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Abstract

This paper outlines an implemented system called PRO-
VERB that explains machine-found natural deduction
proofs in natural language. Different from earlier works,
we pursue a reconstructive approach. Based on the ob-
servation that natural deduction proofs are at a too low
level of abstraction compared with proofs found in math-
ematical textbooks, we define first the concept of so-
called assertion level inference rules. Derivations justi-
fied by these rules can intuitively be understood as the
application of a definition or a theorem. Then an al-
gorithm is introduced that abstracts machine-found ND
proofs using the assertion level inference rules. Abstrac-
ted proofs are then verbalized into natural language by
a presentation module. The most significant feature of
the presentation module 1s that it combines standard
hierarchical text planning and techniques that locally
organize argumentative texts based on the derivation
relation under the guidance of a focus mechanism. The
behavior of the system is demonstrated with the help of
a concrete example throughout the paper.

Introduction

This paper describes PROVERB, a system that presents
proofs found by an automated reasoning system in nat-
ural language. The main aim is to provide an overview
of the entire spectrum of a reconstructive presentation
process. To acgieve this, we are often forced to sacrifice
precise descriptions to the global architecture.

[dentifying the Problem

Similar to the reconstructive approach employed by the
explanation component of some expert systems (Wick
ind Thompson 92), efforts were made to transform
proofs from machine-oriented formalisms into more nat-
ural formalism (Andrews 80, Miller 83, Pfenning 87,
Lingenfelder 90). As the target formalism, usually a
variation of the natural deduction (ND) proof first pro-
posed by G. Gentzen (Gentzen 35) is chosen. Until
recently the reconstruction stops here and the resulting
ND proofs are used as inputs by natural language gen-
srators (Chester 76, McDonald 83, Edgar & Pelletier
33). In general, the presentation of ND proofs has been
;arried out by resorting to ordering, pruning, and aug-
mentation.

All these verbalizations suffer from the same problem:
I'he derivations they convey are exclusively at the level
of the inference rules of the ND calculus. In contrast
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to informal proofs found in standard mathematical text-
books, such proofs are composed of derivations familiar
from elementary logic, where the focus of attention is on
syntactic manipulations rather than on the underlying
semantic ideas. The main problem, we believe, lies on
the lack of intermediate structures of ND proofs, which
allow atomic justifications at a higher level of abstrac-
tion.

PROVERB solves this problem by carrying the recon-
structive approach one step further. The first section
below defines a new intermediate representation, called
assertion level inference rules. Next we illustrate the re-
construction of more abstract proofs from machine-found
ND proofs using assertion level rules. Subsequently,
we sketch out a computational model adapts and com-
bines several established NL generation techniques for
the verbalization of a abstracted proof.

Abstracting ND Proofs to the Assertion
Level

Our analysis on proofs in mathematical textbooks shows
that most derivations are justified in terms of the applic-
ation of a definition or a theorem, collectively called an
assertion (Huang 92). In this section, we first introduce
a computational model for informal mathematics. Ac-
cording to this model, assertion level justifications can
be used both for compound proof segments exhibiting
certain syntactical structure, and for atomic steps de-
rived by assertion level inference rules. Then we turn to
an abstraction process that reconstructs a proof using
assertion level rules.

Compound proof segments and assertion
level rules

Our computational model for informal mathemnatical
reasoning basically follows the psychological models for
reasoning based the natural logic hypothesis (Braine 78,
Rips 1983), and the proof planning framework proposed
by A. Bundy (1988). According to this model, our in-
tuitive notion of the application of an assertion is either
achieved by constructing an ND proof segment that sat-
isfies certain structural constraint, or by the application
of an assertion level inference rule.

Figure 1 is an example of a compound proof segment
that infers a; € F, from U; C F; and a, € U, by apply-
ing the definition of subset encoded as in the leaf with

the label A.
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Figure 1: Natural Expansion 1 for Subset Definition

The procedure that applies assertions by construct-
ing a compound proof segment is specified in terms of a
so-called decomposition-composition constraint imposed
on such proof segments identified in our preliminary em-
pirical study on mathematical proofs (Huang 92). To
illustrate this constraint, we first introduce two defini-
tions.

inference rule of the form
is a decomposition rule with respect to

the formula schema F, if all applications of it, written as

Definition: An
AFF.AFP,,.. AFP,
AFQ

&'_F"ﬁ;fa,"'&kp“ satisfy the following condition: each
P{,. .,P, and Q' is

e a proper subformula of F', or

e a specialization of F' or of one of its proper subfor-
mula, or

e a negation of one of the first two cases.

Under this definition, AD,= D, ,VD are the only ele-
mentary decomposition rules in the natural deduction
calculus NK. Compare Figure 1 for the meaning of the
rules.

AP, AFRP,

Definition: An inference rule of the form AFO
1s called a composition rule if all applications of it, writ-
£ AFP|, AFP;
€n as AFQ'

Pl is

e a proper subformula of Q’, or

, satisfy the following condition: each

e a specialization of @' or of one of its proper subfor-
mula, or

¢ a negation of one of the first two cases.

Roughly speaking, the decomposition-composition
constraint requires that a proof segment applying an as-
sertion A consists primarily of a linear decomposition of
A. As illustrated in Figure 1, this 1s carried out along
the branch from A to the root by applying decomposition
rules. Other premises involved in this series of decompos-
itions (the leaves Uy C F) and a; € U, in Figure 1 for in-
stance) can be constructed by compositions (not used in
Figure 1). For a precise definition of this constraint, see
(Huang 92). In the sequel, proof segments satisfying this
constraint will be referred to as the natural ezpansion
of the corresponding assertion level justification. This
constraint is closely related to one of Johnson-Laird’s ef-
fective procedures (Johnson-Laird 1983), accounting for
spontaneous daily reasoning.

Assertion level justifications are also used for proof
steps derived by an assertion level inference rule. There
are two ways for acquiring such rules in our computa-

428

tional model: learning by chunking-and-variablization
and learning by contraposition (Huang 94b).

First, we assume that patterns of repeated applica-
tions of an assertion may be remembered as new rules,
similar to the chunking operation in the cognitive archi-
tecture Soar (Newell 90). On account of this, assertion
level rules are also referred to as compound rules. We
continue with our subset example to illustrate this.

Example 1 (Continued):

Suppose that a reasoner has just derived a; € F) from
the premises a; € Uy and U, C F; by constructing the
proof tree in Figure 1. OQur assumption is that apart from
merely drawing a concrete conclusion from the premises,
possibly he learns the following compound rule as well:

ArFaceUAVFUCF
AraeF

where a, U and F are metavariables standing for object
variables. Note that this rule is obtained by variabliza-
tion and removing the intermediate steps in Figure 1.

The second way of acquiring assertion level rules can
be viewed as a generalized contraposition. For instance,
after the acquisition of rule above, the rules

AraelU AFagF Arad FALUCFEF
ArU@gF AtaglU

can be derived as contrapositions.

In (Huang 94b), it is shown that a finite set of com-
pound rules can be constructed for each assertion, so
that this set covers all possible applications of this as-
sertion, which can be achieved by constructing natural
expansions. The two ways of applying assertions are
therefore logically equivalent. The set of assertion level
rules for a typical mathematical assertion can usually be
represented as one or two proof tree schemata satisfying
the decomposition-composition constraint (Huang 94b).
These rules are used to abstract ND proofs.

Abstracting ND Proofs to the Assertion
Level

This section describes an algorithm that replaces as
many compound proof segments in machine-found ND
proofs as possible, by atomic derivations justified by as-
sertion level rules. Note that proof segments replaced
may contain machine-generated detours and redundan-
cies, and are not necessarily natural expansions.

Algorithm: Go through the proof tree starting from
the root, for each proof node N,

1) Choose as the set of assertions AS the definitions
and theorems contributing to the proof of N, namely the
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Figure 2: A Natural Deduction Proof with Detours

leaves of the subtree rooted by N, which are definitions
or theorems used.

2) Among the nodes in the subtree rooted by N, test
if there exist nodes py, ..., p,, from which N can be de-
rived by an assertion level rule associated with an asser-
tion A in AS. If successful, reduce the input proof so
that N has p;,...,pn as its direct children and A as its
new justification.

For example, the proof segment Figure 2 can be ab-
stracted to the following step justified by an assertion
level rule learned from Figure 1:

[Pl]:Ul CFl,[p;_l]:bEUl
ORI Subset

The restrictive choice of AS and the search for p1,...,pn
in a breath-first way sacrifice optimal solutions to effi-
ciency. Neatly written ND proofs are reduced to 1/3 of
their original proof nodes. The best-case complexity is
linear. Most significant reduction is observed with input
proofs which contain machine-generated detours and re-
dundancies. The algorithm performs poorly on proofs
which are mainly indirect, where in most of the node
only L (contradiction) is derived. The worst-case com-
plexity is O(n?) (Huang 94b).

Figure 3 is a proof abstracted from an input proof of
134 lines, generated in the proof development environ-
ment Q-MKRP(Huang et al 94) the theorem below:

Theorem: Let F' be a group and U a subgroup of F, if
ly is a unit element of I/, then 1 = 1.

To illustrate the difference between derivations at the
assertion level and logic level, we want to indicate that
the best ND proof for the assertion level derivation in
step 7 corresponds to a compound proof given in Figure
1. In a machine-generated ND proof, it can be more com-
plex since such a proof often contains machine-generated
detours, see Figure 2. It is given in a linearized format,
where the last column contains the justification as well
as the premises. Eleven of the remaining fifteen steps are
at the assertion level. The rest is justified by ND rules
of more structural import: they introduce new tempor-
ary hypothesis and then discharge them (the Hyp and
the Choice rule in this example). These steps are usu-
ally presented later explicitly. Groups of trivial steps
instantiating quantifiers or manipulating logical connect-
ives are largely abstracted to assertion level steps. The
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formula solution(a,b,c, F, *) should be read as “c is a
solution of the equation a*z =bin F "

The Verbalization of an Abstracted
Proof

The presentation module of PROVERB accepts an ab-
stracted proof as input, and produces a proof in natural
language. It is cast as a two stage process: The macro-
planner chooses a sequence of proof communicative acts
(PCAs), being speech acts in this domain of application.
The microplanner makes more syntactic decisions.

The macroplanner combines hierarchical planning
(Hovy 88, Moore 89, Reithinger 91) and local organiza-
tion of text (Sibun 90) in a uniform planning framework.
While hierarchical planning views language as planned
behavior and maps a goal into subgoals, local organiz-
ation simulates the more spontaneous part of text gen-
eration. Under the latter mode, local structures suggest
the next objects available, once a discourse is started.

The Framework of the Text Planner

PROVERB combines the two presentation modes by en-
coding communication knowledge for both modes as plan
operators, called top-down and bottom-up presentation
operators respectively, in a uniform planning framework.
Since top-down presentation operators embody explicit
communicative norms, they are given a higher prior-
ity than the bottom-up ones. A bottom-up operator
is chosen only when no top-down presentation operator
applies. The overall planning framework is realized by a
function Present. It is first called with the entire proof
as the presentation task. The execution of a top-down
presentation operator generates new subtasks by calling
it recursively. Furthermore, we assume that every dis-
course segment produced by a call to “Present” forms
an attentional unit in the discourse model (compare the
subsection on reference choices).

Top-Down Presentation operators

In contrast with operators employed in RST-based plan-
ners that split pending goals according to rhetorical
structures, our operators encode standard schemata for
presenting proofs of some particular structures. The top-
down presentation operators can roughly be divided into
two categories:

e those containing complex schemata for the presenta-
tion of proofs of a specific pattern,



NNo S§;D Formula Reason
1 1; F group(F, «) A subgroup(U, F, ) A unit(F,1,+) A (Hyp)
unmat(U, 1y, #)
2. 1; B HCF (Def-subgroup 1)
3. 1; F lyelU (Def-unit 1)
4. 1; F 3:zelU (3 3)
5. 5 F uelU (Hyp)
6. 1,5 F usrlpy=u (Def-unit 1 5)
% 155 F+ u€F (Def-subset 2 5)
8. 1;5 F 1lyeF (Def-subset 2 3)
9. 1,5  F  semigroup(F, +) (Def-group 1)
10. 1;5 F  solution(u,u,ly, F, *) (Def-solution 6 7 8 9)
11. 1,5 F uxl=u (Def-unit 1 7)
12. 1,5 + 1€F (Def-unit 1)
13. 1;5 F  solution(u,u, 1, F, *) (Def-solution 7 11 12 9)
14. 1;5 Fol=1y (Th-solution 11 10 13)
15 1 F 1=1y (Choice 4 14)

Figure 3: Abstracted Proof about Unit Element of Subgroups

o those embodying general presentation norms, concern-
ing splitting proofs and ordering subgoals.

Due to space restrictions, we only elaborate on one
top-down operator devised for proof segments containing
cases. A corresponding proof schema is shown in Figure

4,

F+F

LEFFVE k1 EA],_Q'Q £ ECiQCASF

GHG

Figure 4: A Proof Schema Involving Cases

Under two circumstances a writer may recognize that
he is confronted with a proof segment containing cases.
First, when a corresponding subproof is the current
presentation task, tested by (task 7L;)! Second, when
a disjunction has just been presented, tested by (local-
focus ?L4). Under both circumstances there i1s a com-
munication norm motivating the writer to try first to
present the part leading to FV G (in the second case this
subgoal has already been achieved), and then proceeds
with the two cases. Certain PCAs are used to mediate
between parts of a proof. This procedure is captured by
the operator below.

Case-Implicit
» Proof: the proof schema in Figure 4
» Applicability Condition: ((task 7L;)
V (local-focus ?L4)) A (not-conveyed (7L, ?L3))
» Acts: (if (not-conveyed 7L4)
(present 7L4)) ;subgoal 1
(Case-First F')

(present 7L;) ;subgoal 2
(Case-Second ()

!Labels stand for the corresponding nodes
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(present ?L3) ;subgoal 3
(Set-Conveyed :Conclusion 7L,))

e features: (top-down compulsory implicit)

This operator posts three new subgoals. The entire

verbalization is of the pattern below:

The verbalization of the subproof leading to F'V G
rooted by 7L4. (subgoal 1)

“First, let us consider the first case by assuming
F.”

The verbalization of the subproof rooted by ?L,.
(subgoal 2)

“Next, we consider the second case by assuming G.”
The verbalization of the subproof rooted by 7Ls.
(subgoal 3)

There are two kinds of feature values. “Implicit” is a
stylistic one, indicating that the splitting into the three
subgoals is not made explicit in the verbalization. In
its explicit dual Case-Explicit this can be achieved by
adding the PCA below to the beginning of the ACTs

slot.

(Subgoal Goal: Label_l
Subgoals: (7L4 7L2 7L.3))

which produces the verbalization:

“To prove @, let us first prove F' Vv G, and then
consider the two cases separately.”

The feature value “compulsory” indicates the spe-
cificity of this operator: If the operator is applicable, and
its style conforms to the global style (which can be spe-
cified by the user in PROVERRB), this operator should
be chosen. Besides “compulsory”, there are two weaker
stages reflecting the specificity: “specific” and “general”

Twelve top-down presentation operators that embody
communication schemata for proofs exhibiting a partic-
ular structure are currently integrated in PROVERB.
The other five realize more general ordering and split-
ting principles (Huang 94a, Huang 94d).



Bottom-up Presentation

The bottom-up presentation process simulates the un-
planned part of proof presentation. Instead of splitting
presentation goals into subgoals, it follows the local de-
rivation relation to find a proof node or a subproof to be
presented next. In this sense, it 1s similar to the local
organization techniques used in (Sibun 90). Only when
no top-down operator applies, will a bottom-up operator
be chosen.

The Local Focus

The node to be presented next is suggested by the local
focus, the proof node last presented. Although logically
any proof node having the local focus as a child could
be chosen for the next step, usually the one with the
greatest semantic overlap with the focal centers is pre-
ferred. Focal centers are semantic objects mentioned in
the local focus. This is based on the observation that if
one has proved a property about some semantic objects,
one tends to continue to talk about these objects before
turning to new objects. Let us examine the following
: P(a,b) P(a,b), [3]: S(c)

situation.
(1 :
: Qa,b)’ (4] : R(b, c)
(5] : Q(a,b) A R(b,c)

Assume that node [1] is the local focus, the set {a, b} is
therefore the focal centers. [3] is a previously presented
node and the proof rooted by [5] is the current task. [2] is
chosen as the next node, since it does not (re)introduce
any new semantic element and its overlap with the focal
centers ({a,b}) is larger than that of [4] with the focal
centers ({b}).

The Bottom-Up Presentation Operators

.

—

L)

Due to space restrictions, we only examine the most fre-
quently used bottom-up operator, which presents one
step of derivation:

Derive-Bottom-Up
?Nodey,...,? Node,
?N0d8ﬂ+1
¢ Applicability Condition: (eq next-node ?Node,4;) A

(conveyed (?Nodey, ..., 7Node,))
e Acts: (Derive Derived-Formula: ?Noden 4,
Reasons: ?Nodey, - -+, "Node,
Method: ?M)

s Features: (bottom-up general explicit detailed)

‘M

e Proof:

The precondition says, a node Noden4) can be chosen
as the next to be presented, if all its premises have
already been conveyed, and if it is recommended by the
focus mechanism. Only one piece of PCA is generated.
If the Derived-Formula, Reasons and Method slots are
instantiated by a € Sy, (a € Sz, Si € Sz), and def-subset
respectively, the following verbalization can be produced
(depending on the context):

“Since a is an element of S;, and S, is a subset of
Sy, a is an element of S; according to the definition
of subset.”
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Reference Choices

Macroplanning produces a sequence of PCAs. Our mi-
croplanner is restricted to the treatment of the reference
choices for the inference methods and for the previously
presented intermediate conclusions. While the former
depends on the static salience related to the domain
knowledge (Pattabhiraman & Cercone 93), the latter is
very similar to the subsequent references, and is there-
fore sensitive to the context, in particular to its segment-
ation into an attentional hierarchy (Reichman 85, Grosz
& Sidner 86). Below is an example of a PCA enriched
with reference choices for the reasons and the method by
the microplanner, see (Huang 94c) for more details.

(Derive Reasons: ((((ELE a U) explicit))
((SUBSET U F) omit))
Conclusion: (ELE a F)
Method: (Def-Subset omit))

With the help of a dictionary, this is translated into
the input language of our surface generator based on the
TAG formalism, which finally produces the utterance:

“Since a is an element of U/, a is an element of F.”

Note that, only the reason labeled as “explicit” is verb-
alized. Finally, to demonstrate the quality of proofs cur-
rently generated by PROVERB, the complete output for
the abstracted proof in Figure 3 is listed below:

“(1) Let F be a group, U be a subgroup of F, 1
be a unit element of F and 1y be a unit element of
U. (2) According to the definition of unit element,
1y € U. (3) Therefore there is an X, X € U. (4)
Now suppose that u, is such an X. (5) According to
the definition of unit element, u; 1y = u;. (6) Since
U is asubgroup of F', U C F. (7) Therefore 1y € F.
(8) Similarly uy € F, since uy € U. (9) Since F is a
group, F' is a semigroup. (10) Because u; * 1y = u;,
1y is a solution of the equation uy * X = uy. (11)
Since 1 is a unit element of F, u; *1 = u;. (12)
Since 1 is a unit element of F', 1 € F. (13) Because
u; € F, 1 1s a solution of the equation u; * X = u;.
(14) Since F is a group, 1y = 1 by the uniqueness
of solution. (15) This conclusion is independent of
the choice of the element u;. ”

Conclusion

This paper presents a system that explains machine-
found proofs following a reconstructive approach. The
power of our architecture is derived in large part from
the intermediate representation, namely, natural deduc-
tion style proofs at the assertion level. In contrast to ori-
ginal ND proofs, where the focus of attention is placed
on syntactic manipulations, proofs reconstructed at the
assertion level contain mostly inferences in terms of se-
mantically meaningful operators that apply a definition
or a theorem valid in the context.

The most important feature of our presentation mod-
ule is that hierarchical planning and unplanned spon-
taneous presentation are integrated in a complementary
way. Based on explicit communicative knowledge, the



former splits a presentation task into subtasks. The lat-
ter chooses a proof node or a subproof to be presented
next under the guidance of the local focus mechanism.
Distinguishing between planned and unplanned gener-
ation also leads to a natural segmentation of the dis-
course. This, in turn, provides an appropriate basis for
a discourse theory which handles the reference choices.

A prototype of PROVERB has been implemented in
Allegro Common Lisp with CLOS. While the abstraction
module and the main part of the text planner have been
completed, the current interface to our surface generator
i1s very simple and is currently under extension. The
abstraction module can also be used as a stand-alone
utility.

Compared with proofs found in a typical mathemat-
ical textbook, the output of PROVERB is still tedious
and inflexible. The tediousness is largely ascribed to
the lack of plan level knowledge of the input proofs,
which distinguishes crucial steps from unimportant de-
tails. Therefore, we need both a more full-fledged model
for human informal mathematics, as well as sophistic-
ated plan recognition techniques, which must be incor-
porated into the reconstruction process. The inflexibility
of text currently produced is partly inherited from the
schemata-based approach, for which a fine-grained plan-
ning in terms of single PCAs might be a remedy. It is
also partly due to the fixed lexicon choice, which we are
currently reimplementing. Finally, although it is hard
to judge the naturalness of the texts generated by PRO-
VERB by comparing with naturally occuring mathemat-
1cal proofs since they differ still significantly with respect
to the level of abstraction, it might be useful to build a
small corpus as a standard.
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