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Abstract 

 

Intersectional Implicit Bias: Evidence for a Category Dominance Hierarchy and The 

Predominance of Target Gender 

 

by 

 

Paul Connor 

 

Doctor of Philosophy in Psychology 

 

University of California, Berkeley 

 

Professor Dacher Keltner, Chair 

 

Individuals demonstrate implicit evaluative biases with respect to multiple dimensions of social 

categorization. However, little is known about how such implicit biases manifest toward targets 

displaying simultaneously intersecting social categories. Across four studies (N = 4,314) we used 

Single-Target IATs (Studies 1-4) and Evaluative Priming Tasks (Study 4) to test competing 

hypotheses concerning implicit evaluations of multiply categorizable targets varying in race, 

gender, social class, and age. Overall, we observed a dominant pro-female/anti-male bias, which 

accounted for more target-level variation in implicit evaluations than race-, class-, or age-related 

biases. We also documented smaller and less consistent pro-upper-class/anti-lower-class biases, 

and pro-Asian/pro-White/anti-Black racial biases. We observed little evidence of consistent 

interactions between social categories, or of effects differing between student samples (Studies 

1-3) and a representative US sample (Study 4), or as a function of presenting targets as full-body 

or upper-body photographs (Studies 3 & 4). Taken together, these results suggest that implicit 

evaluations of multiply categorizable targets may operate according to a category dominance 

hierarchy, with a single category (here, gender) predominantly driving evaluations, but ancillary 

categories producing compounding levels of bias toward individuals displaying multiple 

stigmatized or positively-valued social identities. 
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Intersectional Implicit Bias: Evidence for a Category Dominance Hierarchy and The 

Predominance of Target Gender 

 

People display implicit evaluative biases––automatic associations between categories and 

positive or negative valance ––with respect to a wide variety of social categories, including race, 

gender, social class, and age (Greenwald & Lai, 2020; Nosek, 2005). Evidence suggests that 

these biases have weighty social consequences, influencing decision making in contexts 

including employment, medicine, and voting (e.g., Greenwald, Banaji, & Nosek, 2015; Jost et 

al., 2009).  

 

However, little is known about how implicit bias operates with respect to multiply categorizable 

social targets. In most human interactions, individuals display multiple intersecting social 

identities, most notably race, gender, social class, and age. Yet within the empirical literature on 

implicit bias, biases regarding such categories have typically been studied in isolation from each 

other, and measures of implicit bias have been designed to isolate and measure biases with 

regard to a single binary categorical preference (e.g., Black vs. White, female vs. male). For 

example, Nosek (2005) employed Implicit Association Tests (IATs; Greenwald, McGhee, & 

Schwartz, 1998) to demonstrate that US participants display implicit evaluative biases favouring 

Whites over Blacks, females over males, the rich over the poor, the young over the elderly, and 

many others. However, because IATs measure only a single categorical preference at a time, 

these methods do not speak to how multiple identities jointly contribute to implicit bias. Does a 

White, rich, young woman prompt implicit evaluations four times more positive than a Black, 

poor, old man? Or are some social categories more influential than others? Alternatively, do the 

categories interact with each other, such that, for example, implicit gender bias operates 

differently depending on the race, social class, age, weight, or sexual orientation of targets?  

 

To date, psychologists have produced few answers to these questions, despite the widespread 

advocacy of an intersectional approach within psychological science (e.g., Cole, 2009; Goff, & 

Kahn, 2013; Kang & Bodenhausen, 2015). There is, however, evidence that implicit evaluative 

biases can be simultaneously affected by multiple aspects of target stimuli. Wittenbrink, Judd, 

and Park (2001) found implicit racial bias to be moderated by the visual contexts in which targets 

were presented. When Black and White targets were depicted on a street corner, participants 

displayed greater anti-Black bias compared to when targets were depicted inside a church. 

Similarly, Barden, Maddux, Petty, and Brewer (2004) found moderation of implicit bias by 

visual context and targets’ clothing. When Black and White targets were depicted inside a jail, 

participants displayed pro-White bias when targets were shown in prison clothes, but pro-Black 

bias when targets were shown in suits and ties. In keeping with this theme of moderation, 

participants showed greater implicit bias against Black targets with more racially prototypical 

features (Livingston & Brewer, 2002), and toward Black targets with neutral facial expressions 

compared to smiling Black targets (Steele, George, Cease, Fabri, & Schlosser, 2018). Each of 

these findings indicates that implicit evaluative biases are sensitive to multiple aspects of target 

stimuli. By implication, when targets are multiply categorizable––as in most everyday social 

interactions––it is likely that implicit evaluations will be shaped by multiple dimensions of social 

categorization. The central aim of the present investigation is to better understand this process. 

 

Models of Intersectional Intergroup Bias 

 

Several scholars have theorized about how multiple simultaneous social categorizations affect 

intergroup bias (for recent reviews, see Nicolas, de la Fuente, & Fiske, 2017, and Petsko & 

Bodenhausen, 2019). Here, we consider in detail select treatments, focusing upon those theories 

that make clear and testable predictions with regard to intersectional implicit bias.  

 

Compounding Biases: Additive and Interactive Models 

 

Perhaps the most prominent school of thought on intersectionality and intergroup bias is the 

thesis that negative and positive biases compound when multiple social identities are displayed 

simultaneously. In early work, Brown and Turner (1979) relied on Tajfel and Turner’s (1979) 

social identity theory to predict that separate intergroup biases would combine additively in the 

presence of multiple dimensions of social categorization.  Their reasoning held that intergroup 

bias will increase in a linear fashion according to the number of dimensions on which a social 

target is perceived to be an out-group member, and decrease according to the number of 
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dimensions on which they are perceived as an in-group member. A similar thesis can be found in 

the averaging model of Singh, Yeoh, Lim, and Lim (1997), which proposes that intergroup bias 

is a function of the number of perceived out-group memberships divided by the total number of 

available social categorizations.  

 

Other scholars have suggested that biases may compound across categories in complex, 

interactive ways.  Grounded in the writings of Black feminist activist Frances Beale (1970), 

Ransford (1980) proposed the multiple jeopardy-advantage hypothesis: when individuals are 

perceived as belonging to multiple stigmatized social categories, they are vulnerable to ‘multiple 

jeopardy’, a multiplicative negative evaluation that exceeds the sum of the negative biases 

associated with each category. By contrast, when individuals are perceived as belonging to 

multiple positively-valued social categories, the result can be ‘multiple advantage’ that exceeds 

the combined positive biases of the relevant categories (see also Almquist, 1975; King, 1988; 

Landrine, Klonoff, Alcaraz, Scott, & Wilkins, 1995). Crenshaw (1989) popularized these ideas 

(and introduced the term “intersectionality”), describing a paradigmatic case of multiple jeopardy 

in the US legal system: despite General Motors hiring disproportionately fewer Black women, 

the company was exculpated of both race and gender discrimination due to employing sufficient 

numbers of (White) women and (male) Blacks (DeGraffenreid v. GENERAL MOTORS 

ASSEMBLY DIV., 1976).  

 

Today, scholarship animated by the concepts of intersectionality and multiple jeopardy has 

sought to understand the unique challenges faced by individuals possessing multiple 

marginalized social identities (especially those of Black women in the USA; Cooper, 2015).  

However, within this literature, it has not been clear whether intersectionality necessarily implies 

interaction (i.e., multiplicative) effects between social categories, or simply that individuals with 

multiple marginalized social identities suffer from multiple consequences of their identities. 

Indeed, scholars of intersectionality have at times been divided as to whether the concept can or 

should be reduced to these kinds of quantitative predictions (e.g., Cole, 2009; Bowleg, 2008).  

 

Nonetheless, numerous researchers have attempted to quantify the simultaneous effects of 

multiple intersecting social categorizations on the expression of intergroup bias, and have often 

found evidence broadly consistent with both additive and interactive models of compounding 

biases. At times, evidence has been most consistent with multiple additive main effects on 

intergroup bias compounding across different social categorizations (e.g., Crisp, Hewstone, & 

Rubin, 2001, Study 1; Hewstone, Islam, & Judd, 1993; Islam & Hewstone, 1993, Study 2; Singh, 

Yeoh, Lim, & Lim, 1997; Vanbeselaere, 1991; van Oudenhoven, Judd, & Hewstone, 2000). At 

other times, evidence has been most consistent with interaction effects producing multiplicative 

disadvantages stemming from combined stigmatized social identities (e.g., Brown & Turner, 

1979; Diehl, 1990; Marcus-Newhall, Miller, Holz, & Brewer, 1993; Vanbeselaere, 1991), or 

with interaction effects producing multiplicative advantages stemming from combined 

positively-valued social identities (Brewer, Ho, Lee, & Miller, 1987; Eurich-Fulcher, & 

Schofield, 1995).  

 

Thus, despite ambiguity regarding the presence and pattern of interaction effects, theories of 

compounding bias offer relatively clear predictions with regard to the specific sub-groups of 

multiply categorizable targets. Specifically, given prior evidence that Americans’ implicit 

evaluative biases typically favour Whites over Blacks (Nosek, Banaji, & Greenwald, 2002), 

females over males (Richeson & Ambady, 2001, Rudman & Goodwin, 2004), the upper class 

over the lower class (Horwitz & Dovidio, 2017; Rudman, Feinberg, & Fairchild, 2002), and the 

young over the elderly (Nosek, 2005), theories of compounding bias predict that among targets 

varying in race, gender, social class, and age, the most negative implicit evaluative biases should 

be displayed toward lower-class, older Black males, whereas the most positive biases should be 

displayed toward upper-class, younger White females.  

 

Category Dominance  

 

Other researchers have challenged the claim that biases will compound across multiple social 

categorizations.1 One divergent perspective is the category dominance model (Macrae, 

 
1 Other perspectives that challenge the notion of compounding bias include Urada, Stenstrom, 

and Miller’s (2007) threshold-based feature detection model, and Kang and Chasteen’s (2009) 
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Bodenhausen, & Milne, 1995). This theory is premised on the notion that humans are by 

necessity ‘cognitive misers’ (Fiske & Taylor, 1991), who must strive to parse and interpret an 

overwhelming amount of social information as efficiently as possible. The category dominance 

model asserts that when social perceivers are faced with complex, multiply categorizable social 

targets, a single dominant categorization dimension will guide social perception and behavior. 

Which specific category becomes dominant depends on many factors, including the situational or 

chronic salience of different categories, the goals of perceivers, and/or perceivers’ prejudices. 

But importantly, it is theorized that this dominant category, once activated, will subsequently 

inhibit the activation of competing categories. In support of this, Macrae and colleagues showed 

that when participants were primed with a specific social category (i.e., Asian or woman) and 

observed a multiply categorizable target (i.e., an Asian woman), concepts associated with the 

primed category became more cognitively accessible, and concepts associated with the non-

primed category became less cognitively accessible (see also Dijksterhuis & Van Knippenberg, 

1996).  

 

The category dominance model therefore predicts that in evaluations of targets varying in race, 

gender, social class, and age, a single dominant categorization dimension will drive bias. 

Importantly, the category dominance model does not necessarily predict what the dominant 

category will be––if no specific category is primed by researchers, the choice of dominant 

category will in theory rely upon the perceivers’ attention, goals, and pre-existing biases. Rather, 

this model predicts that due to the necessity of efficiently parsing an enormous amount of 

information from our social contexts, a single category will tend to emerge as dominant within 

specific contexts and suppress the effects of alternate categories.  

 

Evidence Regarding Intersectional Implicit Bias 

 

Only a handful of studies has investigated implicit bias toward multiply categorizable targets. 

Thiem, Neel, Simpson and Todd (2019) used a weapon identification task (Payne, 2001) and 

sequential priming tasks to measure automatic associations between weapons and headshots of 

targets varying in race (Black and White), gender, and age.  Consistent with a compounding bias 

account, each target-level variable influenced perceptions, with participants displaying a greater 

tendency to associate Black, male, and adult targets with weapons than White, female, and child 

targets, respectively. Further, there was also evidence of a multiplicative multiple-jeopardy 

effect, with Black male targets appearing to evoke stronger associations with threat than could be 

explained by main effects of race and gender alone. Similarly, Perszyk, Lei, Bodenhausen, 

Richeson, and Waxman (2019) used the Affective Misattribution Procedure (AMP; Payne, 

Cheng, Govorun, & Stewart, 2005) to measure children’s implicit evaluations of headshots of 

child targets varying in race (White and Black) and gender, and found a race × gender 

interaction, with Black boys eliciting more negative evaluations than could be explained by main 

effects of race and gender alone.  

 

Two further recent studies manipulated the race (Black and White) and perceived social class of 

targets within implicit bias tasks. In the first, Moore‐Berg, Karpinski, and Plant (2017) presented 

images of the upper bodies of targets varying in race (Black and White) and social class 

(signalled via targets’ wearing either t-shirts or suits) within a ‘shoot/don’t-shoot’ task (Correll, 

Park, Judd, & Wittenbrink, 2002). In the second, Mattan, Kubota, Li, Venezia, and Cloutier 

(2019) used an Evaluative Priming Task (EPT; Fazio, Sanbonmatsu, Powell, & Kardes, 1986) to 

measure implicit evaluations of headshots of targets varying in race (Black and White) and 

background color (red and blue), and trained participants to associate the coloured backgrounds 

with higher or lower social class status. The results of this pair of studies varied, with five 

different patterns of results emerging from five separate experiments. However, one consistent 

result was that upper-class, White targets were favored within each observed pattern of bias 

(though not always more so than lower-class White targets or upper-class Black targets). Taken 

together, these results can be seen as consistent with theories of compounding bias, in that upper-

class Whites were the most favored group across the full set of results.  

 

By contrast, other studies have yielded results more consistent with the category dominance 

model, and its assertion that single categories will dominate responses when participants’ 

 

category salience-based selective inhibition model. For the sake of brevity, we do not discuss 

these theories in the present manuscript, though our data is arguably relevant to, and fails to 

show support for, either model.  
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attention is directed toward them. Mitchell, Nosek, and Banaji (2003) presented Black athletes 

and White politicians as stimuli within an IAT, but had participants categorize targets either via 

profession (Athlete vs. Politician) or race (Black vs. White). When participants categorized 

targets by profession, biases favoured Black athletes, but when participants categorized targets 

by race, biases favoured the White politicians. The same authors also presented Black female and 

White male targets within a Go/No-Go Association Test (Nosek & Banaji, 2001), and 

manipulated the relative salience of targets’ race and gender. For example, in one condition, 

Black female targets’ race was made salient by presenting them alongside White females and 

males, in another, their gender was made salient by presenting them alongside White and Black 

males. Results indicated that when race was salient, participants evaluated White males more 

positively than Black females, but when gender was salient, participants evaluated Black females 

more positively than White males. Similarly, Yamaguchi and Beattie (2019) found that when 

Black and White female and male targets were categorized according to race within IATs, 

participants displayed substantial anti-Black/pro-White implicit racial bias, but little implicit 

gender bias. When targets were categorized according to gender, participants displayed pro-

female/anti-male implicit gender bias, but little implicit racial bias.  

 

Other evidence suggests that the direct manipulation of category salience is not always necessary 

for a single category to dominate responses to multiply categorizable targets. Jones and Fazio 

(2010) used a weapon identification task to measure participants’ tendency to perceive objects as 

guns versus tools while exposed to images of primes varying in race (Black and White), gender, 

and occupational status (high or low, e.g., professor, sanitation worker). In this study, 

participants instructed to attend to primes’ race displayed an implicit racial bias were relatively 

more likely to perceive guns/tools while exposed to Black/White primes, but showed little 

gender- or occupation-based bias. However, when participants were not instructed to attend to 

any specific social category, the only bias displayed was gender-based, with participants 

relatively more likely to perceive guns/tools when exposed to male/female targets. The authors 

concluded that “given sufficiently complex stimuli, the racial dimension may not always 

dominate categorization” (p. 1078).  

 

The Present Research 

 

In most social interactions, individuals can be categorized in multiple ways. Thus, understanding 

how implicit evaluative bias operates toward multiply categorizable targets is likely to be critical 

to understanding how it operates in the real world. However, current evidence concerning 

implicit bias and multiply categorizable targets remains limited, and ambiguous. Whereas some 

work supports theories of compounding bias, and suggests that implicit biases tend to compound 

across multiple social categories, other evidence aligns better with the category dominance 

model, and suggests that implicit evaluations are often driven by a single dominant categorical 

dimension. 

 

Guided by these contrasting perspectives, we conducted four studies investigating the influences 

of multiple simultaneously displayed social categories upon implicit evaluative biases. In Study 

1, we measured implicit evaluations of full-body target photographs of males varying in race 

(Black or White) and social class status. In Study 2, we developed a set of full-body target 

images varying simultaneously in race, gender, and social class, and pursued a data-driven 

approach to determine the primary dimensions of perceived target-level variation and their 

respective influence on implicit evaluations. In Study 3, we again measured implicit evaluations 

of targets varying in race, gender, social class and age, but shuffled targets’ faces and bodies to 

achieve greater control over potential confounds, and varied the salience of categories by 

presenting targets via full-body or upper-body photographs. Finally, in Study 4, we tested the 

generalizability of our results by obtaining data from a nationally representative sample of US 

adults, and by comparing results across different methods of measuring implicit bias. 

 

The present research offers theoretical, empirical, and methodological advances for the study of 

intersectional implicit bias. At the theoretical level, our work points toward a reconciliation 

between competing theories of compounding bias and category dominance. At the empirical 

level, the present work is, to our knowledge, the first to measure implicit evaluations of targets 

varying in race, gender, social class, and age. And at the methodological level, the present work 

is, to our knowledge, the first investigation to focus specifically upon measuring and modelling 
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implicit evaluations of multiply categorizable targets at the individual target level. This method 

carries advantages over traditional approaches, as it allows researchers to study variation in 

implicit evaluations within target groups, which is not possible via target-group based analyses, 

while retaining the ability to assess of measurement reliability, which is not possible via response 

time-level analyses. All data and code used in the current project are accessible via the Open 

Science Framework (https://osf.io/sbpna/?view_only=645d6fea96f74ad5a59339da0920908e). 

 

Study 1 

 

In Studies 1a and 1b, we measured implicit evaluations of full-body images of male targets 

varying in race (Black or White) and social class. Here, theories of compounding bias predict 

that pro-White/anti-Black biases and pro-upper-class/anti-lower-class biases should both occur, 

resulting in lower-class Blacks being evaluated the most negatively and upper-class Whites being 

evaluated the most positively. Additionally, they also suggest possible interaction effects, with 

either lower-class Blacks producing especially negative responses (multiplicative multiple 

jeopardy), or upper-class Whites producing especially positive responses (multiplicative multiple 

advantage). By contrast, the category dominance model suggests that either race or social class 

will emerge as the dominant category driving implicit bias.  

 

Stimuli Creation and Pilot Studies 

 

We gathered 130 full-body color photographs of Black and White adults (60 Black, 70 White) 

facing the camera with neutral expressions. Targets appeared on plain white backgrounds. 

Photographs were then presented to 1788 American adults recruited via MTurk, who rated the 

photographs on perceived yearly income (ICC = 0.43), perceived age (ICC = 0.70), and whether 

they perceived targets to be Black (ICC = 0.88) or White (ICC = 0.95). Raters offered judgments 

of an average of 29.73 (SD = 13.61) randomly selected photographs, and each photo was rated 

on each trait by an average of 52.58 raters (SD = 23.08).  

 

Based on photographs’ mean ratings of income, race, and age, we assembled groups of eight 

photos each varying in race (Black and White) and income (see Figure 1). In each study, targets’ 

mean perceived income varied significantly across class categories (all p < .001) but not race 

categories (all p > 0.69), whereas targets’ mean perceived race varied significantly across race 

categories (all p < .001) but not class categories (all p > .08).2 Additionally, there were no 

significant interactions between race and class categories in predicting perceived income or race 

(all p > 0.19), and no significant main effects or interactions of race and class categories in 

predicting perceived age (all p > 0.32).  

 
2 The p value of 0.08 referred to resulted from a t-test comparing Study 1b’s 16 lower-class and 

16 upper-class targets on their mean categorizations as White (see the bottom-left bar plot in 

Figure 1). While not ideal, this result is un-problematic for interpreting Study 1b’s results. As 

shown in Figure 2, Study 1b’s Black targets (who were categorized as White 3% of the time) 

produced more positive evaluations than Study 1b’s White targets (who were categorized as 

White 91% of the time). It is therefore highly unlikely that participants responded more 

positively to the upper-class targets (who were categorized as White 50% of the time) than the 

lower-class targets (who were categorized as White 43% of the time) due to a race confound.  

https://osf.io/sbpna/?view_only=645d6fea96f74ad5a59339da0920908e
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Figure 1. Target groups used in Studies 1a and 1b, and figures displaying raters’ judgments of 

perceived income, age, and race ratings of each group. Bars indicate 95% confidence intervals. 

 

Participants and Procedure 

 

Participants for Study 1a (N = 298, 196 female, 2 missing gender data, Mage = 20.3, SDage = 1.9, 

129 Asian, 125 White, 29 Latino, 9 Black, 5 other race, 2 missing race data) and Study 1b (N = 

533, 340 female, Mage = 20.5, SDage = 2.63, 268 Asian, 173 White, 54 Latino, 6 Black, 10 Other 

race, 22 missing race data) were undergraduates who participated for course credit. Study 1a 

used a within-subjects design, measuring participants’ implicit evaluations of all six target 

groups in a randomized order, whereas Study 1b used a between-subjects design, with 

participants randomly assigned to one of four target groups, and implicit methods used to 

measure both evaluations of the assigned target group and associations between target groups 

and wealth/poverty.  

 

Single-Target IATs 

 

We measured implicit evaluative bias via evaluative Single Target IATs (ST-IATs; Bluemke & 

Friese, 2008; Wigboldus, Holland, & van Knippenberg, 2004),3 which measure the relative 

positivity of individuals’ automatic responses toward a single target group. Each ST-IAT began 

with a practice block, in which the labels “Good” and “Bad” appeared at the top left and top 

right, respectively, of participants’ computer screens. Across 20 trials participants then classified 

words appearing on their screens as either good (e.g., Beautiful) or bad (e.g., Agony) as quickly 

as possible via timed computer key presses. Following this, the word “Person” also appeared at 

 
3 ST-IATs are highly similar to the Single-Category IAT (SC-IAT) introduced by Karpinski and 

Steinman (2006). We follow Bluemke and Friese (2008) in distinguishing between the tasks on 

the basis that the SC-IAT uses an in-task response maximum latency window while the ST-IAT 

does not. In the present manuscript, we did not use a limited response latency window, so 

classify our task as a ST-IAT, not a SC-IAT.  
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either the top left of screens (in ‘compatible’ blocks), or the top right of screens (in 

‘incompatible’ blocks), and participants then categorized words as “Good” or “Bad” or target 

photographs as a “Person.” Participants were randomly assigned either to complete either two 

compatible blocks (of 20 then 40 trials) followed by two incompatible blocks (of 20 then 40 

trials), or vice versa (see Table 1). Using the same procedure, in Study 1b we also used a wealth 

ST-IAT measuring implicit associations between target groups and the concepts of wealth and 

poverty. In this measure the labels “Good” and “Bad” were replaced with “Wealth” and 

“Poverty,” and the positively and negatively valanced words were replaced with words evoking 

wealth (e.g., Rich, Wealth, Affluent) and poverty (e.g., Poor, Poverty, Destitute). 

 
Table 1 

Single Target IAT procedure 

Block Task description Left key (E)  Right key (I) Trials 

1 Practice block Positivea/Wealth wordsc Negativeb/Povertyd words 20 

2 Compatible block 1 Positive/Wealth words + target images Negative/Poverty words 20 

3 Compatible block 2 Positive/Wealth words + target images Negative/Poverty words 40 

4 Incompatible block 1 Positive/Wealth words  Negative/Poverty words + target images 20 

5 Incompatible block 2 Positive/Wealth words Negative/Poverty words + target images 40 
aPositive words = Beautiful, Glorious, Joyful, Lovely, Marvellous, Pleasure, Superb, Wonderful 
bNegative words = Agony, Awful, Horrible, Humiliate, Nasty, Painful, Terrible, Tragic 
cWealth words = Rich, Wealthy, Affluent, Prosperous, Well Off, Loaded, Fortune, Lucrative 
dPoverty words = Poor, Poverty, Destitute, Needy, Impoverished, Broke, Bankrupt, Penniless 

Note: the order of the target/valence pairing was randomised, meaning that for half of participants, incompatible blocks 4 

& 5 preceded compatible blocks 2 & 3. 

 

To quantify participants’ implicit associations with each target group, we used the D Score 

summary measure (Greenwald, Nosek, & Banaji, 2003). On this measure, scores above/below 

zero indicate automatic associations between target groups and positive/negative concepts (in 

evaluative ST-IATs) or between target groups and wealth/poverty (in wealth ST-IATs). D Scores 

from ST-IATs display comparable psychometric properties to the more commonly used two-

category IAT (Greenwald & Lai, 2020). In the present research we estimated the average split-

half reliability of the valence and wealth ST-IATs to be 0.664 and 0.68, respectively (the valence 

ST-IAT figure combines data from Studies 1a and 1b). All implicit tasks in the present 

manuscript were administered online via Inquisit Web software.  

 

Demographics 

 

In both studies demographic information (age, gender, and race) was collected at the end of the 

experiment.  

 

Results 

 

For Study 1a we fitted a 2 (target race: Black, White) × 3 (target class: low, middle, high) 

repeated measures ANOVA predicting participants’ D scores on the evaluative ST-IAT. For 

Study 1b we fitted separate 2 (target race: Black, White) × 2 (target class: low, high) independent 

samples Analyses of Variance (ANOVA) predicting D scores on both the evaluative and wealth 

ST-IATs. All analyses were conducted in R version 3.6.1 (R Core Team, 2019). 

 

Evaluative ST-IATs 

 

In both studies there was a significant main effect of targets’ social class, Study 1a: F(2,594) = 

19.16, p < .001 , 𝜂2= 0.02, Study 1b: F(1,516) = 5.27, p = 0.02, 𝜂2= 0.01, with participants 

responding more positively to upper-class targets than lower-class targets. In Study 1a, 

participants responded more positively to upper-class targets than middle-class targets and to 

middle-class targets than lower-class targets, although this latter difference did not reach 

statistical significance (see Figure 2). By contrast, there were no significant main effects of race 

in either study: Study 1a, F(1,297) = 2.21, p = 0.14, 𝜂2= 0.001, Study 1b, F(1,516) = 2.47, p = 

0.12, 𝜂2= 0.005, nor any significant race × class interactions: Study 1a, F(2,594) = 0.33, p = 

0.72, 𝜂2< 0.001, Study 1b, F(1,516) = 0.58, p = 0.45, 𝜂2= 0.001.  

 
4 These figures (and all split-half reliability figures reported in this paper) are based on average 

split-half correlations from 100 random splits of the ST-IAT data corrected according to the 

Spearman-Brown prophecy formula (Revelle & Condon, 2019). 
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Wealth ST-IAT 

 

In the wealth ST-IAT in Study 1b, there was again a main effect of target class, F(1,518) = 

23.72, p < 0.001 , 𝜂2= 0.04, with upper-class targets producing stronger relative associations 

with wealth than lower-class targets (see Figure 2). There was no significant effect of target race, 

F(1,518) = 0.0008, p = 0.98, 𝜂2< 0.001, and no significant race × class interaction, F(1,518) = 

3.13, p = 0.08, 𝜂2= 0.01.  

 

 
Figure 2. Mean IAT D scores by target group for Studies 1a and 1b. Bars indicate 95% 

confidence intervals. Cohens’ d and statistical significance of t tests between social class groups 

collapsing across races are also reported (NS = not significant, * = p < 0.05, *** = p < 0.001).  

 

Simulation-based power sensitivity analyses suggested that Analyses of Variances (ANOVAs) in 

both studies were well-powered to detect small main and interaction effects, though due to its 

within-subject design Study 1a achieved 80% power to detect smaller effects (𝜂2= 0.005) than 

Study 1b (𝜂2= 0.015). See Appendix L for details. 

 

Discussion 

 

In Studies 1a and 1b we found implicit evaluations of full-body male targets varying in race and 

social class to be driven by targets’ social class. Across both studies, participants evaluated 

targets with higher perceived incomes more positively than targets of lower perceived incomes 

(though not significantly so in the case of the middle- and lower-class targets of Study 1). By 

contrast, participants’ implicit evaluations were not significantly affected by target groups’ race, 

nor did we observe any significant race × class interaction effects. 

 

These results fail to align with theories of compounding bias, which predict that targets 

displaying multiple marginalized social identities (lower-class Blacks) and multiple positively-

valued social identities (upper-class Whites) should elicit the most negative and positive 

evaluations, respectively. Instead, these results are more consistent with the category dominance 

model, with a single category (social class) emerging as dominant within the context of this 

particular study.  

 

Notably, these results also diverged from previous empirical results regarding the effects of race 

and class on implicit bias (Mattan et al., 2019; Moore-Berg et al., 2017; though Mattan and 

colleagues observed a similar result in their third study). One explanation for this discrepancy is 

that these previous studies may not have held perceived social class was held constant across 

target groups representing different races; neither study reported evidence in this regard. By 

contrast, our Black and White target groups were pre-matched on explicit ratings of perceived 

incomes, and our wealth ST-IAT in Study 1b verified that automatic associations between target 

groups and wealth did not differ significantly across races. Another possibility, however, is that 

our methods may have amplified the salience of targets’ social class compared to these past 

studies. For example, Moore-Berg and colleagues’ use of a shoot/don’t shoot paradigm may have 

increased the salience of race relative to class compared to our methods due to stereotypes 

associating Blacks with crime and violence (e.g., Devine & Elliot, 1995; Glaser & Knowles, 

2008; Quillian & Pager, 2001). Additionally, our use of full-body target photographs may have 
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elevated the influence of targets’ bodies––a primary source of social class cues (e.g., Becker, 

Kraus, & Rheinschmidt-Same, 2017; Gillath, Bahns, Ge & Crandall, 2012; Schmid-Mast & Hall, 

2004)––relative to the influence of targets’ faces––a source of race cues––over evaluations, due 

to targets’ bodies taking up relatively more of the visual space within our stimuli. Both previous 

studies used stimuli which devoted a more equal share of visual space to cues of race and class.  

 

Study 2 

 

In Study 1 we found implicit evaluations of Black and White male targets to be dominated by 

targets’ social class.  In the service of generalizability, and mindful of the category dominance 

model’s assertion that different social categories will tend to become dominant in different 

contexts, in Study 2 we sought to extend this initial result, and tested participants’ responses to 

targets varying more widely in terms of race (we incorporated Asian as well as Black and White 

targets), as well as on social class, gender, and age.  

 

In addition, we sought to test whether the lack of pro-White/anti-Black implicit racial bias 

observed in Study 1 might have occurred not due to our specific methods, but simply due to our 

samples harboring little pro-White/anti-Black implicit bias due to their demographic makeup 

(Studies 1a and 1b used mostly female, and mostly Asian and Asian-American college students). 

To test this, we measured participants not just on their responses to multiply categorizable 

targets, but also on their implicit racial bias as measured by a traditional two-category Race IAT 

(Greenwald et al., 1998).   

 

Toward a Target-Level Analysis: The Target D Score 

 

Studying intersectionality beyond two dimensions via ST-IATs as in Study 1 encounters 

pragmatic methodological limitations. For example, studying targets displaying three different 

races (e.g., Asian, Black, and White), two genders (female vs. male), two levels of social class 

(high vs. low), and two levels of age (old vs. young) requires 24 separate experimental 

conditions. Using ST-IATs in this way is inefficient, however, as it ignores systematic variation 

in implicit evaluations within target groups. In Study 2, we therefore adopted a more efficient 

approach, by quantifying implicit evaluations at the level of each individual target. To 

accomplish this, we developed the Target D Score. This measure relies on a similar logic to a 

standard ST-IAT D Score, but instead of providing a measure of an individual participant’s 

responses to a specific target group in compatible vs. incompatible trials, a Target D Score 

provides a measure of an entire sample’s responses to a specific target in compatible vs. 

incompatible trials. Via Target D Scores, we were able efficiently model the simultaneous effects 

of a greater number of target-level variables than is possible via target-group-based approaches.  

 

A Data-Driven Approach to Person-Perception 

 

In considering which target-level variables to model, we were interested in studying responses to 

targets varying in race, gender, social class, and age. However, we did not wish to presume in 

advance how participants would perceive and categorize such complex social targets.  We 

therefore followed recent work by Koch, Imhoff, Dotsch, Unkelbach, and Alves (2016), who 

developed an innovative approach to studying the spontaneous perception of complex social 

targets. In contrast to traditional approaches, which have typically involved asking participants to 

rate targets on pre-chosen traits, Koch and colleagues asked participants to judge how similar or 

different they considered targets to be to each other. These subjective difference ratings were 

then subjected to Multidimensional Scaling (MDS, for a review, see Borg & Groenen, 2005) to 

identify the primary dimensions underlying participants’ judgments. In Study 2, we relied on this 

data-driven method to ascertain whether indeed race, class, gender and age shape implicit bias. 

Study 2 was pre-registered at https://aspredicted.org/87gw6.pdf.5  

 
5 We deviated from this pre-registration by predicting Target D Scores calculated according to 

the algorithm described below rather than logged response times between 300ms and 10,000ms. 

This deviation reflects our evolving understanding of how best to model and analyze ST-IAT 

data at the individual target level, and had only a minor impact on conclusions (see Appendix B). 
 

https://aspredicted.org/87gw6.pdf
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Target Photographs 

 

We selected 54 images (18 Asian, 18 Black, and 18 White targets) from a large database of 726 

full-body target images (54 Asian female, 63 Asian Male, 115 Black female, 154 Black male, 

140 White female, 200 White male) gathered as part of our lab’s ongoing research into person 

perception. In addition to the images, the database contains 490,359 explicit ratings of the targets 

made by 3,311 US adults (1,875 female, Mage = 23.8, SDage = 8.6, 1,116 Asian, 1,089 White, 414 

Latino, 117 Black, 575 other race or unreported) on 24 different personality and demographic 

traits selected as central to person perception. Traits measured were: warm (ICC = 0.23), 

competent (ICC = 0.31), honest/moral (ICC = 0.13), dominant (ICC = 0.16), submissive (ICC = 

0.11), hard-working (ICC = 0.18), extraverted/enthusiastic (ICC = 0.15), reserved/quiet (ICC = 

0.12), sympathetic/warm (ICC = 0.15), critical/quarrelsome (ICC = 0.07), dependable/self-

disciplined (ICC = 0.21), disorganized/careless (ICC = 0.20), calm/emotionally stable (ICC = 

0.14), anxious/easily upset (ICC = 0.08), open to new experiences/complex (ICC = 0.15), 

conventional/uncreative (ICC = 0.09), attractive (ICC = 0.33), income (ICC = 0.39), education 

(ICC = 0.27), occupational prestige (ICC = 0.39), subjective socioeconomic status (ICC = 0.43), 

age (ICC = 0.72), political orientation (ICC = 0.26), and race (measured via a multiple choice 

categorical response; ICCs for dummies indicating Asian, Black, and White categorizations = 

0.87, 0.90, and 0.80, respectively).  

  

For each race (Asian, Black, and White), we selected 9 female and 9 male targets varying in 

social class and age. Unsurprisingly, perfect orthogonality between each target-level variable 

(race, gender, class, and age) was not possible, with small correlations persisting between racial 

categorizations and perceived social class (see Table 2). However, these correlations were 

relatively small (maximum r = 0.15). Moreover, our analyses were able to statistically control for 

such imbalances by modelling effects at the individual target level. For example, we were able to 

estimate effects of targets’ race while controlling for their perceived social class, and vice versa. 

Thus, in contrast to Study 1, which employed traditional factorial experimental designs, Study 2 

employed something closer to a conjoint design, in which multiple variables are simultaneously 

manipulated, and their independent effects are parsed out via multivariate analyses (Hainmueller, 

Hopkins, & Yamamoto, 2014).  

 
Table 2 

Descriptive statistics of targets chosen for Study 2 

Correlations 1. 2. 3. 4. 5. 6. 

 1. Asian categorization       

 2. Black categorization -0.49      

 3. White categorization -0.52 -0.47     

 4. Femalea -0.01 -0.01 0.03    

 5. Age -0.02 -0.01 0.03 -0.04   

 6. SESb 0.15 -0.15 -0.01 -0.002 -0.02  

Descriptives       

 M(SD) Overall 0.33(0.47) 0.31(0.45) 0.32(0.42) 0.5(0.5) 43.6(12.93) 0(1) 

 M(SD) Asian Females 0.97(0.03) 0.01(0.03) 0.02(0.05) 1(0) 40.59(11.34) 0.18(0.67) 

 M(SD) Asian Males 0.99(0.03) 0(0) 0.01(0.02) 0(0) 46.05(13.52) 0.24(0.87) 

 M(SD) Black Females 0.01(0.02) 0.91(0.15) 0.08(0.08) 1(0) 44.87(13.42) -0.21(1.08) 

 M(SD) Black Males 0.01(0.03) 0.95(0.05) 0.01(0.02) 0(0) 41.6(14.35) -0.15(1.20) 

 M(SD) White Females 0(0) 0.01(0.02) 0.89(0.15) 1(0) 43.84(13.38) 0.02(1.01) 

 M(SD) White Males 0(0) 0.01(0.02) 0.9(0.1) 0(0) 44.64(14.37) -0.08(1.27) 
a Female is a manually coded dummy (1 = Female, 0 = Male) 
b SES is a z-scored average of z-scored ratings on income, education, occupational prestige, and subjective 

SES 

 

Participants and Procedure 

 

Participants were 371 undergraduate students who participated for course credit (281 female, 24 

missing gender data, Mage = 20.44, SDage = 2.5, 194 Asian, 93 White, 32 Latino, 6 Black, 16 

other race, 30 missing race data).  

 

ST-IATs 
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Participants completed three separate evaluative ST-IATs, following the procedures described 

above. The three ST-IATs used as target stimuli the 18 Asian, 18 Black, and 18 White targets, 

respectively, and were presented in a randomized order.  

 

Race IAT 

 

Participants also completed a two-category Race IAT using black-and-white partial face images 

of Black and White targets as stimuli.6 This involved a similar procedure to the ST-IAT, except 

that in test trials the labels “White American” and “Black American” appeared on opposite sides 

of participants’ screens, alongside the labels “Good” and “Bad.” Participants were tasked with 

categorizing positive words or White faces via a single computer key and categorizing negative 

words or Black faces via an alternative key (in compatible trials), or with categorizing positive 

words or Black faces via a single computer key, and negative words or White faces via an 

alternative key (in incompatible trials).  For each participant we computed D scores according to 

Greenwald and colleagues’ (2003) algorithm, with higher D scores indicating relatively faster 

responses in compatible versus incompatible trials (indicating anti-Black implicit bias). The 

split-half reliability of the Race IAT D Scores was 0.75. Participants were randomly assigned to 

complete either the three ST-IATs or the Race IAT first.  

 

Difference Ratings 

 

Following the IATs, participants were presented with 60 randomly selected pairs of the 54 

targets. For each pair, participants were asked “how different or similar are these people?” and 

provided ratings on 0-100 sliders ranging from “Very Similar” to “Very Different.” This resulted 

in an average of 14.8 ratings (SD = 3.57) made of each of the 1,431 possible target pairs (ICC = 

0.29).  

 

Demographics 

 

Finally, participants reported demographic information, including subjective SES measured via 

the MacArthur ladder measure (Adler, Epel, Castellazzo, & Ickovics, 2000). 

 

Results 

 

Multi-Dimensional Scaling  

 

We computed the mean perceived difference between each of the 1,431 unique target pairs and 

subjected the resulting distance matrix to MDS using the majorization approach assuming an 

interval scale (SMACOF; De Leeuw & Mair, 2009). We tested multiple MDS solutions ranging 

from one dimension to six, and ultimately chose the five-dimension solution as the most 

parsimonious solution providing good fit (scaling stress of 0.116 and r2 of 0.79; stress of 0.15 or 

less is generally considered acceptable, Dugard, Todman, & Staines, 2010; see Appendix A for 

more information).  

 

Next, to assess what the five dimensions represented, we calculated correlations between targets’ 

scores on each dimension with the previously collected explicit trait ratings of each target within 

our database (Table 3). The first dimension correlated strongly with targets’ perceived subjective 

SES (r = 0.91),7 the second with categorization as Asian (r = -0.81) and categorization as Black 

 
6We used the “Racism IAT” available from Millisecond.com 

https://www.millisecond.com/download/library/iat/raceiat/) 
7 In the original MDS solution Dimension 1 correlated negatively with measures of social class. 

We have reversed its scores throughout the manuscript for ease of interpretation. This has no 

effect on any of the reported results beyond reversing their direction.  

https://www.millisecond.com/download/library/iat/raceiat/
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(r = 0.79),8 the third with categorization as White (r = 0.78), the fourth with categorization as 

Female (r = 0.81), and the fifth with age (r = 0.91). These results suggested that targets were 

spontaneously perceived as varying on core demographic variables: social class, race, gender, 

and age. 

 

Table 3 

Target-level correlations between targets’ MDS-derived dimension scores and mean explicit 

trait ratings. Correlations weaker than 0.2 are not displayed, correlations are bolded 

according to the dimension traits correlate most strongly with. 

  MDS Dimensions  

 1 2 3 4 5 

Subjective SES 0.91     

Occupational Prestige 0.89     

Education 0.85     

Income 0.81  0.22 -0.24 0.24 

Attractiveness 0.8    -0.31 

Competence 0.79     

Disorganized/Careless -0.74    -0.33 

Dominant 0.73 0.25    

Dependable/Self disciplined 0.67   -0.21 0.21 

Calm/Emotionally stable 0.61   -0.22  

Submissive -0.6 -0.33   -0.23 

Hard working 0.55  -0.26 -0.31 0.33 

Extraverted/Enthusiastic 0.52 0.33  0.28 -0.3 

Reserved/Quiet -0.51 -0.27  -0.34 0.24 

Asiana 0.2 -0.81 -0.34 -0.3  

Blacka  0.79 -0.47   

Liberal  0.62 -0.27  -0.37 

Conventional/Uncreative -0.33 -0.38   0.29 

Whitea   0.78 0.45  

Honest/Moral   -0.34   

Critical/Quarrelsome 0.22  0.22   

Femaleb 0.26  -0.43 0.81  

Anxious/Easily upset -0.41   0.51  

Sympathetic  0.22 -0.24 0.3  

Warmth  0.23 -0.2 0.25  

Age -0.26    0.91 

Open To New Experience/Complex 0.44 0.31   -0.5 
aAsian, Black, and White represent means of dummies indicating categorical categorization as 

appearing to be of each respective race 
bFemale represents a manually coded dummy (1 = female target, 0 = male target) 

 

However, it remained possible that the emerging dimensions might have aligned even more 

closely with some other non-measured variable. To test this, we asked participants in an separate 

student sample (N = 281, 193 female, Mage = 20.95, SDage = 3.2, 140 Asian, 61 White, 23 Latino, 

6 Black, 28 other race) to nominate via open-ended response what they perceived each 

dimension to represent, based upon visualizations of targets arranged according to their 

dimension scores (see Figure 3). Responses generally comported with the explicit trait rating 

correlations. Dimension 1 was described primarily as representing social class (e.g., “class”, 

“wealth”), Dimension 2 race (e.g., “race”, “skin”), Dimension 4 gender (e.g., “gender”, 

“women”), and Dimension 5 age (e.g., “age”, “old”). Notably, for Dimension 3, the most 

frequently chosen word was “gender,” despite it having been correlated most strongly with 

categorization as White. However, this appeared to be due to the variety of words used to 

describe race. Of Dimension 3’s twelve most commonly chosen words, descriptors of race were 

more frequent (“white”, “race”, “skin”, “whiteness”, and “caucasian” were chosen 68 times), 

than descriptors of gender (“gender”, and “men” were chosen 48 times). Therefore, in what 

follows we refer to Dimension 3 as Race, with the caveat that this dimension also correlated with 

gender (we will come back to this point below).  

 
8 The fact that two race dimensions emerged––one (Dimension 2) separating Asians and Blacks, 

and the other (Dimension 3) separating Whites from Asians and Blacks––is sensible given that 

two linear dimensions are necessary to separate the three racial groups represented. 
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Figure 3. Study 2 targets arranged according to their scores on each of the 5 spontaneously 

emerging dimensions underlying relative similarity/dissimilarity judgments, alongside word 

clouds based upon the free-response text responses chosen to describe each dimension.  

 

Calculating and Validating Target D Scores 

 

To identify the optimal scoring algorithm for calculating Target D Scores, we undertook a data-

driven process, testing different scoring procedures with regard to both their internal reliability 

(as indexed by split-half reliability estimates), and convergent validity (as indexed by the 

strength of their relationships with target-level characteristics shown in previous research and the 

present manuscript to be associated with implicit evaluations). This procedure is described in 

depth in Appendix K.  

 

The scoring algorithm producing the greatest combined internal reliability and convergent 

validity9 involved (a) identifying all raw response times toward a specific target in ST-IATs 

trials, including error trials, (b) eliminating response times below 100 milliseconds 

(approximately 12% of all trials) and above 4000 milliseconds (approximately 0.02% of all 

trials), (c) penalizing error trials, in which the wrong computer key was pressed in response to a 

target (approximately 6.5% of all trials) by replacing their latency with participants’ individual 

mean response latency in compatible/incompatible trials plus 600ms, (d) taking the natural log of 

each of the remaining response times, (e) computing a difference score for each target 

representing the mean logged response time in incompatible trials minus the mean logged 

response time in compatible trials. To standardize these difference scores, they were then divided 

by the overall standard deviation of all logged response times between 100 and 4000 

milliseconds. Like ST-IAT D Scores, Target D Scores above/below zero indicate that a sample 

evaluated a target relatively positively/negatively (i.e., responded relatively faster/slower to a 

target in compatible compared to incompatible trials). 

 

This measurement algorithm resulted in an average split-half reliability of 0.57 across Target D 

Scores computed for every unique target used in this manuscript. This figure is lower than 

desirable, but close to the observed split-half reliability of the ST-IAT D Scores from Study 1 

 
9 This algorithm also produced the highest internal reliability, so would have been chosen if 

internal reliability were the only criterion.  
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(0.66 and 0.68 for Studies 1a and 1b respectively), and higher than a recent meta-analytic 

estimate of the internal reliability of Fazio and colleagues’ (1986) EPT (0.53, Greenwald & Lai, 

2003).  

 

As an initial test of the utility of Target D Scores, we calculated Target D Scores for each of the 

69 unique targets used in Study 1 (Study 1a split-half reliability = 0.57, Study 1b split-half 

reliability = 0.66). Unsurprisingly, there was a significant positive correlation between Target D 

Scores and each target’s mean income ratings, r(67) = 0.35, p = .003. However, targets’ mean 

income ratings also remained a significant predictor of Target D Scores in a multiple regression 

controlling for targets’ group membership, β = 0.91(SE = 0.36), t(58) = 2.58, p = 0.013, 𝜂2= 

0.07.10 Thus, even within target groups, targets explicitly judged as appearing higher in income 

tended to be evaluated more positively than targets judged as appearing lower in income. This 

result provided initial validation of the idea of quantifying implicit evaluations at the individual 

target level, as this systematic within-group variation had previously been obscured by our 

reliance on traditional ST-IAT D Scores.11  

 

Predicting Target D Scores from Multi-Dimensional Scaling Dimensions 

 

To assess the relationship between each MDS dimension and implicit bias, we fit multiple 

regression models predicting the Target D Scores (split-half reliability = 0.71) of each of the 54 

Study 2 targets from each of the multi-dimensional scaling dimensions. Results (Table 4) 

revealed significant associations between Target D Scores and Dimension 1 (Social class), 

𝛽̂(𝑆𝐸𝛽̂) = 0.06(0.02), t(48) = 4.07, p < .001, 𝜂2= 0.19, with bias favouring higher class over 

lower class targets. We also observed a significant effect of Dimension 3 (Race), 𝛽̂(𝑆𝐸𝛽̂) = -

0.04(0.02), t(48) = -2.71, p = .01, 𝜂2= 0.08, with bias favouring Asian and Black targets over 

White targets, and Dimension 4 (Gender), 𝛽̂(𝑆𝐸𝛽̂) = 0.06(0.02), t(48) = 3.89, p < .001, 𝜂2= 0.17, 

with bias favouring female targets over male targets.  

 

In a second model, we included two-way interactions between dimensions. Doing so 

significantly improved model fit, F(9,39) = 3.43, p = 0.003. Main effects of Dimensions 1 

(Social class), 3 (Race), and 4 (Gender) each remained significant (see Table 4), but the effects 

of Dimensions 1 and 4 were qualified by a significant two-way interaction, 𝛽̂(𝑆𝐸𝛽̂) = 0.06(0.02), 

t(39) = 4.29, p < .001, 𝜂2= 0.17, with the positive interaction slope suggesting a stronger effect 

of the social class dimension among female targets (higher scores on Dimension 4 = female 

targets). Including three-way interactions between dimensions did not improve model fit, F(7,32) 

= 0.48, p = 0.84.  

 

A simulation-based power sensitivity analyses suggested that our linear regressions achieved 

80% power to detect main effects of approximately 𝜂2 = 0.10 and two-way interaction effects of 

approximately 𝜂2 = 0.08 (see Appendix L for details).   

 
Table 4 

Study 2 results of multiple regressions predicting Target D Scores 

 Multi-Dimensional Scaling dimensions  

  Model 1   Model 2  

 𝛽̂(𝑆𝐸𝛽̂) p 𝜂2 r2 𝛽̂(𝑆𝐸𝛽̂) p 𝜂2 r2 

(Intercept) 0.019(0.015) 0.216   0.019(0.012) 0.139 NA  

Dimension 1 (Social classa) 0.061(0.015) <.001 0.189  0.062(0.013) <.001 0.175  

Dimension 2 (Raceb) 0.002(0.015) 0.871 <.001  -0.001(0.014) 0.929 0.002  

Dimension 3 (Racec) -0.041(0.015) 0.009 0.083  -0.037(0.014) 0.009 0.06  

Dimension 4 (Genderd) 0.059(0.015) <.001 0.172  0.059(0.013) <.001 0.153  

Dimension 5 (Age) -0.008(0.015) 0.602 0.003  -0.013(0.013) 0.342 0.001  

Dimension 1 × Dimension 2     -0.023(0.017) 0.171 0.015  

Dimension 1 × Dimension 3     0.01(0.015) 0.526 0.003  

Dimension 1 × Dimension 4     0.063(0.015) <.001 0.144  

 
10 β here represents a standardized slope, with Target D Scores and targets’ mean income ratings 

both z-scored. Target group membership was entered into the model as a categorical predictor. 
11 Such within-target-group variation in implicit evaluations can also be studied via more 

complex models predicting raw or logged response times (e.g., Thiem et al., 2019; Mattan et al., 

2019). We discuss Target D Scores’ advantages over these methods in our general discussion.  
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Dimension 1 × Dimension 5     -0.024(0.018) 0.173 0.015  

Dimension 2 × Dimension 4     -0.015(0.015) 0.335 0.007  

Dimension 2 × Dimension 5     0.014(0.013) 0.279 0.009  

Dimension 3 × Dimension 4     0.002(0.02) 0.928 <.001  

Dimension 3 × Dimension 5     -0.025(0.013) 0.056 0.03  

Dimension 4 × Dimension 5     0.002(0.015) 0.896 0  

    0.453    0.695 

 Explicit target ratings  

  Model 1   Model 2  

 𝛽̂(𝑆𝐸𝛽̂) p 𝜂2 r2 𝛽̂(𝑆𝐸𝛽̂) p 𝜂2 r2 

(Intercept) -0.026(0.031) 0.41   -0.011(0.034) 0.751   

Social classe 0.038(0.016) 0.02 0.07  -0.028(0.025) 0.274 0.061  

Asianf -0.041(0.038) 0.283 0.014  -0.063(0.049) 0.206 0.015  

Whitef -0.054(0.038) 0.156 0.025  -0.069(0.048) 0.157 0.035  

Femalef 0.153(0.031) <.001 0.296  0.127(0.048) 0.011 0.266  

Ageg -0.023(0.016) 0.147 0.026  0.019(0.028) 0.498 0.018  

Social class × Asian     0.007(0.04) 0.865 <.001  

Social class × White     0.058(0.032) 0.072 0.032  

Social class  × Female     0.096(0.029) 0.002 0.107  

Social class × Age     -0.016(0.016) 0.32 0.01  

Asian × Female     0.039(0.069) 0.579 0.003  

Asian × Age     -0.022(0.036) 0.534 0.004  

White × Female     0.023(0.067) 0.73 0.001  

White × Age     -0.068(0.035) 0.061 0.035  

Female × Age     -0.019(0.028) 0.503 0.004  

    0.423    0.632 

Note: Statistically significant coefficients are bolded, Black is the reference category for race contrasts in the Explicit 

target ratings models 
aHigher scores on Dimension 1 = higher perceived social class 
bHigher scores on Dimension 2 = Black, lower scores = Asian 
cHigher scores on Dimension 3 = White 
dHigher scores on Dimension 4 = Female 
eSocial class = a z-scored composite of targets’ perceived income, subjective SES, occupational prestige, and education 
fAsian, White, and Female are dummy variables indicating Asian, White, and Female targets 
gAge is targets’ perceived age, z-scored 

  

Predicting Target D Scores from Explicit Target Ratings 

 

As a follow-up analysis, we probed whether the negative effect of Dimension 3 observed in our 

initial models–– a bias favoring Asian and Black targets over White targets––might have 

occurred due to Dimension 3 capturing target gender as well as target race (see Table 3). To test 

this, we predicted Target D Scores from a z-scored social class composite measure averaging 

targets’ z-scored mean ratings of subjective SES, occupational prestige, education, and income, 

(Cohen’s 𝛼 = 0.98), as well as binary indicators of Asian race, White race, and female gender12, 

and z-scored mean ratings of targets’ age. Results (Table 4) suggested significant effects of 

targets’ perceived social class, 𝛽̂(𝑆𝐸𝛽̂) = 0.04(0.02), t(48) = 2.45, p = .02, 𝜂2= 0.07, with bias 

favouring higher class over lower class targets, and of targets’ gender, 𝛽̂(𝑆𝐸𝛽̂) = 0.15(0.03), 

t(48) = 4.96, p < .001, 𝜂2= 0.30, with bias favouring female over male targets. Consistent with 

the idea that the previously observed effect of Dimension 3 had occurred due to its overlap with 

gender, there were no significant effects of target race. As with the MDS dimensions, there was 

no significant effect of target age. 

 

In a second model, we included each two-way interaction between predictors (except between 

the two race indicators). This again significantly improved model fit, F(9,39) = 2.46, p = 0.02. 

Target gender was again a significant predictor, but was qualified by a significant two-way 

interaction with target social class, 𝛽̂(𝑆𝐸𝛽̂) = 0.10(0.03), t(39) = 3.37, p = .002, 𝜂2= 0.11. The 

pattern of this interaction aligned with that observed for MDS Dimensions 1 and 4, and 

suggested a strong effect of social class with regard to female targets, with upper-class female 

targets eliciting positive evaluations, but little effect of social class for male targets (see Figure 

4).  

 
12 Targets were coded as Asian, Black, and White if they were categorized as such by raters > 

90% of the time. Gender was manually coded by the lead author. 
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Figure 4. The top panel displays targets ordered by their Target D Scores (the row above) and 

arranged according to their exact Target D Scores (the row below). The bottom panel displays 

the interaction between targets’ gender and perceived social class (a z-scored composite of 

targets’ perceived income, subjective SES, occupational prestige, and education) in predicting 

Target D Scores.  

 

Race IAT Results 

 

Participants’ responses on the traditional two-category Race IAT measure showed that the 

sample exhibited significant anti-Black/pro-White bias, with an average D Score of 0.30 (SD = 

0.4), which was significantly above zero, t(367) = 14.11, p < .001, Cohen’s d = 0.75, 95% CI = 

[0.26,0.34].  

 

Discussion 

 

In Study 2, we observed implicit evaluative biases toward the targets to be primarily driven by an 

interaction between gender and social class: upper-class female targets elicited especially 

positive evaluations. Further, this interaction emerged regardless of whether we predicted 

implicit evaluations from MDS dimension scores derived via Koch and colleagues (2016) data-

driven procedure, or from explicit ratings of targets. By contrast, target race yielded more 

equivocal effects, with an apparent anti-White bias emerging within our MDS Dimension models 

failing to emerge when Target D Scores were predicted from targets’ explicit race 

categorizations. We observed little effect of target age.  

 

This pattern of results fails to align neatly with theories of compounding bias or the category 

dominance model. Although theories of compounding bias are consistent with especially positive 

evaluations of upper-class female targets, they offer little explanation as to why we observed 
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little evidence of anti-Black implicit racial bias in our ST-IATs (if anything, we observed weak 

evidence of anti-White bias). Second, although the category dominance model can make sense of 

equivocal race effects and absent age effects, as well as the relatively large effect of target 

gender within the explicit target ratings analyses, it does not provide an easy explanation of the 

interaction effects between categories, which require at least some participants to be sensitive to 

multiple categories at once.13  

 

Also noteworthy is that despite showing little evidence of anti-Black bias within ST-IATs, our 

sample displayed a robust pro-White/anti-Black bias on the traditional two-category Race IAT. 

This suggests that the ST-IAT results cannot be explained as being simply a function of sampling 

bias. Rather, the explanation for the lack of anti-Black implicit racial bias in the ST-IATs must 

lie with the procedures used, in which participants responded to complex full-body target 

images, and in which participants were not explicitly focused upon any specific categorization 

dimension.  

Study 3 

 

In Study 3, we again measured implicit evaluations of targets varying in race, gender, social 

class, and age, but sought to improve our methodologies in a number of ways. First, we exerted 

tighter experimental control over our target stimuli to better guard against potential target-level 

confounding. In Studies 1 and 2, targets of different races appeared with different body shapes 

and in different clothes, and targets of different social classes exhibited different facial features. 

In Study 3, we swapped multiple target faces onto multiple different target bodies, thus holding 

body shape and clothing constant across target race categories, and holding faces constant across 

social class categories. 

 

Second, in Studies 1 and 2, targets of different races were presented within separate ST-IAT 

tasks. This rendered it possible that participants may have selectively applied recoding strategies 

to ST-IATs containing targets of specific races, thereby perhaps suppressing implicit racial 

biases (e.g., Meissner & Rothermund, 2013). In Study 3, we avoided this by presenting race 

target groups together within ST-IAT tasks.  

 

Third, we also sought to investigate whether the use of full-body targets in Studies 1 and 2 had 

elevated the influence of targets’ bodies––a primary source of social class cues (e.g., Becker et 

al., 2017; Gillath et al., 2012; Schmid-Mast & Hall, 2004)––relative to the influence of targets’ 

faces––likely the primary source of race cues––due to targets’ bodies dominating the visual 

space of stimuli. To probe this, in Study 3 we presented targets both as upper-body images from 

the waist up (Study 3a) and as full-body images (Study 3b).  

 

Stimuli Development 

 

Faces 

 

We selected 24 unique faces from the Chicago Face Database (CFD; Ma, Correll, & 

Wittenbrink) varying in race (8 Asian, 8 Black, 8 White), gender (12 male, 12 female), and age 

(12 old, 12 young), with two faces chosen to represent each race/age/gender subgroup. Based on 

CFD norming data, there were no significant differences among the chosen faces in perceived 

attractiveness or racial prototypicality between race, age, or gender groups (all F < 1.27 , all p > 

0.27). There were also no significant differences in female or male categorization between race 

or age groups (all F < 0.002 , all p > 0.98), no significant differences in Asian, Black, or White 

categorization between gender or age groups (all F < 0.02 , all p > 0.89), and no significant 

differences in perceived age between race or gender groups (all F < 0.03 , all p > 0.97).  

 
13 This is because if each participant’s responses were dominated by a single category, 

participants whose responses were dominated by gender should have responded equally 

positively to both upper-class and lower-class female targets, and participants whose responses 

were dominated by social class should have responded equally positively to both female and 

male upper-class targets. Although such participants could collectively display main effects of 

both class and gender, they should not, in theory, display an interaction between the two 

categories 
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Bodies 

We selected 24 unique bodies from the full-body photo database used in Study 2. Bodies were 

selected to vary in gender (12 male, 12 female), age (12 old, 12 young), and perceived 

socioeconomic status (12 high-SES, 12 low-SES), with three bodies chosen to represent each 

gender/age/SES subgroup. Based on explicit rating data14 in which each body was rated by an 

average of 84.1 raters (SD = 111.0), there were no significant differences in perceived 

attractiveness or racial prototypicality between race, age, or gender groups (all F < 2.80, all p > 

0.10), no significant differences in perceived age between gender or SES groups (all F < 2.14 , 

all p > 0.15), and no significant differences in perceived SES or income between gender or age 

groups (all F < 0.64 , all p > 0.43). Unavoidably, due to the strong correlation between ratings of 

attractiveness and subjective SES in the data (r = 0.53), there was a significant difference in 

perceived attractiveness between SES groups, with the high-SES bodies (M = 53.9, SD = 10.4) 

rated significantly more attractive than the low-SES bodies (M = 30.6, SD = 7.6), F(1,22) = 39.3, 

p < 0.001.  

 

Attaching Faces to Bodies 

 

We used Adobe Photoshop software to attach each of the 6 faces within each age/gender 

subgroup to each of the 6 bodies within each age/gender subgroup. The 144 resulting stimuli 

were then assembled into six targets groups, each containing all 24 faces and 24 bodies, with 

each face attached to three low-SES and three high-SES bodies, and each face or body appearing 

in each target group only once. Each target group contained 8 Asian, 8 Black, and 8 White 

targets, 12 female and 12 male targets, 12 young and 12 old targets, and 12 high-SES and 12 

low-SES targets (see Figure 5). See Appendix C for more details. 

 

 
14 It should be noted that ratings of each body were made with different, original faces attached 

to each body, rendering these data only a rough guide to the specific influence of the bodies 

themselves, rather than the original faces. 
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Figure 5. The 24 faces and 24 bodies combined to create 144 unique targets arranged into six 

groups in which each face and body appears once. Both upper-body presentation (Study 3a) and 

full-body presentation (Study 3b) are displayed.  

 

Participants and Procedure 

 

Participants for Study 3a (N = 836, 590 female, Mage = 23.0, SDage = 8.0, 411 Asian, 253 White, 

77 Latino, 26 Black, 30 other race, 39 missing race data) and Study 3b (N = 656, 489 female, 

Mage = 20.83, SDage = 2.8, 364 Asian, 145 White, 84 Latino, 10 Black, 36 Other race, 17 missing 

race data) were undergraduate students who participated for course credit. We excluded ST-IAT 

data from five participants in Study 3b who experienced technical issues during the ST-IAT task 

resulting in mean response times that were unreasonably large (> 3000ms).  

 

Study 3a was pre-registered at https://aspredicted.org/blind.php?x=hy6if2,15 Study 3b was pre-

registered at https://aspredicted.org/blind.php?x=xb58b8.16  

 

Single Target IATs (ST-IATs) 

 

After providing informed consent, participants were randomly assigned to one of the six target 

groups, and completed two consecutive ST-IATs containing their target group as stimuli 

 
15 After the original planned sample size was reached in Study 3a (N = 379), the split-half 

reliability of the Target D Scores remained low (0.37). We therefore decided to collect additional 

data, and re-pre-registered the study at https://aspredicted.org/blind.php?x=nz35zb. At this point 

we also made some minor changes to the study design, omitting similarity/difference ratings of 

pairs of targets and the Symbolic Racism Scale, and added explicit ratings scales of targets’ 

attractiveness, competence, political orientation, and photo blurriness. These changes had minor 

effects on the conclusions of the study (see Appendix F for more information). 
16 We again deviated slightly from each of these pre-registrations as a result of our evolving 

understanding of how best to model and present our results. See Appendix F for more details. 

https://aspredicted.org/blind.php?x=hy6if2
https://aspredicted.org/blind.php?x=xb58b8
https://aspredicted.org/blind.php?x=nz35zb
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following the procedures described above.17 In Study 3a, participants viewed targets in upper-

body presentation, in Study 3b, participants viewed targets in full-body presentation. 

 

Difference Ratings 

 

As in Study 2, in Study 3a, we initially measured similarity/difference ratings of pairs of targets 

to confirm that targets’ race, gender, social class, and age would again emerge as the primary 

spontaneous dimensions underlying such judgments. Following Study 3a’s initial data collection, 

we considered this to be sufficiently established (see Appendix E for details), and so omitted the 

difference ratings from the additional data collected for Study 3a and from Study 3b. 

 

Explicit Ratings of Targets 

 

As a manipulation check, participants in Studies 3a and 3b rated each of their 24 targets via 0-

100 sliders on perceived gender (ICCs = 0.89, 0.87 in Studies 3a and 3b, respectively), race 

(three separate sliders measuring perceptions of targets as Asian, ICCs = 0.87, 0.86, Black, ICCs 

= 0.91, 0.89, and White, ICCs = 0.85, 0.84) social class (ICCs = 0.55, 0.59), and age (ICCs = 

0.61, 0.58). We also measured perceptions of targets’ warmth (ICCs = 0.22, 0.21), extroversion 

(ICCs = 0.11, 0.14), attractiveness (ICCs = 0.20, 0.22), competence (ICCs = 0.30, 0.31), political 

orientation (ICCs = 0.26, 0.27), and photo blurriness (ICCs = 0.70, 0.10) as factors we 

considered might be predictive of implicit evaluations.  

 

Demographics 

 

Participants reported the same demographic information as in Study 2.  

 

Results 

 

Manipulation Checks 

 

To ascertain whether we successfully manipulated the perceived race, gender, social class, and 

age of targets, we inspected correlations between participants’ explicit ratings of the targets and 

targets’ a priori categorizations as male, Asian, Black, White, high-SES, and older/younger. 

Correlations indicated that each variable was manipulated as intended (see bolded correlations in 

Table 5). Additionally, there was relatively little non-orthogonality between these key variables; 

the highest inadvertent correlation was an association between targets’ perceived social class and 

age, with ratings on the SES slider correlating weakly with ratings on the age slider (Study 3a r = 

0.15, Study 3b r = 0.12). To control for this non-orthogonality, we again relied on target-level 

analyses, and modelled targets’ social class and age as continuous variables, using z-scored mean 

explicit ratings.   

 

Table 5 

Correlations between a priori categorizations of targets and participants’ subjective ratings of targets 

 Female ratings Asian ratings Black ratings White ratings SES ratings Age ratings 

Study 3a       

 Asian ratings 0.01      

 Black ratings 0.004 -0.489     

 White ratings -0.017 -0.464 -0.545    

 SES ratings -0.028 0.074 -0.028 -0.034   

 Age ratings -0.035 0.078 0.012 -0.096 0.151  

 Female categorization 0.998 0.01 -0.004 -0.009 -0.025 -0.032 

 
17 We included two ST-IATs because in Study 3 there were 24 targets per ST-IAT, compared 

with 8 and 18 targets per ST-IAT in Studies 1 and 2. We therefore wanted to increase the number 

of trials for each target. 
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 Asian categorization 0 0.998 -0.495 -0.456 0.071 0.073 

 Black categorization 0.007 -0.493 0.999 -0.54 -0.031 0.004 

 White categorization -0.008 -0.505 -0.504 0.996 -0.039 -0.077 

 SES categorization -0.003 0.001 0.002 0.005 0.911 0.039 

 Age categorization 0 0.004 0.005 -0.018 0.127 0.947 

Study 3b       

 Asian ratings 0.021      

 Black ratings -0.002 -0.493     

 White ratings -0.028 -0.472 -0.533    

 SES ratings 0.018 0.073 0.03 -0.087   

 Age ratings 0.055 0.131 -0.039 -0.102 0.12  

 Female categorization 0.997 0.017 -0.012 -0.014 0.021 0.063 

 Asian categorization 0.004 0.997 -0.494 -0.467 0.069 0.124 

 Black categorization 0.01 -0.497 0.999 -0.527 0.027 -0.046 

 White categorization -0.014 -0.5 -0.504 0.994 -0.096 -0.079 

 SES categorization -0.003 0.005 0.002 0.008 0.955 0.088 

 Age categorization -0.005 0.003 0.006 -0.022 0.033 0.927 

Note: intercorrelations between dummy variables are omitted because these are all necessarily r = 0, except the race 

dummies which correlate at r = 0.5 

  

Predicting Target D Scores 

 

To assess how targets’ race, gender, social class, and age affected implicit evaluations, we 

calculated Target D Scores for each of the 144 unique targets (Study 3a split-half reliability = 

0.54, Study 3b split-half reliability = 0.59). Because the same faces and bodies were shared by 

multiple targets, we fitted cross-classified hierarchical linear models (HLMs) predicting Target D 

Scores, and included in each model random intercepts for the 24 unique target faces and 24 

unique target bodies (see Table 6). For all HLMs we relied on the R packages lme4 (Bates, 

Maechler, Bolker, & Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, Christensen, 2017). 

 

Study 3a. First, we predicted Target D Scores from fixed effects of z-scored mean ratings of 

targets’ subjective SES, z-scored mean ratings of targets’ age, and dummy variables indicating 

Asian race, White race, and female gender. We observed significant effects of target race, with 

both Asian targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.10(0.02), t(18.85) = 4.30, p < .001, ∆r2 = 0.0618, and White 

targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.09(0.02), t(18.69) = 4.07, p < .001, ∆r2 = 0.05, evaluated more positively 

than Black targets (for the simultaneous addition of both race dummies ∆r2 = 0.07). There was 

no significant difference between evaluations of Asian and White targets, t(18.97) = -0.24, p =  

0.81. Female targets were also evaluated more positively than male targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.2(0.02), 

t(13.36) = 8.71, p < .001, ∆r2
 = 0.43. Neither targets’ social class nor age exhibited significant 

unique effects on implicit evaluations. (see Table 6).  

 

In a second model, we added two-way interactions between each target-level factor. Doing so did 

not significantly improve model fit, 𝜒2(9) = 7.52, p = 0.58, so we relegate these results to 

Appendix D. Finally, in a third model, we tested if the effects observed in our initial model were 

robust to controlling for targets’ z-scored mean ratings on perceived warmth, extroversion, 

attractiveness, competence, political liberalism, and photograph blurriness. In this model target 

gender remained a significant predictor, 𝛽̂(𝑆𝐸𝛽̂) = 0.2(0.02), t(26.64) = 6.23, p < .001, ∆r2 = 

0.26, but all other target level variables were non-significant (See Table 6).  

 

Table 6 

Results from hierarchical linear models in Study 3a and Study 3b 

   Study 3a (upper-body targets)  

   Model 1   Model 3  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

 
18 ∆r2 refers to differences in r2 values (Edwards, Muller, Wolfinger, Qaqish, & Schabenberger, 

2008) between full models and models with each predictor removed. 
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Fixed effects         

 (Intercept) -0.129(0.021) <.001   -0.107(0.032) 0.002   

 Social class 0.007(0.011) 0.569 <.001  -0.026(0.045) 0.563 <.001  

 Asian 0.096(0.022) <.001 0.058  0.075(0.038) 0.059 0.014  

 White 0.091(0.022) <.001 0.053  0.041(0.062) 0.514 <.001  

 Female 0.2(0.023) <.001 0.434  0.203(0.033) <.001 0.26  

 Age 0.006(0.011) 0.598 <.001  0(0.017) 0.995 <.001  

 Warmth     -0.004(0.022) 0.851 <.001  

 Extroversion     0.003(0.018) 0.869 <.001  

 Attractiveness     0.023(0.024) 0.334 <.001  

 Competence     0.016(0.049) 0.739 <.001  

 Liberal     -0.043(0.029) 0.143 0.004  

 Blurry     0.016(0.013) 0.249 0.005  

    0.534    0.536  

Random effects         

 Face    0.007    0.015 

 Body    0.034    0.042 

 Residual    0.107    0.106 

   Study 3b (full-body targets)  

   Model 1   Model 3  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.152(0.028) <.001   -0.123(0.029) <.001   

 Social class 0.044(0.016) 0.01 0.053  0.022(0.042) 0.594 <.001  

 Asian 0.101(0.027) 0.001 0.044  0.06(0.038) 0.117 <.001  

 White 0.092(0.026) 0.003 0.038  0.037(0.061) 0.547 <.001  

 Female 0.232(0.033) <.001 0.411  0.237(0.033) <.001 0.342  

 Age -0.009(0.016) 0.585 <.001  -0.006(0.017) 0.74 <.001  

 Warmth     -0.016(0.022) 0.487 0.001  

 Extroversion     -0.016(0.015) 0.297 0.003  

 Attractiveness     0.035(0.026) 0.186 0.007  

 Competence     -0.012(0.043) 0.772 <.001  

 Liberal     -0.022(0.028) 0.425 0.002  

 Blurry     -0.044(0.012) <.001 0.061  

    0.556    0.617  

Random effects         

 Face    0.026    0.012 

 Body    0.061    0.031 

 Residual    0.113    0.117 

Note: Statistically significant coefficients are bolded, Black is the reference category for race 

contrasts 
a ∆r2 differences in r2 values between full models and models with each predictor removed, 

except the lowest value, which reports r2 for the full model.  

 

Study 3b. We fitted the same series of cross-classified HLMs predicting Target D Scores for the 

Study 3b targets. Again, we observed a significant effect of target race, with both Asian targets, 

𝛽̂(𝑆𝐸𝛽̂) = 0.10(0.03), t(18.44) = 3.80, p = 0.001, ∆r2 = 0.04, and White targets, 𝛽̂(𝑆𝐸𝛽̂) = 

0.09(0.03), t(18.41) = 3.46, p = 0.003, ∆r2 = 0.04, evaluated more positively than Black targets 

(for the simultaneous addition of both race dummies ∆r2 = 0.05), but no significant differences 

between Asian and White targets, t(19.17) = -0.35, p  = 0.73. We also observed significant 

effects of target gender, with female targets evaluated more positively than males, 𝛽̂(𝑆𝐸𝛽̂) = 

0.23(0.03), t(19.79) = 7.06, p < .001, ∆r2
 = 0.41, and of target social class, with upper-class 

targets evaluated more positively than lower-class targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.04(0.02), t(21.59) = 2.83, 

p = .01, ∆r2
 = 0.05. Targets’ age did not significantly affect implicit evaluations.  

 

As in Study 3a, adding two-way interactions did not significantly improve model fit, 𝜒2(9) = 

11.99, p = 0.21, so we relegate these results to Appendix G. Also similar to Study 3a, target 

gender was again the only target-level demographic factor that remained a significant predictor 

after adding the control variables, 𝛽̂(𝑆𝐸𝛽̂) = 0.24(0.03), t(23.46) = 7.31, p < .001, ∆r2
 = 0.34. In 
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this model we also observed a significant effect of photo blurriness, with more blurry photos 

eliciting more negative evaluations, 𝛽̂(𝑆𝐸𝛽̂) = -0.04(0.01), t(25.78) = -3.79, p < .001, ∆r2 = 0.06.  

 

Figure 6. The effects of target race and gender in Study 3a and 3b visualized by showing each 

unique face and body arranged according to their mean Target D Scores (lower rows) and rank-

ordered by their mean Target D Scores (upper rows).  

 

Figure 6 displays each of the 24 unique faces and bodies according to their mean Target D 

Scores from Studies 3a and 3b. Particularly notable is the effect of gender, with faces and bodies 

nearly perfectly arranged according to gender. Also notable is that participants’ gender bias was 

driven by both positive evaluations of female targets and negative evaluations of male targets: 

female faces and bodies typically elicited mean Target D Scores above zero, while male faces 

and bodies typically elicited mean Target D Scores below zero. 

 

Simulation-based power sensitivity analyses suggested that due to the package lmerTest’s 

(Kuznetsova et al., 2017) use of the Satterthwaite degrees of freedom method, statistical power 

varied between effects. Study 3a achieved 80% power to detect main effects between 

approximately Δr2 = 0.05 and Δr2 = 0.09, and interaction effects between approximately Δr2 = 

0.005 and Δr2 = 0.035. Study 3b achieved 80% power to detect main effects between 

approximately Δr2 = 0.04 and Δr2 = 0.095, and interaction effects between approximately Δr2 = 

0.005 and Δr2 = 0.03 (for more details see Appendix L).  

 

Discussion 

 

In Study 3, we again measured implicit evaluations of targets varying in race, gender, social 

class, and age. To minimize target-level confounding, we used photo editing software to swap 
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different faces onto different bodies, and to assess the impact of target presentation, we presented 

targets as both upper-body (Study 3a) and full-body images (Study 3b).  

 

Across both methods we observed a dominant effect of target gender. Gender uniquely explained 

approximately 43% and 41% of variance in Target D Scores in Studies 3a and 3b, respectively. 

By contrast, the next largest effect––target race––accounted for just 7% and 5% of variance in 

Target D Scores across the two studies. These findings are consistent with the category 

dominance model, which posits that responses to multiply categorizable targets will be driven by 

single specific categories. However, the category dominance model does not predict which 

category will dominate when participants are not primed or manipulated in specific ways, and 

beyond the single experiment discussed above conducted by Jones and Fazio (2010), little prior 

scholarship would have predicted target gender to drive implicit evaluations of multiply 

categorizable targets to such an extent.  

 

Despite its dominant effect, however, we did not observe implicit evaluations to be driven solely 

by targets’ gender. Also notable in Study 3’s results were effects of targets’ race, with Asian and 

White targets evaluated more positively than Black targets in both studies, and social class, with 

upper-class targets evaluated more positively than lower-class targets in Study 3b. These results 

provide at least some level of support for theories of compounding bias, as they suggest that 

implicit biases do combine additively, at least to some extent, across multiple social categories.  

 

A number of other results of Study 3 were also noteworthy. First, the presence of anti-Black 

implicit racial bias in both studies was consistent with the idea that such biases may have been 

suppressed in Studies 1 and 2, possibly as a result of recoding effects (Meissner & Rothermund, 

2013). Second, the significant effect of social class only for the full-body targets in Study 3b 

aligns with the idea that full-body target images may increase the relative salience of social class. 

Finally, it was notable that we did not replicate the interaction between target gender and social 

class observed in Study 2. Given that Study 3 incorporated a more tightly controlled 

experimental design than our previous studies, we believe the interaction in Study 2 likely 

emerged due to the idiosyncratic nature of the targets within social class/gender subgroups, and 

is therefore unlikely to reliably generalize to other contexts or stimuli.  

 

Study 4 

 

The results of Study 3 suggest that implicit evaluations of multiply categorizable social targets 

varying in race, gender, social class, and age may be primarily driven by targets’ gender. 

However, two limitations of Study 3 motivated our final study. First, like our previous studies, 

Study 3 relied on non-representative samples of university students (71% and 75% female and 

49% and 55% Asian, respectively). Second, like our previous studies, Study 3 relied solely on 

ST-IATs to measure implicit evaluations. Previous researchers have argued that different 

measurement procedures might produce different patterns of implicit biases toward multiply 

categorizable targets (Gawronski, Cunningham, LeBel, & Deutsch, 2010). This suggests the need 

to measure bias in different ways.  

 

In Study 4 we sought to address both of these concerns by (a) recruiting a nationally 

representative sample of American adults, and (b) measuring implicit evaluations via both ST-

IATs and Fazio and colleagues’ EPT (Fazio et al., 1986). In addition, building on the suggestive 

results of Study 3, we tested the impact of viewing either full-body or upper-body target images. 

 

Participants and Procedure 

 

Participants were a sample of 1620 American adults nationally representative on gender, age, 

and race via Prolific (803 female, Mage = 38.58, SDage = 14.2, 140 Asian, 1167 White, 103 

Latino, 155 Black, 38 other race, 17 no race reported). Study 4 was pre-registered at 

https://aspredicted.org/blind.php?x=jv7549. As pre-registered, we excluded ST-IAT data from 9 

participants and EPT data from 6 participants for having mean response times greater than 

3000ms.19 

 
19 We deviated slightly from our pre-registration due to our evolving understanding of the 

optimal algorithm for computing ST-IAT Target D Scores by using response time cut-offs of 

https://aspredicted.org/blind.php?x=jv7549
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ST-IATs 

 

We used the same set of targets as Study 3. Participants were randomly assigned to one of the six 

target groups, and to view either full-body or upper-body presentation. Participants completed 

two consecutive ST-IATs as described above using their target group as stimuli.  

Evaluative Priming Task 

 

Participants also performed an EPT (Fazio et al., 1986). EPTs began with 10 practice trials in 

which the symbols “***” were presented in the center of participants’ screens for 200ms, 

followed by an interstimulus gap of 100ms, and then one of 24 positive words or 24 negative 

target words (e.g., “honor”, “lucky”, “evil”, “cancer”, Draine & Greenwald, 1998). Participants 

were tasked with categorizing the target words as either “Good” or “Bad” as quickly as possible 

via E or I computer key presses, with the assignment of valences to keys randomised between 

participants. Following this, participants performed 96 test trials (4 per target) in which the 

multiply categorizable target images were presented as primes in place of the “***” symbols. 

Each multiply categorizable target image was presented prior to two positive and two negative 

target words, and there was a 2500ms gap between the presentation of each prime/target pairing. 

Participants took breaks after the 32nd and 64th trials, and proceeded when ready.20 Participants 

were randomly assigned to complete either their ST-IATs prior to their EPT, or vice versa. 

 

Explicit Ratings of Targets 

 

Participants were asked to rate each of their 24 targets via 0-100 sliders on targets’ perceived 

gender (ICC = 0.91), race (three separate sliders measuring perceptions of targets as Asian, ICC 

= 0.88, Black, ICC = 0.92, and White, ICC = 0.84) social class (ICC = 0.53), age (ICC = 0.59), 

attractiveness (ICC = 0.18), and photo blurriness (ICC = 0.48).  

 

Demographics 

 

Finally, participants reported the same demographic information as in Studies 2 and 3.  

 

Results 

 

Target D Scores 

  

For the ST-IAT data, we calculated Target D Scores for each of the 288 unique target images 

(144 targets presented in both full- and upper-body formats) according to the algorithm described 

above (split-half reliability = 0.40). For the EPT data, we again undertook a data-driven process 

to determine which scoring algorithm would produce the highest combined internal reliability 

and convergent validity. This process suggested that EPT data requires a different scoring 

algorithm compared to ST-IAT data, as applying the ST-IAT algorithm to the EPT data yielded 

Target D Scores with virtually zero internal reliability (see Appendix K for details). For the EPT 

data, the method providing the best measurement involved (a) identifying all raw response times 

toward a specific target in EPT trials, (b) eliminating response times below 175 milliseconds and 

above 1000 milliseconds, (c) taking the natural log of the remaining response times, (e) 

computing a difference score for each target representing the mean logged response time to the 

target in incompatible trials minus the mean logged response time to the target in compatible 

trials. For interpretability, we again divided these differences by the overall standard deviation of 

 

100ms and 4000ms instead of 100ms and 6000ms, and by penalizing error trials. As reported in 

Appendix J, these deviations had little effect on our results. 
20 . We chose 96 trials to obtain a roughly equivalent amounts of potentially useable trials per 

participant for the ST-IAT and EPT measures (in total, two ST-IATs provide approximately 80 

potentially useable trials per participant). 
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all logged EPT response times between 175 and 1000 milliseconds. This procedure yielded an 

estimated split-half reliability for the EPT Target D Scores of 0.28.  

 

The internal reliabilities of the ST-IAT and EPT Target D Scores were both relatively low 

compared to our previous studies. This may have been due to careless responding, participants 

tiring across the two separate implicit bias tasks, or there being greater variability in individuals’ 

idiosyncratic implicit biases among Prolific participants compared with student samples. 

Nonetheless, the raw correlation between ST-IAT and EPT Target D Scores was r = 0.25, which 

when corrected for attenuation via Spearman’s formula (Murphy & Davidshofer, 1988), suggests 

an estimated true correlation between the two measures of r = 0.76. Thus, despite the 

unreliability of each Target D Score, each can arguably be seen as representing noisy indicators 

of a closely related construct. In light of this, we decided to diverge from our pre-registered 

analysis plan and averaged ST-IAT and EPT Target D Scores to create a composite Target D 

Score measure. This composite exhibited a higher internal reliability than the ST-IAT and EPT 

Target D Scores (0.48). In what follows we present results separately for ST-IAT, EPT, and also 

the composite Target D Scores. 

 

Predicting Target D Scores  

 

For each Target D Score (ST-IAT, EPT, and composite), we fitted a separate series of cross-

classified HLMs. To test for differences between full-body and upper-body presentation, full-

body and upper-body Target D Scores were included separately for each target in each model. As 

in Study 3, we included in each model random intercepts for targets’ faces and bodies. An initial 

model predicted Target D Scores from fixed effects of z-scored mean ratings of targets’ 

subjective SES, dummy variables indicating Asian race, White race, and female gender, and z-

scored mean ratings of targets’ age. A second model added a dummy variable indicating whether 

targets were observed in full-body or upper-body format (0 = upper-body, 1 = full-body), and a 

third model added two-way interactions between each target-level factor and the full-body 

indicator to test whether the effect of targets’ social class, race, gender and age were moderated 

by presentation format. If these interaction terms failed to significantly improve fit compared to 

the second model, they were removed. A fourth model added two-way interactions between each 

target-level factor. Again, if these interaction terms failed to significantly improve fit compared 

to the previous model, they were removed. A fifth and final model added z-scored mean ratings 

of targets’ attractiveness and photo blurriness.  

 

ST-IAT Target D Scores. For ST-IAT Target D Scores, in the initial model we observed 

significant effects of target social class, with higher-class targets evaluated more positively than 

lower-class targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.03(0.01), t(23.12) = 5.1, p < .001, ∆r2
 = 0.06. We also observed 

significant effects of target gender, with female targets evaluated more positively than male 

targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.14(0.01), t(20.15) = 11.49, p < .001, ∆r2
 = 0.37, and target race, with both 

Asian targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.06(0.01), t(266.43) = 3.91, p < .001, ∆r2 = 0.03, and White targets, 

𝛽̂(𝑆𝐸𝛽̂) = 0.05(0.01), t(263.94) = 3.78, p < .001, ∆r2 = 0.03, evaluated more positively than 

Black targets (for the simultaneous addition of both race dummies ∆r2 = 0.04). There was no 

significant difference between evaluations of Asian and White targets, t(273.32) = -0.13, p =  

0.89. Targets’ age had no significant effect on implicit evaluations (see Table 7). In the second 

model, we observed a significant effect of the full-body target indicator, with full-body targets 

evaluated more negatively than upper-body targets, 𝛽̂(𝑆𝐸𝛽̂) = -0.05(0.01), t(261.03) = -4.52, p < 

.001, ∆r2 = 0.04. Model fit was not significantly improved by adding two-way interactions 

between the full-body target indicator and each of the target-level factors, 𝜒2(5) = 4.25, p = 0.51, 

or by adding two-way interactions between each of the target-level factors, 𝜒2(9) = 4.98, p = 

0.84. Fixed effects estimates remained virtually unchanged after controlling for attractiveness 

and photo blurriness (results of Models 1 and 5 are reported in Table 7; for full results of all 

models see Appendix I).  

 

EPT Target D Scores. For EPT Target D Scores, in the initial model we observed significant 

effects of target social class, with higher-class targets evaluated more positively than lower-class 

targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.02(0.01), t(23.1) = 3.5, p = .002, ∆r2
 = 0.06. We also observed significant 

effects of target gender, with female targets evaluated more positively than male targets, 𝛽̂(𝑆𝐸𝛽̂) 

= 0.05(0.01), t(20.01) = 4.05, p < .001, ∆r2
 = 0.08, and target race, with Asian targets evaluated 
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more positively than both Black targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.03(0.02), t(266.46) = 2.10, p = .04, ∆r2 = 

0.02, and White targets,21 𝛽̂(𝑆𝐸𝛽̂) = -0.04(0.02), t(273.54) = -2.34, p = .02, ∆r2 = 0.02 (for the 

simultaneous addition of both race dummies ∆r2 = 0.03). There was no significant difference 

between evaluations of White and Black targets, t(263.87) = -0.24, p = 0.81. Targets’ age also 

had no significant effect on implicit evaluations. In the second model, there was no significant 

effect of the full-body target indicator, t(260.88) =- 0.19, p = 0.85. Model fit was not 

significantly improved by adding two-way interactions between the full-body target indicator 

and each of the target-level factors, 𝜒2(5) = 5.52, p = 0.36, or by adding two-way interactions 

between each of the target-level factors, 𝜒2(9) = 5.31, p = 0.81. After controlling for 

attractiveness and photo blurriness, the gender and pro-Asian/anti-Black biases remained 

significant, but the effect of social class and the difference between Asian and White targets 

became non-significant (for full results see Appendix I). 

 

Composite Target D Scores. For the composite Target D Scores, in the initial model we 

observed significant effects of target social class, with higher-class targets evaluated more 

positively than lower-class targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.03(0.01), t(22.51) = 6.13, p < .001, ∆r2
 = 0.09. 

We also observed significant effects of target gender, with female targets evaluated more 

positively than male targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.10(0.01), t(19.84) = 10.95, p < .001, ∆r2
 = 0.38, and 

target race, with both Asian targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.04(0.01), t(265.90) = 4.035, p < .001, ∆r2 = 

0.04, and White targets, 𝛽̂(𝑆𝐸𝛽̂) = 0.03(0.01), t(263.53) = 2.34, p = 0.02, ∆r2 = 0.02, evaluated 

more positively than Black targets (for the simultaneous addition of both race dummies ∆r2 = 

0.04). There was no significant difference between evaluations of Asian and White targets, 

t(272.54) = -1.69, p =  0.09. Targets’ age also had no significant effect on implicit evaluations. In 

the second model, we observed a significant effect of the full-body target indicator, with full-

body targets evaluated more negatively than upper-body targets, 𝛽̂(𝑆𝐸𝛽̂) = -0.03(0.01), t(260.73) 

= -3.07, p < .001, ∆r2 = 0.02. Model fit was not significantly improved by adding two-way 

interactions between the full-body target indicator and each of the target-level factors, 𝜒2(5) = 

6.95, p = 0.22, or by adding two-way interactions between each of the target-level factors, 𝜒2(9) 

= 1.96, p = 0.99. All significant fixed effects from previous models remained significant after 

controlling for attractiveness and photo blurriness (see Table 7). 

 

Simulation-based power sensitivity analyses suggested that Study 4 achieved 80% power to 

detect main effects of between approximately Δr2 = 0.04 and Δr2 = 0.07, and interaction effects 

of approximately Δr2 = 0.025 (see Appendix L for details). 

 
Table 7 

Results from hierarchical linear models in Study 4 

   ST-IAT Target D Scores  

   Model 1   Model 5  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.119(0.012) <.001   -0.09(0.013) <.001   

 Social class 0.032(0.006) <.001 0.064  0.032(0.011) 0.006 0.019  

 Asian 0.056(0.014) <.001 0.033  0.056(0.015) <.001 0.029  

 White 0.054(0.014) <.001 0.031  0.054(0.016) 0.001 0.022  

 Female 0.144(0.013) <.001 0.368  0.144(0.015) <.001 0.363  

 Age -0.01(0.006) 0.137 0.005  -0.009(0.007) 0.197 0.002  

 Full-body target     -0.057(0.013) <.001 0.038  

 Attractiveness     -0.002(0.013) 0.887 <.001  

 Blurry     -0.008(0.007) 0.254 0.003  

    0.493    0.534  

Random effects         

 Face    <.001    <.001 

 Body    0.011    0.01 

 Residual    0.1    0.096 

   EPT Target D Scores  

   Model 1   Model 5  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

 
21 The Asian-White result refers to a model fit with Asian set as the reference level for the race 

variable. 
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Fixed effects         

 (Intercept) 0.108(0.013) <.001   0.109(0.014) <.001   

 Social class 0.024(0.007) 0.002 0.058  0.004(0.012) 0.756 <.001  

 Asian 0.032(0.015) 0.037 0.018  0.041(0.016) 0.011 0.024  

 White -0.004(0.015) 0.813 <.001  0.014(0.018) 0.441 0.002  

 Female 0.054(0.013) <.001 0.081  0.035(0.016) 0.039 0.027  

 Age -0.003(0.007) 0.639 <.001  0.004(0.008) 0.566 <.001  

 Full-body target     0.0002(0.014) 0.989 <.001  

 Attractiveness     0.025(0.014) 0.07 0.012  

 Blurry     -0.006(0.007) 0.375 0.004  

    0.168    0.186  

Random effects         

 Face    <.001    <.001 

 Body    0.013    0.009 

 Residual    0.105    0.104 

   Composite Target D Scores  

   Model 1   Model 2  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.005(0.009) 0.55   0.01(0.01) 0.329   

 Social class 0.028(0.005) <.001 0.091  0.018(0.008) 0.036 0.009  

 Asian 0.044(0.011) <.001 0.038  0.048(0.011) <.001 0.042  

 White 0.025(0.011) 0.02 0.012  0.034(0.012) 0.007 0.015  

 Female 0.099(0.009) <.001 0.33  0.089(0.011) <.001 0.302  

 Age -0.006(0.005) 0.188 0.003  -0.002(0.005) 0.663 <.001  

 Full-body target     -0.029(0.01) 0.004 0.017  

 Attractiveness     0.012(0.01) 0.222 0.002  

 Blurry     -0.008(0.005) 0.124 0.004  

    0.47    0.499  

Random effects         

 Face    <.001    <.001 

 Body    0.004    <.001 

 Residual    0.075    0.074 

Note: Statistically significant coefficients are bolded 
a ∆ r2 differences in r2 values between full models and models with each predictor removed, except the 

lowest value, which reports r2 for the full model.  

 

Discussion 

 

In Study 4 we measured implicit evaluations of targets varying in race, gender, social class, and 

age using both ST-IAT and EPT methods, plus a composite Target D Score measure comprised 

using both methods. Target gender again emerged as the dominant predictor of implicit 

evaluations, with female targets evaluated more positively than males, and target gender 

explaining the bulk of the explainable variation in Target D Scores. We also observed smaller 

but robust effects of target social class, with upper-class targets evaluated more positively than 

lower-class targets, and target race, with Asian targets evaluated more positively than Black 

targets across all Target D Scores, and White targets evaluated more positively than Black 

targets for ST-IAT and composite Target D Scores. We observed no significant effects of target 

age, no significant interactions between target-level factors, and no significant differences 

between upper-body and full-body target presentation, except for overall more positive 

evaluations overall of upper-body than full-body targets for the ST-IAT and composite Target D 

Scores. 

 

Most notably, these results suggest that the dominance of gender in Study 3 was not due to non-

representative sampling. In Study 4, we used a representative US sample with regard to race, 

gender, and age, and found target gender to uniquely explain approximately 37% of variance in 

ST-IAT Target D Scores. In the identical task used in Studies 3a and 3b, this figure had been 

similar (43% and 41% for upper-body and full-body targets, respectively).  

 

Notably, however, the dominance of gender in implicit evaluations was most apparent within the 

ST-IAT and composite Target D Scores, and was less pronounced within the EPT results. This 

may suggest that different measurement techniques tend to elicit different results as to which 

target-level characteristics drive implicit evaluations, as has been previously argued (Gawronski 
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et al., 2010). However, given the unreliability of the EPT Target D Scores (split-half reliability = 

0.28), and the general concordance of effects across the two tasks (preferences for females over 

males, Asians over Blacks, and the higher-class over the lower-class emerged via each method), 

we believe it is too soon to make any confident conclusions in this regard.  

 

General Discussion 

 

Implicit bias is central to the study of social cognition. Given that people are multiply 

categorizable, understanding the influences upon such intersectionality upon implicit bias is 

likely to be vital for understanding its effects in everyday social contexts. In the present research, 

we examined implicit evaluations of social targets in naturalistic modes of presentation and 

categorizable in numerous ways, testing two competing theories about intersectionality.  We also 

developed and tested the reliability of a novel method of measuring and modelling implicit bias 

at the level of individual targets.  

 

In Study 1 we observed implicit evaluations of Black and White males to be driven solely by 

targets’ social class: upper-class targets were evaluated more positively than lower-class targets. 

In Study 2, we measured implicit evaluations of targets varying in race, gender, social class, and 

observed an interaction effect indicative of a specific positive bias toward upper-class females. In 

Study 3, with similarly intersectional targets, we explored the impact of portraying targets in full-

body versus upper body photographs. Here, we observed effects of targets’ race, with Asian and 

White targets evaluated more positively than Black targets, and of targets’ social class, with 

upper-class targets evaluated more positively than lower-class targets (though only when targets 

were displayed in full-body presentation). Most striking, however, was the dominant effect of 

target gender, with positive/negative evaluations of female/male targets accounting for the 

majority of variance in implicit bias. Finally, in Study 4 we replicated the results of Study 3 

using a representative US sample with both ST-IAT and EPT measures of implicit evaluations. 

Across both measures, we observed Asian targets to be evaluated more positively than Black 

targets, upper-class targets to be evaluated more positively than lower-class targets, and again 

observed target gender to be the most important predictor of implicit evaluations, with female 

targets evaluated more positively than males.  

 

We believe the present work makes a number of theoretical, empirical, and methodological 

contributions to the study of implicit evaluative bias toward multiply categorizable targets. On a 

theoretical level, we believe our results are best accounted for by a synthesis of compounding 

bias and category dominance approaches to intersectionality. Consistent with category 

dominance (Macrae et al., 1995), we observed a single social category to exert a dominant 

influence on implicit evaluations of intersectional targets in each of our studies. In Study 1, 

social class was dominant. In Studies 3 and 4, target gender was dominant. And even in Study 2, 

despite its more complex results, target gender still uniquely accounted for substantially more 

variation in Target D Scores than any other target-level predictor. These results all align with the 

notion that when faced with complex social stimuli, social perceivers act as ‘cognitive misers,’ 

and implicit evaluations largely respond largely to a single dimension of social categorization.  

 

However, our results are also consistent with the notion of that implicit biases compound––at 

least to some extent––across multiple categories. In Studies 3 and 4, which used the most tightly 

controlled set of targets, we observed relatively consistent effects of three separate target-level 

factors: gender, race, and social class. So, while we found little evidence for the kind of 

multiplicative interaction effects suggested by the multiple jeopardy-advantage hypothesis 

(Ransford, 1980), we did find the most negative implicit evaluations to be made toward 

individuals displaying multiple intersecting stigmatized social identities (in this case, lower SES 

Black males), and the most positive implicit evaluations to be made toward individuals 

displaying multiple intersecting positively-valued social identities (in this case, upper SES Asian 

and White females). 

 

The overall picture emerging from the present work is therefore one of theoretical compromise: 

implicit evaluative biases toward complex multiply categorizable targets do appear to compound 

across categories, but also appear to do so according to a category dominance hierarchy, with a 

single dominant category (here, target gender) playing a leading role, less dominant categories 
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(here, target race and social class) exerting relatively small additional effects, and peripheral 

categories (here, target age) having little detectable influence.  

 

This compromise position offers yet another rationale for embracing the concept of 

intersectionality in psychological science. Often, arguments in the field highlight the importance 

of centering upon the experiences of individuals possessing multiple marginalized social 

identities, or the idea that social categories are likely to interact in unpredictable ways (e.g., Cole, 

2009; Goff, & Kahn, 2013; Kang & Bodenhausen, 2015). Yet when responses to multiply 

categorizable targets are driven by a category dominance hierarchy, then this too may only be 

discoverable via intersectional research programs. For example, in past research on implicit 

evaluative bias, results have suggested that social class produces stronger effects on binary IAT 

tasks than race, gender, social class, or age (Nosek, 2005). However, our results suggests that 

unidimensional results such as these provide little guidance regarding the relative influence of 

each category when they are displayed simultaneously by social targets. Given that 

intersectionality is a fact of everyday social encounters, advancing understanding of how implicit 

bias operates in real-world contexts is likely to be severely limited by the absence of studying 

responses to such complex intersectional targets.  

 

On an empirical level, we believe it is striking that gender emerged as the dominant driver of 

implicit evaluations. This finding was unexpected, but appears robust across student samples and 

a representative US sample, and has some precedent, with gender emerging as the sole 

significant predictor of categorization errors in a prior weapon identification task incorporating 

multiply categorizable targets (Jones & Fazio, 2010). However, this prior work involved both a 

relatively small and non-representative sample (79 college students), as well as a relatively small 

and idiosyncratic set of stimuli (8 total stimuli varying in race, gender, and occupation, with 

occupations not matched across races or genders, and no reported pre-testing of stimuli). The 

present results provide a more robust demonstration of this dominant gender bias.  

 

One explanation for this result is that while race was conveyed within our stimuli by targets’ 

faces and exposed skin, and social class was conveyed by targets’ clothing, gender was conveyed 

by both targets’ faces and clothing. This may have made gender the most visually salient social 

category overall. But even if this is the underlying mechanism behind our results, this would not 

preclude gender’s dominance from generalizing to real-world interactions, as in most everyday 

contexts individuals’ faces and bodies/clothing are both visible.  

 

It has long been established that individuals tend to display pro-female evaluative biases via 

binary implicit measures (Nosek, 2005). However, compared with evaluative biases regarding 

race, or implicit associations between genders and specific social roles or abilities (e.g., Carlana, 

2019; Levinson & Young, 2010), this pattern of replicated results has attracted relatively little 

attention. However, its dominance in the present results suggests the greater attention to gender-

based implicit evaluative bias might have an important role to play in building our understanding 

of the causes and consequences of implicit evaluative bias.  

 

Finally, from a methodological perspective, we suggest that Target D Scores provide a promising 

path forward for studying intersectional implicit biases. Previously, researchers in this area have 

used one of two approaches. Most commonly, past work has measured and modelled implicit 

attitudes at the level of target groups, either by calculating stand-alone measures of evaluations 

of target groups (e.g., Jones & Fazio, 2010; Mitchell et al., 2003, Studies 4 & 5; Moore-Berg et 

al., 2017; Perszyk et al., 2019), or by quantifying one or more binary relative preferences 

between target groups (e.g., Gawronski et al., 2010; Mitchell et al., 2003, Studies 1-3; 

Yamaguchi & Beattie, 2019). However, this approach obscures systematic variation in implicit 

evaluations within target groups. By allowing investigators access to such within-target-group 

variation, Target D Scores allows for the investigation of the simultaneous influence of a greater 

number of target-level factors than is possible via traditional target-group-based approaches, as 

well as allow for greater statistical control of target-level confounds.  

 

A second approach used in prior research has been to measure and model responses to multiply 

categorizable targets at the level of individual (usually logged) response times (e.g., Mattan et 

al., 2019; Thiem et al., 2019). Like Target D Scores, this method allows researchers to study 

systematic variation in implicit evaluations within target groups, and to control for target-level 

confounds. However, Target D Scores provide additional advantages over these methods. First, 

Target D Scores provide an intuitive, simple measure of samples’ overall implicit evaluations of 
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individual targets, and allow for the fitting of more straightforwardly interpretable models 

compared to raw response time models, which typically require interaction terms between target-

level characteristics and indicators of compatible/incompatible trials. Second, unlike response 

time-level analyses, Target D Scores allow researchers to assess measurement reliability. This is 

important, as it allows researchers to distinguish between ranges of response times that 

contribute reliable information regarding implicit evaluations, and ranges of response times that 

contribute only unhelpful random noise.22 

 

Some limitations regarding the present research should be noted. The first regards the question of 

why anti-Black bias was absent in Studies 1 and 2, but was present in Studies 3 and 4. As 

discussed above, one possibility is that because targets of different race were presented in 

separate ST-IATs in Studies 1 and 2, participants may have been able to use recoding strategies 

(Meissner & Rothermund, 2013) to suppress anti-Black bias in these studies. However, another 

possibility is that our method in Studies 1 and 2 of matching targets of different races on explicit 

ratings of perceived social class may have inadvertently created confounds between races. 

According to the causal attribution principle of augmentation (Kelley, 1973), the perceived 

importance of causes for specific outcomes is increased by the absence of other perceived causes 

of the same outcomes. A majority of Americans report believing that being White has a positive 

causal effect on the attainment of social class status (Pew Research Centre, 2019). Therefore, 

when Black and White targets are matched on explicit ratings of perceived social class, the Black 

targets may be judged as higher on other traits perceived as causal effects of social class status, 

such as competence, or industriousness. If so, such a mismatch could also have suppressed anti-

Black bias in Studies 1 and 2 by globally increasing the relative positivity of responses to Black 

targets. Further research is needed to adjudicate between these competing explanations.  

 

A second limitation is ambiguity regarding how to interpret discrepancies between the ST-IAT 

and EPT results in Study 4. Our ST-IAT data suggested a specific anti-Black bias compared with 

both Asian and White targets, but our EPT data suggested a specific pro-Asian bias compared 

with both White and Black targets, who were evaluated equivalently. Additionally, we found 

target gender to play a much more dominant role in the ST-IAT compared to the EPT.  It is hard 

to know whether these inconsistencies represent real, reliable differences in how people respond 

to the same targets via these two different tasks, or whether they stem from the noisiness of 

Target D Scores in Study 4. More data are needed to answer this question, as well as to compare 

results from both the ST-IAT and EPT with other implicit methods, such as the Affect 

Misattribution Procedure (Payne et al., 2005).  

 

Other major challenges for future research include incorporating even greater naturalistic 

complexity within target stimuli. In the present research, we focused on target-level variation in 

race, gender, social class, and age. However, real-world social targets vary on far more than just 

these four variables; modelling such complexity will require the study of other social variables, 

such as variation in body shape (Bessenoff & Sherman, 2000; Teachman, Gapinski, Brownell, 

Rawlins, & Jeyaram, 2003), sexual orientation (Banse, Seise, & Zerbes, 2001; Steffens & 

Buchner, 2003), social and physical contexts (Barden et al., 2004; Wittenbrink et al., 2001), and 

facial expressions (Steele et al., 2018).  

 

Additionally, the present work focused only on identifying basic implicit evaluative biases 

defined by the facilitation/impedance of response times in timed categorization tasks. It will 

therefore be vital to assess how well implicit evaluations of multiply categorizable targets align 

with explicit bias measures, and how well each kind of measure predicts discriminatory 

behaviors. One key criticism of traditional implicit bias tests has been their relatively low 

correlations with discriminatory behavior (e.g., Oswald, Mitchell, Blanton, Jaccard, & Tetlock, 

2013; but see Jost et al., 2009; Greenwald, Banaji, & Nosek, 2015). It may be the case that 

participants’ spontaneously displayed implicit biases toward multiply categorizable targets will 

better predict behavior in real social contexts than traditional binary measures. This possibility is 

worthy of further investigation.   

 
22 This was well illustrated in Study 4, where we observed Target D Scores to capture virtually 

zero reliable variation when we applied our ST-IAT algorithm directly to the EPT data. If we had 

relied on response time-level modelling in the present project, we would not have known that the 

EPT data required a different scoring algorithm altogether to obtain some level of internal 

reliable measurement. 
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Finally, we have chosen to collapse across differences between participants and assess 

aggregated implicit evaluative biases toward targets as displayed by our participants as a whole. 

Yet we have little doubt that individuals also vary in important ways regarding the specific 

categories and sub-categories that most influence their implicit evaluations. Ultimately, 

understanding how individual social perceivers, themselves members of multiple intersecting 

social categories, automatically respond to other complex, multiply categorizable human beings 

is a daunting challenge. Nonetheless, we believe these challenges of intersectionality are vital to 

the future study of implicit bias.   
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Appendix A: Study 2 Multi-Dimensional Scaling Results 

 

As described in our manuscript, following the approach of Koch and Imhoff (2016), we 

subjected the distance matrix containing the mean perceived difference between each of the 

1,431 unique target pairs to Multi-Dimensional Scaling using the majorization approach 

assuming an interval scale (SMACOF; De Leeuw & Mair, 2009). We ultimately chose the five-

dimension solution as the most parsimonious solution providing good fit (scaling stress of 0.116 

and r2 of 0.79; stress of 0.15 or less is generally considered acceptable, Dugard, Todman, & 

Staines, 2010). Figure S1 displays the scaling stress and r2 values of MDS solutions ranging 

between one and six dimensions.  

 

 

Figure S1. Scaling stress and r2 values from MDS solutions fit to the distance ratings data of 

Study 2 ranging between one and six dimensions.  
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Appendix B: Study 2 Pre-Registered Analyses 

 

At the time we pre-registered Study 2, we had not yet fully developed the Target D Score 

method, and so planned to analyze data at the level of individual logged response times. We pre-

registered the following paragraph: 

 

…we will first identify the key dimensions underlying difference judgements following 

the technique of Koch, Imhoff, Dotsch, Unkelbach, and Alves (2016). We will then score 

each target on each identified dimension, and use those scores to predict (logged) 

response times in the single category IAT tests, with the key test being the interaction 

between dimension scores and a compatible/incompatible trial indicator. If participants 

tendency to exhibit relatively faster reaction times in compatible trials depends on the 

dimension scores, this will be interpreted to mean that dimension is associated with 

implicit bias.  

 

We also pre-registered that “…we will exclude reaction times below 300 and above 10,000 ms” 

As these are the lengths of responses included in traditional two-category IAT D Scores. The 

model described in the pre-registration is therefore a cross-classified multilevel model predicting 

logged reaction times, in which reaction times are nested within both participants and targets, 

and the key fixed effects of interest are interaction terms between targets’ scores on each 

multidimensional scaling dimension and a dummy indicating if a reaction time occurred in a 

compatible or incompatible trial (0 = compatible, 1 = incompatible). We did not pre-register a 

random effects structure, but we also included random intercepts for participants and targets, and 

random slopes on the incompatible dummy for both participants and targets, to account for 

random variation in (a) the overall positivity of participants toward all targets (b) the overall 

positivity of responses to each individual target. This results in the following model: 

 

𝒚𝒊𝒋 =  𝜷𝟎 + 𝜷𝟏𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟏𝒋 + 𝜷𝟐𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟐𝒋 + 𝜷𝟑𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟑𝒋

+ 𝜷𝟒𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟒𝒋 + 𝜷𝟓𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟓𝒋 + 𝜷𝟔𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋

+ 𝜷𝟕𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟏𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋  

+  𝜷𝟖𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟐𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋

+ 𝜷𝟗𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟑𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋

+ 𝜷𝟏𝟎𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟒𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋  

+  𝜷𝟖𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟓𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋  + 𝜻𝒊𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋

+  𝜻𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋 + 𝜺𝒊 +  𝜺𝒊 + 𝜺𝒊𝒋  

 

 

where i indexes participants and j indexes targets, 𝑦𝑖𝑗 is a logged response time of participant i 

toward target j, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒𝑖𝑗 is a dummy variable indicating whether the response time 

occurred in a compatible or incompatible ST-IAT trial, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_1𝑗 … 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_5𝑗 are 

target j’s score on dimensions 1 through 5, 𝜁𝑖 and 𝜁𝑗 are random slopes on 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒𝑖𝑗 at the 

participant and target levels, respectively, 𝜀𝑖  and 𝜀𝑗 are random intercepts for participants and 

targets, respectively, and 𝜀𝑖𝑗 is the residual term. The results of this model are presented in Table 

S1 below. 

 

Table S1 

Hierarchical Linear Model predicting logged reaction times between 300 

and 10,000ms in Study 2 ST-IATs 

  𝛽̂(𝑆𝐸𝛽̂) p 

Fixed effects   

 (Intercept) 6.26(0.009) <.001 

 Dimension 1 -0.012(0.006) 0.045 

 Dimension 2 -0.001(0.006) 0.895 

 Dimension 3 -0.002(0.006) 0.772 

 Dimension 4 -0.01(0.006) 0.108 

 Dimension 5 -0.003(0.006) 0.568 

 Incompatible 0.026(0.01) 0.009 

 Dimension 1 × Incompatible 0.027(0.008) 0.002 

 Dimension 2 × Incompatible 0.002(0.009) 0.793 

 Dimension 3 × Incompatible 0.007(0.009) 0.423 



 39 

 Dimension 4 × Incompatible 0.025(0.009) 0.004 

 Dimension 5 × Incompatible 0.005(0.008) 0.571 

  SD ra 

Random effects   

 Participant (Random Intercept) 0.113  

 Participant (Incompatible Random Slope) 0.088 -0.204 

 Target (Random Intercept) 0.000  

 Target (Incompatible Random Slope) 0.006 NAb 

 Residual 0.491  
a r indicates the correlation between random slopes and intercepts at the 

participant and target level 
b No correlation was computable between target random slopes and 

intercepts due to the lack of variation in random intercepts. 

As shown in Table S1, when the data is analysed in this way, there are significant interaction 

effects between Dimensions 1 and 4 (the social class dimension, on which higher scores are 

associated with higher social class, and the gender dimension, on which higher scores are 

associated with female targets) and the incompatible dummy. These effects mirror the effects of 

social class and gender using the Target D Score method in our main manuscript. By contrast, 

there is no significant interaction between Dimension 3 (on which higher scores indicated White 

targets and lower scores indicated Black and Asian targets) and the incompatible dummy in the 

pre-registered analysis, but we did observe a significant effect of Dimension 3 using the Target D 

Score method. However, as we discuss in our manuscript, due to the overlap of Dimension 3 

with both race and gender, we do not think the Dimension 3 effect should be interpreted as 

representing a reliable effect of race. This analysis therefore results in effectively the same 

conclusions as the target-level analysis based on the updated Target D Score algorithm presented 

in the main manuscript.  
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Appendix C: Study 3 Stimulus Creation and Pre-Testing 

 

Faces 

 

We selected 24 unique faces from the Chicago Face Database (CFD; Ma, Correll, & 

Wittenbrink) varying in race (8 Asian, 8 Black, 8 White), gender (12 male, 12 female), and age 

(12 old, 12 young), with two faces chosen to represent each race/age/gender subgroup. Figure S3 

displays mean CFD norming data for the faces each race/age/gender subgroup on perceived 

attractiveness, perceived racial prototypicality, categorization as female, male, Asian, Black, and 

White, and perceived age.   

      

Figure S3. CFD norming data on chosen faces by race/gender/age subgroups. Female, Male, 

Asian, Black, and White, refer, respectively, to proportions of raters’ binary categorizations of 

targets into each category. 

 

Bodies 

 

We selected 24 unique bodies from a large database of full-body photographs developed by our 

research lab for previous projects. Bodies were selected to vary in gender (12 male, 12 female), 

age (12 old, 12 young), and perceived socioeconomic status (12 high-SES, 12 low-SES), with 

three bodies chosen to represent each gender/age/SES subgroup. Figure S4 presents data 

previously collected by our lab23 for the bodies in each class/age/gender subgroup on perceived 

attractiveness, perceived age, perceived income, and perceived SES.  

 

 
23 It should be noted that ratings of each body were made with different, original faces attached 

to each body, rendering these data only a rough guide to the specific influence of the bodies 

themselves, rather than the original faces. 
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Figure S4. Explicit ratings data on chosen bodies by race/gender/age subgroups.  
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Appendix D: Study 3a Two-Way Interaction Model 

Table S2 shows the results of the hierarchical linear model fit in Study 3a which included two-

way interaction terms between target-level factors (race, gender, social class, and age). No two-

way interactions were significant, and this model did not improve fit compared to a simpler 

model including only main effects of each factor, so these results were relegated to the 

Appendices to save space in the main manuscript.  

 

Table S2 

Results from hierarchical linear model including two-way interaction terms in Study 3a 

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects     

 (Intercept) -0.113(0.026) <.001 NA  

 Social class 0.001(0.019) 0.948 <.001  

 Asian 0.085(0.034) 0.026 0.023  

 White 0.066(0.034) 0.075 0.014  

 Female 0.171(0.036) <.001 0.112  

 Age 0.006(0.022) 0.78 <.001  

 Social class × Asian 0.006(0.023) 0.806 <.001  

 Social class × White 0.021(0.022) 0.347 0.001  

 Social class × Female -0.01(0.023) 0.669 <.001  

 Social class × Age -0.017(0.011) 0.138 0.012  

 Asian × Female 0.026(0.048) 0.594 <.001  

 Asian × Age -0.002(0.024) 0.934 <.001  

 White × Female 0.057(0.048) 0.262 0.003  

 White × Age 0.008(0.026) 0.757 <.001  

 Female × Age -0.002(0.024) 0.944 <.001  

 Model   0.542  

Random effects     

 Face    0.019 

 Body    0.03 

 Residual    0.109 

Note: Statistically significant coefficients are bolded 
a ∆r2 differences in r2 values between full models and models with each predictor 

removed, except the lowest value, which reports r2 for the full model.  
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Appendix E: Study 3a Multi-Dimensional Scaling Results 

 During the initial data collection phase of Study 3a, we collected subjective difference 

ratings judgements for each of the 276 unique pairs of targets within each of the 24-target target 

groups. We did not obtain difference judgements for each possible unique pair of the 144 total 

targets used in the Study, as this would have required too much data (there are 10,296 unique 

target pairs among 144 targets), and would have led to participants viewing the same faces on 

multiple bodies, and the same bodies attached to multiple faces. The relative similarity/difference 

of each pair of targets was judged by an average of 13.21 participants (SD = 3.8). 

Based on these difference ratings, we constructed six separate distance matrices for each 

of the target groups, and conducted six separate Multi-Dimensional Scaling (MDS) analyses on 

these. Similar to Study 2, these analyses were intended to assess the primary dimensions on 

which targets were perceived as differing. Unlike Study 2, we did not intend to use Dimension 

scores as regressors, but simply for the MDS to confirm that the targets were primarily perceived 

as differing on race, gender, class, and age. We pre-registered this in the following paragraph: 

We will first identify the key dimensions underlying difference judgements in each 

condition following the technique of Koch, Imhoff, Dotsch, Unkelbach, and Alves 

(2016). We predict that with some possible variability between conditions, the primary 

dimensions to emerge will be based on (1) targets' perceived SES (2) targets' perceived 

race (3) targets' perceived gender (4) targets perceived age, and that this will be 

demonstrated by correlating targets' scores on the identified dimensions with targets' 

mean scores on the explicit trait ratings. Assuming that the spontaneously used 

dimensions that emerge line up as expected with the explicit trait ratings, we will then use 

the targets' mean trait rating scores to predict (logged) response times in the single 

category IAT tests, with the key test being the interaction between the trait scores and a 

compatible/incompatible trial indicator.  

Figure S2 displays the scaling stress and r2 values of MDS solutions ranging between one and 

seven dimensions for each of the six target groups. This figure shows that for most target groups, 

MDS solutions of 4 or 5 dimensions resulted in acceptable fit.  

Figure S2. Scaling stress and r2 values from MDS solutions fit to the distance ratings data of 

Study 3a ranging between one and seven dimensions.  
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To assess what the dimensions represented, we computed correlations between targets’ 

dimension scores and targets’ mean ratings on the measured explicit traits (male/female gender, 

Asian appearance, Black appearance, White appearance, SES, warmth, age, extroversion). These 

correlations are reported in Table S3.  

 

Table S3 

Target-level correlations between Multi-Dimensional Scaling dimension scores and mean 

explicit trait ratings from Study 3a 

 Target Group 1   Target Group 2 

Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

 Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

Black -0.9      Black 0.92     

Warmth -0.74  -0.44    Extroversion 0.52 -0.36    

Extroversion -0.73      Male  0.87 -0.33   

White 0.61 0.51 0.47    Warmth 0.52 -0.57    

Asian 0.31 -0.82 -0.42    Asian -0.57  -0.71 -0.3  

SES -0.47 -0.56 0.53 0.36   White -0.42 0.47 0.53 0.52  

Age       SES 0.34  -0.61 0.7  

Male   0.53 -0.78   Age     -0.8 

 Target Group 3   Target Group 4 

Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

 Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

Male 0.81 -0.56     Black 0.95     

Black 0.53 0.8     Extroversion 0.74  0.3   

Warmth  0.59  -0.31   Warmth 0.47 -0.44 0.35   

Extroversion  0.58 0.42    White -0.44 0.73  0.41  

SES   0.93    Male  0.37 -0.87   

White  -0.31 0.41 0.77   SES  0.64  -0.68  

Asian -0.32 -0.52 -0.31 -0.62   Asian -0.53 -0.51 -0.32 -0.55  

Age    -0.31 0.86  Age     0.45 

 Target Group 5   Target Group 6 

Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

 Rating Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

Black 0.96      Black 0.94     

Extroversion 0.61   -0.33   Male  -0.95    

White -0.37 0.81 -0.35    White -0.37  -0.84   

Asian -0.63 -0.7     Asian -0.61  0.64 -0.4  

SES  -0.36 -0.76 -0.49   Warm 0.31 0.39 0.59   

Warmth 0.35 -0.45 0.62    SES -0.42  0.48 0.67  

Male   -0.4 0.83   Extroversion 0.37   0.48  

Age     -0.8  Age     0.58 

Note: correlations below r = 0.3 are suppressed. Bolded figures indicate the dimension on which 

each explicit trait loaded most strongly. 

 

A similar dimension structure appeared for five of the six target groups (Target Groups 2-6): two 

dimensions most strongly correlated with targets perceived race, and the remaining three 

dimensions correlated most strongly with targets’ perceived gender, SES, and age. The one 

exception to this general pattern was Target Group 1, for whom two race dimensions and a 

gender dimension clearly emerged, but no clear SES or age dimensions (although SES correlated 

strongly with Dimension 3, gender also correlated with Dimension 3 just as strongly, and SES in 

fact correlated more strongly with Dimension 2). However, we believe that this exception was 

more likely a result of noise in the data, rather than a systematic difference between Target 

Group 1 and the other groups. Overall, the consistency of the results for Target Groups 2-6, as 

well as their consistency with our previous MDS results from Study 2, suggested that as we 

assumed, race, gender, social class, and age were very likely the primary target-level variables 

spontaneously perceived in our Study 3a targets.  
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Appendix F: Study 3a Pre-Registered Analyses 

 

In our original Study 3a pre-registration we stated the following with regard to our planned 

analyses:  

 

…Assuming that the spontaneously used dimensions that emerge line up as expected with 

the explicit trait ratings, we will then use the targets' mean trait rating scores to predict 

(logged) response times in the single category IAT tests, with the key test being the 

interaction between the trait scores and a compatible/incompatible trial indicator. If 

participants' tendency to exhibit relatively faster or slower reaction times in compatible 

compared to incompatible trials depends on the trait scores, this will be interpreted to 

mean that the trait is associated with implicit bias. Based on previous results, we predict 

that SES and gender will emerge as the key significant predictors of implicit bias against 

the targets, with responses more positive toward higher SES and more female targets, 

while race, age, warmth, and extraversion will show little relationship with implicit bias.  

We also specified that “we will exclude reaction times below 300 and above 10,000 ms.”  

 

The model described in the pre-registration is therefore a cross-classified multilevel model 

predicting logged reaction times, in which reaction times are nested within participants, target 

faces, and target bodies, and the key fixed effects of interest are interaction terms between 

targets’ personal characteristics (SES, race, gender, age) and a dummy indicating if a reaction 

time occurred in a compatible or incompatible trial (0 = compatible, 1 = incompatible). We did 

not pre-register a random effects structure, but began by including random intercepts for 

participants, targets’ faces, and targets’ bodies, as well as random slopes on the incompatible 

dummy for participants, targets’ faces, and targets’ bodies, to account for random variation in (a) 

the overall positivity of participants toward all targets, (b) the overall positivity of responses to 

each individual face, and (c) the overall positivity of responses to each individual body. This 

results in the following model: 

 

𝒚𝒊𝒋𝒌 =  𝜷𝟎 + 𝜷𝟏𝑺𝑬𝑺𝒋𝒌 + 𝜷𝟐𝑨𝒔𝒊𝒂𝒏𝒋𝒌 + 𝜷𝟑𝑾𝒉𝒊𝒕𝒆𝒋𝒌 + 𝜷𝟒𝑭𝒆𝒎𝒂𝒍𝒆𝒋𝒌 + 𝜷𝟓𝑨𝒈𝒆𝒋𝒌

+ 𝜷𝟔𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 + 𝜷𝟕𝑺𝑬𝑺𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  

+  𝜷𝟖𝑨𝒔𝒊𝒂𝒏𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌

+ 𝜷𝟗𝑾𝒉𝒊𝒕𝒆𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 +  𝜷𝟏𝟎𝑭𝒆𝒎𝒂𝒍𝒆𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  

+  𝜷𝟖𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟓𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  + 𝜻𝒊𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌

+  𝜻𝒋𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 + 𝜻𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 +  𝜺𝒊 + 𝜺𝒋 + 𝜺𝒌 +  𝜺𝒊𝒋  

 

 

 

where i indexes participants, j indexes targets’ faces, and k indexes targets’ bodies, 𝑦𝑖𝑗𝑘 is a 

logged response time of participant i toward target jk, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒𝑖𝑗𝑘 is a dummy variable 

indicating whether the response time occurred in a compatible or incompatible ST-IAT trial, 

SESjk, Asianjk, Whitejk, Femalejk, and Agejk are targets’ individual mean ratings on the SES slider 

(z-scored), dummies indicating targets’ Asian race, White race, and female gender, and mean 

ratings on the age slider (z-scored), respectively, 𝜁𝑖, 𝜁𝑗 and 𝜁𝑘 are random slopes on 

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒𝑖𝑗𝑘 at the participant, target face, and target body levels, respectively, 𝜀𝑖 , 𝜀𝑗 and 

𝜀𝑘 are random intercepts for participants, target faces, and target bodies, respectively, and 𝜀𝑖𝑗𝑘 is 

the residual term. However, this model failed to converge, necessitating a simpler random effects 

structure. Consequently, we removed 𝜁𝑗 and 𝜁𝑘, and fit the following reduced model: 

 

𝒚𝒊𝒋𝒌 =  𝜷𝟎 + 𝜷𝟏𝑺𝑬𝑺𝒋𝒌 + 𝜷𝟐𝑨𝒔𝒊𝒂𝒏𝒋𝒌 + 𝜷𝟑𝑾𝒉𝒊𝒕𝒆𝒋𝒌 + 𝜷𝟒𝑭𝒆𝒎𝒂𝒍𝒆𝒋𝒌 + 𝜷𝟓𝑨𝒈𝒆𝒋𝒌

+ 𝜷𝟔𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 + 𝜷𝟕𝑺𝑬𝑺𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  

+  𝜷𝟖𝑨𝒔𝒊𝒂𝒏𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌

+ 𝜷𝟗𝑾𝒉𝒊𝒕𝒆𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 +  𝜷𝟏𝟎𝑭𝒆𝒎𝒂𝒍𝒆𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  

+  𝜷𝟖𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏_𝟓𝒋𝒌𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌  + 𝜻𝒊𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆𝒊𝒋𝒌 +  𝜺𝒊 

+ 𝜺𝒋 + 𝜺𝒌 + 𝜺𝒊𝒋  

Fitting this model to the initial data collected for Study 3a (N = 379) results in the estimates 

presented in Table S4. As shown in the Table, at this stage the only significant effect was an 

interaction between target gender and the incompatible dummy, indicating a pro-female/anti-

male bias.  
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Table S4 

Hierarchical Linear Model predicting logged reaction times between 300 

and 10,000ms in Study 3a initial data collection ST-IAT data (N = 379) 

  𝛽̂(𝑆𝐸𝛽̂) p 

Fixed effects   

 (Intercept) 6.262(0.017) <.001 

 SES -0.011(0.007) 0.115 

 Asian 0.003(0.017) 0.849 

 White -0.006(0.017) 0.713 

 Female -0.024(0.014) 0.088 

 Age -0.009(0.007) 0.192 

 Incompatible -0.031(0.02) 0.135 

 SES × Incompatible 0.009(0.01) 0.362 

 Asian × Incompatible 0.022(0.023) 0.343 

 White × Incompatible 0.036(0.023) 0.125 

 Female × Incompatible 0.048(0.019) 0.012 

 Age × Incompatible 0.006(0.01) 0.552 

  SD ra 

Random effects   

 Participant (Random Intercept) 0.184  

 Participant (Incompatible random slope) 0.125 -0.399 

 Target face (Random Intercept) 0.009  

 Target Body (Random Intercept) 0.00  

 Residual 0.477  
a r indicates the correlation between random slopes and intercepts at the 

participant and target level 

  

As discussed in the manuscript, at this point we decided to collect more data and re-pre-register 

Study 3a. This was chiefly due to our development of the Target D Score method, and the 

discoveries that (a) the response latency window of 300ms-10,000ms produced substantially less 

reliable Target D Scores than a response latency window of 100ms-6,000ms, and (b) even with 

the superior 100ms-6,000ms latency response window, the internal reliability of the Target D 

Scores from the initial data collected for Study 3a (rab = 0.23/rxx = 0.37) remained substantially 

lower than the internal reliability achieved for Target D Scores in Study 2 (rxx = 0.71). We 

considered this to be likely due to Study 3a using more targets per ST-IAT (24) than we had used 

in previous studies (8 per ST-IAT in Study 1 and 18 per ST-IAT in Study 2), and, perhaps, to our 

stimuli producing automatic valence associations with less overall variance as a result of holding 

facial attractiveness constant across social classes, and having less variation in body size and 

shape than Study 2’s targets. We therefore felt it necessary to collect more data to reduce 

measurement error in Target D Scores. In our re-pre-registration we stated the following 

regarding our reasons for re-pre-registering: 

 

This pre-registration is actually an extension of a previous pre-registration (#35583). We 

are collecting more data for this project primarily due to issues with measurement 

accuracy. Specifically, for the Target D Scores, internal reliability is currently too low (r 

~ 0.23). So even though the data is showing effects already of target-level characteristics 

(especially gender, with a strong anti-male bias emerging), we wish to try to increase the 

measurement accuracy of the target D scores to provide a more sensitive test of the other 

dimensions (race, class, age, etc).  

 

The phrase “…the data is showing effects already of target-level characteristics (especially 

gender, with a strong anti-male bias emerging)” referred to models we had fit using Target D 

Scores based on the 100ms-6,000ms latency response window, not the model results presented 

above in Table S3. Regarding our modelling strategy, we stated the following: 

 

There will be two main kinds of analyses run: target-level analyses (which identify the 

target-level variables that predict implicit bias toward targets across the sample as a 

whole), and response-time level analyses (which enable tests of target x participant 

interactions). For the target-level analyses, we will predict Target D Scores (the unique 

level of implicit bias shown toward each of the 144 targets) in a series of linear models of 

increasing complexity. First, we will predict target D Scores from main effects of targets' 

race, perceived social class, gender, and age. Then, we will add 2-way and 3-way 
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interactions between these predictors. Finally, we will test if results hold controlling for 

perceived warmth, competence, attractiveness, political affiliation, and photo blurriness. 

For the response-time level analyses, we will explore whether participants' race, gender, 

social class, and political affiliation moderates effects of target-level variables.  

 

Due to our evolving understanding of the optimal algorithm for calculating Target D  

Scores, we also specified that “…we have found that including response times between 100 and 

6000ms leads to the greatest internal reliability of target D scores, so we plan to do the same in 

this analysis.” This re-pre-registration therefore signalled our growing awareness that target-level 

analyses using Target D Scores are sufficient when all that is being examined are the effects of 

target-level variables, but that more complex response-time models are necessary to study more 

complex interactions between target-level characteristics and characteristics of participants. In 

the present project, we have omitted these analyses for simplicity, but hope to publish further 

research specifically aimed at exploring such participant-level moderators.  

 

Yet while the re-pre-registration signalled our intention to run target-level models using Target D 

Scores, at that point our planned algorithm was different to the one we eventually used in the 

paper. This produced only minor differences in results. To display this, Table S5 presents results 

of the same models displayed in Table 6 of our manuscript, but predicting D Scores calculated 

via the pre-registered response latency window of 1000ms-6000ms, and including, rather than 

penalizing error trials. As shown in the model, the results are highly similar to the improved 

algorithm, though effect sizes are slightly smaller, which is consistent with using a slightly 

noisier measure.  

 

Table S5 

Results from hierarchical linear models in Study 3a using Target D Scores calculated using 

trials from 1000ms-6000ms and including error trials. 

   Study 3a (upper-body targets)  

   Model 1   Model 3  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.121(0.023) <.001   -0.101(0.034) 0.005   

 Social class 0.014(0.012) 0.262 0.005  -0.026(0.045) 0.563 <.001  

 Asian 0.081(0.024) 0.003 0.043  0.057(0.041) 0.172 0.007  

 White 0.071(0.024) 0.008 0.033  0.029(0.066) 0.666 <.001  

 Female 0.194(0.025) <.001 0.415  0.197(0.034) <.001 0.249  

 Age 0.001(0.013) 0.95 <.001  -0.012(0.018) 0.517 <.001  

 Warmth     0.009(0.023) 0.697 <.001  

 Extroversion     0(0.018) 0.996 <.001  

 Attractiveness     0.013(0.025) 0.589 <.001  

 Competence     0.032(0.049) 0.517 <.001  

 Liberal     -0.051(0.03) 0.089 0.007  

 Blurry     0.02(0.014) 0.154 0.01  

    0.499    0.51  

Random effects         

 Face    0.02    0.026 

 Body    0.04    0.043 

 Residual    0.107    0.105 

Note: Statistically significant coefficients are bolded 
a ∆r2 differences in r2 values between full models and models with each predictor removed, 

except the lowest value, which reports r2 for the full model.  
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Appendix G: Study 3b Two-Way Interaction Model 

 

Table S6 shows the results of the hierarchical linear model fit in Study 3b which included two-

way interaction terms between target-level factors (race, gender, social class, and age). No two-

way interactions were significant, and this model did not improve fit compared to a simpler 

model including only main effects of each factor, so these results were relegated to the 

Appendices to save space in the main manuscript.  

 

Table S6 

Results from hierarchical linear model including two-way interaction terms in Study 3b 

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects     

 (Intercept) -0.139(0.031) <.001 NA  

 Social class 0.041(0.023) 0.089 0.018  

 Asian 0.058(0.037) 0.133 0.007  

 White 0.088(0.037) 0.032 0.017  

 Female 0.202(0.044) <.001 0.155  

 Age -0.019(0.028) 0.512 <.001  

 Social class × Asian 0.004(0.025) 0.872 <.001  

 Social class × White -0.024(0.023) 0.292 0.001  

 Social class × Female 0.025(0.032) 0.435 <.001  

 Social class × Age 0.015(0.015) 0.325 0.006  

 Asian × Female 0.083(0.052) 0.133 0.006  

 Asian × Age -0.011(0.025) 0.683 <.001  

 White × Female 0.006(0.052) 0.908 <.001  

 White × Age 0.03(0.029) 0.31 0.002  

 Female × Age 0.018(0.031) 0.562 <.001  

 Model   0.577  

Random effects     

 Face    0.023 

 Body    0.059 

 Residual    0.113 

Note: Statistically significant coefficients are bolded 
a ∆r2 differences in r2 values between full models and models with each predictor 

removed, except the lowest value, which reports r2 for the full model.  
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Appendix H: Study 3b Pre-Registered Analyses 

 

In Study 3b, we originally pre-registered the following: 

 

There will be two main kinds of analyses run: target-level analyses (which identify the 

target-level variables that predict implicit bias toward targets across the sample as a 

whole), and response-time level analyses (which enable tests of target x participant 

interactions). For the target-level analyses, we will predict Target D Scores (the unique 

level of implicit bias shown toward each of the 144 targets) in a series of linear models of 

increasing complexity. First, we will predict target D Scores from main effects of targets' 

race, perceived social class, gender, and age. Then, we will add 2-way and 3-way 

interactions between these predictors. Finally, we will test if results hold controlling for 

perceived warmth, competence, attractiveness, political affiliation, and photo bluriness. 

 

We also specified that “In previous work, we have found that including response times between 

100 and 6000 ms leads to the greatest internal reliability of target D scores, so we plan to do the 

same in this analysis.” This is only slightly different from the procedures we used. In our 

manuscript, we used a response latency of 100ms-4000ms, and penalize error trials, as based on 

further testing, we find this to provide the highest combined internal reliability and convergent 

validity (see Appendix K). Table S7 presents results using Target D Scores calculated using the 

pre-registered response latency window, and including, rather than penalizing, error trials. These 

results are extremely close to those presented in our manuscript for Study 3b in Table 6.   

 

Table S7 

Results from hierarchical linear models in Study 3b using Target D Scores calculated using 

trials from 1000ms-6000ms and including error trials. 

   Study 3b (upper-body targets)  

   Model 1   Model 3  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.128(0.025) <.001   -0.097(0.027) <.001   

 Social class 0.041(0.014) 0.01 0.049  0.029(0.04) 0.476 <.001  

 Asian 0.08(0.025) 0.004 0.032  0.038(0.036) 0.287 <.001  

 White 0.078(0.025) 0.005 0.031  0.018(0.058) 0.76 <.001  

 Female 0.224(0.029) <.001 0.421  0.231(0.03) <.001 0.366  

 Age -0.012(0.014) 0.414 <.001  -0.005(0.016) 0.74 <.001  

 Warmth     -0.019(0.021) 0.367 0.002  

 Extroversion     -0.015(0.014) 0.273 0.002  

 Attractiveness     0.039(0.025) 0.117 0.008  

 Competence     -0.027(0.041) 0.518 <.001  

 Liberal     -0.018(0.027) 0.494 <.001  

 Blurry     -0.042(0.011) <.001 0.059  

    0.55    0.613  

Random effects         

 Face    0.019    0 

 Body    0.053    0.024 

 Residual    0.111    0.113 

Note: Statistically significant coefficients are bolded 
a ∆r2 differences in r2 values between full models and models with each predictor removed, 

except the lowest value, which reports r2 for the full model.  
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Appendix I: Study 4 Models 2-4 

 

In our manuscript we describe three kinds of models fit for Study 4 that are relegated to 

Appendices to save space. These are models 2, 3 and 4 of our series of hierarchical linear 

models. Model 2 extends on Model 1, which included main effects of each target level 

characteristic: Social class (targets’ z-scored mean rating on the subjective SES slider), race (two 

dummies indicating targets’ Asian and White race, respectively, with Black as reference level), 

gender (a dummy indicating targets’ female gender) and age (targets’ z-scored mean rating on 

the age SES slider). Model 2 extended on this initial model by adding an indicator of whether a 

target was presented in upper-body or full-body presentation (0 = upper-body, 1 = full-body). 

Model 3 then added interaction terms between the full-body indicator and each target-level 

factor. As discussed in our manuscript, these interaction terms did not improve model fit for any 

of the Target D Scores: ST-IAT, EPT, or composite, so were removed. Model 4 added two-way 

interactions between each target-level factor. These interaction terms also did not improve model 

fit for any variety of Target D Scores, so were also removed. Table S8, S9, and S10 present 

results of Model 2, 3, and 4 for the ST-IAT Target D Scores, the EPT Target D Scores, and the 

composite Target D Scores, respectively. 

 
Table S8 

Results from hierarchical linear models using the ST-IAT Target D Scores in Study 4 

   ST-IAT Target D Scores  

   Model 2   Model 3   Model 4  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects             

 (Intercept) -0.09(0.01) <.001   -0.08(0.02) <.001   -0.09(0.02) <.001   

 Social class 0.03(0.01) <.001 0.06  0.03(0.01) 0.001 0.033  0.04(0.01) <.001 0.036  

 Asian 0.06(0.01) <.001 0.032  0.06(0.02) 0.003 0.016  0.06(0.02) 0.002 0.021  

 White 0.05(0.01) <.001 0.03  0.06(0.02) 0.003 0.017  0.04(0.02) 0.028 0.01  

 Female 0.14(0.01) <.001 0.361  0.12(0.02) <.001 0.269  0.14(0.02) <.001 0.097  

 Age -0.01(0.01) 0.152 0.004  -0.01(0.01) 0.302 0.001  -0.02(0.01) 0.228 0.003  

 Full-body -0.05(0.01) <.001 0.039  -0.07(0.02) 0.003 0.017  -0.05(0.01) <.001 0.038  

 Full-body × Social class     0(0.01) 0.961 <.001      

 Full-body × Asian     0(0.03) 0.868 <.001      

 Full-body × White     -0.01(0.03) 0.697 <.001      

 Full-body × Female     0.05(0.02) 0.047 0.007      

 Full-body × Age     0(0.01) 0.828 <.001      

 Social class × Asian         -0.02(0.01) 0.289 0.001  

 Social class × White         -0.02(0.01) 0.112 0.004  

 Social class × Female         0.01(0.01) 0.529 <.001  

 Social class × Age         0(0.01) 0.834 <.001  

 Asian × Female         -0.01(0.03) 0.686 <.001  

 Asian × Age         0.01(0.01) 0.607 <.001  

 White × Female         0.02(0.03) 0.454 <.001  

 White × Age         0.01(0.02) 0.644 <.001  

 Female × Age         0(0.01) 0.762 <.001  

 Model   0.532    0.536    0.532  

Random effects             

 Face    0.00    0.00    0.00 

 Body    0.01    0.01    0.02 

 Residual    0.10    0.10    0.10 

Note: Statistically significant coefficients are bolded 
a ∆ r2 differences in r2 values between full models and models with each predictor removed, except the lowest value, which 

reports r2 for the full model.  
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Table S9 

Results from hierarchical linear models using the EPT Target D Scores in Study 4 

   EPT Target D Scores  

   Model 2   Model 3   Model 4  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects             

 (Intercept) 0.11(0.01) <.001   0.13(0.02) <.001   0.11(0.02) <.001   

 Social class 0.02(0.01) 0.002 0.057  0.02(0.01) 0.027 0.028  0.02(0.01) 0.167 0.013  

 Asian 0.03(0.02) 0.037 0.017  0.01(0.02) 0.631 <.001  0.03(0.02) 0.234 0.004  

 White 0(0.02) 0.813 <.001  -0.02(0.02) 0.456 0.001  0.01(0.02) 0.529 0.001  

 Female 0.05(0.01) <.001 0.081  0.04(0.02) 0.054 0.025  0.06(0.02) 0.01 0.042  

 Age 0(0.01) 0.643 <.001  -0.01(0.01) 0.324 0.003  0.01(0.01) 0.423 0.002  

 Full-body 0(0.01) 0.847 <.001  -0.04(0.02) 0.083 0.011  0(0.01) 0.879 <.001  

 Full-body × Social class     0(0.01) 0.938 <.001      

 Full-body × Asian     0.04(0.03) 0.165 0.007      

 Full-body × White     0.02(0.03) 0.417 0.002      

 Full-body × Female     0.04(0.02) 0.139 0.008      

 Full-body × Age     0.01(0.01) 0.363 0.003      

 Social class × Asian         0.01(0.02) 0.649 <.001  

 Social class × White         0.01(0.02) 0.717 <.001  

 Social class × Female         0(0.02) 0.866 <.001  

 Social class × Age         0(0.01) 0.796 <.001  

 Asian × Female         0.02(0.03) 0.589 <.001  

 Asian × Age         -0.02(0.02) 0.128 0.009  

 White × Female         -0.03(0.03) 0.284 0.004  

 White × Age         -0.01(0.02) 0.721 <.001  

 Female × Age         -0.01(0.01) 0.558 <.001  

 Model   0.167    0.186    0.181  

Random effects             

 Face    0.00    0.00    0.00 

 Body    0.01    0.01    0.02 

 Residual    0.10    0.10    0.10 

Note: Statistically significant coefficients are bolded 
a ∆ r2 differences in r2 values between full models and models with each predictor removed, except the lowest value, which 

reports r2 for the full model.  

 

 
Table S10 

Results from hierarchical linear models using the Composite Target D Scores in Study 4 

   Composite Target D Scores  

   Model 2   Model 3   Model 4  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects             

 (Intercept) 0.01(0.01) 0.42   0.02(0.01) 0.071   0.01(0.01) 0.521   

 Social class 0.03(0) <.001 0.088  0.03(0.01) <.001 0.048  0.03(0.01) 0.001 0.038  

 Asian 0.04(0.01) <.001 0.038  0.03(0.02) 0.023 0.01  0.04(0.02) 0.005 0.019  

 White 0.03(0.01) 0.018 0.012  0.02(0.02) 0.147 0.004  0.03(0.02) 0.064 0.007  

 Female 0.1(0.01) <.001 0.329  0.08(0.01) <.001 0.205  0.1(0.02) <.001 0.098  

 Age -0.01(0) 0.201 0.003  -0.01(0.01) 0.17 0.003  0(0.01) 0.816 <.001  

 Full-body -0.03(0.01) 0.002 0.02  -0.06(0.02) 0.002 0.021  -0.03(0.01) 0.003 0.019  

 Full-body × Social class     0(0.01) 0.994 <.001      

 Full-body × Asian     0.02(0.02) 0.382 <.001      

 Full-body × White     0.01(0.02) 0.749 <.001      

 Full-body × Female     0.04(0.02) 0.02 0.011      

 Full-body × Age     0(0.01) 0.612 <.001      

 Social class × Asian         0(0.01) 0.708 <.001  

 Social class × White         -0.01(0.01) 0.445 <.001  

 Social class × Female         0.01(0.01) 0.572 <.001  

 Social class × Age         0(0.01) 0.793 <.001  

 Asian × Female         0(0.02) 0.914 <.001  

 Asian × Age         -0.01(0.01) 0.456 <.001  

 White × Female         -0.01(0.02) 0.794 <.001  

 White × Age         0(0.01) 0.962 <.001  

 Female × Age         0(0.01) 0.874 <.001  

 Model   0.49    0.5    0.484  

Random effects             

 Face    0    0    0 

 Body    0.01    0.01    0.01 

 Residual    0.07    0.07    0.07 

Note: Statistically significant coefficients are bolded 
a ∆ r2 differences in r2 values between full models and models with each predictor removed, except the lowest value, which 

reports r2 for the full model.  

Appendix J: Study 4 Pre-Registered Analyses 

 

When planning Study 4, we had a quite clear understanding of what analyses we would run for 

the ST-IAT data, and stuck closely to the pre-registered analysis plan. The only discrepancies 
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between what we pre-registered and the analyses we report in our manuscript are that based on 

our continued efforts to identify the optimal Target D Score scoring algorithm, we switched the 

response latency window from 100ms-6000ms to 100ms-4000ms, and penalized, rather than 

included, error trials. We also divided by a single standard deviation for all targets, rather than a 

target-specific standard deviation. Due to the low measurement reliability of the ST-IAT and 

EPT Target D Scores, we also averaged these two kinds of Target D Scores into a composite 

Target D Score measure, but make it clear in our manuscript that this was not planned ahead of 

time. We pre-registered the following concerning ST-IAT Target D Scores: 

 

For the ST-IAT data, we plan to calculate Target D Scores for each of the 288 unique 

targets (mean logged response time toward a target in incompatible trials minus mean 

logged response times toward a target in compatible trials, with this difference divided by 

the standard deviation of all logged responses to the target), and then predict these Target 

D Scores in a series of hierarchical linear models of increasing complexity. First, we will 

include main effects of targets' race, perceived social class, gender, and age. Then, we 

will add an indicator of stimulus modality (full-body vs upper-body), and its interactions 

with each of the target-level variables (race, gender, social class, and age). Then, we will 

add 2-way interactions between each of the target-level variables (e.g., race x gender, 

social class x age), then 3-way interactions between these 2-way interactions and the 

stimulus modality indicator. We may then explore higher-order interactions, but we are 

not well-powered to detect these and do not expect to find robust evidence for anything 

beyond 2-way interactions. All models will be cross- classified, including random 

intercepts for the 24 unique target faces and 24 unique target bodies used in the targets. 

We will also test if results hold controlling for targets' perceived attractiveness and photo 

bluriness.  

 

We also specified the response latency window, and a decision rule for excluding participants, 

based on some feedback we had had in Studies 3a and 3b that Inquisit Online was experiencing 

technical issues for some participants, preventing them responding in a timely fashion. We pre-

registered: 

 

In previous work, we have found that including response times between 100 and 6000 ms 

leads to the greatest internal reliability of target D scores, so we plan to do the same in 

this analysis. Also recently some participants have been having some technical 

difficulties with the Inquisit online platform, which has not been responding when they 

press the 'E' or 'I' keys on their keyboard. We will therefore also exclude participants 

whose average response time is above 3 seconds.   

 

Tables S11 and S12 present results from all five models fit in the paper using the precise pre-

registered Target D Score algorithm for the ST-IAT data. Table S11 presents Models 1 and 5, 

which were reported in Table 7 in our manuscript, and Table 12 presents Models 2, 3, and 4, 

which were relegated to Appendicese. These tables show that no conclusions were altered by 

using the improved version of the algorithm.  

 
Table S11 

Results from hierarchical linear models in Study 4 using the precise pre-registered scoring algorithm 

   ST-IAT Target D Scores  

   Model 1   Model 5  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects         

 (Intercept) -0.115(0.012) <.001   -0.087(0.013) <.001   

 Social class 0.032(0.006) <.001 0.063  0.038(0.011) <.001 0.026  

 Asian 0.058(0.014) <.001 0.036  0.055(0.015) <.001 0.028  

 White 0.05(0.014) <.001 0.026  0.044(0.016) 0.007 0.014  

 Female 0.147(0.012) <.001 0.347  0.153(0.014) <.001 0.325  

 Age -0.008(0.006) 0.196 0.003  -0.01(0.007) 0.138 0.003  

 Full-body target     -0.054(0.013) <.001 0.034  

 Attractiveness     -0.011(0.012) 0.377 <.001  

 Blurry     -0.009(0.006) 0.176 0.003  

    0.508    0.541  

Random effects         

 Face    0.00    0.00 

 Body    0.00    0.00 

 Residual    0.098    0.096 

Note: Statistically significant coefficients are bolded 
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a ∆ r2 differences in r2 values between full models and models with each predictor removed, except 

the lowest value, which reports r2 for the full model.  

 
Table S12 

Results from hierarchical linear models in Study 4 using the precise pre-registered scoring algorithm 

   ST-IAT Target D Scores  

   Model 2   Model 3   Model 4  

  𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 𝛽̂(𝑆𝐸𝛽̂) p ∆r2a SD 

Fixed effects             

 (Intercept) -0.09(0.01) <.001   -0.08(0.02) <.001   -0.09(0.02) <.001   

 Social class 0.03(0.01) <.001 0.06  0.03(0.01) <.001 0.034  0.04(0.01) 0.002 0.025  

 Asian 0.06(0.01) <.001 0.035  0.06(0.02) 0.003 0.016  0.07(0.02) 0.001 0.024  

 White 0.05(0.01) <.001 0.025  0.06(0.02) 0.002 0.017  0.04(0.02) 0.032 0.009  

 Female 0.15(0.01) <.001 0.328  0.12(0.02) <.001 0.24  0.15(0.02) <.001 0.103  

 Age -0.01(0.01) 0.223 0.002  -0.01(0.01) 0.211 0.002  -0.01(0.01) 0.294 0.002  

 Full-body -0.04(0.01) <.001 0.03  -0.06(0.02) 0.004 0.015  -0.05(0.01) <.001 0.03  

 Full-body × Social class     0(0.01) 0.74 <.001      

 Full-body × Asian     0(0.03) 0.992 <.001      

 Full-body × White     -0.02(0.03) 0.498 <.001      

 Full-body × Female     0.05(0.02) 0.02 0.01      

 Full-body × Age     0(0.01) 0.687 <.001      

 Social class × Asian         -0.01(0.01) 0.671 <.001  

 Social class × White         -0.01(0.01) 0.413 <.001  

 Social class × Female         0.01(0.01) 0.622 <.001  

 Social class × Age         0(0.01) 0.768 <.001  

 Asian × Female         -0.02(0.03) 0.565 <.001  

 Asian × Age         0.01(0.01) 0.64 <.001  

 White × Female         0.02(0.03) 0.58 <.001  

 White × Age         0.01(0.02) 0.68 <.001  

 Female × Age         0(0.01) 0.777 <.001  

 Model   0.538    0.547    0.535  

Random effects             

 Face    0.00    0.00    0.00 

 Body    0.00    0.01    0.01 

 Residual    0.1    0.10    0.10 

Note: Statistically significant coefficients are bolded 
a ∆ r2 differences in r2 values between full models and models with each predictor removed, except the lowest value, which 

reports r2 for the full model.  

 

By contrast, we did not pre-register precisely how we would analyze the EPT data, because we 

had not used EPTs before, and were unsure if they would produce internally reliable Target D 

Scores. We pre-registered the following: 

 

For the EPT data, we are less certain of how we will proceed, but ideally, we will be able 

to calculate Target D Scores in a similar manner to the ST-IAT data, and fit a similar 

series of models to the ST-IAT data, in order to compare the results. We do not predict 

overall conclusions regarding the effects of target-level variables or presentation modality 

to be different from the EPT data as compared to the ST-IAT data, but we also have not 

used EPT data before in this context, so we feel less confident about its measurement 

properties (e.g., if the EPT Target D Scores are much more noisy than the ST-IAT Target 

D Scores, we will obviously not be able to detect the same effects with them).  

 

As reported in the manuscript and below in the section ‘Assessing the Measurement Accuracy of 

Target D Scores, our data-driven approach suggested that the EPT data produced un-useable 

Target D Scores if we following the ST-IAT algorithm (nearly zero internal reliability), so we 

were forced to explore and ultimately use a different procedure for the EPT data. Our EPT 

analyses should therefore be considered exploratory.   

 

  



 54 

Appendix K: Assessing the Measurement Accuracy of Target D Scores  

 

Single-Target IATs 

 

To identify the optimal algorithm for computing Target D Scores from ST-IATs, we used a data-

driven approach aimed at maximizing the combined internal reliability and convergent validity 

of the Target D Scores. Our procedure for testing the internal reliability of different scoring 

algorithms was as follows. First, we separated data by Study. This left us with 6 separate sets of 

Target D Scores: Study 1a (48 full-body male targets varying in race and social class), Study 1b 

(32 full-body male targets varying in race and social class), Study 2 (54 full-body targets varying 

in race, gender, social class and age), Study 3a (144 upper-body targets varying in race, gender, 

social class and age), Study 3b (144 full-body targets varying in race, gender, social class and 

age), and Study 4 (288 upper-body and full-body targets varying in race, gender, social class and 

age). As described in our manuscript, each study used a slightly different measurement 

procedure. E.g., in Study 1, participants completed six ST-IATs containing 8 targets each with 

each ST-IAT containing targets from one specific race/class sub-group (e.g., lower-class White 

males). In Study 4, participants completed two ST-IATs containing a single target group 

consisting of 24 targets varying in race, gender, social class, and age.  

 

We tested the split-half reliability and convergent validity of Target D Scores calculated via each 

of the possible combinations of the following algorithm parameters: (a) including error trials, in 

which participants pressed the incorrect response key, excluding error trials, or penalizing error 

trials by replacing their response time latency with participants’ individual mean response 

latency in compatible/incompatible trials plus 600ms; (b) using logged or raw response times; (a) 

including error trials, in which participants pressed the incorrect response key, excluding error 

trials, or penalizing error trials by replacing their response time latency with participants’ 

individual mean response latency in compatible/incompatible trials plus 600ms. E.g., if 

participant X committed an error in a compatible trial, the response time of the error was 

replaced with their mean response time in compatible trials plus 600ms; (c) setting the lower 

limit for inclusion of a response time to 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 

350, 375, or 400 milliseconds; (d) setting the upper limit for inclusion of a response time to 

1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or 10,000 milliseconds; (e) standardizing 

response times by dividing difference scores by a target-specific standard deviation of response 

times, or an overall standard deviation of response times to all targets; (f) ignoring the block 1/2 

distinction and computing a single Target D Score from all trials, or calculating an average 

between a Target D Score based on trials in Compatible block 1 and Incompatible block 1, and a 

Target D Score based on trials in Compatible block 2 and Incompatible block 2. .  

 

Internal Reliability 

 

To test the split-half reliability of Target D Scores, we randomly split the raw ST-IAT data in 

half, computed Target D Scores for each half of the data, and then computed and saved their 

bivariate correlations. For each of the combinations of algorithm parameters, six separate split-

half correlations were calculated for each of the six separate sets of Target D Scores (Studies 1a, 

1b, 2, 3a, 3b, and 4). This procedure was repeated 100 times, and the resulting split-half 

correlation figures were averaged for each Study/parameters combination. E.g., one-hundred 

split-half correlations were computed for the Study 2 Target D Scores excluding error trials, 

using logged response times, including response times between 200 and 3000 milliseconds, using 

a single standard deviation, and ignoring the block 1/2 distinction. These 100 split-half 

correlations were then averaged. Finally, for each combination of parameters (e.g., logged 

response times/excluded error trials/200ms minimum/3000ms maximum/single SD/ignoring 

blocks), we computed an overall average split-half correlation across the six different sets of 

Target D Scores, and converted this average estimate to an estimated split-half reliability via the 

Spearman-Brown prophecy formula (Revelle & Condon, 2019). 

 

𝑟𝑥𝑥 =  
2𝑟𝑎𝑏

1 + 𝑟𝑎𝑏
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In this formula, 𝑟𝑥𝑥= the estimated split-half reliability and 𝑟𝑎𝑏= the observed split-half 

correlation. The average split-half reliability estimates of parameter combinations are depicted in 

Figure S1. The highest average split-half reliability  (𝑟𝑥𝑥  = 0.56) was produced by (a) penalizing 

error trials; (b) using logged response times; (c) setting a minimum response time value of 

100ms; (d) setting a maximum response time value of 4000ms; (e) using a single SD for all 

targets; (f) ignoring the block 1/2 distinction. However, as Figure S5 shows, some parameters 

were more important than others. A minimum response time of 100ms, for example, produced a 

far more internally reliable measure than the cut-off of 300ms used in calculating D Scores for 

standard two-category IAT D Scores (Greenwald, Nosek, & Banaji, 2003). By contrast, 

including response times higher than 4000ms made little difference when response times were 

logged (see the three plots on the left of Figure S5), and there was relatively little difference 

between penalizing and including error trials (see the overall similarity between the top and 

middle rows of plots in Figure S5).  

 

 
Figure S5. The average split-half reliabilities of Target D Scores using ST-IAT data computed 

using various combinations of algorithm parameters. Note: in this figure we display only figures 

for Target D Scores using a single standard deviation and ignoring the block 1/2 distinction.  

 

Convergent Validity 

 

To test the convergent validity of the ST-IAT Target D Scores, we computed Target D Scores for 

each Study and each set of parameters from the full available ST-IAT data. Based on our 

evidence that implicit evaluations of our targets were related to their gender, race, and social 

class, we then fit linear models predicting each computed set of Target D Scores from explicit 

ratings of targets: targets’ race (three regressors: mean classification as Asian, mean 

classification as Black, and mean classification as White), targets’ SES (mean ratings on the 

subjective SES ladder) and gender (mean classification as female). For each model, the r2 was 

saved. Finally, for each combination of parameters, we computed an overall average r2 across the 

six different sets of Target D Scores. The square roots of the average r2 estimates of each 

parameter combination are depicted in Figure S6. The highest average convergent validity (r  = 

0.66) was produced by (a) penalizing error trials; (b) using logged response times; (c) setting a 
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minimum response time value of 150ms; (d) setting a maximum response time value of 4000ms; 

(e) using a target-specific SD for all targets; (f) ignoring the block 1/2 distinction. 

 

 
Figure S6. The average convergent validity estimates (correlations between Target D Scores and 

predictions of models using targets’ perceived race, gender, and social class as predictors) 

computed using various combinations of algorithm parameters for ST-IAT Target D Scores. 

Note: in this figure we display only figures for Target D Scores using a single standard deviation 

and ignoring the block 1/2 distinction. 

 

Selecting an Algorithm 

 

To select the scoring algorithm producing the greatest combined internal reliability and 

convergent validity, we summed the average 𝑟𝑥𝑥and r2 values of each parameter combination, 

and selected the parameter combination producing the greatest 𝑟𝑥𝑥+ r2 sum. Unsurprisingly, the 

greatest sum (𝑟𝑥𝑥+ r2 = 0.81) was achieved by the same algorithm that produced the greatest 

internal reliability: (a) penalizing error trials; (b) using logged response times; (c) setting a 

minimum response time value of 100ms; (d) setting a maximum response time value of 4000ms; 

(e) using a single SD for all targets; (f) ignoring the block 1/2 distinction. This is the algorithm 

we rely upon for the ST-IAT Target D Scores reported in our manuscript.  

 

Evaluative Priming Task 

 

To ascertain the optimal scoring algorithm for Target D Scores produced via our Evaluative 

Priming Task (EPT) data, we used the same procedure as used for ST-IAT data, with the 

exceptions that (a) we did not split data up by Study, because we only used the EPT task in Study 

4, and (b) it was not an option to ignore/attend to the block 1/2 distinction, as EPT tasks do not 

use discrete blocks in the same way as ST-IATs or IATs (see our manuscript for a detailed 

description of the EPT method).  
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Internal Reliability 

 

The average split-half reliability estimates of parameter combinations are depicted in Figure S7. 

The algorithm producing the greatest internal reliability for the EPT data (rxx = 0.28) involved (a) 

excluding error trials; (b) using logged response times; (c) setting a minimum response time 

value of 50ms; (d) setting a maximum response time value of 1000ms; (e) using a single SD for 

all targets.  

 

 
Figure S7. The average split-half reliabilities of Target D Scores for the Study 4 EPT data 

computed using various combinations of algorithm parameters. Note: in this figure we display 

only figures for Target D Scores using a single standard deviation. 

 

Convergent Validity 

 

The square roots of the average r2 estimates of each parameter combination are depicted in 

Figure S8. The algorithm producing the greatest convergent validity for the EPT data (r  = 0.39) 

involved (a) penalizing error trials; (b) using logged response times; (c) setting a minimum 

response time value of 25ms; (d) setting a maximum response time value of 1000ms; (e) using a 

single SD for all targets.  

 



 58 

 
Figure S8. The average convergent validity estimates (correlations between Target D Scores and 

predictions of models using targets’ perceived race, gender, and social class as predictors) 

computed using various combinations of algorithm parameters for EPT Target D Scores. Note: in 

this figure we display only figures for Target D Scores using a single standard deviation. 

 

Selecting an Algorithm 

 

The parameter combination producing the greatest 𝑟𝑥𝑥+ r2 sum (𝑟𝑥𝑥+ r2 = 0.40) was achieved by 

the same algorithm that produced the greatest internal reliability: (a) excluding error trials; (b) 

using logged response times; (c) setting a minimum response time value of 175ms; (d) setting a 

maximum response time value of 1000ms; (e) using a single SD for all targets. This is the 

algorithm we rely upon for the EPT Target D Scores reported in our manuscript.  
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Appendix L: Power Analyses 

 

Sample sizes for each study were chosen to maximize power within pragmatic constraints 

imposed by time and available human resources. However, given growing and justified interest 

in issues of statistical power within the psychological sciences (e.g., Fraley & Vazire, 2014), we 

performed power sensitivity analyses to assess the power of each study’s sample size to detect 

effects of various sizes.   

 

To achieve this, we used an approach incorporating a mixture of boot-strapping and simulation. 

To understand this approach, consider the case of a simple post hoc power analysis performed 

via boot-strapping. To carry this out, a researcher who has collected N cases and observed an 

effect of size 𝜃 needs only to repeatedly re-sample N cases with replacement from their data, and 

re-run their test of the effect in each of the boot-strapped samples. By recording the proportion of 

the boot-strapped samples in which the effect is statistically significant, the researcher can 

thereby produce an estimate of the power of their sample size N to detect the effect of interest at 

its observed effect size 𝜃 (Efron & Tibshirani, 1993). For example, if they find that the effect is 

significant in 80% of the boot-strapped samples, it would suggest 80% power at sample size N to 

detect the observed effect.  

 

Alone, post hoc estimates yield little new information, because they are more or less re-

statements of p values. However, if researchers alter parameters, they can use this procedure to 

yield estimates of power at different sample sizes or different effect sizes, which can provide 

valuable new information. For example, if the aforementioned researcher wished to estimate 

power at a different N to detect their effect 𝜃, they would simply need to take smaller or larger 

boot-strapped samples from the observed data.  

 

Altering effect sizes is also relatively easy. This is where the “simulation” part of the process 

comes into play, though we are here using the term ‘simulation’ relatively loosely. In fact, 

researchers can change the size of effects of interest within our data––and thus, within the 

‘populations’ they draw bootstrapped samples from––via relatively minor adjustments of 

outcome variables that leave their datasets virtually unchanged. For example, in our case, a key 

effect of interest in Study 1b was the effect of target race on participants’ D scores. To 

systematically alter the size of this effect, we first computed the following: 

 

𝒚́𝒊 = 𝒚𝒊 − 𝜷𝒓𝒂𝒄𝒆𝒊  

 

where i indexes participants, 𝑦𝑖 is the observed D Score of participant i, 𝑦𝑖́ is the adjusted D 

Score of participant i, 𝛽 is the observed effect of a target race dummy variable 𝑟𝑎𝑐𝑒𝑖 in a linear 

model predicting  𝑦𝑖. In a new model predicting the altered outcome score 𝑦́𝑖, the effect of 𝑟𝑎𝑐𝑒𝑖 

becomes zero. In a second step, we can add effects of 𝑟𝑎𝑐𝑒𝑖 of different sizes back to the dataset 

by choosing new values of the 𝛽 term (𝛿), and creating a newly altered version of the outcome, 

like so: 

 

𝒚⃛𝒊 = 𝒚́𝒊 + 𝜹𝒓𝒂𝒄𝒆𝒊  

 

where 𝑦𝑖 is a newly altered version of the outcome, and re-running the original model predicting 

𝑦𝑖 will result in the estimated slope of 𝑟𝑎𝑐𝑒𝑖 being equal to 𝛿. At this point, the dataset has still 

been changed very little; all that has changed is the size of the estimated effect of 𝑟𝑎𝑐𝑒𝑖, and with 

it, its effect size. At this point, we can estimate this effect size in the data, and estimate power to 

detect that effect at our N using the bootstrapping approach described above.  

 

Studies 1a and 1b 

 

Using this approach, we estimated the power sensitivity of our observed sample sizes to detect 

effects of various sizes in Studies 1a and Study 1b. For each separate analysis (the valence ST-

IATs in Study 1a, the valence and wealth ST-IATs in Study 1b), we estimated the power 

sensitivity of our sample sizes to detect both a main and an interaction effect. Results (Figure S9) 

suggested that we had 80% power to detect effects of approximately 𝜂2 = 0.005 in Study 1a, and 

𝜂2 = 0.015 in Study 1b. 
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Figure S9. Power sensitivity curves for power to detect different-sized effects with our achieved 

sample sizes in Study 1a (N = 298, within-subjects design) and Study 1b (N = 533, between-

subjects design). 

 

Study 2 

 

For Study 2’s target-level multiple regression analysis, we estimated power sensitivity separately 

for a main effects of continuous MDS dimensions, and interactions between dimensions. Results 

suggested that based on our N of 54 unique targets we had 80% power to detect main effects of 

approximately 𝜂2 = 0.1 and interaction effects of approximately 𝜂2 = 0.08 (see Figure S10). 

Although these are relatively large effect sizes to power for compared to most psychological 

research, it is important to remember that by aggregating to the target level, effect sizes are 

greatly increased compared to analyses such as those in Study 1 that are conducted at the 

participant level.  

 

 
Figure S10. Power sensitivity curves for power to detect main effects of MDS dimensions and 2-

way interaction effects between dimensions in Study 2 (N = 54 targets).   

 

Studies 3a and 3b 

 

For Studies 3a and 3b, due to we estimated separate power curves for main effects of each target-

level factor (two race dummies, a gender dummy, and z-scored mean ratings of SES and age), 

and each two-way interaction between target-level factors. Due to the package lmerTest’s 

(Kuznetsova, Brockhoff, Christensen, 2017) use of the Satterthwaite degrees of freedom method, 

degrees of freedom––and therefore statistical power––varied between effects. Figure S11 shows 

that with N = 144 targets made up of 24 unique faces and 24 unique bodies, Study 3a achieved 
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80% power to detect main effects between approximately Δr2 = 0.05 (for the race dummies) and 

Δr2 = 0.09 (for the gender dummy) and interaction effects between approximately Δr2 = 0.005 

(SES × Asian & SES × Black) and Δr2 = 0.035 (Gender × Age). Study 3b achieved 80% power 

to detect main effects between approximately Δr2 = 0.04 (the Asian race dummy) and Δr2 = 

0.095 (for the gender dummy) and interaction effects between approximately Δr2 = 0.005 (SES × 

Asian & SES × Black) and Δr2 = 0.03 (SES × Gender). 

 

 

 

Figure S11. Power sensitivity curves for power to detect main effects of target-level factors 

(race, gender, social class, and age) and 2-way interaction effects between dimensions in Studies 

3a and 3b (N = 144 targets made up of 24 unique faces and 24 unique bodies).   

 

Study 4 

 

For Study 4, we estimated separate power sensitivity curves for main effects of each target-level 

factor (two race dummies, a gender dummy, and z-scored mean ratings of SES and age), but just 

one power sensitivity curve for two-way interaction terms between target-level factors, as 

degrees of freedom were approximately equal between each interaction term. Figure S12 shows 

that with N = 288 targets made up of 24 unique faces and 24 unique bodies (each unique target 

had a full-body and upper-body Target D Score entered in models), Study 4 achieved 80% power 

to detect main effects between approximately Δr2 = 0.04 (for the race dummies) and Δr2 = 0.07 

(for SES), and interaction effects of approximately Δr2 = 0.025. 
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Figure S12. Power sensitivity curves for power to detect main effects of target-level factors 

(race, gender, social class, and age) and 2-way interaction effects between dimensions in Study 4 

(N = 288 targets made up of 24 unique faces and 24 unique bodies).   
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