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This document was prepared as an account of work sponsored by the
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nor any agency thereof, nor The Regents of the University of Califor-
nda, nor any of their employees, makes any warranty, express or im-~
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
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turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-~
poses.
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Abstract:
A new Elastic T1ackmg (ET) algonthm is p1oposed for ﬁndlng
tracks in very high multiplicity and noisy environments. It is
based on a dynamical reinterpretation and generalization of the
“Radon transform and is related to elastic net algorithms for geo-
metrical optimization. ET performs an adaptive nonlinear fit to
noisy data with a variable number of tracks. Its numerics is more
efficient than that of the traditional Radon or Hough transform
method because it avoids binning of phase space and the costly
~ search for valid minima. Spurious local minima are avoided in ET
- by introducing a time-dependent effective potential. The method
1is shown to be very robust to noise and measurement error and
extends tracking capabilities to much higher track densities than
- possible via local road finding or even the novel Denby-Peterson
(DP) neural network tracking algorithms.
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1 Introduction

Detecting curves within a complex pattern of points is a classic problem
in pattern recognition and computer vision with many important practical
applications{1]. In the context of high energy and nuclear physics, a common
problem is the detection of the ionization paths of many charged particlesin a
device such as a bubble, streamer, or time projection chamber and the deter-
mination of particle momenta by fitting physical trajectories consistent with
known electric and magnetic fields (see e.g. [2]). Of course, many local and
global methods have been developed to solve this problem(1, 3, 4]. Thusfar,
most experiments had to cope only with rather low multiplicities and track
densities, and conventional tracking methods have proven adequate. How-
_ever, there is a need to develop more powerful methods to cope with the
increasingly complex pattern recognition tasks that future high energy and
nuclear experiments may face. For example, future heavy ion experiments
[5] at RHIC/BNL and LHC/CERN could be confronted with trying to track
up to 10* charged particles per event. Our aim was to explore theoretical
limitations of present tracking methods and to propose a new elastic track-
ing (ET) method that extends present tracking capabilities to much higher
track densities. By track density, piqck, we mean the average ratio of the dis-
tance between measured points along a track to the distance between points
belonging to different tracks or random noise points.

This work was also motivated by the pioneering work of Denby [6] and
Peterson [7] on applications of Hopfield type neural networks [8, 9] to tracking
and other pattern recognition tasks in high energy physics (see also [10]).
Since the performance of such neural network tracking methods has not yet
been compared to that of more conventional algorithms, one aim of our work
was to carry out such a comparison. In particular, we used as a benchmark
the conventional local Road Finder (RF) algorithm [4].

A detailed description of the algorithms and techniques we used and the .
results can be found in Ref. [12].

2 Elastic Tracking

Elastic Tracking is based on a reinterpretation and dynamical generalization
of the Radon transform. The Radon Transform just counts the number of
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data points inside a tube around a trajectory. Scanning the feature space and
calculating the Radon Transforms for all possible trajectory parameters p will
give a function depending on p with maxima at points where the parameters
fit to a real track. This procedure is very expensive if high resolution is
desired or the feature space is high dimensional (> 2).

To avoid the problem of scanning the entire feature space, we proposed
a dynamic approach to the problem of looking for the maxima of the Radon
transform. We employ template trajectories (e.g. helices or straight lines)
and assign a positive charge distribution along the track. That track is then
allowed to interact with the negative (ionization) charge distribution mea-
sured by the experimental device. The problem is then reduced to minimizing
the energy of this template trajectory. Given a distribution of data points
~.p(x) this energy is evaluated as

E(pr,t) = ~/(lxdx’p(x)V(x - x', )pr(x') , (1)
- The minimum of this function is found by solving the (gradient'descent)
equations of motion for the template parameters, which in our case is the
three momentum pr of the particle producing the ionization density: _

de/dt = '—VI)TE(pTat) y - (2)

There is of course considerable freedom in the choice of the effective potential.
We adopt for convenience a simple Lorentzian form,

Viz,t) = w(t)/ (2 + w*(t)) , (3)
with a time dependent range |
w(t) = b+ (a — b)exp(—t/c) . o (4)

A slow iteration time dependence of the range is introduced to get a global
view on a scale a at an early stage of the iteration process and to focus later on
more closely to the track being converged to. This also avoids getting caught
in local minima. The natural scale for the asymptotic range is b ~ Az, where
Az is the rms measurement error of the data points.

In this way ET performs a nonlinear adaptive fit. The nonlinearity in
(3) reduces greatly the sensitivity to outlier points from other tracks or noise
when the interaction length w(?) approaches its final small value b.



Once convergence is achieved for one track, another one could be looked
for by starting with a new random initial template and waiting until a new
valid minimum is found. However, convergence for new tracks can be speeded
up by introducing multiple elastic track dynamics. Since two trajectories
should not converge to the same track, an effective repulsive interaction be-
tween trajectories should ‘be introduced. The repulsive interaction can be
taken into account by evolving the present template in the screened field due
to the positive charge distribution of all already converged tracks as well as
the negative distribution generated by the data points. In effect a converged
track neutralizes the ionization density around that track making it easier
for later tracks to converge to new solutions. '

We emphasize that ET can be used with the unprocessed real charge dis-
tributions measured by TPC’s and other particle detectors without expensive
and error producing preprocessing steps. It also eliminates the need for post-
processing usually needed to fit the track parameters since the output of ET
is directly the particle momentum (and possibly the vertex origin). This is
a major advantage against probably all other methods which need real dis-
crete data points to construct tracks and fitting algorithms to get the track
parameters. :

3 Other Methods

3.1 Road Finder

To compare the performance of ET with that of more conventional ap-
proaches we implemented two other methods of trackfinding. One is the
conventional and widely used so called Road Finding algorithm (RF), which
we like to call the ”"Follow Your Nose” method. The principle is very simple
and also very efficient if track density is low.

We start by picking three nearly collinear points in a low density region of
the detector. Projecting this line in direction of the vertex, a chain of points
is to be built up as long as a point is found inside a certain cone along the
projected line and distance from the last point in the chain. If more than one
point is found inside the cone both are ignored. Each point has to be labeled
if it is was touched once, since it can belong only to one track. Labeling and
skipping however can introduce gaps large enough that it doesn’t make sense



to continue searching. Therefore the result of this procedure will be a set of
tracklets to be combined to tracks afterwards. Fitting track parameters has
to be done in addition at the very end.

3.2 Denby - Peterson Net

Another approach was proposed recently by Denby [6] and Peterson [7]. They
constructed a Hopfield type net with a neuron as a link between a pair of
data points, that should relax to a state where only neurons relating to valid
links should be on. Therefore a weight function has to be constructed that
penalizes heavily kinks and long links. The energy function is given by

= "Z*"w 7k”wk ) (5)

zyk

with the weight function
Wisk = (A= (A + B) cos®™(0i/2)) [ (rij + i) (6)

where we took A = 4,B = 0.5, and n = 16. Here 0:;r 1s the angle between
the links r;; and r;i. The dynamics of the net evolve according to the mean
field equations

Sij =

(1+ tallll(—_%—gEi—)) , (1)

S,jj

[N

which are solved by iteration.

4 Résults

Numerical simulations have shown that ET performs substantially better in
case of real hard problems e.g. very high track densities. Figure 1 shows what
a hard problem is. Using all information about the long range correlations
in the data ET can resolve all tracks with correct multiplicity even in an
environment with 100% noise. In Figure 2 the three methods are shown in
comparison. The Road Finder fails first, than the Denby-Peterson Net and
ET performs perfect in all cases.

Since this high track densities can be created in 2D with less data points
(N) than in 3D we have chosen a 2 dimensional geometry for computational
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efficiency. In 3D TPC’s of the future however the data will be as dense as
it is shown in Figure 1 and very high speed computels will be necessary to
handle the data.

It has to be noted that the Road Finder is always the fastest algorithm,
since it scales ~ N2 with a small prefactor. ET scales also with ~ N? but
~ with a much higher prefactor and the problem of determining convergence of

‘the algorithm.” The DP Net scales at least with ~ N3 and takes longest in
almost all cases.

Considering these results ET appears to be an espec1ally promising data
analysis method for highly correlated data with lots of noise. Parallel hard-
ware implementations however could it make even applicable for real time
problems. ' ' ’

Acknowledgments:
Valuable discussions on neural network algorithms with B. Denby, B. Schiir-
mann, W. Keupper, and K. Frankel are gratefully acknowledged. Discussions
~on tracking methods and TPC detectors with H. Matis, G. Rai, P. Jacobs,
J. Carroll, H. H. Wieman, H.G. Ritter, J. Harris, and A. Poskanzer are also
gratefully acknowledged.



, References

k (1] J. Ilingworth and J. Kitter, Computer Vision, Graphlcs and Image
Processing 44 (1988) 87.

[2] G. Rai et al., IEEE Trans. on Nucl. Sci., 37 (1990) 56.
[3] H. Grote, Rep. Prog. Phys. 50 (1987) 473.

[4] M. Regler and R. Frithwirth, in Proc. Advanced Study Institute on Tech-
niques and Concepts in High Energy Physics, St. Croix 1988 (Plenum
Publ. Corp., Rochester).

| [5] Pr_oc..Second Workshop on Experiinents and Detectors for RHIC, LBL-
' 24604 (1988), CONF-870543; Proc. Third Workshop on Experiments
and Detectors for RHIC, BNL (1990). '

[6] B. Denby, Comput. Phys. Commun. 49 (1988) 429;
- B. Denby and S. L. Linn, Comput. Phys. Commun. 56 (1990) 293,;
B. Denby et al., IEEE Transactions on Nuclear Science 37 (1990) 248.

. [7] C. Peterson, NIM A279 (1989) 537; Neural Networks 2 (1989) 475; LU-
TP-89-1 (1989) Lund preprint.

(8] J.J. Hopfield and D.W. Tank, Biological Cybernetics, 52 (1985) 141; J.J
Hopfield, Proc. Natl. Acad. Sci. USA, 79 (1982) 2554. ’

[9] Proc. IJCNN International Joint Conference on Neural Networks, Wash-
ington, D.C. 1989 (IEEE Cat.no. 89CH2765- C) San Diego 1990 (IEEE
Cat.no. 90CH2879-5). : :

[10] B. Humpert, Comput Phys. Commun. 06( 990) 299. |

[11] R. Durbin and D. J. Willshaw, Nature 326 (1987) 689; W. S. Wong and
C. A. Funka-Lea, IJCNN 1990 op cit, Vol III, p.799.

[12] M. Gyulassy and M.V. Harlander, LBL preprint 29654, to be published
in Comput. Phys. Commun.



Initial Distribution with 100% Noi‘se

Denby-Peterson net  Elastic Tracking

Figure 1: A real hard problem: 20 tracks with '
100 percen t noise.
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Figure 2: Road Finder, Denby Peterson Net and ET in 2
dimensions
for multiplicities of 3,5,10 and 15.
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