnikov kernel
K(u) = 3(1 —w*)1{u* < 1} /4. Estimators B4 and f5 use the bandwidth sequence n~/?/10
and the estimator g uses the bandwidth sequence n=/9/5. Since n'/? is roughly equal to 2

1 Agent i’s eigenvector centrality statistics refers to the ith entry of the eigenvector of D associated with
the largest eigenvalue.
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for the sample sizes considered in this section, the results are close to a constant bandwidth
choice of h,, = .05 and .1 respectively.

Tables 1-3 demonstrates the results for R = 1000, § = v = 1 and for each n in
{50,100, 200, 500,800}. For each model, estimator and sample size, the first row gives the
mean, the second gives the mean absolute error of the simulated estimators around [, the
third gives the mean absolute error divided by that of Bl, and the fourth gives the proportion
of the simulation draws that fall outside of a 0.95 confidence interval based on the asymptotic
distributions derived in the previous section.

Table 1 contains results for the stochastic blockmodel. The naive estimator Bg has a
large and stable positive bias that is not reduced as n is increased. The OLS estimator with
network controls 53 is not asymptotically well defined in this example because the network
statistics converge to constants. The results in Table 1 instead demonstrate a common “fix”
in the literature, which is to instead calculate (Z575)"(Z}y) where + refers to the Moore-
Penrose pseudo-inverse. The results for this estimator indicate that adding network controls
mitigates some of the bias in 3; (due to sampling variation in the number of agents in each
block), however the estimator is otherwise poorly behaved. Notice this bias returns when
the block sizes stabilize (in particular when n = 800).

The results for the pairwise difference estimators illustrate the content of Theorem 3,
that when the unobserved heterogeneity is discrete, the proposed estimator identifies pairs of
agents of the same type with high probability. As a result, the pairwise difference estimators
34 and Bﬁ behave similar to the infesible BQ. For the stochastic blockmodel, Assumption 9 is
not valid, and so the jackknife bias correction actually inflates both the bias and variance of
B,. Looking at the relative mean absolue error for this estimator, it is clear that the relative
performance of the error is deteriorating as n increases (though the bias and variance of this
estimator is still on the order of 1/4/n).

Table 2 contains results for the beta model. Relative to the stochastic blockmodel, all of
the estimators for the beta model (except infeasible OLS) have large biases. This is because
the link function f, is very flat, so that the variation in linking probabilities that identifies
the network positions is relatively small (see also Section 5 of Johnsson and Moon, 2015).
In appendix C I demonstrate that the social characteristics are identified by the distribution
of D (they are consistently estimated by the order statistics of the degree distribution), but
the bound on the deviation of the social characteristics given by the network metric is large:
lu —v] <20 x d(u,v).

Still, the proposed pairwise difference estimator offers a substantial improvement in per-
formence relative to both the naive estimator Bg and the estimator with network controls Bg
For example, when n = 100, 55 has approximately half the bias and mean absolute error of
Bl while 53 offers a reduction of less than ten percent. When n = 800 the reduction in bias
is over three times as large (75% relative to 23%).

Table 3 contains results for the homophily model. As in the case of the beta model, I
demonstrate in Appendix C that the social characteristics are also identified in the homophily
model. Unlike the beta model, there is a relatively large amount of information about the
network positions in the linking probabilities so that all of the estimators in Table 3 are
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Infeasible  Naive  OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference  Corrected  Bandwidth
n B B2 B3 B Bs Bs

50
bias 0.004 0.829 0.268 0.060 0.022 0.106
MAE 0.116 0.829 0.274 0.224 0.240 0.150
rMAE 1.000 7.147 2.362 1.931 2.069 1.293
size 0.057 0.063 0.072 0.115 0.123 0.067

100
bias 0.003 0.829 0.226 0.021 -0.022 0.019
MAE 0.083 0.829 0.229 0.089 0.094 0.084
rMAE 1.000 9.988 2.759 1.072 1.133 1.012
size 0.064 0.053 0.108 0.053 0.058 0.056

200
bias 0.001 0.823 0.180 0.004 -0.040 0.002
MAE 0.056 0.823 0.183 0.058 0.069 0.058
rMAE 1.000 14.696 3.268 1.036 1.232 1.036
size 0.049 0.044 0.215 0.045 0.064 0.058

500
bias 0.000 0.824 0.172 0.006 0.038 0.001
MAE 0.035 0.824 0.174 0.035 0.048 0.035
rMAE 1.000 23.543 4.971 1.000 1.371 1.000
size 0.033 0.061 0.777 0.037 0.047 0.044

800
bias 0.001 0.823 0.314 0.008 -0.036 0.000
MAE 0.029 0.823 0.314 0.029 0.043 0.029
rMAE 1.000 28.379 10.828 1.000 1.483 1.000
size 0.057 0.038 0.127 0.054 0.068 0.062

Table 1.1: This table contains simulation results for 1000 replications and a sample size of n = 100, 200, 500.
Bias gives the mean estiamtor minus 1. MAE gives the mean absolute error of the estimator around 1. rMAE
gives the mean absolute error relative to the benchmark Bl. Size gives the proportion of draws that fall outside

the asymptotic 0.95 confidence interval.
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Infeasible  Naive  OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference  Corrected  Bandwidth
n B B2 B3 B Bs Bs

50
bias 0.000 0.496 0.462 0.379 0.335 0.365
MAE 0.119 0.496 0.463 0.381 0.341 0.366
rMAE 1.000 4.168 3.891 3.202 2.866 3.076
size 0.064 0.063 0.075 0.049 0.066 0.070

100
bias 0.006 0.501 0.462 0.336 0.269 0.298
MAE 0.082 0.501 0.462 0.336 0.270 0.299
rMAE 1.000 6.110 5.634 4.098 3.293 3.646
size 0.055 0.053 0.055 0.039 0.062 0.081

200
bias 0.002 0.501 0.444 0.290 0.200 0.231
MAE 0.058 0.501 0.444 0.290 0.200 0.231
rMAE 1.000 8.638 7.655 5.000 3.448 3.983
size 0.050 0.041 0.036 0.033 0.054 0.070

500
bias 0.003 0.499 0.403 0.246 0.136 0.151
MAE 0.036 0.499 0.403 0.246 0.136 0.151
rMAE 1.000 13.861 11.194 6.833 3.778 4.194
size 0.049 0.042 0.054 0.022 0.033 0.076

800
bias 0.000 0.500 0.385 0.237 0.122 0.122
MAE 0.028 0.500 0.385 0.237 0.122 0.122
rMAE 1.000 17.857 13.750 8.464 4.357 4.357
size 0.050 0.054 0.078 0.037 0.050 0.062

Table 1.2: This table contains simulation results for 1000 replications and a sample size of n = 100, 200, 500.
Bias gives the mean estiamtor minus 1. MAE gives the mean absolute error of the estimator around 1. rMAE
gives the mean absolute error relative to the benchmark Bl. Size gives the proportion of draws that fall outside

the asymptotic 0.95 confidence interval.
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Infeasible  Naive  OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference  Corrected  Bandwidth
n B B2 B3 B Bs Bs

50
bias 0.007 0.505 0.269 0.128 0.087 0.140
MAE 0.120 0.505 0.274 0.108 0.121 0.211
rMAE 1.000 4.208 2.283 0.900 1.008 1.758
size 0.068 0.051 0.063 0.062 0.068 0.132

100
bias 0.005 0.502 0.162 0.100 0.057 0.089
MAE 0.081 0.502 0.167 0.124 0.108 0.116
rMAE 1.000 6.198 2.062 1.531 1.333 1.432
size 0.049 0.059 0.061 0.053 0.066 0.083

200
bias 0.001 0.503 0.095 0.085 0.039 0.055
MAE 0.057 0.503 0.100 0.097 0.075 0.077
rMAE 1.000 8.825 1.754 1.702 1.316 1.351
size 0.054 0.059 0.054 0.050 0.057 0.069

500
bias 0.000 0.501 0.047 0.074 0.028 0.035
MAE 0.035 0.501 0.053 0.077 0.048 0.046
rMAE 1.000 14.314 1.514 2.200 1.371 1.314
size 0.043 0.059 0.039 0.045 0.058 0.051

800
bias 0.000 0.501 0.034 0.070 0.023 0.030
MAE 0.028 0.501 0.086 0.072 0.039 0.038
rMAE 1.000 17.893 3.071 2.571 1.392 1.357
size 0.039 0.040 0.041 0.038 0.050 0.047

Table 1.3: This table contains simulation results for 1000 replications and a sample size of n = 100, 200, 500.
Bias gives the mean estiamtor minus 1. MAE gives the mean absolute error of the estimator around 1. rMAE
gives the mean absolute error relative to the benchmark Bl. Size gives the proportion of draws that fall outside

the asymptotic 0.95 confidence interval.
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much better behaved. In fact, for this model |u — v| < d(u,v).

In this example, the OLS estimator with network controls actually performs comparably
to the uncorrected pairwise difference estimator 34. This is because the peer characteristics
variable 3 7 | Dyjx;/ >0 Dij is a good approximation of w; when n is large. However,
the bias corrected estimator Bg, outperforms both estimators over all of the sample sizes
considered.

1.5 Directions for Future Work

I highlight two directions for future work. The first is to consider models in which the
parameter of interest depends on the distribution of network links. For example, one might
be interested in the functions 8(w;) and A(w;) in the model y; = x;8(w;) + A(w;) +&;. To see
why, suppose that x; is an indicator for the adoption of some treatment. Then the function
[ describes how the treatment effect varies over the network, which intuitively might be
nonconstant if the impact of treatment for a particular agent depends on the proportion of
his social connections that have been similarly treated. Estimating ((w;) potentially allows
the researcher to determine which positions in the network are associated with, for example,
the largest or smallest treatment effects. I plan to demonstrate how the tools of this chapter
might be used to estimate these and other features of both f(w;) and A(w;) in future work.

The second direction for future work concerns a behavioral motivation for the model and
estimator of this chapter. In Appendix D, I provide a basic random utility interpretation for
the network model along the lines of Graham (2014). However, the discussion is otherwise
largely divorced from a developed literature on economic models with strategic link forma-
tion. In future work, I hope to explore more connections between the setting of this chapter
and that literature.

One connection is potentially provided by the literature on network formation games
with private information. Recent work in this literature employs a similar network forma-
tion model as a within-equilibrium reduced form characterization of linking behavior (see
for example Leung (2015); Ridder and Sheng (2015); Menzel (2015)). Here the social char-
acteristics are public information about individual agents and the linking probabilities are
conditionally independent given these characteristics and some equilibirium selection process
(in this setting the link errors {7;;}i»; constitute private information about the quality of
individual links).

Understanding the mapping between structural models of network formation and this
reduced-form representation might be mutually beneficial for both the network formation
and network endogeneity literatures. For instance, the tools of this chapter could be used
to fit models of network formation in which not all of the public information that informs
linking decisions is observed by the researcher. At the same time, a deeper understanding of
network formation is important to help researchers fitting models with endogenous network
formation identify and control for the many types of unobserved heterogeneity lurking in the
errors.
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Chapter 2

A Sparse Network Regression

2.1 Introduction

A growing literature in economics studies how networks influence a variety of behaviors and
outcomes. For instance, a firm’s decision to enter a market may depend on the proximity
of consumers and other firms, a student’s scholastic achievement may depend on the stu-
dent’s ability, study habits, and relationships with other students, and the probability that
a financial institution suffers from a financial crisis may depend on borrowing and lending
relationships between other institutions. A common empirical strategy in the literature is to
model the outcome of interest as a function of a low-dimensional vector of network statistics,
such as the average number of links.! This strategy has the benefit of being parsimonious
and simple to implement. However, it is limited in the sense that these network statistics
only characterize a small number of potentially relevant features of the network. When eco-
nomic theory is ambivalent as to the correct choice of network statistics to include in the
model, an alternative approach may be more appropriate.

This chapter considers a setting in which the researcher observes data on a sequence of
outcomes, each associated with a sparse network.? The goal is to specify and estimate a
nonparametric regression of the outcome given its associated network. If the data consists
of many independent draws of the outcome for a small number of possible networks, the
problem can be solved by averaging over the outcomes associated with each network. In
many cases of interest, however, the observed outcomes all correspond to different networks.
Estimation is complicated by the fact that it is not clear how an outcome corresponding to
one network can be used to estimate the regression function evaluated at a different network.
This chapter applies a notion of network distance based on local approximations to estimate
the regression function using observations with similar but not identical networks. I sketch

'Examples include Bramoullé, Djebbari, and Fortin (2009); Goldsmith-Pinkham and Imbens (2013);
Banerjee, Chandrasekhar, Duflo, and Jackson (2013); Ductor, Fafchamps, Goyal, and van der Leij (2014).

2A network consists of a set of agents, a set of links between pairs of agents, and a set of covariates
assigned to each agent and link. A network is sparse when the number of agents linked any particular agent
is finite.
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the premise of the local approximation here and provide a formal discussion in the second
section of this chapter.

The driving assumption behind the local approximation is that the outcome of interest
is predominantly explained by the configuration of agents, links, and covariates nearby a
particular agent in the network. For instance, in many models of classroom peer effects,
a student’s scholastic achievement (the outcome of interest) is explained by the student’s
covariates, friends and their covariates, and to a lesser extent the student’s friends of friends
and their covariates. As this radius of consideration expands to the student’s friends of friends
of friends and their friends, the marginal impact of these additional students, friendships and
covariates on the initial student’s outcome is likely to be smaller. The idea behind the local
approximation is that there exists a radius around the initial student such that ignoring the
configuration of students, friendships, and covariates beyond this radius has only a negligible
impact on the initial student’s scholastic achievement.

An illustration of the local approximation can be found in Figures 2.1 and 2.2. The top
panels of both figures depict a network defined on twelve agents with no covariates. The
middle panel of Figure 2.1 depicts the configuration of agents and links within a radius of
1 around agent 1. This is the network formed by agent 1 and the agents linked to agent 1.
The bottom panel of Figure 2.1 depicts the configuration of agents and links within a radius
of 2 around agent 1. This is the network formed by agent 1, the agents linked to agent 1,
and the agents linked to the agents linked to agent 1. Similarly, the middle and bottom
panels of Figure 2.2 shows the configurations of agents and links within a radius of 1 and 2
respectively around agent 9.

The main idea of this chapter is model the outcome of interest using the low dimensional
configuration of agents and links within a radius of the distinguished agent. When the
network is sparse the number of possible configurations within a finite radius is finite. As
a result, estimating a regression function using local approximations can be done using
standard tools (for instance, a linear regression) so long as the radius is sufficiently small
relative to the sample size.

The quality of this estimator depends on the choice of radius used to generate the local
approximation. If this radius is small, then the number of possible local approximations is
small, the fraction of observed networks with local approximations equivalent to the network
of interest is large, and thus the variance of the estimator will be small. However, there may
be a sizeable bias due to the fact that networks associated with different outcomes may have
similar local approximations. Increasing the radius decreases this bias, but at the cost of
inflating the variance. The idea is to choose a radius that balances both the bias and variance
of the estimator. The logic is entirely similar to that of sieve estimation in which a high-
dimensional parameter space is replaced by a low-dimensional approximation of complexity
depending on the sample size. Here it is the size of the radius used the generate the local
approximation that characterizes the complexity of this sieve approximation.

The remainder of this chapter is as follows. The second section of this chapter formalizes
the notion of the local approximation. The third section of this chapter uses the notion
of the local approximation to define a nonparametric regression of a scalar outcome on a
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(a) A network with twelve agents.
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(b) The network formed by agent 1 and the three agents linked to agent 1.

(¢) The network formed by agent 1, the three agents linked to agent 1, and the four agents linked
to the three agents linked to agent 1.

Figure 2.1: The top network depicts a configuration of links connecting twelve agents. The middle network
depicts the network induced by the agents linked to agent 1. The bottom network depicts the network induced
by the agents linked to the agents linked to agent 1. The premise of this chapter is that in order to predict
an outcome associated with agent 1, the middle and bottom networks can be used as a low-dimensional

approximation to the top network.
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(a) A network with twelve agents.
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(b) The network formed by agent 1 and the three agents linked to agent 9.
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(c) The network formed by agent 9, the three agents linked to agent 9, and the two agents linked
to the three agents linked to agent 1.

Figure 2.2: The top network depicts a configuration of links connecting twelve agents. The middle network
depicts the network induced by the agents linked to agent 9. The bottom network depicts the network induced
by the agents linked to the agents linked to agent 9. The premise of this chapter is that in order to predict
an outcome associated with agent 9, the middle and bottom networks can be used as a low-dimensional

approximation to the top network.



CHAPTER 2. A SPARSE NETWORK REGRESSION 30

sparse network. The section also provides an estimator and characterizes its large sample
properties. Simulation evidence and an empirical application to firm entry in networked
markets is forthcoming.

2.2 The Local Approximation

The local approximation of this chapter is a variation on the local network topology as
described by Aldous and Steele (2004). To minimize notation, I focus on a special case of
undirected random networks with discretely valued link weights and agent-specific covariates.

An economic network X = (V(X), W(X),C(X)) is a collection of agents (V'), a |V| x|V
symmetric matrix of finitely-supported off-diagonal link weights (1/), and a |V| x K matrix
of discretely distributed covariates (C'). Specifically, the ijth entry of W, w;; denotes the
(possibly infinite) weight of the link between agents ¢ and j, and the ikth entry of C' contains
the kth covariate of agent i. The number of agents |V| may be countable infinite, and the
network X is said to be random when the link weights W and agent covariates C' are
stochastic.

Given a network X and a pair of agents ¢ and j in V' (X), the agent distance dy (1, j) is
defined to be the length of the shortest path connecting agents ¢ and j through X, where
the length contributed by link kl to a path is given by its weight wy,;.? In this setting, higher
weights indicate less important links in that they correspond to greater agent distances.
This is without loss of generality, since any function of w;; can also be used to construct dy .
However, this chapter does require that dy is chosen such that X is locally finite under dy .
That is, for each i € V the set {j : dv(4,j) < r} is almost surely finite for any r > 0.

A rooted network X, = (X, p) is a network with a distinguished agent p € V, called the
root. It is helpful to think of X, as the network X “from the point of view” of agent p. For
any r > 0, X denotes the r-neighborhood of X,: the rooted subnetwork induced by the
agents, weights, and covariates within agent distance r of p.* Two rooted networks X, and
Y,, are isomorphic (X,, ~Y,,) if all of their r-neighborhoods are equivalent up to a relabeling
of the non-rooted agents. That is, for any r > 0 there exists a bijection f : V(X)] — V(Y)7,
such that f(p1) = pa, wij = wygi)p(), and cix = ¢y for any 4,5 € V(X)) and covariate k.
X7, the rooted network with radius 0 around p, is equivalent to ({p},0, {cor}i=,) which is
a network with one agent and the vector of covariates associated with that agent {c, ;.

If two rooted networks are not isomorphic, they can be assigned a strictly positive net-
work distance inversely proportional to the maximum r such that they have equivalent

3Formally, a path is just a finite sequence of agents. Let P;; denote the set of all paths beginning at
agent ¢ and ending at agent j. For p € Pj;, I write |p| for the total number of agents in the path and
pt denote identity (in V) of the agent at the tth position of the path. Then the shortest path metric

. . -1
dy (i,j) == infpep, thpzll Wpypey1

* Formally, X} := (V;,W},C7), where V) :={i € V : dy(p,i) < r}, W) := {w; € W :i,j € VJ'}, and
Cp={creC:icVy}
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r-neighborhoods under ~. Formally, dx defines a metric on the set of rooted networks
dx (X, Xpy) =inf{(1+r)"": X ~ X7 I x H{X) ~X)}+2x {X) £ X0} (21)

where two networks have a network distance of 2, for example, if their roots have different vec-
tors of covariates (¢, 7 cp,i for some k), which implies they have different r-neighborhoods
for any positive . Notice dx (X,, X}) < (14 r)~" by construction.

Let X denote the set of ~-equivalence classes of rooted networks equipped with the metric
dx. X is a Polish space: a separable and complete metric space. The topology on X induced
by dx is called the local topology and P(X) denotes the space of probability measures based
on this topology. Weak convergence for a sequence of measures m, € P(X) is called local
weak convergence, which is defined in the usual way m, —, ™ <= fxeX f(z)m,(dz) —
/. cx f(x)m(dz) for all bounded, continuous f : X — R. For any random rooted network,
Xp, X, —p X, as 7 — 00 by construction, where two random rooted networks converge in
probability if their laws are local weak convergent.

Two comments are necessary. First, to avoid ambiguity when referring to elements or
distributions on X', an equivalence class of networks is represented by its canonical form: an
unlabeled configuration of agents, weights, and covariates surrounding a root. Second, X is
easily extended to include networks rooted at multiple agents by defining the r-neighborhood
around some subset of agents S to be all of the agents, weights, and covariates within agent
distance r of any agent in S and extending the notion of the network isomorphism in an
analogous way. Two rooted networks with a different number of roots cannot have isomorphic
r-neighborhoods for any r, and so under the network metric dy, their network distance is
set equal to 2. Otherwise, the two settings are essentially equivalent.

The logic behind the local approximation is illustrated by two examples in Figures 2.3
and 2.4. The top panel of Figure 2.3 depicts a network with seven agents with no agent
covariates. A link between a pair of agents indicates a link weight of 1 while the absence of
a link between a pair of agents indicates a link weight of infinity. The middle panel depicts
a network that is equivalent to the network in the top panel, rooted at the second agent.
The root of the network is denoted by a p. The bottom panel depicts a network that is of
network distance 1/3 from the network in the top panel rooted at the second agent. Notice
that the networks formed by rooting the network in the top panel at agents 3 and 5 are
isomorphic. The networks formed by rooting the network in the top panel at agents 2 and
4 have a network distance of 1/2.

The top panel of Figure 2.4 similarly depicts a network with eight agents. The middle
panel depicts the network formed by rooting the network from the top panel at any of the
eight agents. The bottom panel depicts the rooted network formed by truncating the network
in the middle panel at a radius of 2.
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) A network with seven agents.

Oo—O0—0
Q

(b) This network is equivalent to the above network rooted at agent 2.
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¢) This network is equivalent to the above network rooted at agent 2 and truncated at a radius of
g
2.

Figure 2.3:
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(a) A network with eight agents.

(c) This network is equivalent to the above network rooted at any of the eight agents and truncated
at a radius of 2.

Figure 2.4:
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2.3 The Nonparametric Network Regression

This section applies the local approximation to the problem of specifying and estimating a
nonparametric regression of a scalar outcome on a sparse network. Let (y,, X,) be a random
element of R x X. The pair are related by the following model

y, =m(X,) + ¢, (2.2)

where m : X — R is the unknown regression function such that for a given x € X', m(x) :=
Ely,|d(X,,z) = 0] such that E[e,|d(X,,z) = 0] = 0.

Let {y;, X;}}; be a sequence of independent observations with the same distribution as
(y,, X,) and z an arbitrarily element of X'. This section considers the estimation m(z). One
way to interpret x is as a network for which an outcome has not yet been observed.

This section studies the following smoothed nearest-neighbor estimator for m(x)

m(z) = (ng,) Zyz n (dx(Xs, 7)) /qn)

where F), is the empirical distribution function of dx (X;,x) (that is, F), (dx(X;, x))

=n"' Y70 H{dx(Xj,2) < dx (X, x)}), K is a kernel density function, and ¢, a bandwidth
sequence chosen by the researcher. This section demonstrates consistency and asymptotic
normality of m(x) under the following assumptions.

Assumption 1 The sequence of data {y;, X;}_, is independent and identically distributed.
Fx, the marginal distribution of d(X;,x) is strictly monotonic and smooth.

Assumption 2 The outcome variable has finite second moments: E[y?] < oo. The regres-
sion function Ely;|dx(X;,x)] = Elm(X;)|dx(X;, x)] is smooth to the right of 0

Assumption 3 The kernel density function K is twice differentiable and satisfies [ K (u)du =

1 and [uK(u)du = [vw*K(u)du = 0. The bandwidth sequence ¢, satisfies g2n — oo and
7

g,n — 0.

Assumption 1 as states is particularly strong and requires a discussion. The independent
and identically distributed assumption on the sequence of rooted networks can be weakened
to infinite exchangeability and Fx redefined to be the (possibly random) limit of the em-
pirical distribution function Fj;,,, see for instance Proposition 1.4 of Kallenberg (2006). I
am currently working on extending the proof of Theorem 1 to allow for spatially correlated
rooted networks and errors. This is for the special case in which the data is generated by
taking one large network on n agents and generating n different networks by rooting the
network at each of the n distinct agents. Agents who are nearby in the network (in the
sense of the metric dy) are likely to have related rooted networks (in the dx snese) and
errors. Under the assumption of local finiteness, this sort of dependence can be incorporated
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by substituting the central limit theorem applied below for one that accommodates weak
dependence.
The main result is given as Theorem 1

Theorem 1 Suppose Assumptions 1 through 3 hold. Then

NG/ Vi (110, (2) — m(z)) =4 N(0, 1)
where V,, = Vi, + Vo, + 2C,, and

| FX(dX;le,x))> 1% (Fx(dxéjfiz,x))

F X, 2
Vo =78 e (Eo)
In

Co =2 [yt (PRI g (BT (1033, 0) < de(0,0))

— Fx(dx(X;,2))) |Xi]]

‘/I,n - q¢:3E yzjyizK/ < ) FX<dX<X117x) A dX(leJ:))

Proof 1 (of Theorem 1) Let m,, (z) =q,'F [y,-K (Mﬂ and

qn

mn(x) = (ng,) >0 yiK (W) Decompose (m, () — m(x)) = (my(x) — my,(z))+
(M () = 1g, (2)) + (Mg, (2) —m(x)) = L+ I2 + 5.

First, \/ng,I; =
(ngs) 2 Sy ol (DD [, (d, (X, ) = Fx(dx (X, )] + 0, (1) since

qn

(ng)” Zy{ ( dX(Xux))>_K(FX(dX(Xi,x))>}

an an

= gty Y ek’ (PR (5, (0,06, 0)) - P (X, 0)

i=1 n
+ (ng?)” ZyK() s (X, ) — Fx(dx (X, )]

where v; is an intermediate value between F,, (d.(X;, x)) and Fx(dx(X;,x). Since

max [F, (do(Xi, 7)) = Fx (dx (X, 2))]* H{Fx (dx (X3, 2)) < gu} = 0p(n" ")

for any v > 0 by Lemma 1, the second term is 0,(1/\/nqy).
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Second, \/ngnls = 0,(1) by Lemma 2. As a result, I + I+ I3 is asymptotically equivalent

’ . Zyz{ (Ealdsler)) _ e (Fxldr))

I In
+(ng,) ™" i (yiK (FX(d);—iXZ:C)) -k {yiK <FX (d)(ini,x)))D

i=1
/NG /Vily —q N(0,1) follows from Lemma 3, which completes the proof. O

The proof of Theorem 1 is essentially just a decomposition of the difference between the
prediction 7, (x) and the conditional mean m(z) into three parts. The first part concerns
the deviation of F;, around its probability limit F,. The second part concerns the deviation
of the average outcome around its mean. The third part is a bias term that is asymptotically
negligible due to the smoothness assumption on m given by Assumption 2 and the choice of
kernel density function and bandwidth sequence given by Assumption 3. The theorem then
follows from the usual central limit theorem for V-Statistics (see, for example, Chapter 5 of
Serfling (2009)). The estimator and proof are along the lines of those considered by Stute
(1984).

2.4 Lemmas and Proofs

Lemma 1 For any v > 0

max [F(dy (X, 2)) = Fx(dx (X;, 2)] 1{Fx (dx (Xi,2)) < g} = 0, (n7712¢,/)

Proof 2 (of Lemma 1) First fiz agent i and some € > 0. Then Bernstein’s Inequality
implies P (|Fy(dx(Xi,)) = Fx(dx (Xi, 2))| 1{Fx (dx (Xi, 7)) < ga} > €) < 2exp (57875 )

’th@’f’€ 0'2 = nil Z?:l Fx(dx(XZ,ZL‘))(l — Fx(dx(Xl,CL’))]]_{Fx(dx(XZ,ZE)) S Qn} S dn - Th@
union bound then implies for a fized € > 0 that

77777

<2 e < 2nexp (—n7¢*/3)
< 2nexp < 2nexp (—n"e
2(1 + g/ *nt-D/2¢/3

which converges to 0 for any v > 0. U

Lemma 2 The conditional expectation

Vi ()~ i) & (PRI | o)

an
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Proof 3 (of Lemma 2)

B () = mia)) & (I | (G (5 ) — ) K )

= (o Fx)(0)gnE [wi K (u)] + (o Fx')'(0)g2 E [ufK (uz)} +0 (qz)

where u; = Fx (dx(X;,x)) /qn has a standard uniform distribution. Since E [u; K (u;)] and
E 2K (u;)] are 0 by choice of kernel, the result follows from n'/7q, — 0. O

Lemma 3
_ 1 Fx (dx (Xi,x)) , _ 4
(Ve G )7 (i S (PR [, (X ) = Pl (X, )
"\ Cn Vo Ly <yK<M)_E[yK<M>D
nqn i=1 ¢ qn v qn

converges in distribution to a N'(0, I3) where Iy is the 2-dimensional identity matriz.

Proof 4 (of Lemma 3) (ng?)~!' 3", 5K’ (M> [, (do(X;, 7)) — Fx(dx(X;,2))] =

qn
(1) > iy Yoy i (P (1 (X, @) < de(Xi, @)} = Fx(de (X, 2))]. As are-
sult,

o L el (DD (£, (d,(X,2)) — Px(dx(Xi, 1)

ng?

> <y K (wazn(xi,x)) _E [yl, K <Fx(d>;ixi,x>>>])

is a 2-dimensional V-statistic with a non-symmetric kernel function and mean Op(l/nl/zqim) =

0,(1/\/nay). The variance of the first term is given by

B S K (Fx(dx(Xm >>) K (Fx<dx<Xw>>)

1 12 Jl ]2 qn

[]l{dX( Jio )<dX( i1 )} FX(dX(XZNx))] [ﬂ{dX<Xj2>x)§dX( i25 )} FX(dX(Xlzvx

_ LE |:yl1yz2K/ <FX(dX(X“, ))) % (FX(dX(XmﬂC)))

nqn an dn
[Fx<dx<X“,fL') A dX(Xl27 Z‘)) FX(dX(XiNI))FX(dX(XiW $))]] + OP (1/ (n2q;lz))
= Vi + O0,(1/n) + O, (1/ (n*q,))

2
The variance of the second term is given by (ng>) 'E {y?K (W) } + 0,((ng,)™ ") =

)]
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Vo + 0,((ng,)™). The covariance between the two terms is given by

E [ o S (PR (1 (36,,0) < de (X ) Pl (X )

vy i1=11ip=1 j=1 n

(o (5 (52

— L e (P 10 (30,0) < (06000} = Pl (X0)

n

T A G e

dn dn

_ niq%E [yiK’ (FX(quiX“x))) [E [I[{dX(Xj,aj) < dx(X;,2) by K (FX(dX;fj’x))) \Xil

~Fx(ax(X )8 [ (I ] 0,0

n
= Cn + 0,(1/n%q,)

since y;, K, and K' are bounded, the Lemma follows from Serfling (2009) Chapter 5.5,
Theorem A. The result \/ng,/Voly —q N(0,1) is then a consequence of the continuous

mapping theorem.
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Chapter 3

Nonparametric Estimation of a Link
Formation Model with Unobserved
Heterogeneity

3.1 Introduction

This chapter demonstrates how the codegree matching strategy from chapter one can be used
to estimate the infinite-dimensional component of a semiparametric model of link formation.
In the considered model, each agent is associated with an unobserved individual hetero-
geneity term and each agent-pair is associated with an idiosyncratic error and a vector of
covariates. The existence of a link between a pair of agents depends on the agents’ individual
heterogeneity term, their idiosyncratic error, and covariates. The main contribution of this
chapter over the literature on graphon estimation (see for example, Bickel and Chen (2009);
Bickel et al. (2011)) is the incorporation of link covariates. The semiparametric structure of
the model is also novel, but its implications will be explored in more detail in future work.

The chapter proceeds in three steps. In the first step, it defines the conditional link dis-
tribution function. The conditional link distribution function is the conditional probability
that two agents are linked given their individual heterogeneity terms and their covariates
lie in some fixed hyperplane, as indexed by the parameter 6. In the second step, it defines
an analog of network distance to a collection of networks defined over the f-space, and an
empirical analog: conditional empirical codegree distance. In the third step, the conditional
codegree distance is used to construct an estimator for the conditional link distribution
function via local averaging. Both the conditional links distribution function and the condi-
tional empirical codegree distance are shown to converge uniformly over the #-space and the
collection of agent-pairs.

In future work, I plan to show how the conditional link distribution function can be used
as a plug-in estimator in various network econometrics problems. In particular, I plan to use
the conditional link distribution function to construct a semiparametric maximum likelihood
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estimator for the parametric component of the link formation model along the lines of Klein
and Spady (1993).

The chapter proceeds as follows. The second section describes the model, the third
section introduces the conditional codegree distance, and the fourth section introduces the
conditional link distribution function.

3.2 The model

For every pair of agents (7, 7) in a random sample of n agents, D;; = 1 if 7 and j are linked
and D;; = 0 otherwise. Each pair of agents is also assigned a vector of link covariates Z;;
with compact support Z C RP. The network links and link covariates are described by the
following model

D;; = f (w;, w;, Zi; 50, €i5) (3.1)
Zij = z(x;,x5,&5)

in which the individual characteristics {w;, z;}!~; and idiosyncratic errors {;;,e;;}iz; are
mutually independent iid random variables, (3 is an unknown p-dimensional parameter, and
f and z are unknown functions. The joint distribution of w; and x; is not restricted so that
model (3.1) is essentially a semiparametric analog to Graham (2017).

The natural parameter of interest in (3.1) is fy. This chapter is instead focuses on the
conditional link distribution function

g(cu,0j;8,7) =P (D;; = 1|Z;;8 < 7, 04, )

where o = (w;,x;), mi; = (&;5,&;). Intutitvely, g returns the probability that a pair of
agents with individual characteristics o; and «; and link covariates that satisfy the restriction
Zi;3 < 7 form a link. Here 3 is not assumed to be equal to 3. In future work I plan to
show how the conditional link distribution function can be used to estimate .

Another object of potential interest is the conditional link density function

flas,04;2) = P(Di; = oy, o, Zii B0 = 2)

which is often interpreted as the marginal transferable utility agents ¢ and j with link co-
variates z recieve from forming al link. If ¢ is almost everywhere differentiable in its final
argument, the former can be used to construct the latter when [y is known

oy e 9l s B,z + h) — g (w5 80,2 — )
f o 0:2) = Jim -

In this way an estimator for the conditional link distirbution function can be used to
construct an estimator for the conditional link density function.



CHAPTER 3. NONPARAMETRIC ESTIMATION OF A LINK FORMATION MODEL
WITH UNOBSERVED HETEROGENEITY 41

Assumptions

Throughout the chapter I will assume that the link density function f is almost everywhere
Lipschitz continuous in its arguments. The density functions for the random variabels «;
and 7;; are also assumed to be smooth in R?, with the components of 7;; further asumed to
have uniform marginals.

Notation

D and Z are n x n matricies with the ¢jth entry of D given by D;;, D;jr = D;;1{Z;;6 < 7},

Gigr = 9, @5, 0,7) = E[Digzlai gl Sy = S0 010 Dcoer = 2o1mt Dottt v
pijr = P, a;,7) = Elgirgjir|i, 5], Trm = r(7,hy) = P (0 (v, aj,7) < hy) for a fixed

bandwidth sequence h,, and § to be defined in the next section, 7, = inf,;cg 77, fa(-) is the

(multivariate) density function of «;, f,(-) is the density function of n;;, 8 = (8, 7) where 3

is an element of the p-dimensional hypersphere and 7 € R. O refers to the support of the

parameter vector 6.

3.3 Conditional codegree distance

I first define a notion of distance on the space of individual characteristics using a pseudo-
metric from Auerbach (2017) based on similarities in linking behavior that I call “network
distance.” Network distance is defined over each 6.

s 0= (/ (9(c,t,6) — g (ai,t,é)))Qfa(t)dt) -

= (B [B[(Dus — Dyo) |as, 05, ) o, 7])

The density of «; does not depend on 6.

For each network in the process indexed by 6, two agents have similar social characteristics
if they have the same probability of forming a link with all other agents (as indexed by their
individual characteristics) in the economy.

Network distance is difficult to directly estimate using only a random sample of D and Z.
Auerbach (2017) proposes a feasible alternative, “codegree distance.” As with conditional
network distance, conditional codegree distance is defined over each 6

et (/ (p (e, ,6) —P(%tﬁ)ffa(t)dt) )

= (E [E [Disg (Diso — Dysp) i, g, o] |evs, aj})l/z

An application of Jensen’s inequality reveals that §(c, a;,0) < d(ay, a;,0) everywhere,
so that codegree distance is a weakly coarser notion of distance than network distance. The
two notions of distance are in fact weakly equivalent under Lipschitz continuity of g and f,
so that
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Lemma 1: Under the stated assumptions
d(Oéi, Oéj, 6‘) S C(S(Oéi, Oéj, (9)1/4
for some universal C' > 0 and exactly every 6 € ©

The proof of Lemma 1 follows directly from the proof of Lemma 2 in the first chapter
of this thesis. Conditional codegree distance has a natural empirical analog, “empirical
conditional codegree distance”

s n—2\"" .
62'2]'7— = ( ) Z DtSlTDtSQT (Dis17' - Djslf) (DiSQT - Djsz‘r) 1{t> S1, S2 7é Za]}

3
t<s1<s2

For a fixed (7, j)-pair, empirical codegree distance behaves similarly to a third-order U-
process (in the sense of Nolan and Pollard 1988) indexed by € so that

Lemma 2: Under the stated assumptions

sup max (5%2 — 0(y, o, T)2> 0, ( log(n))

fcO i#£j n

Theorem 1 essentially follows from an extension of Hoeffding’s inequality to dependency
graphs due to Janson (2004).

Proof of lemma 2: Fix a pair of agents (7, j) and a parameter § € ©. Theorem 2.1 of Janson
(2004) implies
P(

~

5z‘2j0 — 0oy, 9)2‘ > t) < 2exp (—t2(n — 2)/2)

Boole’s inequality gives

A

52-9 — 6(ay, ay, 9)2‘ > t> < 2C, exp (—tQ(n — 2)/2)

P (sup max (0;;

0cO #j

where C), is the cardinality of the support of Sijg. Familiar caluclations reveal C), is o (nz(p+2))

since the linear classifier {Z;; 5 — 7 < 0} has VC-dimension less than p + 1 and g is assumed to be
2(p+4)log(n)

Lipschitz continuous in its third argument. The claim follows from the choice of ? = o

O

One can also demonstrate that the conditional empirical codegree distance also converges
in distribution to a Gaussian process for a finite collection of pairs of agents over © at the
V/n-rate (or that the process converges in distribution at that rate for an average of such
statistics). However, the process does not converge weakly uniformly over the (Z) pairs of
agents at the \/n-rate, because the statistic fails stochastic equicontinuity. This is because
the idiosyncratic errors €;, and ;5 are not similar even when «; is close to ay.
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3.4 Conditional link distribution function
Under the assumption that g is continuous in its arguments, the function g(w;,w;,#) can

be estimated nonparametrically by a local average of the network links using the empirical
codegree distance. Let

N - 57&39 - Stse
where k is a continuously differentiable kernel density function and h, is a bandwidth se-
quence assumed to be O (n*3/7). Then
Lemma 3: Under the stated assumptions

A log(n)
Sup max (Git= — g(wi, wy, 2)) = op ( nh?

The proof of lemma 3 essentially follows from lemmas 1 and 2 and the arguments in their
proofs.

Proof of lemma 3: Lemma 2 and the smoothness assumption on k implies

1 - 5t30 51530 log(n)
s (5 3tk ()~ e (32) ) =

for « € {0,1}. Hoeffding’s inequality implies that
log(n)

Sup max < ZDzsek <6t59> - 29136 (6;;39

fcO iFt

since 2 37 <5t59) =7y + 0p (). Lemma 1 and continuity on g implies that
n

1 Ots 1 Ots
Sup max (n ;gwgk < ;;:) - ;giwk < }i:)) =0p (T‘nh}/(j) .

0cO 1#t

which is o, ( hfg )> by choice of the bandwidth sequence. The result follows from the

continuous mapping theorem. [

Lemma 3 is consistent both with the classic literature on nonparametric regression and
recent results on graphon estimators without link covariates (for example, Chan and Airoldi
2014 or Zhang, Levina and Zhao (2016)). The first part demonstrates that the estimator is
uniformly consistent over the covariate space and agent-pairs at a rate slightly slower than
(nr,) "%, Here r, is the “small deviation” probability that characterizes the probability
that two agents have similar linking behavior. More detail on this object is provided in the
first chapter.
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Appendix A

Proofs of Various Lemmas and
Theorems

This section contains proofs of the various Lemmas and Theorems from Section 3. Auxiliary
lemmas that are not formally stated in the paper are labelled Lemma Al, Lemma A2, et
cetera.

Lemmas and Theorems in Section 3.2

Theorem 1: Suppose Assumptions 1-3 hold. Then 5 is the unique minimizer of
2
E [((yi —y5) — (@i = 2))b)" | || fu, = fu;|l2 = 0] over b € R,

Proof of Theorem 1:

E [((ys = 95) = (@i = 2)0)" | |fus = fuyll2 = 0] = E [((wi = 2;)(8 = 0) + (i = )" | || fuoy = fuyll2 = 0]

= (8 = b/ Bl(wi — 2;)(wi = 2)]| [ fur = fu;ll2 = 0](8 = b) + El(ui — w;)*| | fur = fu|l2 = 0]
—2(8 = b)El(2; — 23) (wi — w)]| || fur = fuyll2 = 0]

The first summand is unique minimized at b = § by Assumption 3. The second summand

does not depend on b. The third summand is equal to 0 by Assumption 2. Assumptions 2

and 3 are also necessary: if either assumption fails the sum of the first and third terms may
be minimized at a b that is not equal £. [J

Lemmas and Theorems in Section 3.3.1

Lemma 1: Suppose Assumptions 1 and 5 hold. Then

max 5ij - pri - pij2 = Oa.s.<n7’y/4hn)
(i#7)
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Proof of Lemma 1: The lemma is proved in four steps. Set h!, = n~7/4h,, and recall
B nU=1/2 5 00, py, w; = [ fu:(T (1)dr and p;; = n—i2 Zt#,j D;;Dj;. 1 first show that
max(;+;) |pwiwj Puww;| —as. 0. By Bernstein’s Inequality, for any € > 0

-1 —(n — 2)(}1%6)2
(n_2) Z(DitDjt_pwiw]') >€> SQQXP( 2+2hIn€/3

t#i]

P (1 ey ~ | > ) = P (h;;l

and so by the union bound

P (1(11;}){]1 Py — Puwiw; | > 6) <2n(n —1)exp <
i#]

—(n - 2)(%6)2)
2+2he/3

Since (n — 2)'~7/2h/2 — oo by the assumed choice of bandwidth sequence and

> s n(n — 1) exp <_(17:+),(Z’§)2> < 0o by the ratio test,

P (limsup,,_, o max(izj) Al Pwiw; — Puwsw;| > €) = 0 follows from the first Borel-Cantelli
Lemma. To see the summability claim, note that (n — 2)h/? > (n —2)” and 2h)e < 1

eventually, so that >~ ,n(n — 1) exp (%) is finite if

Yoo an(n —1)exp <7("+W) is. Letting m(n) = (n — 2)'/7, the latter sum is eventually
less than

S 2m* 7 exp <%€2> x [{n e {N+2}:n/2e(m—1,m]} <32 2m*/7exp (Lg)
This final sum is absolutely convergent by the ratio test, for any v > 0.

1 . 2\ /2
2m,j —a.s. 0, since

Second, let ||pw, — Puw,

X i) T Py — Pus,| s, 0 implies masxezy) B |f, — pu

P (lim sup max || u; — Pun 2n,j > E)
n—oo  (i#J)

1/2
= P | limsupmaxh/* ((n —2)! Z (Puww. _pwiws)2> > €

n—oo (i#]) s,

<P (hm supmaxh, - -1 |pwle pwiwj‘ > e)

n—oo (i#])

1/2
because h;,"! <(n -2)7! Zs;ﬁi,j (Pwyw, — pwiws)2> > € only if 1), [Puyuw, — Duwsw,| > € for
some t # i, j.
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. 1/2
Third, for |[pw, — Pu;ll2n = <(n -2)7! Zs#,j (Pwsw, — pwiws)2> ]
mMax ;zj) hgl |||pwi - pwj||2,n — |puw; — pwj||2| —a.s. 0 since

P (hgl ‘pri _pij?,n - pri _pijZ‘ > 6)

—p|nt ((n —2)7! ;j (Pusus —pijs)2> " — (/ (Pu, (5) —pwj(S))zdS) " > €
1/2

> €

s#i,j

<9 —(n—2)he
exp | ————
R +2./h'€e/3
with the last line again by Bernstein. So

—2)hle
J%MM”WWPMMﬂW—%M>QSW—WW<( ) )

(i#3) 2+ 2/Ie/3

which is again absolutely summable for the assumed choice of k!, since it is eventually
bounded above by the summable sequence considered in the first part of this proof.

Finally, the second and third parts of this proof and a few applications of the triangle
inequality yield

P <hmsupm3))<h Hlﬁwl _ﬁijQ,n - prl _pij2| > 6)

n—oo (1#]

- P (hmsupl(n;?f)(h ! ‘prz ]A)wj||2,n - ||pwz _pw]-||2,n + ||pwl _pwj||2,n - ||pwZ _pwj||2| > 6)

n—o0

n—oo

<P (hm sup r(géa]};: h;z_l ’Hﬁw@ _ﬁij?,n - ||pwi - pwj||2,n‘ > 6/2)

7 (1imsupnas  lp,  sll ~ l —  e] > </2)

n—oo

P (1 sup a2, = a1 = o, el > /2)

n—o0

< P (timsupmax k(. = )~ (= )l > ¢/2)

n—oo  (i#]
<2P (hmsupma))<h N (Pws — Pui)l|2my > e/4> =

n—oo (i#

where P (limsup,,_, o maxzj) Ayt ||[Pw; — Pu; |20 — |[Pws — Du; |[2| > €/2) in the second
equality follows from the third part of the proof, and
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P (lim sup,,_, o max(izj) b, | (Pw; — Puws)|l2,n; > €/4) in the final inequality from the second
part of the proof. Since b/, = n=7/*h,,, this completes the argument. [J

Lemma 2: Suppose Assumption 1 holds. Then for every (w;, w;) pair

pri _pij2 < waz _fijQ

Furthermore, for every ¢ > 0 there exists a § > 0 such that with probability at least 1 —€?/4

pri _pijQ < o = waz _fij2 <e

Proof of Lemma 2: To see the first part, observe that for every (w;, w;) pair

Hm;m%@Z/(/f@$0@m®—ﬂ%ﬁﬁwym'

< [ [ 8) (Flanes) = Flay. o)) dsr
< [ () = Fwg 7 dr =~ fu

where the first inequality is due to Jensen and the second is due to the fact that
|f(7,5)] <1 for every (7,5) € [0, 1]%

The proof of the second part is more complicated. I first note that since f is Lebesgue
measurable, Lusin’s theorem (Dudley (2002), Theorem 7.5.2) implies that it is almost
everywhere equivalent to a uniformly continuous function. That is, for any n’ > 0, f is
uniformly continuous when restricted to a closed subset A of [0, 1]* with measure at least

1—17.

It follows that for any n > 0 there must also exist B, a closed subset of [0, 1] with measure
of at least 1 — 7 such that for any b € B, there exists another closed subset C'(b) of [0, 1]
with measure of at least 1 — 1, such that for any ¢ € C'(b), f is uniformly continuous when
restricted to the set A’ = {(b,c) € [0,1]*: b€ B,c € C(b)}.

Second, I show that for all € > 0 there exists a §(¢’,7) > 0 such that ||p,, — puw,||2 < 0(€',n)
implies | [ fu,(5)(fu,(8) = fu,(s))ds| < € with probability at least 1 — ¢ /4, so long as
n<¢€/16 .

I prove the contrapositive. Suppose | [ fui(8)(fui(5) = fu,(s))ds| > €. Then by the
negative triangle inequality | [ f;(s)(fu,(s) = fu,(s))ds| > € /2 for any 7 € [0, 1] chosen

such that | [(f7(s) = fui(5))(fu,(8) = fu,(s))ds| < € /4. Since || fu, — fu,|]2 < 1 for every
(w;, w;) pair, it follows by Cauchy-Schwartz that || f,, — fr||2 < €'/4 implies
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| [ J7(8)(fu(8) = fu,(s))ds| > €'/2.

Since f is uniformly continuous when restricted to A’, there exists a universal w(e’,n) > 0
such that |7 — w;| < w(€,n) implies that ||f; — fu,|l2 < €/8 + 2n so long as w;, T € B.
Taking n < € /16 gives |7 — w;| < w(¢’,n) implies that || f; — fu,||2 < €/4 so long as

w;, T € B It follows that choosing 7 such that |7 — w;| < w(¢’,n) implies

| [ fr(8)(fui(8) = fu,(5))ds| > €'/2

It is without loss to further restrict w(e’,n) < €'/16. Since wj; is uniformly distributed on
0, 1], the probability that w; is in the €//16 interior of B (that is, the interval

(w; — € /16, w; + €'16) is contained in B) is greater than 1 —n — 2w(e’,n) > 1 — €//4. This
implies that | [ f;(s)(fuw,(s) — fu,(s))ds| > € /2 on a subset of [0, 1] of measure at least
2w(€’',n) with probability at least 1 — €'/4.

Thus | [ fu,(8)(fu,(s) — fu,(s))ds| > € implies

/ (/ fr(8)(fu, (s) — fwj(S))ds)QdT > (€/2) x 2w(€, n)

with probability at least 1 — €' /4

Since the left hand side is just ||p; — p;||3, it follows that ||p; — p;ll2 > (€/2) X (2w(€, )
with probability at least 1 — €’/4, which proves this second part. Taking the contrapositive
yields ||p; — p;l|2 < 0(€',n) implies that | [ fu,(s)(fu,(s) — fu,(s))ds| < € with probability

at least 1 — €' /4, where 6(¢/,n) = (¢//2) x (2w(¢ ,77))1/2-

To ﬁmsh the proof, note that | f fun(8)(fuwi () = fu,(s))ds| < € and

S fu;(8)(fur(8) = fu,(s))ds| < € also imply that

S (fui () = fu; (5)) (fur (5) — fwj(s))ds} < 2¢’ by the triangle inequality, so that

llpi — pill2 < (€/2) x (2w(€, n))"? implies || fu, — fu;ll2 < V/2€' with probability at least
1 —¢/2. Thus ||p; — pjl|2 < (e, n) implies || fu, — fu,||2 < € with probability at least

> 1 — ¢%/4 as claimed, where 6(¢,n) = (€2/4) x (2w(62/2,77))1/2. O

Notice € depends on 7 for a given § through the choice of w(e,n), so that n cannot be
chosen to be arbitrarily small for a fixed . Doing so requires a decoupling of the link func-
tion approximation error (due to the fact that f might not be smooth off of the set A’) from
the codegree approximation error (due to the fact that p induces a strictly coarser topol-
ogy on [0, 1] than f). Lemma 3 accomplishes this by replacing the measurability of f with a
stronger continuity assumption, which essentially implies that the former error does not exist.

The proof of Theorem 2 also relies on the auxiliary Lemma Al.
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Lemma A1: Suppose Assumption 1 holds. Then for any € > 0, P (|| fu, — fu,|l2 <€) > 0.

Proof of Lemma A1l: As in the proof of the second part of Lemma 2, I begin with an
appeal to Lusin’s theorem (Dudley (2002), Theorem 7.5.2): for any n > 0 there must exist
B, a closed subset of [0, 1] with measure of at least 1 — 1 such that for any b € B, there
exists another closed subset C'(b) of [0, 1] with measure of at least 1 — 7, such that for any
c € C(b), f is uniformly continuous when restricted to the set

A" ={(b,c) €[0,1]* : b€ B,c € C(b)}. That is, for all ¢ > 0 and u,v € B there exists a
w(€,n) > 0 such that |u — v| < w(€,n) implies that |f(u,t) — f(v,t)| < € for

t € C(u) N C(v), a set with Lebesgue measure at least 1 — 27.

So |u —v| < w(¢,n) and u,v € B imply that ||f, — full2 < (€*(1 —2n) + 277)1/2 <€+ /2n.
Since w;, w; are independent with standard uniform marginals, this means that

| fu; = fu,ll2 < € ++/2n with probability at least (1 — 2n)w(€’,n). Now just choose € < €/2
and n < €?/2 to get P (|| fuw;, — fu,ll2 <€) = (1 — €?/8)w(e/2,€2/8) > 0. O

A direct implication of the first part of Lemma 2 and Lemma A1 is that for any ¢ > 0,
P (||pr _pwj||2 < E) > 0.

Theorem 2: Suppose Assumptions 1-5 hold. Then B —p B.

Proof of Theorem 2: Write

n—1 n e - n—1 n ~
et G e )
=1 j=i+1 n i=1 j=it+1 n

I show ((3)r ) Yo Z] i (@i — x5) (2 — 25) K (i—i) —p 20"y, which is positive definite
under Assumptlon 3. Slmllar arguments yield

((5)r ) S Zj i (@ — x5) (uy — uy) K (i—i) —, 0, so that the claim follows from
Slutsky and the continuous mapping theorem. Since r,, > 0 with high probability from
Lemma A1, both statistics are eventually well-defined.

Let D,, = <(72‘)E [K <2—i)])_1 i (@i —xy) (i — ) K <2—i) then by the mean value
o 2= (@1 (8)]) 55 s (8) 10 (i) (553

where {Lw}z# is the collection of intermediate values implied by that theorem. By Lemma

1 max;; bij n(s” = 0, (n™7/*) and by Markov’s inequality K’ ( ”) = 0,(r,n"/?), since

ranY/4

P (K ! (” ) > r,n/ 2) < M = 0(1) by choice of kernel density function in
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Assumption 5. It follows that

o= (e ()]) S () e

= D;, + 0,(1)
since z; has finite second moments and K’(u) is bounded.

Recall that 0;; = 0(w;, w;) so that D), is a second order U-statistic with kernel depending
on n, in the sense of Ahn and Powell (1993). In particular, their Lemma A.3 implies

D= <E [K (i—iﬂ ) B [(xi 0 (i — o)) K (2—2)] +0,(1)

since nr,, — o0o. Additionally, measurability of f and Assumption 4 imply

B w0 (32)] = [ Bl 0o - opioy =i & () ap(ay =
- / (Do + 0,(1)) K (h—t) dP(5;; = u) = Doty + 0, ()

with the second equality is due to E [(z; — x;)'(x; — x;)|d;; < u] =T + 0,(1) by Lemma 2
and Assumptions 3 and 4. So D,, =Ty + 0,(1)

A nearly identical argument gives

o ()5 3 - (22) <o

since F [(x; — x;) (u; — uj)|d(w;, wj) = hy] = 0,(1) by Assumptions 2 and 4. D;'U,, = 0,(1)
then follows from Slutsky and the continuous mapping theorem. [J

Lemmas and Theorems in Section 3.3.2

The proof of Theorem 3 relies on using discreteness of the network types to strengthen
Lemma 1 to auxiliary Lemma A2.

Lemma A2: Suppose Assumption 5 holds and f,, has finite support. Then

max [1Pw. = By llon X H{l1Pws = P ll2n < €/2} = 000 (0™ 2hn)
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Proof of Lemma A2: The assumption that f,, has finite support implies
51]1{5U S 6} =0 and mijtl{éij S 6/2} = (pwz.wt —pijt) X 1{(5” S 6/2} = 0 both with
probability one. Consider the decomposition of 8;;1{;; < €/2} into

5 (1{5@, < e/2} —1{5, < e/z}) +6,1{0; < €/2)

I first show max;; \/ﬁhglgijl{éij < €/2} = 045.(1). As in the proof of Lemma 1,

Bernstein’s inequality gives
—(n —3)n?
. n) e (%)

P ((n -3)7!

so that by the union bound

Y Du(Dis — Dyo)1{8; < €/2}

S¢Z7J7t

P | sup [(n -3 Z Dyy(D;s — Djs)] 1{0;; <e€/2} >n | <2n(n—1)(n —2)exp (

bt sigit
Averaging over t implies

P (max Vinhy 10140, < €/2} > n) < 16(n — 3) exp (_(” - 3>77hn)
2y

3vn

so long as n > 6. Since the right hand side is absolutely summable by arguments made in
the proof of Lemma 1, max;z; v/nh, 10;;1{0;; < €/2} = 0,5(1).

I now show max;; v/nh;, 0, (1{515 <e/2} —1{d;; < e/2}> = 04.5.(1). First,

NGl (1{51‘3‘ <e€/2} — 1{d;; < 6/2}) | < 2v/mhy,t x 1{[0y — 655] > |e/2 — 0]}

Since 0,;1{d;; < e} = 0 with probability one, J;; € (¢/4,3€/4) is a probability zero event,
and so it is sufficient to show

e Vnh, 1465 — 8] > €/4} = 044 (1)
i#]

Using the inequality from before, the left hand side is nonzero on a set of probability at

most 16(n — 3)% exp (472_—3)5'“» Since this is again absolutely summable,
SUD;.z; Vnh Y (1{5,~j <e€/2} —1{4;; < 6/2}) = 04.5.(1) follows.

Taken together, the two arguments demonstrate that max;.; v/nh;, 1(§ij1{5ij <€} =0,5(1),
as claimed. O
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Theorem 3: Suppose Assumptions 1-5 hold and the support of f,,, is finite. Then
‘/3,_1/2 (5 - 5) —a N (0, Ix)

where V5 = F5190F0_1 x s/n, Iy is as defined in Assumption 3, [ is the k x k identity
matrix, and

P(|lpi = pjll2 = 0, [|pi — pull2 = 0)/P(||p;i — psl]> = 0)°
Qo = E(zi — 2;) (s — o) (us — uy)(wi — w)| ||pi — pjll2 = 0, [|ps — prll2 = 0]

Proof of Theorem 3: In the proof of Theorem 2, I demonstrate that Assumptions 1-5 are
sufficient for

— Z > (i — ) (- 2K (—J> —, 2T E {K <—J)]
i J>0 hn hn

where m = n(n — 1)/2. Since the support of f,, is finite, £ [K (h—J)}
K(0)P(|[ fw; = fuw,ll2 = 0) > 0 eventually (for h, < ¢€) since P(d;; = 0) > 0.

As for the numerator, I follow the proof of Theorem 2 to write

e —)

_ %ZZ ((xi — ;) (u; — uy) [K <%) + K’ (;Li) (%) 1{0;; < hn}]>

1 J>1

where ¢;; is a mean value between 9;; and ;5. I first show

D D <(le —xj) (wi — u;) K’ (%) <61j_n§”> 1{0;; < h }> 0,(n~1/%) for any positive

integer | < k. By Cauchy-Schwartz

(e () (525)

T J>

. 1/2 2
< % (ZZ((%: —xj1) (u; — Uj))Q) >N <( ) o <h }>

1 g>i i >t

1/2

where K’ = sup,cjo, K'(u) < 00, 3, ZPZ ((zi — 231) (us — u;))* = O,(m) since x; and u;
have finite fourth moments, and max;; ( 3 ”) 1{% < hp} = 045 ( _1/2) by Lemma A2.
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3 e e ()
= —ZZ< 2 — ;) (u; —u;) K (2-2)) +0,(n"1?)

ig>1

It follows that

The first summand is a second order U-statistic with symmetric L2-integrable kernel, so by
Lemma A.3 of Ahn and Powell (1993)

Vvn (U, —U) = N(0,V)

where U = FE [(:L’Z — ;) (u; —uj) K (%ﬂ and for Z; = (x;, v, wy;)

V = lim 4F {E {(xi — ;) (u; — u;) K (%) | Zl} E [(xi — ;) (u; — u;) K <%) | Z”

- ]1;% AE |:(xi = 25) (2 — ) (ws — uy) (s — w) K (6_;;> r (%kﬂ

Since f,, has finite support, E[d;;|d;; < €] = 0 for some € > 0, and so

U=E|[(z; —x;)) (u; — u;) K (0) 1{6;; = 0}] for n sufficiently large such that h, <e. By
Lemma 2, 1{é;; = 0} = 1{d;; = 0} with probability one, so Assumption 5 implies that

U = 0 for any choice of h,, < e (i.e. U =0 eventually). Similarly

V = A4QK(0)*P (|| fuw; — fu;ll2 =0, ]| fuw; — ful|]2 = 0) so long as h,, < e. So by Slutsky’s
Theorem,

Vi (B=8) —=a N(0,V4)

where Vi = T;'Qoly! x s as claimed. O

Lemma 3: Suppose Assumptions 1 and 6 hold. Then for almost every (w;,w;) pair

1 o
P = Pull2 < | fu = fusll2 <32 5™ (1Ipu; — Puyll2) 72
so long as [|pw, — Pu,|l2 < V8Ce K™%,

Proof of Lemma 3: The first inequality follows from the first part of Lemma 2 holding
exactly for every (w;,w;) pair. The proof of the second inequality essentially mirrors the
second part of Lemma 2, and so only a quick sketch is provded here. I first demonstrate

1
1 /4a+2

that [[pu, — pu,|l2 < (4(4C5) V) " 5 and (40) < K" imply that
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|| fui = fu;|l2 < V/2€" with probability one.

Suppose | [ fu,(5) (fu,(s) = fu,(s)) ds| > €. Then | [ f(s) (fu, () = fu,(s)) ds| > € /2 for

7 € [0,1] so long as 7 and w; are in the same block of the partition of [0, 1] and
1

Colw; — 7]* < /4. 1f (ﬁ)a < K™, then the measure of 7 in [0, 1] that satisfty these

1
/

1 1
conditions is at least <ﬁ> “. It follows that so long as <4576> < K

/ (/ Fr(8) (fui () = fu, (5)) d3>2d7 - (%’)2 (426);

with probability one.

da+2

Following the logic of Lemma 2, I conclude that ||p; — pj||> < (4(4Cs)" a)_l ¢~ implies

’

1
that || fuw, — fu,|l2 < V2€¢' with probability one so long as ( 4£Ca> “ < K~'. Replacing € with
€%/2 yields

2a

212434772 (4C5) 72 ||p; — p;||3°7 < € implies that || fy, — fu,|]2 < €

1
with probability one if (%) < KN
- 1 _2a
It follows that for almost every w; and wj, 9isre O ¥ pi — pilla®™* = € implies that
j 6 5112
[ fuw; = fu,ll2 < € so long as € < \/8CsK /2. The statement of the lemma follows by

noting that 92%a72 is bounded below 32 when a > 0. .

The proof of Theorem 4 relies on the following strengthening of auxiliary Lemma Al to
auxiliary Lemma A3.

Lemma A3: Suppose Assumptions 1 and 6 hold. Then P (|| fu, — fu,|l2 <€) > 06—1/«161/(1’
so long as e < Cg K¢

Proof of Lemma A3: The proof of Lemma A3 essentially mirrors that of Lemma A1,

1/a
except Assumption 6 allows for the replacement of w(e, n) with (C’%;) . Notice that that
1

so long as K < (CLG) “ the probability that w; and w; are in the same partition of [0, 1]
1/a 1/
and that |w; —w;| < (CL(;) is bounded from below by (C%;) . So

1 _1/a .
P (wai — fu,ll2 < e) > Cé/“el/ as claimed. U
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Theorem 4: Suppose Assumptions 1-3 and 6-8 hold and o x ¢ > 1/2. Then

Vi (8= Bn,) =a N (0, 1))

where V, ,, = T5'Q,Iy! /n, Ty is as defined in Assumption 3, r,, is as defined in Assumption
5, and [ is the k£ x k identity matrix, and

Bh, =B+ To) ' E [(g;i — ;) (u; — uj) K <W)} / (2ry)
O = B [ (01— 2 — )= ) o — i (127220 g (Tl

n

Proof of Theorem 4: The proof is simplified by squaring the empirical codegree
differences so that

()
(zz etemn(8)

=1 j=i+1

n

2
where r, = E |:K1/2 (%ﬂ and K 5(u) = K(y/u) is supported, positive, and twice
differentiable on [0,1) by Assumption 8. Recall r,, > 0 by Lemma Al.

The proof of Theorem 2 demonstrates that Assumptions 1-5 are sufficient for the

denominator to converge in probability to 2I'y, which is eventually invertible by
Assumption 3. As for the numerator,

52
ol

52 52 52 — 52
ZZ ( u; — ;) [K1/2 (h—§> +K{/2 (h_;) <—j 72 j)

T >0

~ 2
+K" Lij 512] _512]
)\

where ¢;; is the intermediate value between 52 and (52 suggested by the mean value theorem
and Taylor’s theorem. I consider each of the summands individually. I first show that

N A
oS (- (12) (B25) ) <o)

i J>1
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Let s, = nil/zhirn. Since 0;; < Clw; — w;|* by the first part of Lemma 2 and Assumption
6, r, > KO-Vt for K = liminf;,_,0 F [K (%) |0;; < h] > 0 by Lemma A2. Since

/2= pAYY s 5o for some v > 0 by Assumption 9, n'~7s,, — oo, and so Lemma 1 implies
2

§2 2 2 2 2
that sup;; (6”'\/5”) = 04.5.(1) Or sUp;; (ig\/‘%) = 0, (n_l/Q). It follows that

~ 2
v (b (%%
U; u]) 1/2 h h2
K//

1/2 Z > (@ — 1)) X 05 (n71?)

T J>1

i g>1

where K1/2 SUPyepo,1] 415 (u) and the last line is o, (n='/%) because x; and u; are
assumed to have finite fourth moments by Assumption 2. Thus

(e () (2) (52)

1 J>

) oo

Now let

5 = S(wuw]) - Z ( Z f wt7w51 wi7w51) - f(wjﬂwsl))>

s1=1

X (% Z fwe, wey) (f (wi, ws,) — f(wj>w82))>

so=1

and rewrite the numerator as

U, = ﬁzz ((%‘ — ;)" (ui — uy) [KW (2_22) Ky, (%) (S%f;z(%)])

1 J>
/ 67,2 55_51,2 _
TnZZ( (u; — u;) [ 1/ (h_,%) (W) >—|—op (n 1/2)

1 J>

In the remainder of this proof, I show that the second summand is o,(n~1/2), while the first
part is a fifth-order U-statistic. First,

25 (oo [ (B) (B22)]) =0

1 J>
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$2 ~2

by Chebyshev’s inequality, since F {(6

]ml,x],ul,uj,wl,wjl = 0 implies

@ZZQLMQ@_%WM )F@(*)C%@ﬂ)mm%nwnmd

[l )

EID.2 22222000,

i1 2 J1 J2  ti t2 s11 S12 S21 S22
2 2
o N o o o / 51'1]'1 / 522]2
(xll x]l) (ZL’M x]2)<u21 ujl)(ulz u]2) 1/2 F 1/2 hQ
X [Dt1811Dt1812(Di1811 - Dj1811>(Di1512 - J1812) ft1811ft1812(f11811 fj1511>(fi1s12 - fj1812)]

X [Dt2821Dt2822(Di2821 - Dj2821>(Di2822 - J2822) ft2821 ft2822<f12821 fj2821>(fi2822 - fj2822)]

(2)2 62t

is 0 (n™'). To see this, note that unless two elements from the set {i1, ji, %1, s11, S12} equal
two 1n {227 J25 t27 S21, 522}7 {thsu y Mt1sizs Mivsi1s Tjisins Mivsizs 77j1S12} 1S lndependent of
{nt2821 y Mtasazs Thizsars Mzsa1s Tizsaas 77j2822} and so

E [Dt1811Dt1812 (Di1511 - Dlen)(Di1S12 - ]1812) ft1511ft1512 (f11811 fj1811)<fi1512 - fj1812)]

X [Dt2821Dt2522 (Di2521 - Dj2821)(Di2822 - ]2522) ft2521ft2522 (f12821 fj2821)(fi2522 - fj2822)]

| 119 127 JlaZJ27thth?ZSnJZSm?ZSmaZsz2 =0

h2
Theorem 2 for the formal argument), the desired term is o (n!) since nh? — oo.

2
where Z; = {;, w;, v;}. Since K7 (5'1 1) is Op(ry,) by Assumption 8 (see the proof of
It follows that

B e (5 (B0
ZZ( Ui — ) [Kl/2 (h—;> + K)o (h_;) ( ]hg j)

1 J>

) or o

i J>i t>j5 s1>t sa>s1

52
+h, 2K1/2 (h_lg) (ftslft82<fisl - fjsl)(fiSQ - fj32) — 5%)1 —+ 0p (n*1/2)



APPENDIX A. PROOFS OF VARIOUS LEMMAS AND THEOREMS 63

so that U, is equivalent to a 5th order U-statistic up to a 0,(1/+4/n) error. As in Theorem
3, I apply Lemma 3.2 from Powell et al. (1989) to rewrite this statistic as the sum of first
order projections.

oot oo (] o

nry
T=

52
ZE |: - l‘] Ui — Uy ) 1/2 ( > (fTslfTSQ(fl$1 fjsl)(fisg - fj82) - 522]) |ZT:|

m"n h2

: e
+ m”nh?l ; E |:(l'7j — ;) (ui — ug) Ko (h_?) (fir frsa(fir = fir) (fisn = Fisn) = 03) |ZT}

+ 0, (n71?)

where E[U,] = E [(3: —x;) (u; — uj) Ky ( >] and Z, = {z,,w,, v, }.

When o x ¢ > 1/2 the second and third terms are both o, (n™'/?). For the second term, I
show this by fixing some ¢ > 0 and writing

62
P(E [(azi—x»%ui—u) 1/2( )(fmfm(fm Fio) (s — Fioa) — 62) |ZT} zrnhie)
52
= (B (=0 (= ) K () (BUlSi = 10120 20 27 = 82) |22 2 e

<E HE [(ifz' — ;)" (u; — uy) K7y <(:2) |Z}

with the last line by Markov’s 1nequahty and the triangle inequality. Since
B [ = ) (w = w0y) K3 (%) 2] | = 0p(ra) and both Elfro(fis = )10 24, Z:]? and
07; are Op(hy), the term is 0,(1). So the second summand

( [fTS(f’iS - fjs)’Zia Zja Z‘r]2 + 512]) ’ZT:| /71nh7216

52
ZE |: — I'j U; — Uj) 1/2 (h_g) (fTslfng(fis1 - fj51)(fi52 - fj52) - 612]) |ZT:|

nrnh2
is an average of n independent random variables with finite third moments (since z; and w;
have finite sixth moments) that are each 0,(1), and so must be o, (n™'/?) by the

Lindeberg-Levy central limit theorem.

Bounding the third term is a bit more complicated. Again fix some € > 0 and write

52
P <E |:(xz - xj)/ (uz — Uy ) 1/2 ( > (ftrftsz(fw ij)(fisz - fjsz) - 512]) |ZT‘| 2 rnhie)
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However, this time Markov’s inequality only provides the upper bound

B[ [ - ) 1 (1) 1]

X (E[ftT(fZT - fj‘r)’Zi; Zja ZT]E[fts(fis - fjs)lZi7 Z]] + 67,2]) ’ZT /rnhi6

Here 07; is Op(h2) and E[fis(fis — fis)| Zs, Z;] is Op(hy) by Jensen’s inequality, but it is only

possible to demonstrate that E[fi-(fir — fir)|Zi, Zj, Zz] < || fws = fu,ll2 = Op(h pie/ 0200y
Lemma 3. This is where I use the ¢ x a > 1/2 condition so that

’E [(a:z —z;) (u; — uy) K ( ) |Z, ] is not just o,(r,) but op(hgaC/(HQa) ). Together,
these rates imply that the term is 0,(1), and that the third summand

52
ZE |: — ZU] U; — Uj) {/2 (h_g) (ft'rftsz(fi'r - ij)(fisz - fjsz) - 63]) |ZT:|

nrnh2
is 0, (n"'/%) by previous arguments.

It follows from these two arguments that

U, = E[U,] + — i (E [(mT — ) (s — ) Ko (i; ) Z, ] E[Un]> +0, (n1?)

nry
T=

U, is simply an iid sum of random variables with bounded third moments, so by the
Lindeberg-Levy central limit theorem

V=2 (U, — E[U,]) —=a N (0, 1)

o[ (8 e oo () 2] )
X (E [(xT — ) (ur — ;) Ky o (hi) |Z, } - E[Un])}

_ 4 {@;T — ;) (= ) (ur — u) (ur — ) Koo (%) Ky (%)1

7”2

where

because E[U,] —, 0 by Theorem 2. It follows from Slutsky’s Theorem that
Vil (B8 - @ro) " E[U.]) = N (0,11)

where E[U,]| =r,'E [(:cz — ;) (u; —uj) K <M>] as claimed. O

hn
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Theorems in Sections 3.3.3 and 3.3.4
Theorem 5: Suppose Assumptions 1-3 and 6-9 hold, and L > (a/(20(1 + 2«v)). Then

Vil (B — B) —a N (0, 1)

where Vs, = Zizl Eizl ar, ai, Ty Q1,05 /0, To is as defined in Assumption 3, r,, is as
defined in Assumption 5, [ is the k X k identity matrix, and

Qi = B | (25 — 25) (5 — o) (wi — uy) (w; — up) K (Hpi;—pj'b) K <|Ipz;—pkllz>} /(r7)

n n

Proof of Theorem 5: Since 8, = Zle az@cmn, the logic of Theorem 4 and the
continuous mapping theorem imply

L n n
vn (BL = Brn,) = Z ay/n (501;1” - 5(11/1”) —a N (0, Z Z FEIQlllg,hnFEIUzl,lg,hn)
=1 li=11ls=1
where (7, = Zle a;Be,n and

Qayt, = [(931 . xj)/(%‘ — ) (wi — u])<ul —up) K (||p¢;:j||2> K (Ilpi;pkh)] /(7}2;) By

n

Assumption 10 and the definition of {ay, ..., ar}, BL,h can be written as

L L
Brn =B+ 3y (200) " Ciy (e, )™ + 0, (n")

l1=11=1
+ (2T)~ Z Ci,

since ), a;, = 1 by choice of {ai,...,ar}. Furthermore, {ay,...,ar} also satisfies
[le allcﬁ/ } =0 for all [ € {1, ..., L}, so the second summand is 0 and
By =B+ o0, (n7/?). The claim follows. O

Za 652/9] W% 4o, (n71?)

l1

Theorem 6: Suppose Assumptions 1-5 hold. Then T’ E:thhnf;l /v/n =, Vi, and
Zh 1 ZIQ 1 Cll n Cllhn Cl2hn Cly h /\/_ %p ‘/57L

Proof of Theorem 6 It is sufficient to prove the second result, which nests the first as a
special case. In the proof of Theorem 2 I demonstrate that Assumptions 1-5 are sufficient
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-1,
for ( [ ( i w]))D I'en, = 20 + 0,(1) for any constant ¢ > 0. It remains to be shown

-1 -1 .
e (2 [ (5] (8 [ (85)]) ™ o, omers 1

I first fix agent i and Z; = {x;,w;, v;} and study the average
<E [K <5(“:T:’J)>]> (n—=2)"" >0 (i — 2y) (4 — ) K (th_n> for some fixed ¢ > 0. Since

U; = w; + ZL‘Z(B — [3) this average can be rewritten

(1 (")) " 2t S [ ) — )3 )] K (fh;)

_ (E [K <5(“;T:”J>>} > T2y ;(x ) (s — up) K <ch”>
_ <E [K (5(1217’:}3))])_1 (n—2)~" ;(xz — ;) (x; — ) K (5&) (B-8)

The first summand converges to

~1
<E [K (%:};))]) E |:<:L‘Z — ;) (u; — uj) K ((s(wz—wj> \Z} following from arguments
made in Theorem 3. The first part of the second summand

-1

(E [K (%)]) (n—=2)"" >0 (i — 25) (2 — ) K (“t;—?) is bounded following
arguments made in Theorem 2, and so the second summand converges to 0 in probability
since (8 — ) = 0,(1) by Theorem 2. As a result,

(5 i (2222)]) ™ (5 [ (22522)]) ™ s, cam e writen as
142 E { — ;) (u; — u) K (5(2—};"])) |ZZ} E [(;pi — ;) (u; — u;) K <5(Z—};"9)> |ZZ}
(ol <W>] e ("))
(n—2) 14ZE { =) (i — ) (s — ) (g — ug) K (M) K <M> |ZZ]

crhy, cahy,
(el (‘“i"f—;;i””)] el ()])

Together, the two results imply that f‘c_lilthCllhnyclzhnF 1h —p L'y chhn CthFO , and the
claim follows from the continuous mapping theorem. [J





